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This text is made for our friends and students who are already aware of the basic
facts of the ordinary Wishart distributions. From our point of view, these basic
facts can be gathered from two sources: statistics (and our reference is the book
by Muirhead) and Jordan algebras (the book to read is Faraut Koranyi). When
we have to choose between two normalizations, we choose Muirhead. Some of the
statements of section 6 and 9 are possibly new. Comments at letac@cict.fr or
massamh@mathstat.yorku.ca are welcome.

1 The non central xY* and the non central gamma

Proposition 1.1. Let Z be a N(0, 1) real variable and m a real number. Then for

s > —1 we have .

A+
262

Proof. We just apply the fact that the Laplace transform of N(0,0?%) is e 2 by

__sm
e 2(1+s)

E(e5(7+m°) =

specializing to 02 = 1+rs and 0 = —ms. We get

sm2

2

—5(Z+m)? _ € > —ﬁ(l-i-s)—msz 1/2 dz
E(e 2 ) —(1+S)1/2 /_Ooe 2 (1+s) (2m)12

sm

6_ 2 32m2
= —62(1+5>
(1+s)1/2
]_ _ sm?
—= — 2(1+s) .

(1+s)1/2

For p > 0, consider the entire function f, defined by

o0 Zm

= - 1
It is related to the classical Bessel function by the formula (2)7f,(—32%) = J,(2)
which implies (see Watson (1966)) that f, has an infinity of simple zeros on (—o0, 0)
and no other zeros in the complex plane. Some readers will prefer to use the gener-
alized hypergeometric symbol and write f,(2) = ['(p) oFi(—;p;2).

Proposition 1.2. Let a > 0, let N, Xy,...,X,,... beindependent random variables
such that N is Poisson distributed with mean a and such that X; has density
e "1(0,00)(x) and define

Y=Xi+ - +Xy

with the convention that Y = 0 if N = 0. Then E(e™*Y) = ¢~ 1+
law of YV is

. Furthermore the

[

Va(dy) = e “0o(dy) + ae™ " fo(ay)L(o,00) (y)dy.
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Proof. We just condition by N to compute E(e™*Y), we use E(e™*%i) = (1 + s)7!
and we get the result for E(e™*"). For computing the distribution of Y we use the
fact that the distribution of X; +---+ X, (for n # 0) has density %e‘xl(om) (x).
The distribution of Y being a mixing of the distributions of X; + --- 4+ X, with

respective weights e’a% this leads easily to the result. U

Definition 1.1. Let p and @ > 0. The distribution 7(p, a) is the distribution on
(0, 00) defined by

e 1 sa
st dt) = T4,
| et = e
For o > 0, denote by v(p, a; \) the image of v(p,a\) by t — At. Thus
o0 1 /\2sa
—st A (dt) = ————e 19,
/0 e "v(p, a; A)(dt) S

We say that v(p, a; A)(dt) is a noncentral gamma distribution with shape, non cen-
trality and scale parameters p, a, \. Note v(p, 0; A) is the ordinary gamma distribu-
tion with scale parameter A and shape parameter p. We say that v(p,a) = v(p,a; 1)
is standard. For reason appearing in part 3 of the next proposition, v(n/2,2a;2)) is
called the standard non central y? distribution with drift @ and n degrees of freedom.
We gather some properties of v(p, a; A) :

Proposition 1.3. We fix p and a > 0.
1. We have y(p,0) * v, = v(p,a) and thus v(p, a) exists. It satisfies
V(p,a)xy(pd) =v(p+ 1 a+d)
and y(p, a) is infinitely divisible.

2. For a > 0 we have

eftfa B t B
) = ol v [ =0 pe)dlosOd @)
0
= e U (at) 1o ,00) () dt. (3)
3. If Z3,...,Z, are independent N(0,1) random variables and if my,...,m, are

real numbers then the distribution of
1 2 2
5((Zlerl) + -+ (Zy +my)7)

is y(n/2,5(mi + - +m3)).

4. The natural exponential family generated by 7(p,a) is the family

F(y(p,a)) = {v(p,a,\); A > 0}.



Its domain of the means is (0, 00) and its variance function is

2 2 2
_ P+ 2ma Py AP P
- a2 (a’m + 4 ) a (am + 4 ) (4)

V(m)

In terms of the parameters (p, a, \) the mean and the variance of (p, a, ) are
respectively

m = aX* +p\, V(m) = 2a)\’ + p)\*. (5)

Proof. Part 1 is obvious. Since v(p, a) is the convolution between v, and an
absolutely continuous distribution, thus ~(p, a) is also absolutely continuous

and its density is
t ettty 1 p
t—y)P "y,
[ R

which leads to 2. Then we simply replace f> by the defining series and we get
easily 3. Part 3 is an obvious consequence of Proposition 1.1. For getting part
4, write the Laplace transform for § < 1

o ]_ af
— 0t — 10
L'y(p,a) (9) - /0 € 7(]‘77 CL) (dt) - (1 . e)pe o

and recall that F'(y(p, a)) is the set of all probabilities 4 such that there exists

Ly (p,a) (6+60) Thus

tp < 1 satisfying in a suitable interval L, (0) = = @)
y(p;a

0 a 0
LM(Q):(l_l_QO) eXp[(l_go)z __L]‘

Denoting A = ﬁ we see that L, = L, which is the desired result. The
computation of the variance function is standard: denote k = log L., ) and

for simplification X = 1/(1 — 6). Then

K@) = aX*+pX =m

E'(0) = 2aX®+pX?=V(m).
Computing X from the first equality and carrying it in the second one gives
the result. These last two formulas also give 5. One remarks that this family

belongs to the Babel class of exponential families classified in the Rio lectures
notes on exponential families (1991). [

2 Noncentral Wishart and Gaussian laws

We denote by Py, the cone of positive definite symmetric matrices of order k and by
Py its closure, that is the cone of semi-positive definite symmetric matrices.
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Proposition 2.1. Let Z be a random variable in R* with distribution N (0, ) and
let m be in R*. We write the vectors of RF as line vectors. Then we have for a
symmetric matrix s of order k£ such that s + I is in Py,

1
det (I + 3)1/26
1
— ¢
det (I + s)1/2

E(e—%(Z—i-m)s(Z—&-m)T) —im(Ig+s)"tsmT

E(e2 i (s(Z+m)T(Z+m))) —g tr ((Te+s) " smTm) (6)

Proof. We apply the fact that the Laplace transform of N(0,Y) is exp% by
specializing to ¥ = (I, +s)~! and § = —ms. After observing that s(I, +s) 's—s =
—(I + s)"'s we get that

__msm

—l m)s m T 6 2 —lZ S ZT—TTLSZT dz
R
. e ms;” %ms(lk+s)_1smT
~ det(I + 3)1/26
1 1 -1 T
_ —sm(Ig+s) " tsm
= det(]k+5)1/2€ 2 k . g
More generally considering n independent random variables Zi,..., 7, in R¥
with the same distribution N (0, I}) and let mq, ..., m, be in RE. A consequence of
Proposition 2.1 is that
E(e*%tr(SZ?zl(Zﬁmj)T(Zﬁmj))) — ; =5 tr ((Iets) " s(mf ma - tmifmn)) (7)

= det(I, + s)2°

This leads to the following question: if p > 0 and if a is in P} does there exist a
probability distribution on P, with Laplace transform

1

s (0 P
det (I + s)P

A detailed answer will be given in Proposition 3.2. This natural question cannot
be solved as simply as in the case k = 1 since no extension to R* of the above
Proposition 1.2 is available: more specifically one can prove that in the case k > 1
there is no positive measure f, on Py, such that for all s € P, one can write

/ e~ )y (dr) = (trs)™?
Pk

and this easily shows that exp(— tr ((f; + s) 'sa)) will not be associated to an in-
finitely divisible distribution as it was the case for £k = 1. Equality 8 below shows
that the correct generalization of the one dimensional case replaces trace by deter-
minant in the above formula. As a substitute to Proposition 1.2 we introduce the
zonal polynomials in the next section.



3 Density of the standard non central Wishart.

Given a symmetric real matrix x = (x;;)1<; j< of order k for 1 < m < k we denote
Ay, (z) = det(zj)1<ij<m- Consider a sequence of integers k = (my,...,my) such
that m; > mgy > --- > my > 0. We denote |k| = mi+mo+---+my and E,, denotes
the set of k such that m = |k|. We now introduce

Ap(w) = (Aa ()™ 772 (Ag(2)) ™7™ - - (Ap ()™ (Ag ()™

We remark that A.(z) > 0 for © € P,. We also introduce some useful notation.
The function z — ['p, (2) is defined for z = (21, ..., 2;) € R* such that furthermore
> (j—1)/2for j =1,...,k by the following formula

k(k 1 ]—1
Tp (2) = Hr

If p is real a traditional abuse of notation writes I'p, (2 +p) for I'p, (z1+p, ..., 2z +D).
In particular for p > (k —1)/2 we have

O, () = (0 [T - 25

j=1
This leads to the notation, for k = (my,...,mg) with m; >mg >--->my > 0:
(p), = 25t )
; ].—‘pk (p)

The normalization of I'p, has been chosen to insure the validity of the formula

Cap) = [ ety e (3)

where dx is the Lebesgue measure on the linear space of symmetric matrices x =
(2ij)1<ij<k defined by dx = [], ;< <, dvi;. This is the choice made by the statisti-
cians: see Muirhead page 62. However, Faraut and Koranyi make a different choice
of Lebesgue measure: they equip the symmetric matrices with the Euclidean struc-
ture (z,y) = tr(zy) which induces a different Lebesgue measure, giving mass 1

. . (k-1) . .
to the unit cube. For thls reason the factor (W)k T in I'p, is replaced in Faraut

Koranyi page 123 by (27r) > for still getting 8 with this other Lebesgue measure
dz.

The zonal polynomial Cy(x) of parameter « is defined by the following integral on
the group SO(k) of orthogonal matrices of order k with determinant 1 with respect
to the Haar measure du (normalized in order to have total mass one):

Ci(z) = C, A (vt zu)du,
SO(k)
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where C), is a complicated normalizing constant which can be found on the last line
of page 234 in Faraut Koranyi, or on formula (18) on page 237 of Muirhead. This
is a homogeneous polynomial of degree |x| with respect to the entries x;; of the
symmetric matrix x. We insist on the fact that by definition, it takes positive values
on Py. If a € Pj, and if z is symmetric of order k then a*2xat/? is also symmetric.

An other important remark is that for any v in the orthogonal group O(k) we
have

Cy(7) = C(v 1 av). 9)
For detv = 1 this is clear from the definition of Haar probability. For detv = —1
enough is to see that v"'zv = x when v = diag(—1,1,1,...,1). A consequence of 9

is that actually, C\(z) depends only on the eigenvalues of x. For & = 2 this enables
us to compute in Section 4 the value of Cy(z) up to the cursed constant C,.
They satisfy many remarkable formulas. A selection is the following:

o = mfj > Lew (10)

det(I, —2)™? = i > (f;)!“cn(x) (11)
et ) 7O = [ e ey 1
% _ /S(O)(k)Cﬁ(al/zultual/z)du. (13)

We accept these formulas without proof: the unspecified normalizing constant Cj
above is chosen such that these formulas hold. Notice that a consequence of 10 is

that
(traz)™ Z Cio(

KEEm

This comes from the fact C, is homogeneous of degree |k|. A consequence is that
for k € E,, and for x € P;, we have

0 <Cu(z) < (tra)™. (14)

Proposition 3.1. Let p > (k —1)/2 and a € Py. Then

k41 1/2 a'/?
A(p, @) (dt) = e "+ (det £y 5 (Z y & t )> ww%@

m=0kEE,

is a probability on Py such that for I + s € Py one has

1 .
—tr (st) dt —tr (Lg+s) sa). 15
e = e (15)
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Proof. The fact that vy(p,a)(dt) is a positive measure comes from the fact that
for t € P, we have A,(t) > 0 and therefore, from the definition of C,(t) we have
C,(a'*ta'/?) > 0. Suppose first a € P;. For k € E,, we do the change of variable
r = a'/?ta'/? in the integral
e C.(a'?ta'/?) dt

m!(p)s  Tp,(p)

A classical result about the jacobian implies dz = (det a)**+Y/2dt. Using formula 12
we get

]H<a) _ e—tra/ e—tr( S+Ik)t)(d tt)
P

Co(a'?(I}, 4 5)"al/?)

I.(a) = e "det(Iy + 5)7* —

(16)

Suppose now that a is singular in P;,. Remark that for n > 1 we have a, = a+ %]k €
Pi.. The inequality 14 implies that

0< C’,i(a}L/QxaiL/Q) < (tr(a,z))™ < (tr(agz))™

Therefore we can apply dominated convergence and write lim,, . I;(a,) = I(a)
and this implies that 16 holds even for a singular a. Summing up all equalities 16
and using 10 we get easily 15. The fact that the mass of v(p, a) is one is obtained
by doing s = 0 in 15. [J
Let p be in the so called Gyndikin set A of order k£ defined by
1 k—1 k—1
A=ty g )

and let a in Pj. We define the standard non central Wishart distribution v(p,a) on
P}, as the unique probability such that 15 holds. For p > (k — 1)/2 its existence is
given by Proposition 3.1. If p is the half integer n/2, the existence of v(p,a)(dt) as
well a Gaussian interpretation comes from 7. Actually, these values of p € A are the
only ones such that v(p,a)) does exist. More specifically

Proposition 3.2. For p > 0 and a in Py, there exists a probability v(p,a) such
that 15 holds if and only if p is in A.

Since the proof requires some notations which will be introduced in the next
sections, we postpone it to Section 7. Section 4 considers the practical case k = 2,
Section 5 concentrates on the natural exponential family generated by v(p, a).

4  Zonal polynomials for dimension two and Legen-
dre polynomials .

This section computes the zonal polynomials and the density of the noncentral
Wishart for £ = 2. We shall express the zonal polynomials in terms of the familiar
Legendre polynomials (P,),>o as defined by their generating formula

e LR YaC
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Our favorite textbook on the subject is Rainville Special Functions (1960).

Proposition 4.1. Let m be an non negative integer and let £ = (my,ms) with
my + mo = m and my; > my > 0. Then for a symmetric non singular matrix = of
order 2 one has

trax

An(u zw)du = (det )™? Py, i, (——).
[, et = (et B ()

For a singular non zero matrix x one has fS(O)(2) A (utzu)du = 0 if my > 0 and

Aoy (u zu)du = ————(trz)™.
/s<o>(2) o 22mml?

Proof. A typical element of SO(2) is

R(O) - [cose —sine]

sinf cos®

Suppose that x = diag(A;, Ag). Then A, (x) = A" 7™2(AA2)™2 and

21
/ A tzwdy = — [ An(R(—0)xR(—0))d0
SO(2) 27 Jy

1 2m
= ()\1)\2)7”22— / ()\1 COS2 0 + )\2 sin2 9)m1_m2d9
T™Jo

Now we compute the generating function

1 [ do
2m Jo 1 —t(Acos?d + \ysin?6)

o0 1 2m
Z t"— / (A1 cos? @ + Aysin? 0)"df) =
—~ 2m Jo

2 /”/2 d
7wy 1—t(\cos?f 4 Nysin?6)
1
(1 —tA)/2(1 — thg)1/?

(use the change of variable u = tan#). In the non singular case we have

1 > A+ Ny
- § (M )2 P, (L2
(T —tA)12(1 —tAg)1/2 n—0 (ae) (2(>\1)\2)1/2)

Thus the result is proved when x is a non singular diagonal matrix. Now we have
seen that the zonal polynomial is a symmetric function of the eigenvalues. Thus the

result is proved in the non singular case. The proof in the singular case is similar.
OJ



The coefficient C. In order to have a complete knowledge of the zonal polynomial
Cy(z) for k = 2 we explicit it from the value given in Muirhead page 237. For
k = (my, mg) with m; +ms = m and my; > ms > 0 we have to distinguish the case
me = 0 and the case my > 0. We get

22mm|?
Cmo) (2m)!
1 3 2m2 -1 2(m1 — mg) +1
Clmmy = 27"mImy! X = X = X -+ X X
(m1,mz) TR 1 2 2m; + 1)/(2my)!

The density of the standard non central Wishart for dimension 2. In this
case the non central distribution 7(p,a)(dt) for p > 1/2 and for a non singular is
given by

Y(p,a)(d) = ™" ) (det )72
00 tr (at)
(det a det t)™/? Py s ( 2(det adet t)1/2 )
X Crym 1p,(t)dt
<Z m! Z L 2F(rnl +p)F(m2 +p+ %) PQ( )

m=0 HEEm

If a is singular but not zero then ~(p, a)(dt) for p > 1/2 is

Y(p,a)(dt) = =" (det 1) (Z %) 1p, (ﬂ%-

When a in non zero singular, then a has rank 1 and can be written a = Am ® m
where m € R? \ {0} and X is any non zero real number. With this presentation,
tr(at) = Mtr(m @ mt) = Amtm”. The case where A = N > 2 is an integer is
specially useful:

Proposition 4.2. Let 73, ..., Zy with N > 2 be standard normal centered random
variables of R? and let m € R?\ {0}. Then the distribution of the following random
symmetric matrix of order 2

r= %[(Zl +m)(Zi+m)" + -+ (Zy +m)(Zy +m)']

2 N-3 > Nj (mtmT)j dt
V(N/2, Nm @ m)(dt) = e~ T O-NIml? (qop )5 ([ § 2Py S
G+ D ) O
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5 The general non central Wishart

Proposition 5.1. Let b be a non singular real matrix of order k£ and denote by
b* its transposed matrix. Denote by b = qu its polar decomposition, that is ¢ is
symmetric and positive definite, while u is orthogonal of order k. Let p € A and let
a € Pi. We also write 0 = ¢?.

1

2

The image of v(p, a) by t — utu* is vy(p, uau*).

The image of v(p,qaq) by t — qtq is a distribution denoted ~(p,a;q*) =
v(p, a; o) such that

1 1
—tr (st) ca®\(d) = —tr ((Ix+gsq) ™" gsqqaq) 17

holds.

. The image of v(p, a) by t — btb* is v(p, ¢ tuau*qt; ¢*).

. The natural exponential family generated by ~v(p, a) is

F(y(p,a)) = {v(p,a;¢*); q € Pi} = {7(p.a;0); o € Py}

. If the distribution of X is v(p,a;¢?) = v(p,a,0) denote w = cao. If ¢ is a

positive constant, then the distribution of cX is v(p, %,co) (note that w =
co5co).
If z is a line vector of R¥ denote A\, = zoz”. Then the distribution of the

real random variable zX 27 is a non central gamma distribution of Laplace

transform

1 __S1 T
Thsx 2W2

(1 + 51)\)*”6 ’

thus with shape parameter p, with scale parameter A\, and with non centrality
parameter

E(€7812X2T> —

T
T W2

—2
A, = N\ 2wzt = ———.
(zo2T)?
In particular the mean m. and the variance v, of zX 2T are respectively

m, = pzoz’ + 2wzt v, = zo2  (prozt + 2zw2"). (18)
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Proof. 1. We write

/e—tr(sutu*)y(p,a)(dt) _ /e—tr(u*sut)/y(p’a)(dt)

Pk Pk
_ 1 —tr ((Tg+u*su) " tu*sua)
det(Iy + s)P
_ 1 —tr (w(u*utu*su) " lu* suau*)
det(I} + s)P
1

e—tr((Ik-i-s)*lsuau*)'
det(I + s)P

2. Standard.

3. Since the transformation ¢y : t — btb* satisfies ¢, = ¢, o ¢, we observe
that from part one the image of v(p,a) is v(p, uau®). We rewrite it as v(p, uau*) =
v(p, g uau*q ' q). By definition of v(p, a, ¢?) its image by ¢, is v(p, ¢ tuau*q™; ¢?)
as announced.

4. The probability p belongs to F/((p, a)) if and only if there exists sy such that
I, + s € P;, and such that for I, + sg + s € P, one has

p
/ et (st),u(dt) _ det<I’€ + So + S) e tr((Ik—ﬁ-so—&-s)*l(so—&-s)a)etr((Ik-l—so)*lsoa)'
Py det(Ix + so)

We rewrite the second member by introducing ¢ = (I + s0)™"/? or 5o = ¢ — I
and we get the second member of 17. This proves the result.

5. If s is a positive number, apply formula 17 to the symmetric matrix s =
512 z. In order to prove the formula, we choose an orthonormal basis ¢ = (ey, .. ., e;)
of R* such that zg = A\'/?e;. With such a choice the representative matrices M and
(I + M)~ M of the endomorphisms s;qz” zq and (I}, + ¢sq)'¢qsq in the above basis
is simply, by blocks

_ | s1iA 0 —1pag 1331\)\ 0
M_[O 0],(Ik—|—M) M—{ 0 BE
Thus det (1, =1+sAand tr((/ 1 = S22 trel Si
us det(fy +¢sq) = 1+ s\ and tr ((Ix + ¢sq)~'gsqqaq) = 155 trej erqaq Since
1 1
tr e{’elqaq = N tr quzqqaq = XzaacrzT

we get the result. The mean and the variance are obtained from 5. [J

The distribution v(p, a, ¢*) is called the general non central Wishart distribution.
For p > (k—1)/2 its density is obtained by taking the density of v(p, gaq) as obtained
from Proposition 2.2 and by taking its image by ¢ — x = qtq. Thus the distribution

v(p, a,q*)(dz) for p > (k —1)/2 is

(det g) =2 tr (0 20 Ha00) (ot 7 )P~ "5

o0 C. (g2 2q 12 g1/} /212 dr
(3 A PINERC A

22 ml(p). Cr.(7)

12



6 The moments and the variance function

6.1 Leibnitz formula.

First we observe that the exponential family F'(y(p,a)) can be generated by the
unbounded positive measure p(dt) = e (@)~ (p, a)(dt) whose Laplace transform is
defined on —P}, by

1 -1
L,(0) = / e 09 () = - _ewriat=0), (19)
g P (=0
We define the following two functions on —Py:
o=0(0)=(-0)", k,(0) = tr(ac)+ plogdeto. (20)

Note that k, = log L,, is the cumulant function of F'(y(p,a)) = F(p) when p is taken
as the generating measure of the NEF. With this notation the element P(6, y1)(dt)
of the exponential family is exactly

P(0, ) =~(p,a,0)
as can be checked by 17 and

—trst L,M (0 — 8)

Let us now recall some general facts about the moments of a multivariate expo-
nential family generated by a measure p on some finite dimensional real linear space
E. If ©(1) (contained in the dual E* of E) is the interior of the domain of existence
of L, and if P(6, p)(dz) = %u(dm) € F(u) corresponds to the parameter 6 then
the n th differential of L, in the directions A4, ..., h, has the following probabilistic
interpretation

LS (O0)(ha, -+ hy) = Lu(G)/<h1,:1:>...<hn,x>P(9,u)(d:U) (21)

E
where (h,x) is the value taken by the linear form h € E* on the vector x € E. Thus
this formula gives moments of P(6, ). In our case, E is the space of symmetric
matrices of order k, and E* is identified to £ by writing (0, x) = tr (0z).

Let us also mention a general fact about the n th differential of the product of
two real functions f and g defined on an open subset of a finite dimensional linear
space F': there exists a kind of Leibnitz formula. For F' = R it reads

u n! ) .
fg M (g) = ff(a) 0 g(n—J) 9).
00 = 3 05 0)
If (h1,...,hy) € F* and if T C {1,...,n} we denote hy = (h;)ier and T" =
{1,...,n}\ T. With these notations the Leibnitz formula is

(f)™O)(ha, . ha) = Y fIO) (hy) gD (0) (). (22)



6.2 Two differentials of order n.

We are going to apply the above considerations to F' = E* to f(#) = e'r%(®) = ela.)
and to g(0) = erledeto(® Thus L, = fg. The next step is the computation of the
respective differentials £ (0)(hy,. .., h,) and g™ (6)(hy, ..., h,). For this we need
the following two differentials

a(0)(h) = oho
(logdet o(9)) (h) = tr(ch).

The differential ¢™ is known, if not well known: the present authors have used
it in three or four papers and we shall only recall the result. For this we denote by
S,, the group of permutations 7 of {1,...,n}, we denote by C(m) the set of cycles
of the permutation 7, by m(7) the number of cycles and we denote

re(0) (b, h) = [ tr([]oh)-

ceC(n)  jec

Then the differential is

g () (hy, ... hy) = g(0) Z P (0)(s1, ..., Sk). (23)

WESn

The differential of f(6) = ™% is newer. For each 7 in S,,, we introduce a quantity
close to rr(o)(h1,...,hy) by simply replacing formally A = tr([[,.0h;) by B =
tr (ca [[;c, oh;). However this hardly makes sense for the following reason. Suppose
that the cycle cis (2,5, 4) that means the permutation changing 2 in 5, 5 in 4 and 4 in
2. Then A = tr (cheohsohys). The same cycle could also have been written (5,4, 2)
and the property of commutativity of traces implies that A does not change, i.e A
depends on the cycle, not on its particular representation. Things are different for
B, and the two numbers tr (cachyohsohy) and tr (cachsohyohs) do not coincide.

For this reason, for a given integer n we introduce the following set P,, of objects.
The data of an element P of P, is the data of two things

e The data of a partition 7" = (T3,...,T;) of {1,...,n} into non void subsets
(the order of the sequence T, ..., T, does not matter).

e A permutation 7; of Tj for each j =1,...,q.

Thus the information about P is ¢ and the ¢ pairs (7}, ;). For instance, the set
{1,2, 3} has 5 partitions

T = ({1},{2},{3})
T® = ({1,2},{3})
T = ({1},{2,3})
T = ({2},{1,3})
T = ({1,2,3})
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Thus TD, ..., T®) generate respectively 1,2,2.2,6 elements of P3 and Ps has 13
elements. As an other example, the partition of the set {1,2,3,4,5,6} given by
({1,3},{2,4,5},{6}) generates 2! x 3! x 1 = 12 elements of Pg. One can see that P,
and P5 have 73 and 501 elements respectively.

Here are now the functions sp indexed by P € P,, which imitate r.. If P is given
by ¢ and the (T}, ;) for j =1,...,q we define

sp(o)(hy, ..., hy Htr aaHahm(z

1€y

Proposition 6.1.
(e“(“"))(”)(G)(hl, o hn) — etr(ao) Z SP(U)(h1, RN hn)
PePy,

Proof. Induction on n. O

Example 1. We compute the 3 first differentials of 6 +— f(0) = e (@), For sim-
plicity, we write a’ = ca and h}; = oh;. Thus from the previous proposition we
get

P Om) = ()
——f"(0)(h1,ha) = tr(ad'h))tr(a'hy) + tr(a’hihy) + tr(a'hyh))

——f"(0)(hy,hy) = tr(a'hy)tr(a'hy)tr(a’'hy) +

( )+

tr (a’'hyhy) tr (a'hy) + tr (a'hyh)) tr (a'hy) +

tr (a’'hyhy) tr (a'hy) + tr(a'hyhl) tr (a'hy) +

tr (a'hghl) tr (a'hy) + tr (a’hohy) tr (a'hy) +

tr (a'hyhyhy) + tr (a’hyhihy) + tr(a'hyhyhy) +
tr (a’'hyhshy) + tr(a’hyhyhy) + tr (o’ hyh!hl).

Example 2. Symmetrically we compute the three first differential of g(f) =
eplogdeto(6) — . We still adopt the notation h; = oh;. Thus from 23 and

det(
according to 21 we get

ﬁg'w)(hl) — pr(h)

ﬁg"(@)(m,m) = Pt (R) tr (R) + pir () R)

1
K g"(0)(h1,ho) = p’tr (b)) tr (hh) tr (hY) + ptr (R RYRY) + ptr (R hy)
+p? tr (W) hY) tr (hy) + p* tr (R} RY) tr (BY) + p? tr (hhh) tr (R)).
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6.3 Moments of order 1,2,3.

Now we combine these two examples by the Leibnitz formula for obtaining the
first two moments (gf the non central Wishart random variable X with distribution
tr (0x

P60, u)(dx) = T M p(dx) where p is the measure defined by 19, associated to the

two parameters p € A, (see Proposition 3.2) and a € Pj. Recall that —0 € Py, is
positive definite and that we denote o = (—#)~! and h; = oh; and o’ = oa. Recall
that k, is the cumulant function defined in 20. With these notations we get the first
two moments

Ly, (0)(h
CLu6)
tr (a’'h)) tr (a’hy) + tr (a’Rihy) + tr (a’hyh))  (25)

1)

E(tr (X)) = k,(0)(h) = = ptr(hy) + tr(d'hy) (24)

Ly(0)(hi, ha)
L,(0)
+ ptr(R)) tr (@'hl) + ptr (b)) tr (a’R)) + p*tr (B)) tr (RY) + ptr (R, hY)

E(tr (Xhy)tr(Xhy))

This enables us to compute the covariance k7;(0) of X under the form

Eltr (X —E(X))h) tr (X—E(X))ha)] = tr (a’hLhb)+ tr (@’ hyh,)+ptr (HLR). (26)

We now reformulate the results 24 and 26 about the mean and the covariance. The
linear space Sj of real symmetric matrices of dimension k is equipped with the
Euclidean structure (hq, ha) = tr (hqhs).

Proposition 6.2. Let X be a noncentral Wishart random variable with parameters
p,a,B as above, with the notation ¢ = (—6)~!. Then

E(X)=m=Fk,(0) =po+oao. (27)

Furthermore the covariance operator k() = E((X — E(X)) ® (X — E(X))), as an
endomorphism of the Euclidean space S of real symmetric matrices of dimension k
is given by the linear map

h +— cacho 4+ choao + pocho = mho + chm — poho. (28)

Proof. Consider the symmetric matrix v = E(X) — po — 0 ao. From 24 for each
symmetric matrix h we have tr(vh) = 0 (recall that tr (E(X)h) = E(tr(Xh))).
Now specialize to h = v. Thus trv? = 0. Since v? is a semi positive definite matrix,
this implies that v = 0 and 27 is proved.

For proving the second one denotes for simplicity E((X —E(X)) ® (X —E(X)))
by c. Formula 26 says that with the above scalar product we have

(c(h1),hy) = tr(cachiohsy) + tr(cacheohy) + ptr(chiohs)
= tr(cachyohy) + tr(chiocachsy) + ptr(chiohs)
= (oaochyo + chioao + pohyo, hs).
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Since this is true for all hy we get that ¢(hy) = cachyo+ochjcac+pohyo as claimed.
Replacing o ao by m — po gives the second expression of the covariance of X.

The third moment L—@L’”(Q)(hl, ha, hs3) is a monster of 27 monomials that we write
now (the fourth moment is the sum of 267 monomials):

Htr(Xhi)] = tr(a'R}) tr (a'hy) tr (a'hfy) +

tr (a’'hhy) tr (a'hy
tr (a'hihy) tr (a'hy

( + tr (a’hyhy) tr (a'hy) +

( /
tr (a'h3hl) tr (a'hf

(

(

t
+ tr (a'h3h}) tr (a'hy) +
+ tr (a'hyhy) tr (a'hY) +

/\‘—"—’v

tr (@ R RLRL) + tr (@ BRLRL) + tr (/B ELH,) +
a'hihshy) + tr (a’hyhihy) + tr(a’'hyhyhy) +
(a'h)) tr (a’hy) + tr (a'hihy) + tr(a'hohy))ptr by +

r(a'hy) tr (a’'hy) 4+ tr (a’hihl) + tr (a’hyhy))ptr b +

(a'h)) tr (a'hy) + tr (a'hihy) + tr(a'hghy))ptr bl +

(h) tr (Ry) tr (hy) + ptr (Rihohy) + ptr (hohihy) +

tr
(t
(t
(t
»’
p* tr (Ryh) tr (hy) + p® tr (hyhy) tr (hh) + p* tr (hihy) tr (R)).

r
tr
tr
Remark. If one is specially interested in the diagonal elements of X and their

moments, one only needs to choose the symmetric matrices as diagonal ones. The
results are not really simplified with this extra hypothesis.

6.4 The variance function.

We now calculate the variance function of the natural exponential family generated
by wp attached to p and a whose Laplace transform is 19. Our aim is to find the k
dimensional generalization of formula 4. The trick is to express ¢ as a function of
m when they are related by 27: a strange second degree equation. For this we coin
a lemma.

Lemma 6.3. Let a and b be in the set Py, of positive definite real symmetric matrices
of order k. Then there exists one and only one matrix x € Py such that xaxr = 0.

This solution is
= a71/2<a1/2ba1/2)1/2a71/2_

Proof. Existence: clearly z = a=*/?(a'/?ba'/?)'/2a=1/2 is a solution. Uniqueness: If
y € Py is an other solution, then a'/?ya'/? € Py, is a root of a'/?ba'/?. Since the root
in Py is unique we have a'/?ya'/? = a*/?za'/? which implies = = y.
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Proposition 6.4. Let a be semi positive definite. The variance function of the
natural exponential family generated by the measure p of 19 is

V(m)(h) = mho + ohm — poho (29)

where o is as follows. If a is invertible we have
P p?
o= _iaq + a—l/z(a1/2ma1/2 + ka)l/Zafl/Z. (30)

If @ is not invertible, orthonormal coordinates in R* are chosen such that a and m
and o are written by blocks ki X kq, ky X ko, ko X ki, ko X ko with k; + ke = k

| & 0 i miy  Mig . 01 012
a= , m= , 0=
0 0 Moy My 021 02
where a; is invertible. Then o; is obtained from a; and m; by the formula 30.
Furthermore 015 = (01a; + ply,) "'mye and o9 = L(my — 091my012), where oy is the

1
p
transposed matrix of oys.
Finally, with the notation w = cao we also write m = w + po and

V(m)(h) = who + chw + poho. (31)

Proof. Let m € P,. We compute g € Pr. such that 27 holds. For this we ;zvrite
o =x—Ea"" and we get zazr = m+L-a~'. Apply the lemma to a and b = m+Z-a™".
We get that

2
o= _ga—1 L= _ga—l +a V2 (@2 mall? 4 %]k)1/2a—1/2'

Since the variance function is the endomorphism V(m) defined by m +— mho +
ohm — poho we get the result in the invertible case. If a is singular, the study of
the equation cao + po = m is easily done when the coordinates are chosen such

. ay 0
that a = { 0 0
function of the central Wishart distribution V' (m)(h) = %mhm. Finally 31 is easily

obtained from 29.

} with a; invertible. Note that if a = 0 we get back the variance

6.5 The Alam and Mitra formula and its extension

Alam and Mitra (1990) have written a remarkable paper whose importance seems
to have been unnoticed from the reviewer of Mathematical Rewiews. They prove
first formula 33 below:

Proposition 6.5. Let X be a noncentral Wishart random variable v(p,a, o) as
defined by 17, with the notation w = o a o, with m = po +w. Then for all symmetric
matrix h of order k

E(X—m)h(X—m)) = %[wha+ahw+paha+w tr (ho)+o tr (hw)+po tr (ho)]. (32)
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In particular doing h = I the following Alam and Mitra formula holds

E(X —m)?) = %[wcquaw—i—pU?+wtr(0)—|—0tr(w)+patr(0)] (33)
= w0+ @t o)t o) + (- (ot +otro)
= Q—p[m2+mtrm—w2—wtrw]. (34)

REMARKS. Note that for k& = 1 formula 33 gives back 5. Formula 34 is (2.1)
in the Alam and Mitra’ s paper, with different notations. Let us comment on
the importance of 32 and of the innocent looking 34. Up to now, we have been
considering a non central Wishart random variable X only as an element of the
linear space of symmetric matrices of order k. We have never used the multiplicative
structure (or rather the Jordan algebra structure z oy = zy + yx) of symmetric
matrices. With the above proposition, the squares X? are at stake. Let us compare
with the ordinary Wishart distributions: for them, the literature computes not only
expressions like E((hy, X) ... (h,, X)) (recall that we write (h, X) = tr (hX)) but
also expressions like

E((h1, X*) ... (hy, X))

where ay, ..., q, are arbitrary integers (see Graczyk et al (2002), (2004), and Letac
and Massam (2004)). The Alam and Mitra formula 33 is the first of this type (thus
with n = 1 and a; = 2) for the noncentral case.

Unfortunately, for proving 32 we need a result of linear algebra that we are not going
to prove. Denote by Sy the space of real symmetric matrices of order k, equipped
with the Euclidean structure (z,y) — tr(zy). Denote now by L4(Sk) the space of
symmetric endomorphisms of the Euclidean space Si. To each y € S we associate
the elements y ® y and P(y) of L(Sk) defined respectively by

h— (y@y)(h) =ytr(yh), h— P(y)(h) =yhy.

They provide important examples of Lg(Sg). If  and y are in S one can even
consider (xr ®@ y + y ® x) and P(z,y) € Ls(Sy) defined by

(zey+yezr) = (z+y)@@+y) —r0r—-y®y)(h) =xtr(yh) +ytr(zh)
P(z,y)(h) = (P(x+y)— P(z)— P(y))(h) = vhy + yhz.

With this notation, 29 and 31 could even be rewritten, with ¥ = X —m
V(m) =E(Y ®Y) = P(m,0) — pP(0) = P(w,) + pP(o).
Finally, the result 32 that we aim to prove is

E(P(Y)) = %[P(w, )+ (w®0+0®w) +p(P(e) +0 @ o) (35)

19



Now, L4(Sy) is itself a linear space, and the result that we are going to admit as a
black box is the following (see Casalis and Letac (1996) Lemma 6.1 and Letac and
Massam (1997) Prop. 3.1 for a proof):

Proposition 6.6. There exists a unique endomorphism ¥ of L,(Sy) such that for
all y € S. one has ¥(y ® y) = P(y). Furthermore

V(PW) = S ®y+ Ply) (36)

Proof of Proposition 6.5. The proof is now very easy
E(P(YY)) = E¥Y®Y))=¥YEY®Y))
= ¥(P(w,0)) +p¥(P(0))
= Y(P(w+0)) = Y(P(w)) —¥(P(0))+p¥(P(0))

Now applying 36 we get the result 33 under the form 35. To pass from 33 to 34 use
m=po+w. U

7 Proof of Proposition 3.2

First we need an other variation on the Leibnitz formula: if 6 — f(6) and 6 — ¢(0)
are sufficiently differentiable real functions defined on the same open subset of R”
and if for j =1,...,n we denote D; = % then for a = (ay,...,a,) € N" one has

J

Df a0 =3 () (0 Db DO D))
1 In
(37)

where the sum is taken for all i = (4y,...,4,) € N” such that i; <a;, j=1,...,n.

Let us now prove the proposition. For a = 0 the result is due to Gyndikin. We
imitate the proof of the Gyndikin’s theorem due to Shanbag (1987). Let a € P.
Suppose that there exists p > 0 and a positive measure ji,(dt) on Py such that for
all # € —P}, one has

1 -1
(_9)petr (a(=0)"1) _ /P etr (Ot),up(dt). (38)
k:

We show that p € A.

Let @ be any real polynomial on the space of real symmetric matrices of order
k. Then we have

0 ) 1
00" (—0)r
Suppose that the maximal degree of ) is n. Then there exists a real polynomial P
on R with respect to p such that °

Q(

Q(

etr(a(—e)_l) =/ Q(t)etr(et)up(dt).
Py

. 1 iugt 1 aigt
5 o’ (a(-0)"1) _ e @0y (p). (39)
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Let us insist on the fact that the coefficients of P depend on 6 and a. This result
can be shown by using the Leibnitz formula 37 applied to the usual pair f(0) =
erarl®) = {99 and to g(#) = (det o(#))? and then by using induction on n. We now
apply 39 to the polynomial Q(¢) = dett whose degree is k. We get

1
(—6)

i (@(=0)"") p (p) = / det(t)et™ @y, (dt). (40)
Pk

Note that the right hand side of 40 is > 0. Note also that this right hand side is 0
for p =0,1/2,...,(k —1)/2 since pp = dp and since p,(dt) is concentrated on the
singular matrices for p = 1/2, ..., (k—1)/2 from Proposition 2.1. Now the left hand
side of 40 has the same sign as Py(p) which is a polynomial of degree < k with at
least zeros on p = 0,1/2,...,(k — 1)/2. Furthermore, Proposition 3.1 shows that
Po(p) > 0 for p > (k — 1)/2 Thus deg Py = k and the zeros of Py are all real and
simple. Also (—1)"Pg(p) > 0 for == < p < 22 and i =1,...,k — 1. Now, assume
that a positive measure p, exists and that p gé A. Thus PQ( ) > 0 and therefore
there exists an even i € {1,...,k — 1} such that % <p< % For k = 2 this is
impossible. For k > 3 we observe that if p, exists, then

Mp+% = Mp * ,u%

does exist too, as can be seen by the Laplace transform. But now Py(p + %) <0
which is the desired contradiction.

To complete the proof, suppose that there exists p ¢ A such that a probability
v(p,a) on P}, exists such that for I, + s € P, one has

1 -1
—tr(st) dt) = —tr ((Ix+s) sa)'
/ ) ) =

Defining p,(dt) = e ¢*9~(p, a)(dt) we see that 38 holds. This contradiction ends
the proof. [J

8 Eigenvalues of non central Wishart

We rely first on a celebrated theorem about the distribution of the eigenvalues of a
random matrix of Py (see Muirhead page 104).

Proposition 8.1. Let 7" be a random matrix of P, having density f. Denote by
Ay > ... > Ar > 0 the sequence of the eigenvalues of T. Then the density of
(Al, ce ,Ak) is

7rk2/2 H .
=717 (A —A)) / fu="diag(Aq, ..., A\x)u)du.
I'p, (k/2) 1<i<j<k ! SO(k)

We apply this result to the standard non central Wishart:
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Proposition 8.2. Let 7" be a non central Wishart matrix with distribution v(p, a)(dt)
with p > (k—1)/2. Denote by Ay > ... > Ay > 0 the sequence of the eigenvalues of
T. Then the density of (Aq,...,Ay) is

k2 /2
T e~ (ArtFAg) 1 Ak p—5t i — A
Tp, (k/2)Tp, (p) T M) 1<g<k(A &l )
e (diag(Ag, ..., A
(Z EE: S m) "

Proof. Just apply Proposition 8.1 to the density defined by Proposition 3.1 and
use formula 13. U

Remarks. (1) Note that in the above density of the eigenvalues, line 41 is the
density of the eigenvalues of a standard Wishart variable with shape parameter p. It
does not depend on a. The line 42 depends on a and p and appears as a perturbation
of the preceding line.
(2) Suppose that the rank of a is r < k. Consider k = (my, ..., mg) with my >
..mg > mgy = 0. Then A,(a) = 0 if there exists ¢ such that r < ¢ < k and
m; > m;y1 since no sub determinant of a of size ¢ > r can be non zero. The
definition of Cy(a) implies that Ci(a) = 0 for k satisfying the above condition.
Thus if the rank of a is 7 < k the sum in 42 on FE,, can be replaced on the set of x’s
of the form (mq,...,my, My, .., Myyq).

9 The estimation of ¢ and a.

Suppose that we have N iid observations Xi,..., Xy with non central Wishart
distribution 7y (p, a, o) defined by 17. If a is known, we have an natural exponential
family. However, if a is unknown, this is not longer true and our model is not even
a general exponential family. All the methods that we shall consider will be of the
following type: some functions « and (3 of (a, o) been given, one inverts them into

a= f(a7ﬁ> o :g(Oé,ﬂ).

Each method now chooses (o, 3) and estimators (@, B\) as functions of the observa-
tions X1, ..., Xy. These estimators are generally unbiased, but not always. We now
plug (@, §) into f(«, 3) and g(«, B) in order to get the estimators

9.1 o unknown and a known.

Then the model is a natural exponential family. Estimation of ¢ = (—6)7! is
easy since the methods of natural exponential families are available, and we find a
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maximum likelihood estimator. We take

A 1

N
has an estimator of m and we plug this value of m into the formula 30 (if a is
invertible) and we get a reasonable estimator for o. If a is singular, we use the
analogous formula after 30. For further use, observe that the distribution of Xy is

v(Np, N?a,0/N). Thus w = cac does not change and we have from 34

1

E(Xy —m)?) = N

(m?> +mtrm — w? —wtrw).

9.2 o0 known and ¢ unknown.

The classical method, probably due to T.W. Anderson (1946) is to use m = po +
cao = po + w for the estimate

a=0'Xyot—pot.

This is specially popular when o = I} since @ = Xy — plj. See Leung (1994) and
Neudecker (2004) for variants and properties. This estimator is not always semi
positive definite.

9.3 a and o unknown. Our method.

We suggest to use 28 to estimate a in the following way. It says that V(m)(h) =
mho + ohm — poho. Let us apply this to h = I and denote v = V(m)({}) for
simplicity. By definition we have

v =E((X —E(X)) @ (X — E(X)))(I) = E((X — E(X)) x tr (X — E(X))).

Thus v = mo + om — po? can be rewritten (o — %m)2 = #mZ - %U or
1
o= 5(m + (m? — pv)'/?)

Thus finding an estimate of v will be finding an estimate of 0. This will lead to an
estimate of a via 27 since
a=o0‘mo ! — pa’l.

We now suggest the following unbiased estimator for the matrix v

b= ﬁz [(X; — X n) % tr(X; — Xu)]

which leads to the estimators ¢ and a for o and a respectively defined by
1

6 =—(m+(m?—pd)?), a=d6tmo
p

L pe—t.
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This method belongs to the general frame mentioned above, with («, 3) = (m, v).
Here the functions f and g are

fle, B) = ;)(oz +(a® =pB)'?), gla,B) = fla, B) af (e, B) 7" = pf (e, B) "

The conditions of existence (the symmetric matrix m?—po has to be semi positive
definite and this condition is not necessarily fulfilled for all samples Xi,..., Xy)
and the properties of these estimators have still to be studied. A positive side
of the proposed method is that it uses only one square root of matrices, namely

(5 —0)!/2. When a is known the classical method of estimation of parameters for
a natural exponential family was leading to the estimator of o equal to

2
—gcfl+a*1/2(a1/27”7m1/2—i—%[k)lﬂa*l/z

involving two roots in the non singular case, and with an even more complicate
formula in the singular case.

9.4 a and o unknown. The method 1 of Alam and Mitra.

This method uses « = m and 8 = w? + wtrw (with the usual notation w = cao).
A remarkable observation of Alam and Mitra is the fact from linear algebra that
w — w? + wtrw is a bijection of Py onto itself, as a consequence of the following
lemma:

Lemma 7.1. If w is a semi positive definite matrix and if 3 = w? + wtrw then
v = trw is a function of 5 alone.

Proof of the lemma. We can write

V2 v
I = —I.)?
5—1—4 k (w—i-zk)

which leads to
V2 1/2 v

Taking the trace of both sides we get that the following function on R

2
h(z) = —2(1 + g) + tr (B + %Ik)l/2

is zero for x = v. Since x — h(z) is easily proved to be convex (for 3 is semi positive
definite) and since lim,_, o, h(z) = —oo then v is the only root of h(x) = 0. This
shows that v = v(f3) is a function of  alone. O

We now describe the two functions a = f(«,3) o = g(«, 3) corresponding to the
first method of Alam and Mitra. We observe that 43 gives w as a function of 3:

v(p)
2

w=w(f)=— Ik—i-(ﬁ—i-%ﬁylk)l/?
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Since 0 = J(m —w) and a = 0~ 'wo ™" we get

o= f(0.8) = (o - w(B), a=g(a.B)= f(a,8) w(B) ()"

p

The second part of the method is to choose the estimators a and B For & we take

X,.. For 8 we recall first the formula 34 that we write under the form
B=w+wtrw=m*+mtrm—2pE(X —m)?).

Consider now the following estimators of E((X —m)?) and of m?+m tr m respectively
defined by

N

. 1 —
B = mizl(Xi—XN)
~ 1
= — XX+ X;tr X
Ba N(N_l)gj:( i+ Xitr Xj)

They are both unbiased. For 8; write (X; — X n)? = (X; —m+m — X y)? and for 3
observe that X; and X; are independent and that E(tr X;) = tr E(X;) by linearity
of the trace. R

Thus O3 = (2 — 2p f1 is an unbiased estimator of 5. It is not necessarily semi
positive definite. For this reason, let us write 03 = udiag(cy,...,cx) u! such that
u is an orthogonal matrix and such that the eigenvalues of 3 satisfy ¢; > ...¢; >
0> c¢jp1 > ... > ¢;. The estimator B that we finally consider and that we plug into
f and g is simply the semi positive definite matrix

~

B = udiag(cy,...,¢;,0,...,0)u"".
What is the cost of this method? Essentially:

1. The calculation of B from 33: a diagonalization of a symmetric matrix.

-~

2. The calculation of v(/3) (which is the trace of the estimator of w), for instance
by Newton approximation.

The cost of the calculation of (3 + V(;)z I;)'/? from the two preceding items is negli-

gible.

9.5 a and o unknown. The method 2 of Alam and Mitra.

The second method is based on 18. Its aesthetic value is diminished by the fact that
is is not free of coordinates as the first. For any line vector z € R* define o, = m,
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and 3, = v, with the notations of 18. One can express zo2zT and 2wz’ with respect
to a, and (3, since from 18 we have

T

1
20z = (mz + (mz - pvz)l/Q) - E(QZ + (O‘z _pﬁz)l/Q)a

m? — pv:)'? = (a2 - ps)"2.

D=

—~

Zu)ZT =

Now, Alam and Mitra replace in the above formula o, and (3, by the unbiased
estimators

N N
— — ~ 1 — 1 -
—~ _ T _ T _ T ™2 _ _ T2
a, =z2Xnz' = trXyz z, ﬁz—m E_l(ZXZZ 2 Xn2' )t = N1 E_l[tr(Xz Xn)z'z)%
Denote for a while
]' —_ —_ = — =
fe"2) = (@ + (@ =pB.)'?), g(="2) = (@ —pB.)"%. (44)

In a not too clear way, Alam and Mitra define (in their 2.9 and 2.10) the estimators
o and W by

2027 = tr(c272) = f(227), 2027 = tr (©272) = g(227). (45)

It should be specified that there are no & or @ which satisfy this for all z € R*. For
instance this would imply that the function h — g(h) defined on the space Sy of
symmetric matrices satisfying for semi positive h

is a linear form on Si. This is clearly not true for most of the (Xi,..., Xy) : just
square both sides of the expression of g(h) and use the Kronecker’s law of inertia for
the quadratic forms. However, if we impose (as Alam and Mitra finally do) that 45
is true only for the 2’s of the form z = e; +¢; where e = (ey, ..., ex) is the canonical
basis of R* then 45 defines completely & and @. As one can see, this method is linked
to the special basis e. Its advantage is the simplicity of the formulas 44.
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