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Vocabulary. While the names of distributions

in R are generaly unambiguous, at the contrary

in the jungle of distributions in Rn almost

nothing is codified outside of Wishart and

Gaussian cases. The scenario is usually as fol-

lows : choose a one dimensional thingy type

(quite often an exponential dispersion model,

namely a natural exponential family and all

its real powers of convolution) as gamma or

negative binomial, then any law in Rn whose

margins are of thingy type are said to be mul-

tidimensional thingy. Although the study of

all distributions with given marginals are ra-

ther in the non parametric domain of study,

actually each author who isolates some pa-

rametric family will declare that he has THE

multidimensional thingy family.
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This is what we are also doing today by cal-
ling bivariate gamma any distribution ν(dx, dy)
on (0,∞)2 such that there exists 4 parame-
ters a, b, c, q with q > 0 satisfying∫ ∞

0

∫ ∞
0

e−sx−tyν(dx, dy) =
1

(1 + as + bt + cst)q

(To be fair it is called Kibble and Moran dis-
tribution by Johnson and Kotz). When (X, Y ) ∼
ν doing t = 0 shows that X is gamma distri-
buted with shape parameter q et and scale
parameter a :

γq,a(dx) =
1

Γ(q)
e−

x
a

(
x

a

)q−1
1(0,∞)(x)

dx

a
.

Same for Y. This shows that a et b are > 0.
For if a or b are nonpositive the distribution
ν is concentrated on an other quadrant, or
on an axis. No generality is lost by postula-
ting a, b > 0 and therefore ν(dx, dy) concen-
trated on (0,∞)2. The hypothesis q > 0 is
more important and q < 0 would lead us to
distributions concentrated on a finite number
of points with binomial margins.
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Constraints for parameters and density. We
are going to see later on that if a, b, q > 0,
the distribution ν does exist if and only if
0 ≤ c ≤ ab. If c > 2ab the function (s, t) 7→
−q log(1+as+bt+cst) is not convex inside the
suitable branch of hyperbola, but the proof
that ab < c ≤ 2ab is impossible is subtlier.
Note that this implies that ν is infinitely di-
visible (as observed by Vere-Jones (1967)).
Note also that is (X, Y ) is bivariate gamma
with parameters a, b, c, q then (X/a, Y/b) is bi-
variate gamma with parameters 1, 1, c/ab, q. If
c = ab obviously X et Y are independent.

The case a = b = c (and thus c ≥ 1 since c ≤
ab) is called the standard case with parameter
r ∈ [0, 1) with c = 1

1−r. It seems to be more
interesting than the a = b = 1 case (although
the a = b = 1 case is natural in the context of
Lancaster probabilities that we shall consider
later on).

If c = 0 then (X, Y ) ∼ (aZ, bZ) with Z ∼
γp,1. If 0 < c ≤ ab the distribution ν has a
non familiar density. To compute it, let us
use natural exponential families (NEF).
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The NEF F (µρ,q)

Let ρ > 0, let q > 0 and consider the measure

µρ,q(dx, dy) with density

(xy)q−1

Γ(q)
fq(ρxy)

on (0,∞)2 where fq(z) =
∑∞

n=0
zn

n!Γ(q+n). Its

Laplace transform

Lµρ,q(θ1, θ2) =
∫ ∫

eθ1x+θ2yµρ,q(dx, dy)

is defined on

Θ(µρ,q) = {(θ1, θ2) ; θ1 < 0, θ2 < 0, θ1θ2−ρ > 0}

and is equal to Lµρ,q(θ1, θ2) = (θ1θ2− ρ)−q on

this set. Consider the NEF F (µρ,q) generated

by µρ,q.
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An element P (θ1, θ2) of this NEF has the form

P (θ1, θ2)(dx, dy) =

(θ1θ2−ρ)qeθ1x+θ2y(xy)q−1

Γ(q)
fq(ρxy)1(0,∞)2(x, y)dxdy.

Thus∫ ∫
e−sx−tyP (θ1, θ2)(dx, dy) =

L(θ1 − s, θ2 − t)

L(θ1, θ2)

=
(θ1θ2 − ρ)q

((θ1 − s)(θ2 − t)− ρ)q
.
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Introduce r = ρ
θ1θ2

. We are going to see that

r is the correlation coefficient of P (θ1, θ2).

Obviously the parameters

a =
−θ2

θ1θ2 − ρ
= −

1

θ1(1− r)
,

b =
−θ1

θ1θ2 − ρ
= −

1

θ2(1− r)
,

c =
1

θ1θ2 − ρ
=

1

θ1θ2(1− r)

seem more attractive for P (θ1, θ2) since∫ ∫
e−sx−tyP (θ1, θ2)(dx, dy) =

1

(1 + as + bt + cst)q
.

with the conversion table

θ1 = −
b

c
, θ2 = −

a

c

r =
ab− c

ab
, ρ =

ab− c

c2
.

In the standard case a = b = c = 1
1−r we have

θ1 = θ2 = −1 and ρ = r. In the ‘Lancaster’

case a = b = 1 and c = 1 − r we have θ1 =

θ2 = − 1
1−r and ρ = r

(1−r)2.
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The classical objects of the NEF F (µρ,q). We

have seen that Θ(µρ,q) is the interior of the

hyperbola branch

{θ1 < 0, θ2 < 0; θ1θ2 − ρ > 0}.

The cumulant function is

k(θ1, θ2) = −q log(θ1θ2 − ρ)

Its differential is

k′(θ1, θ2) =
−q

θ1θ2 − ρ
(θ2, θ1) = (qa, qb) = (m1, m2).

The domain of the means is M(F ) = (0,∞)2.

This gives r as a function of m1, m2 and ρ :

1− r =
q2

2ρm1m2

(√
1 +

4ρm1m2

q2
− 1

)
or in a simpler form :

1

1− r
=

1

2
+

1

2

√
1 +

4ρm1m2

q2
.
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Here is the variance function either expres-

sed in canonical parameters, or in the mean

parameters, or in the classical parameters :

k′′(θ1, θ2) =
q

(θ1θ2 − ρ)2

[
θ2

2 ρ

ρ θ2
1

]

=
1

q

[
m2

1 rm1m2
rm1m2 m2

2

]

= q

[
a2 ab− c

ab− c b2

]
(do not forget that r is the complicated func-

tion of m1 and m2 given above). One charac-

terisation of this bivariate gamma NEF is due

to Barlev et al. (1994). It says that if a NEF

concentrated on (0,∞)2 has a variance func-

tion of the form 1
q

[
m2

1 ∗
∗ m2

2

]
this implies that

it is a bivariate gamma NEF.
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How to get quickly the density. Starting from

(1 + as + bt + cst)−q = E(e−sX−tY ) with

a, b, c > 0

1. We choose α and β > 0 such that X1 =

αX and Y1 = βY satisfy

(1 + c1s + c1t + c1st)−q = E(e−sX1−tY1)

pour some c1 = αa = βb = cαβ. Thus

(X1, Y1) is standard with parameters r and

q. We get

α =
b

c
, β =

a

c
, c1 =

ab

c
=

1

1− r

2. We now compute the density for the stan-

dard case
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E(e−sX1−tY1)

=
(1− r)q

(1− r + s + t + st)q

=
(1− r)q

((1 + s)(1 + t)− r)q

=
(1− r)q(

(1 + s)(1 + t)(1− r
(1+s)(1+t))

)q
=

(1− r)q

(1 + s)q(1 + t)q

∞∑
n=0

(q)n

n!

rn

(1 + s)n(1 + t)n

=
(1− r)q

Γ(q)

∞∑
n=0

Γ(q + n)

n!

rn

(1 + s)q+n(1 + t)q+n

=
(1− r)q

Γ(q)

∞∑
n=0

rn

n!Γ(q + n)

×
∫ ∞

0

∫ ∞
0

e−sx1−ty1(x1y1)q+n−1dx1dy1

=
(1− r)q

Γ(q)

∫ ∞
0

∫ ∞
0

e−sx1−ty1(x1y1)q−1fq(rx1y1)dx1dy1
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Mixing. In other terms if

N, X0, . . . , Xn . . . , Y0, . . . , Yn, . . .

are independent and such that X0 ∼ Y0 ∼ γq,1,

Xi ∼ Yi ∼ γ1,1 for i ≥ 1 and if N follows a

negative binomial distribution :

Pr(N = n) =
(q)n

n!
(1− r)qrn

denote

Un = X0 + . . . + Xn, Vn = Y0 + . . . + Yn.

Under these circumstances (UN , VN) follows

a standard gamma bivariate distribution with

parameters r and q : thus this distribution is

a mixing of gamma distributions.



Why 0 ≤ c ≤ ab? (and not only 0 ≤ c ≤ 2ab for

which log((1+as+ bt+ cst) is concave). This

is equivalent to ask : why r ∈ [0, 1] and not

only r ∈ [−1, 1]? The preceeding calculation

contains the answer ; if r < 0 the density is
(1−r)q

Γ(q) (x1y1)q−1fq(rx1y1). But

(
z

2

)q−1
fq

(
1

4
z2
)

= Iq−1(z)

Since the classical Bessel function Iq−1(z) has

its zeros on the imaginary axis and since they

are all simple and in an infinite number, this

implies that fq is not positive on (−∞, 0).

13



Moments of the standard bivariate gamma.

Recall that the distribution of (X, Y ) such

that

E(e−sX−tY ) = (1− r)q(1− r + s + t + st)−q

has been called standard bivariate gamma dis-

tribution with covariance r and shape para-

meter q, and therefore with density

(1− r)q(xy)q−1

Γ(q)
fq(rxy)e−x−y.

We get easily from this the moments : E(XsY t) =

(1− r)qΓ(q + s)Γ(q + t)

Γ(q)2 2F1(q + s, q + t; q; r) =

(1− r)−s−tΓ(q + s)Γ(q + t)

Γ(q)2 2F1(−s,−t; q; r)

and therefore E((XY )s)

≤
(1− r)−2sΓ(q + s)2

Γ(q)2 2F1(−s,−t; q; 1)

= (1− r)−s−tΓ(q + 2s)

Γ(q)
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For instance

E(X) = E(Y ) =
q

1− r

E(X2) = E(Y 2) =
q(q + 1)

(1− r)2

σ2(X) = σ2(Y ) =
q

(1− r)2

E(XY ) =
1

(1− r)2
q2(1 +

r

q
)

E(X2Y 2) =
1

(1− r)4
q2(q + 1)2(1 +

4r

q
+

2r2

q(q + 1)
)
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Joint distribution of (P, S) = (XY, X + Y ),

standard case. The distribution is

(1−r)qpq−1

Γ(q)
fq(rp)e−s 1√

s2 − 4p
1s>2

√
p(p, s)dpds.

Writing hq(z) =
∑∞

n=0
(q)n

n!Γ(2q+2n)z
n and imi-

tating the way that the density of (X, Y ) has

been found one gets the law of S

(1− r)qs2q−1hq(rs2)1s>0(s)ds

but for the density of P = XY nothing can be

obtained from the joint distribution of (P, S)

and from the Mellin transform

E(P s) = (1− r)−2sΓ(q + s)2

Γ(q)2 2F1(−s,−s; q; r).
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History. These distributions have been intro-

duced by Wicksell (1933) and independently

by Kibble (1941) and mentioned by Moran

(1967), by Barndorff Nielsen(1980), Wang (1982),

Seshadri (1988), Barlev and 5 coauthors(1994)

and Johnson and Kotz (1972). Angelo Kou-

dou (1995) and Philippe Bernardorff (2003)

study them in their thesis, defended at the

Université Paul Sabatier at Toulouse.
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Bivariate gamma and Wishart distributions

In one dimension, gamma distributions with

when the shape parameter is a half integer are

known as chi squares. If the shape parameter

is not a half integer, probabilistic interpreta-

tions are rather rare. Here is one which is due

to Yor (1990) :

(
∫ ∞

0
e
− t

p+B(t)
dt)−1 ∼ γp,1

when B is a standard Brownian motion. The

most natural generalization of the chi square

distribution is the Wishart distribution : if

Z1, . . . , ZN are iid N(0, Σ) in Rr (written by

columns) the Wishart distribution is the law

of the random matrix

W =
1

2
(Z1ZT

1 + . . . + ZNZT
N).

It satisfies

E(e− tr (θW )) = det(I + Σ−1θ)−N/2.

(θ is a symmetric positive definite matrix).
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For r = 2 write W =

[
X Z
Z Y

]
. Suppose that

θ = diag(s, t) and denote Σ−1 =

[
a γ
γ b

]
and

denote c = ab− γ2. One gets exactly

E(e−sX−tY ) =
1

(1 + as + bt + cst)N/2
:

As a result : the diagonal of a Wishart ma-

trix on the (2,2) real symmetric matrices is a

bivariate gamma.
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This result can be extended in several direc-
tions : by replacing N/2 by q ≥ 1/2; by repla-
cing the (2,2) positive definite matrices by
the Lorentz cone

Cd = {(x, y, z1, . . . , zd) ; x, y > 0, xy > z2
1+· · ·+z2

d}
and writing symbolically its elements as w =[

x z
z y

]
. The Wishart distributions on Cd of

shape parameter q are the elements of the
natural exponential family generated by the
measure on Cd with density

(xy − z2
1 − · · · − z2

d)q−1−d
2

if q > 1/2 (and some singular distribution on
∂Cd if q = 1/2). If (X, Y, Z) follows such a
Wishart law on Cd then (X, Y ) is bivariate
gamma. The cases of ordinary Wishart dis-
tributions, or complex or quaternionic are the
cases d = 1, 2, 4.

Note that for 0 < q < 1/2 the bivariate gamma
does exist but cannot be the marginal distri-
bution of (X, Y ) for a Wishart distribution
(X, Y, Z1, . . . , Zd).
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The bivariate gamma are Lancaster probabi-

lities Suppose that α(dx) and β(dy) are dis-

tributions on R such that
∫

e−a|x|α(dx) and∫
e−a|y|β(dy) are finite for some a > 0. Let

(Pn) and (Qn) be the sequences of correspon-

ding orthonormal polynomials. We say that

the distribution µ(dx, dy) on R2 with margins

α and β is of Lancaster type if either their

exists a sequence (ρn) of real numbers such

that µ is absolutely continuous with respect

to α(dx)β(dy) and is

µ(dx, dy) =

 ∞∑
n=0

ρnPn(x)Qn(y)

α(dx)β(dy)

or µ is the weak limit of such distributions. In

both cases we have

Eµ(Pn(X)|Y ) = ρnQn(Y ), Eµ(Qn(Y )|X) = ρnPn(X).

21



D’jachenko (1962) has observed that the bi-

variate gamma is a Lancaster probabilility with

ρn = rn where r ∈ [0, 1] is the correlation co-

efficient. This is a not quite obvious fact and

relies on a classical formula on Laguerre po-

lynomials. Note that this is not the standard

bivariate gamma but the one with a = b =

1 and c = 1 − r. To this, add a Tyan and

Thomas theorem which says that in general

the (ρn)′n≥0s appearing in the definition of

Lancaster probabilities are sequences of mo-

ments, and you get an elegant integral repre-

sentation :

Proposition. µ(dx, dy) is a Lancaster proba-

bility for the margins α = β = γq,1 if and only

if there exists a probability ν(dr) on [0, 1] such

that ∫ ∞
0

∫ ∞
0

e−sx−tyµ(dx, dy) =

∫ 1

0

ν(dr)

(1 + s + t + (1− r)st)q
.

Dans ce cas
∫ 1
0 rnν(dr) = ρn.
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Other details on Lancaster probabilities can

be found in Koudou (1996) and the paper

on Gibbs sampling by Diaconis and two coau-

thors to appear in Statistical Science in 2008.



The Wang characterisation (1982) Recall

the characterisation by Lukacs (1956) of the

ordinary gamma distributions : If X and Y

are positive, independent, not constant and

such that Z = X/(X + Y ) is independent of

X + Y then there exist p, q, c > 0 such that

X ∼ γp,c and Y ∼ γq,c. Proof : let a and

b ∈ (0, 1) such that E(X|X + Y ) = a(X + Y )

and E(X2|X + Y ) = b(X + Y )2. Then

E(E(e−s(X+Y )X|X+Y )) = aE((X+Y )e−s(X+Y ))

E(E(e−s(X+Y )X2|X+Y )) = bE((X+Y )2e−s(X+Y )).

Denoting LX(s) = E(e−sX) we get the dif-

ferential system in LX and LY : L′XLY =

a(LXLY )′ and L′′XLY = b(LXLY )′′ easily sol-

ved by intoducing kX = log LX .
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Wang does the same thing in two dimen-

sions : if X = (X1, X2) and Y = (Y1, Y2)

in (0,∞)2 are independent, not constant and

such that

Z =

(
X1

X1 + Y1
,

X2

X2 + Y2

)
is independent of X+Y then there exist p, q, a, b, c >

0 such that X and Y are bivariate gamma

with

E(e−sX1−tX2) = (1 + as + bt + cst)−p

E(e−sY1−tY2) = (1 + as + bt + cst)−q.

The method of proof is the same as in one

dimension. But see also a splendid paper by

Letac and Weso lowski in TAMS (2008) which

generalizes...
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A parenthesis on the negative multinomial

distribution in dimension 2. The distribution

NM(p, a, b, c) of (X, Y ) in N2 with parameters

p, a, b, c and constraints 0 < p, 0 < a, b < 1 and

0 < c < (1−a)(1−b) has generating function :

E(xXyY ) =

[
(1− a)(1− b)− c

1− ax− by + (ab− c)xy

]p
.

The same little trick as for the gamma gives

Pr(X = m, Y = n) = ((1−a)(1−b)−c)pambn×

min(m,n)∑
k=0

(p)k

k!

(p + k)m−k

(m− k)!

(p + k)n−k

(n− k)!

(
c

ab

)k
.

by the following calculation
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[
(1− a)(1− b)− c

1− ax− by + (ab− c)xy

]p

=

 (1− a)(1− b)− c

(1− ax)(1− by)(1− cxy
(1−ax)(1−by)

p

=

[
(1− a)(1− b)− c

(1− ax)(1− by)

]p
×

∞∑
k=0

(p)k

k!

ckxkyk

(1− ax)k(1− by)k

= ((1− a)(1− b)− c)p ×
∞∑

k=0

(p)k

k!

ckxkyk

(1− ax)p+k(1− by)p+k

= ((1− a)(1− b)− c)p ×
∞∑

k,r,s=0

(p)k

k!

(p + k)r

r!

(p + k)s

s!
arbsckxr+kys+k
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Although in one dimension we have

lim
n→∞H1/nNB(q,

nc

1 + nc
) = γq,c,

(here H1/n is the action on distribution of

the dilation x 7→ H1/n(x) = x/n), in two di-

mensions it is impossible to find an affine

transformation An(x, y) = (αnx, βny) and a

sequence (an, bn, cn) of parameters such that

limn→∞AnNM(q, an, bn, cn) converges towards

a non singular bivariate gamma. The reason

is : replacing x and y respectively by xn = eαns

and yn = eβnt the limit of

(1− an)(1− bn)− cn

1− anxn − bnyn + (anbn − cn)xnyn

has necessarily the form 1
1+As+Bt and never

the form 1
1+As+Bt+Cst.
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Maximum likelihood estimation, standard case.

Recall that the density of the standard biva-

riate gamma has the form

(1− r)qfq(rxy)

with respect to the reference measure

1

Γ(q)
(xy)q−1e−x−y1(0,∞)2(x, y)dxdy.

If we observe the sample (X1, Y1), . . . , (XN , YN)

we get

Proposition. In the standard case (q known,

r unknown) the maximum likelihood estima-

tor r̂ for r ∈ [0, 1) always exists. We have

r̂ = 0 if and only if 1
N

∑N
i=1 XiYi ≤ q2. If not,

r̂ is the unique solution of

q

1− r
=

1

N

N∑
i=1

XiYi
fq+1

fq
(rXiYi)

which needs a numerical treatment.
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The trick is to show that x 7→ log fq(x) is

concave on (0,∞). First f ′q(x) = fq+1(x) and

f ′′q (x) = fq+2(x). We change q into q − 1.

Therefore we have to show that

fq+1(x)fq−1(x)− f2
q (x) < 0

for all q > 1 and x > 0. Denote un(q) =
1

n!Γ(q+n). Thus the coefficient of zn of the

entire function fq+1(z)fq−1(z)− f2
q (z) is

vn(q) =
n∑

k=0

[uk(q+1)un−k(q−1)−uk(q)un−k(q)].

Let us show that vn(q) < 0 for q > 1. We

write :
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vn(q) =
n∑

k=0

1

k!(n− k)!
[

1

Γ(q + k + 1)Γ(q + n− k − 1)

−
1

Γ(q + k)Γ(q + n− k)
]

= −
n + 1

Γ(q + n + 1)Γ(q)

+
n−1∑
k=0

n− 2k − 1

k!(n− k)!

1

Γ(q + k + 1)Γ(q + n− k)

= −
n + 1

Γ(q + n + 1)Γ(q)

+
1

2

n−1∑
k=0

1

Γ(q + k + 1)Γ(q + n− k)

×[
n− 2k − 1

k!(n− k)!
+

n− 2(n− 1− k)− 1

(n− 1− k)!(k + 1)!
]

= −
n + 1

Γ(q + n + 1)Γ(q)

−
1

2

n−1∑
k=0

1

Γ(q + k + 1)Γ(q + n− k)

×
(n− 2k − 1)2

(k + 1)!(n− k)!
< 0.
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Maximum likelihood estimation, general case.

Even less easy. It has no meaning to ask for

concavity of the log of the density paramete-

rized by (θ1, θ2, ρ) since the domain of defini-

tion

{(θ1, θ2, ρ) ; θi < 0, θ1θ2 > ρ > 0}

is not convex (watch the boundary θ1 = θ2

and θ1θ2 = ρ to be convinced). Taking ρ =

rθ1θ2, the domain (−∞, 0)2×[0, 1) for (θ1, θ2, r)

is more manageable, but for fixed r the log

of the density in not concave with respect

to (θ1, θ2) since, up to a linear function, it a

a function of the product θ1θ2. This excludes

concavity in the product space (−∞, 0)2 (watch

the determinant of the Hessian matrix of (θ1, θ2) 7→
h(θ1θ2) when θ1θ2 becomes close to zero).
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(θ1, θ2, r) can be estimated by writing the 3

equations of cancelation of the gradient of

the log likelihood (the proof of the fact that

the log likelihood goes to −∞ at the boun-

dary of the domain is quite delicate). One

computes θ1 and θ2 with respect to r which

becomes the solution of the following equa-

tion where (X, Y ) is the empirical mean :

0 = gN(r)

= r−1 +
q

XY

1

N

N∑
i=1

XiYi
fq+1

fq
[

r

(1− r)2

q2XiYi

XY
].

We content ourselves in studying it for large

N. Using large numbers law the equation be-

comes 0 = g(r) =

r−1+
q

E(X)E(Y )
E
[
XY

fq+1

fq
(

r

(1− r)2

q2XY

E(X)E(Y )
)

]
.

An important remark is that g(r) depends

only on the distribution of ( X
E(X),

Y
E(Y )). The-

refore, without loss of generality we may as-

sume that the distribution of (X, Y ) is stan-

dard with parameter r0.
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The crucial function gr0. As explained the

above function g depends only on parameter

r0 and is gr0(r) =

r−1+
(1− r0)2

q
E
[
XY

fq+1

fq
(

r

(1− r)2
(1− r0)2XY )

]
.

It is easily seen that gr0(0) = r0
q > 0.

Knowing that fq(u) ∼ 1
2
√

π
u−

q
2+1

4e2
√

u if u →

∞, we get that
fq+1(u)
fq(u) ∼ 1√

u
and therefore

g(r) ∼ −c
√

1− r with c = 1 − 1−r0
q E(

√
XY ).

For seeing that c > 0 observe that

E(
√

XY ) =
1

1− r0

Γ(q + 1
2)2

Γ(q)2 2F1(−
1

2
,−

1

2
; q; r0)

≤
1

1− r0

Γ(q + 1
2)2

Γ(q)2 2F1(−
1

2
,−

1

2
; q; 1)

=
q

1− r0
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Finaly gr0(r0) = 0. Possibly gr0 is convex on

[0, 1], but studying g′′r0
is quite difficult. It may

be not true when r0 is close to 1. However all

simulations show that gr0(r) > 0 if 0 < r < r0

and gr0(r) < 0 if r0 < r < 1. In this case r0 is

the only solution of gr0(r) = 0.
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