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This text is made for our friends and students who are already aware of the basic
facts of the ordinary Wishart distributions. From our point of view, these basic
facts can be gathered from two sources: statistics (and our reference is the book
by Muirhead) and Jordan algebras (the book to read is Faraut Koranyi). When
we have to choose between two normalizations, we choose Muirhead. Some of the
statements of section 6 and 9 are possibly new. Comments at letac@cict.fr or
massamh@mathstat.yorku.ca are welcome.

1 The non central χ2 and the non central gamma

Proposition 1.1. Let Z be a N(0, 1) real variable and m a real number. Then for
s > −1 we have

E(e−
s
2
(Z+m)2) =

1

(1 + s)1/2
e−

sm2

2(1+s) .

Proof. We just apply the fact that the Laplace transform of N(0, σ2) is e
σ2θ2

2 by

specializing to σ2 = 1
1+s

and θ = −ms. We get

E(e−
s
2
(Z+m)2) =

e−
sm2

2

(1 + s)1/2

∫ ∞

−∞
e−

z2

2
(1+s)−msz(1 + s)1/2 dz

(2π)1/2

=
e−

sm2

2

(1 + s)1/2
e

s2m2

2(1+s)

=
1

(1 + s)1/2
e−

sm2

2(1+s) .

For p > 0, consider the entire function fp de�ned by

fp(z) =
∞∑

m=0

zm

m!Γ(m + p)
. (1)

It is related to the classical Bessel function by the formula ( z
2
)pfp(−1

4
z2) = Jp(z)

which implies (see Watson (1966)) that fp has an in�nity of simple zeros on (−∞, 0)
and no other zeros in the complex plane. Some readers will prefer to use the gener-
alized hypergeometric symbol and write fp(z) = Γ(p) 0F1(−; p; z).

Proposition 1.2. Let a > 0, let N, X1, . . . , Xn, . . . be independent random variables
such that N is Poisson distributed with mean a and such that Xj has density
e−x1(0,∞)(x) and de�ne

Y = X1 + · · ·+ XN

with the convention that Y = 0 if N = 0. Then E(e−sY ) = e−
sa

1+s . Furthermore the
law of Y is

νa(dy) = e−aδ0(dy) + ae−a−yf2(ay)1(0,∞)(y)dy.
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Proof. We just condition by N to compute E(e−sY ), we use E(e−sXj) = (1 + s)−1

and we get the result for E(e−sY ). For computing the distribution of Y we use the
fact that the distribution of X1 + · · ·+Xn (for n 6= 0) has density xn−1

(n−1)!
e−x1(0,∞)(x).

The distribution of Y being a mixing of the distributions of X1 + · · · + Xn with
respective weights e−a an

n!
this leads easily to the result. ¤

De�nition 1.1. Let p and a ≥ 0. The distribution γ(p, a) is the distribution on
(0,∞) de�ned by ∫ ∞

0

e−stγ(p, a)(dt) =
1

(1 + s)p
e−

sa
1+s .

For σ > 0, denote by γ(p, a; λ) the image of γ(p, aλ) by t 7→ λt. Thus
∫ ∞

0

e−stγ(p, a; λ)(dt) =
1

(1 + λs)p
e−

λ2sa
1+λs .

We say that γ(p, a; λ)(dt) is a noncentral gamma distribution with shape, non cen-
trality and scale parameters p, a, λ. Note γ(p, 0; λ) is the ordinary gamma distribu-
tion with scale parameter λ and shape parameter p. We say that γ(p, a) = γ(p, a; 1)
is standard. For reason appearing in part 3 of the next proposition, γ(n/2, 2a; 2)) is
called the standard non central χ2 distribution with drift a and n degrees of freedom.
We gather some properties of γ(p, a; λ) :

Proposition 1.3. We �x p and a ≥ 0.

1. We have γ(p, 0) ∗ νa = γ(p, a) and thus γ(p, a) exists. It satis�es

γ(p, a) ∗ γ(p′, a′) = γ(p + p′, a + a′)

and γ(p, a) is in�nitely divisible.

2. For a > 0 we have

γ(p, a)(dt) =
e−t−a

Γ(p)
[tp−1 + a

∫ t

0

(t− y)p−1f2(ay)dy]1(0,∞)(t)dt (2)

= e−t−atp−1fp(at)1(0,∞)(t)dt. (3)

3. If Z1, . . . , Zn are independent N(0, 1) random variables and if m1, . . . ,mn are
real numbers then the distribution of

1

2
((Z1 + m1)

2 + · · ·+ (Zn + mn)2)

is γ(n/2, 1
2
(m2

1 + · · ·+ m2
n)).

4. The natural exponential family generated by γ(p, a) is the family

F (γ(p, a)) = {γ(p, a, λ); λ > 0}.
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Its domain of the means is (0,∞) and its variance function is

V (m) =
p2 + 2ma

a2
(am +

p2

4
)1/2 − 4p

a
(am +

p2

4
). (4)

In terms of the parameters (p, a, λ) the mean and the variance of γ(p, a, λ) are
respectively

m = aλ2 + pλ, V (m) = 2aλ3 + pλ2. (5)

Proof. Part 1 is obvious. Since γ(p, a) is the convolution between νa and an
absolutely continuous distribution, thus γ(p, a) is also absolutely continuous
and its density is ∫ t

0

e−t+y

Γ(p)
(t− y)p−1νa(dy)

which leads to 2. Then we simply replace f2 by the de�ning series and we get
easily 3. Part 3 is an obvious consequence of Proposition 1.1. For getting part
4, write the Laplace transform for θ < 1

Lγ(p,a)(θ) =

∫ ∞

0

eθtγ(p, a)(dt) =
1

(1− θ)p
e

aθ
1−θ

and recall that F (γ(p, a)) is the set of all probabilities µ such that there exists
θ0 < 1 satisfying in a suitable interval Lµ(θ) =

Lγ(p,a)(θ+θ0)

Lγ(p,a)(θ0)
. Thus

Lµ(θ) = (1− θ

1− θ0

)−p exp

[
a

(1− θ0)2

θ

1− θ
1−θ0

]
.

Denoting λ = 1
1−θ0

we see that Lµ = Lγ(p,a,λ) which is the desired result. The
computation of the variance function is standard: denote k = log Lγ(p,a) and
for simpli�cation X = 1/(1− θ). Then

k′(θ) = aX2 + pX = m

k′′(θ) = 2aX3 + pX2 = V (m).

Computing X from the �rst equality and carrying it in the second one gives
the result. These last two formulas also give 5. One remarks that this family
belongs to the Babel class of exponential families classi�ed in the Rio lectures
notes on exponential families (1991). ¤

2 Noncentral Wishart and Gaussian laws
We denote by Pk the cone of positive de�nite symmetric matrices of order k and by
Pk its closure, that is the cone of semi-positive de�nite symmetric matrices.
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Proposition 2.1. Let Z be a random variable in Rk with distribution N(0, Ik) and
let m be in Rk. We write the vectors of Rk as line vectors. Then we have for a
symmetric matrix s of order k such that s + Ik is in Pk

E(e−
1
2
(Z+m)s(Z+m)T

) =
1

det(Ik + s)1/2
e−

1
2
m(Ik+s)−1smT

E(e−
1
2
tr (s(Z+m)T (Z+m))) =

1

det(Ik + s)1/2
e−

1
2
tr ((Ik+s)−1smT m). (6)

Proof. We apply the fact that the Laplace transform of N(0, Σ) is exp θΣθT

2
by

specializing to Σ = (Ik + s)−1 and θ = −ms. After observing that s(Ik + s)−1s− s =
−(Ik + s)−1s we get that

E(e−
1
2
(Z+m)s(Z+m)T

) =
e−

msmT

2

det(Ik + s)1/2

∫

Rk

e−
1
2
z(Ik+s)zT−mszT

(det Ik + s)1/2 dz

(2π)k/2

=
e−

msmT

2

det(Ik + s)1/2
e

1
2
ms(Ik+s)−1smT

=
1

det(Ik + s)1/2
e−

1
2
m(Ik+s)−1smT

. ¤

More generally considering n independent random variables Z1, . . . , Zn in Rk

with the same distribution N(0, Ik) and let m1, . . . , mn be in Rk. A consequence of
Proposition 2.1 is that

E(e−
1
2
tr (s

Pn
j=1(Zj+mj)

T (Zj+mj))) =
1

det(Ik + s)n/2
e−

1
2
tr ((Ik+s)−1s(mT

1 m1+···+mT
n mn)). (7)

This leads to the following question: if p > 0 and if a is in Pk does there exist a
probability distribution on Pk with Laplace transform

1

det(Ik + s)p
e− tr ((Ik+s)−1sa)?

A detailed answer will be given in Proposition 3.2. This natural question cannot
be solved as simply as in the case k = 1 since no extension to Rk of the above
Proposition 1.2 is available: more speci�cally one can prove that in the case k > 1
there is no positive measure µp on Pk such that for all s ∈ Pk one can write

∫

Pk

e− tr (sx)µp(dx) = ( tr s)−p

and this easily shows that exp(− tr ((Ik + s)−1sa)) will not be associated to an in-
�nitely divisible distribution as it was the case for k = 1. Equality 8 below shows
that the correct generalization of the one dimensional case replaces trace by deter-
minant in the above formula. As a substitute to Proposition 1.2 we introduce the
zonal polynomials in the next section.
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3 Density of the standard non central Wishart.
Given a symmetric real matrix x = (xij)1≤i,j≤k of order k for 1 ≤ m ≤ k we denote
∆m(x) = det(xij)1≤i,j≤m. Consider a sequence of integers κ = (m1, . . . , mk) such
that m1 ≥ m2 ≥ · · · ≥ mk ≥ 0. We denote |κ| = m1 +m2 + · · ·+mk and Em denotes
the set of κ such that m = |κ|. We now introduce

∆κ(x) = (∆1(x))m1−m2(∆2(x))m2−m3 · · · (∆k−1(x))mk−1−mk(∆k(x))mk .

We remark that ∆κ(x) > 0 for x ∈ Pk. We also introduce some useful notation.
The function z 7→ ΓPk

(z) is de�ned for z = (z1, . . . , zk) ∈ Rk such that furthermore
zj > (j − 1)/2 for j = 1, . . . , k by the following formula

ΓPk
(z) = (π)

k(k−1)
4

k∏
j=1

Γ(zj − j − 1

2
).

If p is real a traditional abuse of notation writes ΓPk
(z+p) for ΓPk

(z1+p, . . . , zk +p).
In particular for p > (k − 1)/2 we have

ΓPk
(p) = (π)

k(k−1)
4

k∏
j=1

Γ(p− j − 1

2
).

This leads to the notation, for κ = (m1, . . . , mk) with m1 ≥ m2 ≥ · · · ≥ mk ≥ 0 :

(p)κ =
ΓPk

(κ + p)

ΓPk
(p)

The normalization of ΓPk
has been chosen to insure the validity of the formula

ΓPk
(p) =

∫

Pk

e− tr (sx)(det x)p− k+1
2 dx (8)

where dx is the Lebesgue measure on the linear space of symmetric matrices x =
(xij)1≤i,j≤k de�ned by dx =

∏
1≤i≤j≤k dxij. This is the choice made by the statisti-

cians: see Muirhead page 62. However, Faraut and Koranyi make a di�erent choice
of Lebesgue measure: they equip the symmetric matrices with the Euclidean struc-
ture 〈x, y〉 = tr (xy) which induces a di�erent Lebesgue measure, giving mass 1
to the unit cube. For this reason the factor (π)

k(k−1)
4 in ΓPk

is replaced in Faraut
Koranyi page 123 by (2π)

k(k−1)
2 for still getting 8 with this other Lebesgue measure

dx.
The zonal polynomial Cκ(x) of parameter κ is de�ned by the following integral on

the group SO(k) of orthogonal matrices of order k with determinant 1 with respect
to the Haar measure du (normalized in order to have total mass one):

Cκ(x) = Cκ

∫

SO(k)

∆κ(u
−1xu)du,
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where Cκ is a complicated normalizing constant which can be found on the last line
of page 234 in Faraut Koranyi, or on formula (18) on page 237 of Muirhead. This
is a homogeneous polynomial of degree |κ| with respect to the entries xij of the
symmetric matrix x. We insist on the fact that by de�nition, it takes positive values
on Pk. If a ∈ Pk and if x is symmetric of order k then a1/2xa1/2 is also symmetric.

An other important remark is that for any v in the orthogonal group O(k) we
have

Cκ(x) = Cκ(v
−1xv). (9)

For det v = 1 this is clear from the de�nition of Haar probability. For det v = −1
enough is to see that v−1xv = x when v = diag(−1, 1, 1, . . . , 1). A consequence of 9
is that actually, Cκ(x) depends only on the eigenvalues of x. For k = 2 this enables
us to compute in Section 4 the value of Cκ(x) up to the cursed constant Cκ.

They satisfy many remarkable formulas. A selection is the following:

e trx =
∞∑

m=0

∑
κ∈Em

1

m!
Cκ(x) (10)

det(Ik − x)−p =
∞∑

m=0

∑
κ∈Em

(p)κ

m!
Cκ(x) (11)

(p)κ(det s)−pCκ(s
−1) =

∫

Pk

e− tr (sx)Cκ(x)(det x)p− k+1
2

dx

ΓPk
(p)

(12)

.
Cκ(t)Cκ(a)

Cκ(Ik)
=

∫

SO(k)

Cκ(a
1/2u−1tua1/2)du. (13)

We accept these formulas without proof: the unspeci�ed normalizing constant Cκ

above is chosen such that these formulas hold. Notice that a consequence of 10 is
that

( trx)m =
∑

κ∈Em

Cκ(x).

This comes from the fact Cκ is homogeneous of degree |κ|. A consequence is that
for κ ∈ Em and for x ∈ Pk we have

0 ≤ Cκ(x) ≤ ( trx)m. (14)

Proposition 3.1. Let p > (k − 1)/2 and a ∈ Pk. Then

γ(p, a)(dt) = e− tr (t+a)(det t)p− k+1
2

( ∞∑
m=0

∑
κ∈Em

Cκ(a
1/2ta1/2)

m!(p)κ

)
1Pk

(t)
dt

ΓPk
(p)

is a probability on Pk such that for Ik + s ∈ Pk one has
∫

Pk

e− tr (st)γ(p, a)(dt) =
1

det(Ik + s)p
e− tr ((Ik+s)−1sa). (15)
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Proof. The fact that γ(p, a)(dt) is a positive measure comes from the fact that
for t ∈ Pk we have ∆κ(t) > 0 and therefore, from the de�nition of Cκ(t) we have
Cκ(a

1/2ta1/2) > 0. Suppose �rst a ∈ Pk. For κ ∈ Em we do the change of variable
x = a1/2ta1/2 in the integral

Iκ(a) = e− tr a

∫

Pk

e− tr ((s+Ik)t)(det t)p− k+1
2

Cκ(a
1/2ta1/2)

m!(p)κ

dt

ΓPk
(p)

.

A classical result about the jacobian implies dx = (det a)(k+1)/2dt. Using formula 12
we get

Iκ(a) = e− tr a det(Ik + s)−p Cκ(a
1/2(Ik + s)−1a1/2)

m!
. (16)

Suppose now that a is singular in Pk. Remark that for n ≥ 1 we have an = a+ 1
n
Ik ∈

Pk. The inequality 14 implies that
0 ≤ Cκ(a

1/2
n xa1/2

n ) ≤ ( tr (anx))m ≤ ( tr (a1x))m.

Therefore we can apply dominated convergence and write limn→∞ Iκ(an) = Iκ(a)
and this implies that 16 holds even for a singular a. Summing up all equalities 16
and using 10 we get easily 15. The fact that the mass of γ(p, a) is one is obtained
by doing s = 0 in 15. ¤

Let p be in the so called Gyndikin set Λ of order k de�ned by

Λ = {1

2
, · · · ,

k − 1

2
} ∪ (

k − 1

2
,∞)

and let a in Pk. We de�ne the standard non central Wishart distribution γ(p, a) on
Pk as the unique probability such that 15 holds. For p > (k − 1)/2 its existence is
given by Proposition 3.1. If p is the half integer n/2, the existence of γ(p, a)(dt) as
well a Gaussian interpretation comes from 7. Actually, these values of p ∈ Λ are the
only ones such that γ(p, a)) does exist. More speci�cally

Proposition 3.2. For p > 0 and a in Pk, there exists a probability γ(p, a) such
that 15 holds if and only if p is in Λ.

Since the proof requires some notations which will be introduced in the next
sections, we postpone it to Section 7. Section 4 considers the practical case k = 2,
Section 5 concentrates on the natural exponential family generated by γ(p, a).

4 Zonal polynomials for dimension two and Legen-
dre polynomials .

This section computes the zonal polynomials and the density of the noncentral
Wishart for k = 2. We shall express the zonal polynomials in terms of the familiar
Legendre polynomials (Pn)n≥0 as de�ned by their generating formula

1

(1− 2xt + t2)1/2
=

∞∑
n=0

tnPn(x).
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Our favorite textbook on the subject is Rainville Special Functions (1960).

Proposition 4.1. Let m be an non negative integer and let κ = (m1,m2) with
m1 + m2 = m and m1 ≥ m2 ≥ 0. Then for a symmetric non singular matrix x of
order 2 one has

∫

SO(2)

∆κ(u
−1xu)du = (det x)m/2Pm1−m2(

trx

2(det x)1/2
).

For a singular non zero matrix x one has
∫
SO(2)

∆κ(u
−1xu)du = 0 if m2 > 0 and

∫

SO(2)

∆(m,0)(u
−1xu)du =

(2m)!

22mm!2
( trx)m.

Proof. A typical element of SO(2) is

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]

Suppose that x = diag(λ1, λ2). Then ∆κ(x) = λm1−m2
1 (λ1λ2)

m2 and

∫

SO(2)

∆κ(u
−1xu)du =

1

2π

∫ 2π

0

∆κ(R(−θ)xR(−θ))dθ

= (λ1λ2)
m2

1

2π

∫ 2π

0

(λ1 cos2 θ + λ2 sin2 θ)m1−m2dθ

Now we compute the generating function
∞∑

n=0

tn
1

2π

∫ 2π

0

(λ1 cos2 θ + λ2 sin2 θ)ndθ =
1

2π

∫ 2π

0

dθ

1− t(λ1 cos2 θ + λ2 sin2 θ)

=
2

π

∫ π/2

0

dθ

1− t(λ1 cos2 θ + λ2 sin2 θ)

=
1

(1− tλ1)1/2(1− tλ2)1/2

(use the change of variable u = tan θ). In the non singular case we have

1

(1− tλ1)1/2(1− tλ2)1/2
=

∞∑
n=0

tn(λ1λ2)
n/2Pn(

λ1 + λ2

2(λ1λ2)1/2
)

Thus the result is proved when x is a non singular diagonal matrix. Now we have
seen that the zonal polynomial is a symmetric function of the eigenvalues. Thus the
result is proved in the non singular case. The proof in the singular case is similar.
¤
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The coe�cient Cκ. In order to have a complete knowledge of the zonal polynomial
Cκ(x) for k = 2 we explicit it from the value given in Muirhead page 237. For
κ = (m1,m2) with m1 + m2 = m and m1 ≥ m2 ≥ 0 we have to distinguish the case
m2 = 0 and the case m2 > 0. We get

C(m,0) =
22mm!2

(2m)!

C(m1,m2) = 22mm!m1!× 1

2
× 3

2
× · · · × 2m2 − 1

2
× 2(m1 −m2) + 1

(2m1 + 1)!(2m2)!

The density of the standard non central Wishart for dimension 2. In this
case the non central distribution γ(p, a)(dt) for p > 1/2 and for a non singular is
given by

γ(p, a)(dt) = e− tr (t+a)(det t)p− 3
2

×
( ∞∑

m=0

(det a det t)m/2

m!

∑
κ∈Em

Cm1,m2

Pm1−m2(
tr (at)

2(det a det t)1/2 )

Γ(m1 + p)Γ(m2 + p + 1
2
)

)
1P2(t)dt

If a is singular but not zero then γ(p, a)(dt) for p > 1/2 is

γ(p, a)(dt) = e− tr (t+a)(det t)p− 3
2

( ∞∑
m=0

( tr at)m

m!Γ(m + p)

)
1P2(t)

dt

Γ(p + 1
2
)
.

When a in non zero singular, then a has rank 1 and can be written a = λm ⊗ m
where m ∈ R2 \ {0} and λ is any non zero real number. With this presentation,
tr (at) = λ tr (m ⊗ mt) = λmtmT . The case where λ = N ≥ 2 is an integer is
specially useful:

Proposition 4.2. Let Z1, . . . , ZN with N ≥ 2 be standard normal centered random
variables of R2 and let m ∈ R2 \ {0}. Then the distribution of the following random
symmetric matrix of order 2

T =
1

2
[(Z1 + m)(Z1 + m)T + · · ·+ (ZN + m)(ZN + m)T ]

is

γ(N/2, Nm⊗m)(dt) = e− tr (t)−N‖m‖2(det t)
N−3

2

( ∞∑
j=0

N j(mtmT )j

j!Γ(j + N
2
)

)
1P2(t)

dt

Γ(N+1
2

)
.
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5 The general non central Wishart

Proposition 5.1. Let b be a non singular real matrix of order k and denote by
b∗ its transposed matrix. Denote by b = qu its polar decomposition, that is q is
symmetric and positive de�nite, while u is orthogonal of order k. Let p ∈ Λ and let
a ∈ Pk. We also write σ = q2.

1. The image of γ(p, a) by t 7→ utu∗ is γ(p, uau∗).

2. The image of γ(p, qaq) by t 7→ qtq is a distribution denoted γ(p, a; q2) =
γ(p, a; σ) such that

∫

Pk

e− tr (st)γ(p, a; q2)(dt) =
1

det(1 + qsq)p
e− tr ((Ik+qsq)−1qsqqaq) (17)

holds.

3. The image of γ(p, a) by t 7→ btb∗ is γ(p, q−1uau∗q−1; q2).

4. The natural exponential family generated by γ(p, a) is

F (γ(p, a)) = {γ(p, a; q2); q ∈ Pk} = {γ(p, a; σ); σ ∈ Pk}.

5. If the distribution of X is γ(p, a; q2) = γ(p, a, σ) denote ω = σaσ. If c is a
positive constant, then the distribution of cX is γ(p, a

c2
, cσ) (note that ω =

cσ a
c2

cσ).

If z is a line vector of Rk denote λz = zσzT . Then the distribution of the
real random variable zXzT is a non central gamma distribution of Laplace
transform

E(e−s1zXzT

) =
1

(1 + s1λ)p
e
− s1

1+s1λ
zωzT

,

thus with shape parameter p, with scale parameter λz and with non centrality
parameter

az = λ−2zωzT =
zωzT

(zσzT )2
.

In particular the mean mz and the variance vz of zXzT are respectively

mz = pzσzT + zωzT , vz = zσzT (p zσzT + 2zωzT ). (18)
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Proof. 1. We write∫

Pk

e− tr (sutu∗)γ(p, a)(dt) =

∫

Pk

e− tr (u∗sut)γ(p, a)(dt)

=
1

det(Ik + s)p
e− tr ((Ik+u∗su)−1u∗sua)

=
1

det(Ik + s)p
e− tr (u(u∗u+u∗su)−1u∗suau∗)

=
1

det(Ik + s)p
e− tr ((Ik+s)−1suau∗).

2. Standard.
3. Since the transformation ϕb : t 7→ btb∗ satis�es ϕb = ϕq ◦ ϕu we observe

that from part one the image of γ(p, a) is γ(p, uau∗). We rewrite it as γ(p, uau∗) =
γ(p, qq−1uau∗q−1q). By de�nition of γ(p, a, q2) its image by ϕq is γ(p, q−1uau∗q−1; q2)
as announced.

4. The probability µ belongs to F (γ(p, a)) if and only if there exists s0 such that
Ik + s0 ∈ Pk and such that for Ik + s0 + s ∈ Pk one has

∫

Pk

e− tr (st)µ(dt) =

(
det(Ik + s0 + s)

det(Ik + s0)

)p

e− tr ((Ik+s0+s)−1(s0+s)a)e tr ((Ik+s0)−1s0a).

We rewrite the second member by introducing q = (Ik + s0)
−1/2 or s0 = q−2 − Ik

and we get the second member of 17. This proves the result.
5. If s1 is a positive number, apply formula 17 to the symmetric matrix s =

s1z
Xz. In order to prove the formula, we choose an orthonormal basis e = (e1, . . . , ek)

of Rk such that zq = λ1/2e1. With such a choice the representative matrices M and
(Ik +M)−1M of the endomorphisms s1qz

T zq and (Ik + qsq)−1qsq in the above basis
is simply, by blocks

M =

[
s1λ 0
0 0

]
, (Ik + M)−1M =

[
s1λ

1+s1λ
0

0 0

]
.

Thus det(Ik + qsq) = 1 + s1λ and tr ((Ik + qsq)−1qsqqaq) = s1λ
1+s1λ

tr eT
1 e1qaq Since

tr eT
1 e1qaq =

1

λ
tr qzT zqqaq =

1

λ
zσaσzT

we get the result. The mean and the variance are obtained from 5. ¤
The distribution γ(p, a, q2) is called the general non central Wishart distribution.

For p > (k−1)/2 its density is obtained by taking the density of γ(p, qaq) as obtained
from Proposition 2.2 and by taking its image by t 7→ x = qtq. Thus the distribution
γ(p, a, q2)(dx) for p > (k − 1)/2 is

(det q)−2pe− tr (q−1xq−1+qaq)(det x)p− k+1
2( ∞∑

m=0

∑
κ∈Em

Cκ(q
1/2a1/2q−1/2xq−1/2a1/2q1/2)

m!(p)κ

)
1Pk

(x)
dx

ΓPk
(p)

. ¤
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6 The moments and the variance function
6.1 Leibnitz formula.
First we observe that the exponential family F (γ(p, a)) can be generated by the
unbounded positive measure µ(dt) = e tr (a+t)γ(p, a)(dt) whose Laplace transform is
de�ned on −Pk by

Lµ(θ) =

∫

Pk

e tr (θx)µ(dx) =
1

(−θ)p
e tr (a(−θ)−1). (19)

We de�ne the following two functions on −Pk:
σ = σ(θ) = (−θ)−1, kµ(θ) = tr (aσ) + p log det σ. (20)

Note that kµ = log Lµ is the cumulant function of F (γ(p, a)) = F (µ) when µ is taken
as the generating measure of the NEF. With this notation the element P (θ, µ)(dt)
of the exponential family is exactly

P (θ, µ) = γ(p, a, σ)

as can be checked by 17 and
∫

Pk

e− tr stP (θ, µ)(dt) =
Lµ(θ − s)

Lµ(θ)

Let us now recall some general facts about the moments of a multivariate expo-
nential family generated by a measure µ on some �nite dimensional real linear space
E. If Θ(µ) (contained in the dual E∗ of E) is the interior of the domain of existence
of Lµ and if P (θ, µ)(dx) = e〈θ,x〉

Lµ(θ)
µ(dx) ∈ F (µ) corresponds to the parameter θ then

the n th di�erential of Lµ in the directions h1, . . . , hn has the following probabilistic
interpretation

L(n)
µ (θ)(h1, · · · , hn) = Lµ(θ)

∫

E

〈h1, x〉 . . . 〈hn, x〉P (θ, µ)(dx) (21)

where 〈h, x〉 is the value taken by the linear form h ∈ E∗ on the vector x ∈ E. Thus
this formula gives moments of P (θ, µ). In our case, E is the space of symmetric
matrices of order k, and E∗ is identi�ed to E by writing 〈θ, x〉 = tr (θx).

Let us also mention a general fact about the n th di�erential of the product of
two real functions f and g de�ned on an open subset of a �nite dimensional linear
space F : there exists a kind of Leibnitz formula. For F = R it reads

(fg)(n)(θ) =
n∑

j=0

n!

j!(n− j)!
f (j)(θ)g(n−j)(θ).

If (h1, . . . , hn) ∈ F n and if T ⊂ {1, . . . , n} we denote hT = (hi)i∈T and T ′ =
{1, . . . , n} \ T. With these notations the Leibnitz formula is

(fg)(n)(θ)(h1, . . . , hn) =
∑

T⊂{1,...,n}
f (|T |)(θ)(hT )g(|T ′|)(θ)(hT ′). (22)
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6.2 Two di�erentials of order n.

We are going to apply the above considerations to F = E∗ to f(θ) = e tr aσ(θ) = e〈a,σ〉

and to g(θ) = ep log det σ(θ). Thus Lµ = fg. The next step is the computation of the
respective di�erentials f (n)(θ)(h1, . . . , hn) and g(n)(θ)(h1, . . . , hn). For this we need
the following two di�erentials

σ′(θ)(h) = σhσ

(log det σ(θ))′(h) = tr (σh).

The di�erential g(n) is known, if not well known: the present authors have used
it in three or four papers and we shall only recall the result. For this we denote by
Sn the group of permutations π of {1, . . . , n}, we denote by C(π) the set of cycles
of the permutation π, by m(π) the number of cycles and we denote

rπ(σ)(h1, . . . , hn) =
∏

c∈C(π)

tr (
∏
j∈c

σhj).

Then the di�erential is

g(n)(θ)(h1, . . . , hn) = g(θ)
∑
π∈Sn

pm(π)rπ(σ)(s1, . . . , sk). (23)

The di�erential of f(θ) = e tr aσ is newer. For each π in Sn, we introduce a quantity
close to rπ(σ)(h1, . . . , hn) by simply replacing formally A = tr (

∏
j∈c σhj) by B =

tr (σa
∏

j∈c σhj). However this hardly makes sense for the following reason. Suppose
that the cycle c is (2, 5, 4) that means the permutation changing 2 in 5, 5 in 4 and 4 in
2. Then A = tr (σh2σh5σh4). The same cycle could also have been written (5, 4, 2)
and the property of commutativity of traces implies that A does not change, i.e A
depends on the cycle, not on its particular representation. Things are di�erent for
B, and the two numbers tr (σaσh2σh5σh4) and tr (σaσh5σh4σh2) do not coincide.

For this reason, for a given integer n we introduce the following set Pn of objects.
The data of an element P of Pn is the data of two things

• The data of a partition T = (T1, . . . , Tq) of {1, . . . , n} into non void subsets
(the order of the sequence T1, . . . , Tq does not matter).

• A permutation πj of Tj for each j = 1, . . . , q.

Thus the information about P is q and the q pairs (Tj, πj). For instance, the set
{1, 2, 3} has 5 partitions

T (1) = ({1}, {2}, {3})
T (2) = ({1, 2}, {3})
T (3) = ({1}, {2, 3})
T (4) = ({2}, {1, 3})
T (5) = ({1, 2, 3})
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Thus T (1), . . . , T (5) generate respectively 1,2,2,2,6 elements of P3 and P3 has 13
elements. As an other example, the partition of the set {1, 2, 3, 4, 5, 6} given by
({1, 3}, {2, 4, 5}, {6}) generates 2!× 3!× 1 = 12 elements of P6. One can see that P4

and P5 have 73 and 501 elements respectively.
Here are now the functions sP indexed by P ∈ Pn which imitate rπ. If P is given

by q and the (Tj, πj) for j = 1, . . . , q we de�ne

sP (σ)(h1, . . . , hn) =

q∏
j=1

tr


σa

∏
i∈Tj

σhπj(i)


 .

Proposition 6.1.
(e tr (aσ))(n)(θ)(h1, . . . , hn) = e tr (aσ)

∑
P∈Pn

sP (σ)(h1, . . . , hn).

Proof. Induction on n. ¤

Example 1. We compute the 3 �rst di�erentials of θ 7→ f(θ) = e tr (aσ). For sim-
plicity, we write a′ = σa and h′j = σhj. Thus from the previous proposition we
get

1

f(θ)
f ′(θ)(h1) = tr (a′h′1)

1

f(θ)
f ′′(θ)(h1, h2) = tr (a′h′1) tr (a′h′2) + tr (a′h′1h

′
2) + tr (a′h′2h

′
1)

1

f(θ)
f ′′′(θ)(h1, h2) = tr (a′h′1) tr (a′h′2) tr (a′h′3) +

tr (a′h′1h
′
2) tr (a′h′3) + tr (a′h′2h

′
1) tr (a′h′3) +

tr (a′h′1h
′
3) tr (a′h′2) + tr (a′h′3h

′
1) tr (a′h′2) +

tr (a′h′3h
′
2) tr (a′h′1) + tr (a′h′2h

′
3) tr (a′h′1) +

tr (a′h′1h
′
2h
′
3) + tr (a′h′2h

′
1h
′
3) + tr (a′h′3h

′
2h
′
1) +

tr (a′h′1h
′
3h
′
2) + tr (a′h′2h

′
3h
′
1) + tr (a′h′3h

′
1h
′
2).

Example 2. Symmetrically we compute the three �rst di�erential of g(θ) =
ep log det σ(θ) = 1

det (−θ)p . We still adopt the notation h′j = σhj. Thus from 23 and
according to 21 we get

1

g(θ)
g′(θ)(h1) = p tr (h′1)

1

g(θ)
g′′(θ)(h1, h2) = p2 tr (h′1) tr (h′2) + p tr (h′1h

′
2)

1

g(θ)
g′′′(θ)(h1, h2) = p3 tr (h′1) tr (h′2) tr (h′3) + p tr (h′1h

′
2h
′
3) + p tr (h′2h

′
1h
′
3)

+p2 tr (h′1h
′
2) tr (h′3) + p2 tr (h′1h

′
3) tr (h′2) + p2 tr (h′3h

′
2) tr (h′1).
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6.3 Moments of order 1,2,3.
Now we combine these two examples by the Leibnitz formula for obtaining the
�rst two moments of the non central Wishart random variable X with distribution
P (θ, µ)(dx) = e tr (θx)

Lµ(θ)
µ(dx) where µ is the measure de�ned by 19, associated to the

two parameters p ∈ Λk (see Proposition 3.2) and a ∈ Pk. Recall that −θ ∈ Pk is
positive de�nite and that we denote σ = (−θ)−1 and h′j = σhj and a′ = σa. Recall
that kµ is the cumulant function de�ned in 20. With these notations we get the �rst
two moments

E( tr (Xh1)) = k′µ(θ)(h1) =
L′µ(θ)(h1)

Lµ(θ)
= p tr (h′1) + tr (a′h′1) (24)

E( tr (Xh1) tr (Xh2)) =
L′′µ(θ)(h1, h2)

Lµ(θ)
= tr (a′h′1) tr (a′h′2) + tr (a′h′1h

′
2) + tr (a′h′2h

′
1) (25)

+ p tr (h′1) tr (a′h′2) + p tr (h′2) tr (a′h′1) + p2 tr (h′1) tr (h′2) + p tr (h′1h
′
2)

This enables us to compute the covariance k′′µ(θ) of X under the form

E[ tr ((X−E(X))h1) tr ((X−E(X))h2)] = tr (a′h′1h
′
2)+ tr (a′h′2h

′
1)+p tr (h′1h

′
2). (26)

We now reformulate the results 24 and 26 about the mean and the covariance. The
linear space Sk of real symmetric matrices of dimension k is equipped with the
Euclidean structure 〈h1, h2〉 = tr (h1h2).

Proposition 6.2. Let X be a noncentral Wishart random variable with parameters
p, a, θ as above, with the notation σ = (−θ)−1. Then

E(X) = m = k′µ(θ) = pσ + σ a σ. (27)

Furthermore the covariance operator k′′µ(θ) = E((X − E(X))⊗ (X − E(X))), as an
endomorphism of the Euclidean space Sk of real symmetric matrices of dimension k
is given by the linear map

h 7→ σaσhσ + σhσaσ + pσhσ = mhσ + σhm− pσhσ. (28)

Proof. Consider the symmetric matrix v = E(X) − pσ − σ a σ. From 24 for each
symmetric matrix h we have tr (vh) = 0 (recall that tr (E(X)h) = E( tr (Xh))).
Now specialize to h = v. Thus tr v2 = 0. Since v2 is a semi positive de�nite matrix,
this implies that v = 0 and 27 is proved.

For proving the second one denotes for simplicity E((X −E(X))⊗ (X −E(X)))
by c. Formula 26 says that with the above scalar product we have

〈c(h1), h2〉 = tr (σaσh1σh2) + tr (σaσh2σh1) + p tr (σh1σh2)

= tr (σaσh1σh2) + tr (σh1σaσh2) + p tr (σh1σh2)

= 〈σaσh1σ + σh1σaσ + p σh1σ, h2〉.
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Since this is true for all h2 we get that c(h1) = σaσh1σ+σh1σaσ+p σh1σ as claimed.
Replacing σ a σ by m− pσ gives the second expression of the covariance of X.

The third moment 1
Lµ(θ)

L′′′µ (θ)(h1, h2, h3) is a monster of 27 monomials that we write
now (the fourth moment is the sum of 267 monomials):

E

[
3∏

i=1

tr (Xhi)

]
= tr (a′h′1) tr (a′h′2) tr (a′h′3) +

tr (a′h′1h
′
2) tr (a′h′3) + tr (a′h′2h

′
1) tr (a′h′3) +

tr (a′h′1h
′
3) tr (a′h′2) + tr (a′h′3h

′
1) tr (a′h′2) +

tr (a′h′3h
′
2) tr (a′h′1) + tr (a′h′2h

′
3) tr (a′h′1) +

tr (a′h′1h
′
2h
′
3) + tr (a′h′2h

′
1h
′
3) + tr (a′h′3h

′
2h
′
1) +

tr (a′h′1h
′
3h
′
2) + tr (a′h′2h

′
3h
′
1) + tr (a′h′3h

′
1h
′
2) +

( tr (a′h′1) tr (a′h′2) + tr (a′h′1h
′
2) + tr (a′h′2h

′
1))p trh′3 +

( tr (a′h′3) tr (a′h′2) + tr (a′h′3h
′
2) + tr (a′h′2h

′
3))p trh′1 +

( tr (a′h′1) tr (a′h′3) + tr (a′h′1h
′
3) + tr (a′h′3h

′
1))p trh′2 +

p3 tr (h′1) tr (h′2) tr (h′3) + p tr (h′1h
′
2h
′
3) + p tr (h′2h

′
1h
′
3) +

p2 tr (h′1h
′
2) tr (h′3) + p2 tr (h′1h

′
3) tr (h′2) + p2 tr (h′3h

′
2) tr (h′1).

Remark. If one is specially interested in the diagonal elements of X and their
moments, one only needs to choose the symmetric matrices as diagonal ones. The
results are not really simpli�ed with this extra hypothesis.

6.4 The variance function.
We now calculate the variance function of the natural exponential family generated
by µ attached to p and a whose Laplace transform is 19. Our aim is to �nd the k
dimensional generalization of formula 4. The trick is to express σ as a function of
m when they are related by 27: a strange second degree equation. For this we coin
a lemma.

Lemma 6.3. Let a and b be in the set Pk of positive de�nite real symmetric matrices
of order k. Then there exists one and only one matrix x ∈ Pk such that xax = b.
This solution is

x = a−1/2(a1/2ba1/2)1/2a−1/2.

Proof. Existence: clearly x = a−1/2(a1/2ba1/2)1/2a−1/2 is a solution. Uniqueness: If
y ∈ Pk is an other solution, then a1/2ya1/2 ∈ Pk is a root of a1/2ba1/2. Since the root
in Pk is unique we have a1/2ya1/2 = a1/2xa1/2 which implies x = y.
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Proposition 6.4. Let a be semi positive de�nite. The variance function of the
natural exponential family generated by the measure µ of 19 is

V (m)(h) = mhσ + σhm− pσhσ (29)

where σ is as follows. If a is invertible we have

σ = −p

2
a−1 + a−1/2(a1/2ma1/2 +

p2

4
Ik)

1/2a−1/2. (30)

If a is not invertible, orthonormal coordinates in Rk are chosen such that a and m
and σ are written by blocks k1 × k1, k1 × k2, k2 × k1, k2 × k2 with k1 + k2 = k

a =

[
a1 0
0 0

]
, m =

[
m1 m12

m21 m2

]
, σ =

[
σ1 σ12

σ21 σ2

]

where a1 is invertible. Then σ1 is obtained from a1 and m1 by the formula 30.
Furthermore σ12 = (σ1a1 + pIk1)

−1m12 and σ2 = 1
p
(m2− σ21m1σ12), where σ21 is the

transposed matrix of σ12.
Finally, with the notation ω = σaσ we also write m = ω + pσ and

V (m)(h) = ωhσ + σhω + pσhσ. (31)

Proof. Let m ∈ Pk. We compute σ ∈ Pk such that 27 holds. For this we write
σ = x− p

2
a−1 and we get xax = m+ p2

4
a−1. Apply the lemma to a and b = m+ p2

4
a−1.

We get that

σ = −p

2
a−1 + x = −p

2
a−1 + a−1/2(a1/2ma1/2 +

p2

4
Ik)

1/2a−1/2.

Since the variance function is the endomorphism V (m) de�ned by m 7→ mhσ +
σhm − pσhσ we get the result in the invertible case. If a is singular, the study of
the equation σaσ + pσ = m is easily done when the coordinates are chosen such
that a =

[
a1 0
0 0

]
with a1 invertible. Note that if a = 0 we get back the variance

function of the central Wishart distribution V (m)(h) = 1
p
mhm. Finally 31 is easily

obtained from 29.

6.5 The Alam and Mitra formula and its extension
Alam and Mitra (1990) have written a remarkable paper whose importance seems
to have been unnoticed from the reviewer of Mathematical Rewiews. They prove
�rst formula 33 below:

Proposition 6.5. Let X be a noncentral Wishart random variable γ(p, a, σ) as
de�ned by 17, with the notation ω = σ a σ, with m = pσ+ω. Then for all symmetric
matrix h of order k

E((X−m)h(X−m)) =
1

2
[whσ+σhω+pσhσ+w tr (hσ)+σ tr (hω)+pσ tr (hσ)]. (32)
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In particular doing h = Ik the following Alam and Mitra formula holds

E((X −m)2) =
1

2
[wσ + σω + pσ2 + w tr (σ) + σ tr (ω) + pσ tr (σ)] (33)

=
1

2
[(ω + σ)2 + (ω + σ) tr (ω + σ) + (p− 1)(σ2 + σ trσ)]

=
1

2p
[m2 + m trm− ω2 − ω trω]. (34)

Remarks. Note that for k = 1 formula 33 gives back 5. Formula 34 is (2.1)
in the Alam and Mitra' s paper, with di�erent notations. Let us comment on
the importance of 32 and of the innocent looking 34. Up to now, we have been
considering a non central Wishart random variable X only as an element of the
linear space of symmetric matrices of order k. We have never used the multiplicative
structure (or rather the Jordan algebra structure x ◦ y = xy + yx) of symmetric
matrices. With the above proposition, the squares X2 are at stake. Let us compare
with the ordinary Wishart distributions: for them, the literature computes not only
expressions like E(〈h1, X〉 . . . 〈hn, X〉) (recall that we write 〈h,X〉 = tr (hX)) but
also expressions like

E(〈h1, X
α1〉 . . . 〈hn, X

αn〉)
where α1, . . . , αn are arbitrary integers (see Graczyk et al (2002), (2004), and Letac
and Massam (2004)). The Alam and Mitra formula 33 is the �rst of this type (thus
with n = 1 and α1 = 2) for the noncentral case.

Unfortunately, for proving 32 we need a result of linear algebra that we are not going
to prove. Denote by Sk the space of real symmetric matrices of order k, equipped
with the Euclidean structure (x, y) 7→ tr (xy). Denote now by Ls(Sk) the space of
symmetric endomorphisms of the Euclidean space Sk. To each y ∈ Sk we associate
the elements y ⊗ y and P (y) of Ls(Sk) de�ned respectively by

h 7→ (y ⊗ y)(h) = y tr (yh), h 7→ P (y)(h) = yhy.

They provide important examples of Ls(Sk). If x and y are in Sk one can even
consider (x⊗ y + y ⊗ x) and P (x, y) ∈ Ls(Sk) de�ned by

(x⊗ y + y ⊗ x) = ((x + y)⊗ (x + y)− x⊗ x− y ⊗ y)(h) = x tr (yh) + y tr (xh)

P (x, y)(h) = (P (x + y)− P (x)− P (y))(h) = xhy + yhx.

With this notation, 29 and 31 could even be rewritten, with Y = X −m

V (m) = E(Y ⊗ Y ) = P (m, σ)− pP (σ) = P (ω, σ) + pP (σ).

Finally, the result 32 that we aim to prove is

E(P (Y )) =
1

2
[P (ω, σ) + (ω ⊗ σ + σ ⊗ ω) + p(P (σ) + σ ⊗ σ)] (35)
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Now, Ls(Sk) is itself a linear space, and the result that we are going to admit as a
black box is the following (see Casalis and Letac (1996) Lemma 6.1 and Letac and
Massam (1997) Prop. 3.1 for a proof):

Proposition 6.6. There exists a unique endomorphism Ψ of Ls(Sk) such that for
all y ∈ Sk. one has Ψ(y ⊗ y) = P (y). Furthermore

Ψ(P (y)) =
1

2
(y ⊗ y + P (y)). (36)

Proof of Proposition 6.5. The proof is now very easy
E(P (Y )) = E(Ψ(Y ⊗ Y )) = Ψ(E(Y ⊗ Y ))

= Ψ(P (ω, σ)) + pΨ(P (σ))

= Ψ(P (ω + σ))−Ψ(P (ω))−Ψ(P (σ)) + pΨ(P (σ))

Now applying 36 we get the result 33 under the form 35. To pass from 33 to 34 use
m = pσ + ω. ¤

7 Proof of Proposition 3.2
First we need an other variation on the Leibnitz formula: if θ 7→ f(θ) and θ 7→ g(θ)
are su�ciently di�erentiable real functions de�ned on the same open subset of Rn

and if for j = 1, . . . , n we denote Dj = ∂
∂θj

then for a = (a1, . . . , an) ∈ Nn one has

Da1
1 . . . Dan

n (fg)(θ) =
∑(

a1

i1

)
. . .

(
an

in

)
Di1

1 . . . Din
n (f)(θ)Da1−i1

1 . . . Dan−in
n (g)(θ)

(37)
where the sum is taken for all i = (i1, . . . , in) ∈ Nn such that ij ≤ aj, j = 1, . . . , n.

Let us now prove the proposition. For a = 0 the result is due to Gyndikin. We
imitate the proof of the Gyndikin's theorem due to Shanbag (1987). Let a ∈ Pk.
Suppose that there exists p > 0 and a positive measure µp(dt) on Pk such that for
all θ ∈ −Pk one has

1

(−θ)p
e tr (a(−θ)−1) =

∫

Pk

e tr (θt)µp(dt). (38)

We show that p ∈ Λ.
Let Q be any real polynomial on the space of real symmetric matrices of order

k. Then we have

Q(
∂

∂θ
)

1

(−θ)p
e tr (a(−θ)−1) =

∫

Pk

Q(t)e tr (θt)µp(dt).

Suppose that the maximal degree of Q is n. Then there exists a real polynomial PQ

on R with respect to p such that `

Q(
∂

∂θ
)

1

(−θ)p
e tr (a(−θ)−1) =

1

(−θ)n+p
e tr (a(−θ)−1)PQ(p). (39)
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Let us insist on the fact that the coe�cients of P depend on θ and a. This result
can be shown by using the Leibnitz formula 37 applied to the usual pair f(θ) =
e tr aσ(θ) = e〈a,σ〉 and to g(θ) = (det σ(θ))p and then by using induction on n. We now
apply 39 to the polynomial Q(t) = det t whose degree is k. We get

1

(−θ)n+p
e tr (a(−θ)−1)PQ(p) =

∫

Pk

det(t)e tr (θt)µp(dt). (40)

Note that the right hand side of 40 is ≥ 0. Note also that this right hand side is 0
for p = 0, 1/2, . . . , (k − 1)/2 since µ0 = δ0 and since µp(dt) is concentrated on the
singular matrices for p = 1/2, . . . , (k−1)/2 from Proposition 2.1. Now the left hand
side of 40 has the same sign as PQ(p) which is a polynomial of degree ≤ k with at
least zeros on p = 0, 1/2, . . . , (k − 1)/2. Furthermore, Proposition 3.1 shows that
PQ(p) > 0 for p > (k − 1)/2. Thus deg PQ = k, and the zeros of PQ are all real and
simple. Also (−1)iPQ(p) > 0 for k−1−i

2
< p < k−i

2
and i = 1, . . . , k− 1. Now, assume

that a positive measure µp exists and that p /∈ Λ. Thus PQ(p) > 0 and therefore
there exists an even i ∈ {1, . . . , k − 1} such that k−1−i

2
< p < k−i

2
. For k = 2 this is

impossible. For k ≥ 3 we observe that if µp exists, then

µp+ 1
2

= µp ∗ µ 1
2

does exist too, as can be seen by the Laplace transform. But now PQ(p + 1
2
) < 0

which is the desired contradiction.
To complete the proof, suppose that there exists p /∈ Λ such that a probability

γ(p, a) on Pk exists such that for Ik + s ∈ Pk one has
∫

Pk

e− tr (st)γ(p, a)(dt) =
1

det(Ik + s)p
e− tr ((Ik+s)−1sa).

De�ning µp(dt) = e tr (t+a)γ(p, a)(dt) we see that 38 holds. This contradiction ends
the proof. ¤

8 Eigenvalues of non central Wishart
We rely �rst on a celebrated theorem about the distribution of the eigenvalues of a
random matrix of Pk (see Muirhead page 104).

Proposition 8.1. Let T be a random matrix of Pk having density f. Denote by
Λ1 > . . . > Λk > 0 the sequence of the eigenvalues of T. Then the density of
(Λ1, . . . , Λk) is

πk2/2

ΓPk
(k/2)

∏

1≤i<j≤k

(λi − λj)

∫

SO(k)

f(u−1diag(λ1, . . . , λk)u)du.

We apply this result to the standard non central Wishart:
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Proposition 8.2. Let T be a non central Wishart matrix with distribution γ(p, a)(dt)
with p > (k− 1)/2. Denote by Λ1 > . . . > Λk > 0 the sequence of the eigenvalues of
T. Then the density of (Λ1, . . . , Λk) is

πk2/2

ΓPk
(k/2)ΓPk

(p)
e−(λ1+···+λk)(λ1 · · ·λk)

p− k+1
2

∏

1≤i<j≤k

(λi − λj) (41)

×e− tr a

( ∞∑
m=0

1

m!

∑
κ∈Em

Cκ(a)Cκ(diag(λ1, . . . , λk))

Cκ(Ik)(p)κ

)
(42)

Proof. Just apply Proposition 8.1 to the density de�ned by Proposition 3.1 and

use formula 13. ¤

Remarks. (1) Note that in the above density of the eigenvalues, line 41 is the
density of the eigenvalues of a standard Wishart variable with shape parameter p. It
does not depend on a. The line 42 depends on a and p and appears as a perturbation
of the preceding line.

(2) Suppose that the rank of a is r < k. Consider κ = (m1, . . . ,mk) with m1 ≥
. . . mk ≥ mk+1 = 0. Then ∆κ(a) = 0 if there exists i such that r < i ≤ k and
mi > mi+1 since no sub determinant of a of size i > r can be non zero. The
de�nition of Cκ(a) implies that Cκ(a) = 0 for κ satisfying the above condition.
Thus if the rank of a is r < k the sum in 42 on Em can be replaced on the set of κ's
of the form (m1, . . . , mr,mr+1, . . . , mr+1).

9 The estimation of σ and a.

Suppose that we have N iid observations X1, . . . , XN with non central Wishart
distribution γ(p, a, σ) de�ned by 17. If a is known, we have an natural exponential
family. However, if a is unknown, this is not longer true and our model is not even
a general exponential family. All the methods that we shall consider will be of the
following type: some functions α and β of (a, σ) been given, one inverts them into

a = f(α, β) σ = g(α, β).

Each method now chooses (α, β) and estimators (α̂, β̂) as functions of the observa-
tions X1, . . . , XN . These estimators are generally unbiased, but not always. We now
plug (α̂, β̂) into f(α, β) and g(α, β) in order to get the estimators

â = f(α̂, β̂) σ̂ = g(α̂, β̂).

9.1 σ unknown and a known.
Then the model is a natural exponential family. Estimation of σ = (−θ)−1 is
easy since the methods of natural exponential families are available, and we �nd a
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maximum likelihood estimator. We take

m̂ = XN =
1

N
(X1 + · · ·+ XN)

has an estimator of m and we plug this value of m into the formula 30 (if a is
invertible) and we get a reasonable estimator for σ. If a is singular, we use the
analogous formula after 30. For further use, observe that the distribution of XN is
γ(Np,N2a, σ/N). Thus ω = σaσ does not change and we have from 34

E((XN −m)2) =
1

2Np
(m2 + m trm− ω2 − ω trω).

9.2 σ known and a unknown.
The classical method, probably due to T.W. Anderson (1946) is to use m = pσ +
σaσ = pσ + ω for the estimate

â = σ−1XNσ−1 − pσ−1.

This is specially popular when σ = Ik since â = XN − pIk. See Leung (1994) and
Neudecker (2004) for variants and properties. This estimator is not always semi
positive de�nite.

9.3 a and σ unknown. Our method.
We suggest to use 28 to estimate a in the following way. It says that V (m)(h) =
mhσ + σhm − pσhσ. Let us apply this to h = Ik and denote v = V (m)(Ik) for
simplicity. By de�nition we have

v = E((X − E(X))⊗ (X − E(X)))(Ik) = E((X − E(X))× tr (X − E(X))).

Thus v = mσ + σm− pσ2 can be rewritten (σ − 1
p
m)2 = 1

p2 m
2 − 1

p
v or

σ =
1

p
(m + (m2 − pv)1/2)

Thus �nding an estimate of v will be �nding an estimate of σ. This will lead to an
estimate of a via 27 since

a = σ−1mσ−1 − pσ−1.

We now suggest the following unbiased estimator for the matrix v

v̂ =
1

N − 1

N∑
j=1

[
(Xj −XN)× tr (Xj −XN)

]

which leads to the estimators σ̂ and â for σ and a respectively de�ned by

σ̂ =
1

p
(m̂ + (m̂2 − pv̂)1/2), â = σ̂−1m̂σ̂−1 − pσ̂−1.
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This method belongs to the general frame mentioned above, with (α, β) = (m, v).
Here the functions f and g are

f(α, β) =
1

p
(α + (α2 − pβ)1/2), g(α, β) = f(α, β)−1αf(α, β)−1 − pf(α, β)−1.

The conditions of existence (the symmetric matrix m̂2−pv̂ has to be semi positive
de�nite and this condition is not necessarily ful�lled for all samples X1, . . . , XN)
and the properties of these estimators have still to be studied. A positive side
of the proposed method is that it uses only one square root of matrices, namely
(1

p
m̂2− v̂)1/2. When a is known the classical method of estimation of parameters for

a natural exponential family was leading to the estimator of σ equal to

−p

2
a−1 + a−1/2(a1/2m̂a1/2 +

p2

4
Ik)

1/2a−1/2

involving two roots in the non singular case, and with an even more complicate
formula in the singular case.

9.4 a and σ unknown. The method 1 of Alam and Mitra.
This method uses α = m and β = ω2 + ω trω (with the usual notation ω = σaσ).
A remarkable observation of Alam and Mitra is the fact from linear algebra that
ω 7→ ω2 + ω trω is a bijection of Pk onto itself, as a consequence of the following
lemma:

Lemma 7.1. If ω is a semi positive de�nite matrix and if β = ω2 + ω trω then
ν = trω is a function of β alone.

Proof of the lemma. We can write

β +
ν2

4
Ik = (ω +

ν

2
Ik)

2

which leads to
(β +

ν2

4
Ik)

1/2 = ω +
ν

2
Ik. (43)

Taking the trace of both sides we get that the following function on R

h(x) = −x(1 +
k

2
) + tr (β +

x2

4
Ik)

1/2

is zero for x = ν. Since x 7→ h(x) is easily proved to be convex (for β is semi positive
de�nite) and since limx→−∞ h(x) = −∞ then ν is the only root of h(x) = 0. This
shows that ν = ν(β) is a function of β alone. ¤

We now describe the two functions a = f(α, β) σ = g(α, β) corresponding to the
�rst method of Alam and Mitra. We observe that 43 gives ω as a function of β:

ω = ω(β) = −ν(β)

2
Ik + (β +

ν(β)2

4
Ik)

1/2.
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Since σ = 1
p
(m− ω) and a = σ−1ωσ−1 we get

σ = f(α, β) =
1

p
(α− ω(β)), a = g(α, β) = f(α, β)−1ω(β)f(α, β)−1.

The second part of the method is to choose the estimators α̂ and β̂. For α̂ we take
Xn. For β̂ we recall �rst the formula 34 that we write under the form

β = ω2 + ω trω = m2 + m trm− 2pE((X −m)2).

Consider now the following estimators of E((X−m)2) and of m2+m trm respectively
de�ned by

β̂1 =
1

N − 1

N∑
i=1

(Xi −XN)2

β̂2 =
1

N(N − 1)

∑

i 6=j

(XiXj + Xi trXj)

They are both unbiased. For β̂1 write (Xi−XN)2 = (Xi−m+m−XN)2 and for β̂2

observe that Xi and Xj are independent and that E( trXj) = trE(Xj) by linearity
of the trace.

Thus β̂3 = β̂2 − 2p β̂1 is an unbiased estimator of β. It is not necessarily semi
positive de�nite. For this reason, let us write β̂3 = u diag(c1, . . . , ck) u−1 such that
u is an orthogonal matrix and such that the eigenvalues of β̂1 satisfy c1 > . . . cj >

0 > cj+1 > . . . > ck. The estimator β̂ that we �nally consider and that we plug into
f and g is simply the semi positive de�nite matrix

β̂ = u diag(c1, . . . , cj, 0, . . . , 0) u−1.

What is the cost of this method? Essentially:

1. The calculation of β̂ from β̂3: a diagonalization of a symmetric matrix.

2. The calculation of ν(β̂) (which is the trace of the estimator of ω), for instance
by Newton approximation.

The cost of the calculation of (β̂ + ν(bβ)2

4
Ik)

1/2 from the two preceding items is negli-
gible.

9.5 a and σ unknown. The method 2 of Alam and Mitra.
The second method is based on 18. Its aesthetic value is diminished by the fact that
is is not free of coordinates as the �rst. For any line vector z ∈ Rk de�ne αz = mz
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and βz = vz with the notations of 18. One can express zσzT and zωzT with respect
to αz and βz since from 18 we have

zσzT =
1

p
(mz + (m2

z − pvz)
1/2) =

1

p
(αz + (α2

z − pβz)
1/2),

zωzT = (m2
z − pvz)

1/2 = (α2
z − pβz)

1/2.

Now, Alam and Mitra replace in the above formula αz and βz by the unbiased
estimators

α̂z = zXNzT = trXNzT z, β̂z =
1

N − 1

N∑
i=1

(zXiz
T−zXNzT )2 =

1

N − 1

N∑
i=1

[ tr (Xi−XN)zT z]2.

Denote for a while

f(zT z) =
1

p
(α̂z + (α̂z

2 − pβ̂z)
1/2), g(zT z) = (α̂z

2 − pβ̂z)
1/2. (44)

In a not too clear way, Alam and Mitra de�ne (in their 2.9 and 2.10) the estimators
σ̂ and ω̂ by

zσ̂zT = tr (σ̂zT z) = f(zzT ), zω̂zT = tr (ω̂zT z) = g(zzT ). (45)

It should be speci�ed that there are no σ̂ or ω̂ which satisfy this for all z ∈ Rk. For
instance this would imply that the function h 7→ g(h) de�ned on the space Sk of
symmetric matrices satisfying for semi positive h

g(h) =

(
tr (XNh)2 − 1

N − 1

N∑
i=1

[ tr (Xi −XN)h]2

)1/2

is a linear form on Sk. This is clearly not true for most of the (X1, . . . , XN) : just
square both sides of the expression of g(h) and use the Kronecker's law of inertia for
the quadratic forms. However, if we impose (as Alam and Mitra �nally do) that 45
is true only for the z's of the form z = ei + ej where e = (e1, . . . , ek) is the canonical
basis of Rk then 45 de�nes completely σ̂ and ω̂. As one can see, this method is linked
to the special basis e. Its advantage is the simplicity of the formulas 44.
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