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Toulouse, France.

Conference at York, 01/30/08.

1



Fisher models Given a measurable space (Ω,A)

and given an open subset Θ of Rk a Fisher

model (Pθ(dw))θ∈Θ is a model such that for

all θ and θ′ ∈ Θ, we have that Pθ is absolu-

tely continuous with respect to Pθ′. In other

terms, Pθ and Pθ′ are equivalent for all θ and

θ′ ∈ Θ.

Proposition 1. (Pθ(dw))θ∈Θ is a Fisher model

if and only if there exists a measure ν(dw) on

(Ω,A) and a real function (w, θ) 7→ `w(θ) such

that

Pθ(dw) = e`w(θ)ν(dw). (1)
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Of course the pair (ν(dw), `w(θ)) is not com-

pletely arbitrary since it satisfies∫
Ω
Pθ(dw) = 1 =

∫
Ω
e`w(θ)ν(dw) (2)

Suppose now that θ 7→ `w(θ) is differentiable

and that there exists a positive and ν inte-

grable function f such that ‖`′w(θ)|e`w(θ) ≤
f(w) for all θ ∈ Θ. In these circumstances we

can differentiate under the sign integral and

we get the important vector equality∫
Ω
`′w(θ)Pθ(dw) = 0 (3)

Some authors call (w, θ) 7→ `′w(θ) the score

function.
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Examples.

The general exponential family, with `w(θ) =
〈θ, t(w)〉−kµ(θ) where kµ is the cumulant trans-
form of the image µ(dx) of ν(dw) in Rk by
w 7→ x = t(w).

Recall that a natural exponential family go-
verned by µ where µ is a positive measure on
Rk is the model on Rk

P (θ, µ)(dx) = e〈θ,x〉−kµ(θ)µ(dx)

where θ ∈ Θ(µ) ⊂ Rk, the l open convex set
of existence of the Laplace transform of µ.

Recall that a general exponential family go-
verned by (t, ν), where t : Ω → Rk and where
ν is a positive measure on Ω is the model

P (θ, t, ν)(dw) = e〈θ,t(w)〉−kµ(θ)ν(dw).

The location parameter model : If f is a strictly
positive density in Rk take Ω = Θ = Rk,
ν(dw) = dw and `w(θ) = log f(x− θ).
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Fisher information Given a regular Fisher mo-

del (Pθ(dw))θ∈Θ on Ω with the representation

(1), the Fisher information is the (k, k) sym-

metric matrix

I(θ) =
∫
Ω
`′w(θ)⊗ `′w(θ)Pθ(dw).

If θ 7→ `w(θ) is twice differentiable and if

conditions of differentiability under the inte-

gral are met, thus differentiating (3) once

again gives

I(θ) = −
∫
Ω
`′′w(θ)Pθ(dw). (4)

Note that I(θ) is obviously semi positive de-

finite. We consider only Fisher models such

that (I(θ)−1 does exist.

Under Pθ(dw) one can see w 7→ `′w(θ) as a

random variable valued in Rk. It is centered

(by (3)) and I(θ) is its covariance matrix (by

the definition of I(θ)).
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Examples.

The general exponential family : Here I(θ) =

k′′µ(θ) by applying (4) and the fact that if

`w(θ) = 〈θ, t(w)〉 − k(θ) then `′′w = −k′′µ which

does not depend on w ∈ Ω and makes the

computation of the integral trivial.

The location parameter model : denote g =

log f. Here the information matrix is the constant

matrix

I(θ) =
∫
Rk

[g′(x)⊗g′(x)]eg(x)dx = −
∫
Rk
g′′(x)eg(x)dx.

Examples : in the Gaussian case that is if

g(x) = −x∗Σ−1x/2− k
2 log 2π − 1

2 log detΣ we

get I(θ) = Σ−1. Sometimes g′′ does not exist

and only the definition of I(θ) can be used :

example on the real line with the bilateral ex-

ponential distribution associated to g(x) =

−|x|− log 2. In this case g′(x) = −sign x, thus

g′2(x) = 1 and I(θ) = 1.
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Properties of the information matrix : chan-

ging parameter

Proposition 2. Let a regular Fisher model

(Pθ(dw))θ∈Θ

on Ω and consider a reparameterization

Θ1 → Θ, t 7→ f(t) = θ

where f is a differentiable homeomorphism

between the two open subsets Θ1 and Θ of

Rk. Consider the Fisher model (Qt(dw))t∈Θ1

on Ω where Qt = Pf(t) and denote by I1(t)

its information matrix. We have

I1(t) = f ′(t)∗I(f(t))f ′(t)

where f ′(t) is the Jacobian matrix of f and

f ′(t)∗ is its transpose matrix.
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Example : The geometric distribution. For
Ω = N the set of non negative integers, consi-
der the geometric distribution with three dif-
ferent parameterizations, thus three Fisher
models with the same ν =

∑
n∈N δn and k = 1.

1. Classical parameterization : we take Θ1 =
(0,1) and P (1)

p (dw) = (1−p)
∑
n∈N p

nδn(dw).
Here `w(p) = w log p+log(1−p), −`′′w(p) =
w
p2

+ 1
(1−p)2 and the information is

I1(p) =
1

p(1− p)2
.

2. Canonical parameterization (in the sense
of exponential families) : we take Θ2 =
(−∞,0) and P (2)

θ (dw) = (1−eθ)
∑
n∈N e

θnδn(dw)
leads to

I2(θ) =
eθ

(1− eθ)2
.

3. Parameterization by the mean : we take
Θ3 = (0,∞) and P (3)

m (dw) =
∑
n∈N

mn

(1+m)n+1δn(dw)
leads to

I3(m) =
1

m+m2
.
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Example : The general exponential family. We

reparameterize it by the mean m = k′µ(θ).
Here Θ1 = MF is the domain of the means

of the natural exponential family F = F (µ)

which is associated to the general exponen-

tial family, and f is the inverse function m 7→
θ = ψµ(m) of θ 7→ m = k′µ(θ). Thus ψ′µ(m)

is VF (m)−1 which is the variance function

of the NEF F. Recall that I(θ) = k′′µ(θ) and

thus I(ψµ(m)) = VF (m). Finally Proposition

2 implies that I1(m) = VF (m)−1 a strong

contrast with I(ψµ(m)) = VF (m). Note that

`′w(θ) = t(w)−k′µ(θ) and therefore if hw(m) =

`w(ψµ(m)) we get

h′w(m) = VF (m)−1(t(w)−m). (5)
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Properties of the information matrix : inde-

pendence

Proposition 3. Consider two regular Fisher

models (Pθ(dw))θ∈Θ on Ω and (Qθ(dw1))θ∈Θ

on Ω1, with information matrices I(θ) and

I1(θ). Then the information matrix of the

product Fisher model (Pθ⊗Qθ)(dw, dw1))θ∈Θ

is I(θ) + I1(θ).

Proof. Use the representations Pθ(dw) = e`w(θ)ν(dw)

and Qθ(dw1) = ehw1(θ)µ(dw1). This leads to

the representation

(Pθ⊗Qθ)(dw, dw1) = e`w(θ)+hw1(θ)(ν⊗µ)(dw, dw1).

If we assume the existence of second deriva-

tives, things are simple since the information

of the product is∫
Ω

∫
Ω1

[`′′w(θ)+h′′w1
(θ)]Pθ(dw)Qθ(dw1) = I(θ)+I1(θ)
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As a consequence, suppose that X1, . . . , XN
are iid random variables valued in Ω with the

same distribution Pθ(dw), being a Fisher mo-

del with information matrix I(θ). Then the

information matrix for the Fisher model on

ΩN which is the distribution of (X1, . . . , XN)

is NI(θ).
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The Cramér-Rao inequality. The most ele-
gant version is this

Proposition 4. Consider a regular Fisher mo-
del (Pθ(dw))θ∈Θ on Ω. Let X(w) be an un-
biased estimator X of θ. Then the matrix[

Covθ(X) Ik
Ik I(θ)

]
(6)

is semipositive definite. In particular when (I(θ))−1

exists, this is equivalent to saying that

Covθ(X)− (I(θ))−1

is semipositive definite and this is called the
Cramér-Rao inequality. In particular,

Covθ0(X)− (I(θ0))
−1 = 0

if and only if ν almost everywhere we have
X(w) = θ0 + I(θ0)

−1`′w(θ0) with the repre-
sentation (1) of the Fisher model. Finally,
if θ is randomized and has distribution λ(dθ)
we have the Bayesian Cramér-Rao inequality
which is the following statement :∫

Θ
Covθ(X)λ(dθ)− (

∫
Θ
I(θ)λ(dθ))−1 (7)

is semi positive definite.
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Proof. The hypothesis implies

θ =
∫
Ω
X(w)Pθ(dw) =

∫
Ω
X(w)e`w(θ)ν(dw).

Taking derivative of both sides gives

Ik =
∫
Ω
X(w)⊗`′w(θ)e`w(θ)ν(dw) =

∫
Ω
X(w)⊗`′w(θ)Pθ(dw).

Recall that 0 =
∫
Ω `′w(θ)Pθ(dw) and thus 0 =∫

Ω θ ⊗ `′w(θ)Pθ(dw). We get from this :

Ik =
∫
Ω
(X(w)− θ)⊗ `′w(θ)Pθ(dw) (8)

Since (X(w)− θ) and `′w(θ) are centered ran-

dom variables for the probability Pθ(dw) the

equality (8) says that the covariance of these

two random variables is Ik. Finally the cova-

riance matrix of the random variable

(X(w)− θ, `′w(θ))

of R2k is given by (6) and thus (6) is semi-

positive definite.
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To finish the proof, we observe that[
Ik −(I(θ))−1

0 Ik

] [
Covθ(X) Ik

Ik I(θ)

] [
Ik 0

−(I(θ))−1 Ik

]

=

[
Covθ(X)− (I(θ))−1 0

0 I(θ)

]

and this shows that Covθ(X) − (I(θ))−1 is

semipositive definite. Finally for seeing that

Covθ0(X)−(I(θ0))
−1 = 0 ⇔ X(w) = θ0+I(θ0)

−1`′w(θ0)

we compute the covariance matrix of[
Ik −(I(θ))−1

0 Ik

] [
X(w)− θ
`′w(θ)

]
=

[
X(w)− θ − (I(θ))−1`′w(θ)

`′w(θ)

]
and equality (9) shows that this covariance is

[
Covθ(X)− (I(θ))−1 0

0 I(θ)

]
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If Covθ0(X)− (I(θ0))
−1 = 0 the covariance is[

0 0
0 I(θ0)

]
. Thus X(w) = θ0+I(θ0)

−1`′w(θ0)

this equality being Pθ0 everywhere, thus ν(dw)

everywhere.

For the last part, we use the fact that sums or

convex combinations of semi positive definite

matrices are also semipositive definite, and

thus[ ∫
Θ Covθ(X)λ(dθ) Ik

Ik
∫
Θ I(θ)λ(dθ)

]
(10)

is semi positive definite which implies (7).
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Efficiency. Proposition 4 leads to a charac-

terization of the general exponential families,

which are the only Fisher models able to rea-

lize always equality in the above Cramér-Rao

inequality.

Proposition 5. Consider a regular Fisher mo-

del (Pθ(dw))θ∈Θ on Ω and an unbiased esti-

mator X of θ. Assume that the image µ(dx)

of ν(dw) by the map w 7→ x = X(w) is not

concentrated on an affine hyperplane of Rk.
Then Covθ(X)− (I(θ))−1 = 0 for all θ ∈ Θ if

and only if (Pθ(dw))θ∈Θ is a general exponen-

tial family parameterized by its mean. Under

these circumstances X(w) = t(w).
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Proof.

⇐ If we parameterize a general exponential

family by the mean, and if X(w) = t(w) then

the equality Covm(X) − (I(m))−1 = 0 takes

place. To see this apply the definitions, the

fact that the information is VF (m)−1 and (7).

⇒ It will be easier to follow if we rather de-

note the parameter by m and the parameter

set by M instead of θ and Θ. The Fisher mo-

del is Pm(dw) = ehw(m)ν(dw) and we denote

the information by I(m). From Proposition

4 the hypothesis Covm(X) − (I(m))−1 = 0

for all m ∈ M is translated into X(w) =

m + I(m)−1h′w(m) for each m and ν almost

everywhere. Thus h′w(m) = I(m)(X(w)−m).

Since this is true for all X(w) this implies that

both I(m) and I(m)m are gradients and thus

there exists A : M → Rk such that A′ = I and

there exists B : M → R such that B′(m) =

I(m)m. Thus hw(m) = 〈A(m), X(w)〉−B(m).

17



Since
∫
ΩPm(dw) = 1 we have∫

Ω
e〈A(m), X(w)〉ν(dw) = eB(m).

Since A′(m) = I(m) is never singular the map

m 7→ θ = A(m) can be locally inverted in a

neighborhood U0 of any point m0 and denote

A(U0) = Θ0. Thus for all θ ∈ Θ0 we have∫
Rk
e〈θ, x〉µ(dx) = ek(θ).

and thus form ∈ U0 we have B(m) = k(A(m)).

Taking differentials : I(m)m = B′(m) = I(m)k′µ(A(m))

which implies k′µ(A(m)) = m and k′µ(θ) = m

which shows that the natural exponential fa-

mily generated by µ admits m as the mean

parameter. This is true for any m0 and the

result is proved.
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Example : Characterization of the Gaussian

distribution. In the location parameter model

{f(x−θ) ; θ ∈ Rk} we assume that
∫
Rk xf(x)dx =

0 thus X(x) = x is an unbiased estimator of

θ. Now, assume that Cov(X) − I−1 = 0 (re-

call that Covθ(X) and I(θ) are constants in

the location parameter model). Proposition

5 implies that the model is a general expo-

nential family F such that t(x) = x, thus F is

actually a natural exponential family (NEF).

Furthermore, this NEF is invariant by transla-

tion, thus its variance function is a constant

Σ, thus this NEF is the family of Gaussian

distributions in Rk with known covariance Σ

and unknown mean.
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Finally, we give the general Cramér-Rao in-
equality, a little less elegant than Proposition
4, but which contains it.

Proposition 6. Consider a regular Fisher mo-
del (Pθ(dw))θ∈Θ on Ω, with Θ ⊂ Rk. Let
w 7→ X(w) be a measurable map from Ω to
Rm (where m is not necessarily equal to k).
Denote ψ(θ) =

∫
ΩX(w)Pθ(dw) and assume

that differentiability conditions in the inte-
gral are met. Introduce the differential ψ′(θ) :
Rk → Rm and its transpose ψ′(θ)∗ : Rm → Rk.
Then the matrix

[
Covθ(X) ψ′(θ)
ψ′(θ)∗ I(θ)

]
(11)

is semipositive definite. In particular when (I(θ))−1

exists, this is equivalent to saying that

Covθ(X)− ψ′(θ)(I(θ))−1ψ′(θ)∗

is semipositive definite. In particular, Covθ0(X)−
ψ′(θ0)(I(θ0))−1ψ′(θ0)∗ = 0 if and only if ν al-
most everywhere we have X(w) = ψ(θ0) +
ψ′(θ0)I(θ0)−1`′w(θ0).
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Proof. It suffices to see that Covθ(X)−ψ′(θ)(I(θ))−1ψ′(θ)∗

is the covariance of [X(w) − ψ(θ), `′w(θ)], a

random vector of Rk+m. This is done in an

entirely similar way as in Proposition 4. For

studying the equality case we observe that[
Im −ψ′(θ)(I(θ))−1

0 Ik

] [
Covθ(X) ψ′(θ)
ψ′(θ)∗ I(θ)

] [
Im 0

−(I(θ))−1ψ′(θ)∗ Ik

]

is equal to

[
Covθ(X)− ψ′(θ)(I(θ))−1ψ′(θ)∗ 0

0 I(θ)

]
which is the covariance of the random vector

of Rk+m defined by

[X(w)− ψ(θ)− ψ′(θ)I(θ)−1`′w(θ), `′w(θ].

Thus if Covθ0(X) − ψ′(θ0)(I(θ0))−1ψ′(θ0)∗ =

0 we have as claimed the following equality ν

almost everywhere :

X(w) = ψ(θ0) + ψ′(θ0)I(θ0)
−1`′w(θ0).
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Examples. If m = 1, Proposition 6 is the clas-
sical Cramér-Rao inequality

Varθ(X) ≥ ψ′(θ)(I(θ))−1ψ′(θ)∗.

If furthermore k = 1 it can be read as

Varθ(X) ≥
ψ′(θ)2

I(θ)
.

This is the original form found by Fréchet
(1938), Cramér (1945) page 475 and C. R.
Rao (1946) and proved in elementary courses
as follows :

ψ(θ) =
∫
Ω
X(w)Pθ(dw),

ψ′(θ) =
∫
Ω
X(w)`′w(θ)Pθ(dw),

0 =
∫
Ω
`′w(θ)Pθ(dw),

ψ′(θ) =
∫
Ω
[X(w)− ψ(θ)]`′w(θ)Pθ(dw)

and we use Schwarz inequality :

[ψ′(θ)]2 ≤
∫
Ω
[X(w)−ψ(θ)]2Pθ(dw)

∫
Ω
[`′w(θ)]2Pθ(dw)

= Varθ(X)I(θ)
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Density information and the van Trees in-

equality. Suppose that λ(dθ) is a C1 proba-

bility distribution on the open subset Θ of Rk

which is > 0 on Θ and write λ(θ) = eg(θ). The

symmetric matrix of order k

Iλ =
∫
Θ

[g′(θ)⊗ g′(θ)]eg(θ)dθ (12)

is called the density information of λ. This is

not in general the Fisher information of some

Fisher model, except when Θ = Rk where

Iλ is the Fisher information of the location

parameter model defined by

Pθ(dx) = λ(x− θ)dx.
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Examples of density information.

Non singular normal distributions. If λ(θ)dθ is

N(m,Σ) in Rk, the density information matrix

is Iλ = Σ−1.

Densities invariant by rotation. We assume

that g(θ) = g1(r) where r = ‖θ‖ with the

canonical Euclidean structure on Rk. In this

case the density information is Ik multiplied

by the scalar number

πk/2

Γ(1 + k
2)

∫ ∞

0
g′1(r)

2eg1(r)rk−1dr.
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Consider the following example

λ(dθ) =
Γ(k2 + b)

πk/2Γ(b)
(1− ‖θ‖2)b−1

+ dθ

where x+ means x if x > 0 and 0 if x ≤ 0. Here

g′1(r) = −(b− 1) 2r
1−r2. To see that λ is indeed

a probability on the unit ball of Rk observe

that

2πk/2

Γ(k2)
×

Γ(k2 + b)

πk/2Γ(b)

∫ 1

0
rk−1(1− r2)b−1dr = 1.

Thus the scalar factor of Ik of the density

information is

πk/2

Γ(1 + k
2)

Γ(k2 + b)

πk/2Γ(b)
×4(b−1)2

∫ 1

0
rk+1(1−r2)b−3dr.

This information exists only if b > 2 and is

Iλ =
2

b
(b− 1)(b− 1 +

k

2
)Ik.
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Proposition 7. Let (Pθ)θ∈Θ be a regular Fisher
model on Ω where Θ is an open subset of
Rk. Denote its Fisher information by I(θ). Let
λ(θ) be a probability density on Θ which is
C1 and > 0 on Θ and which is zero on the
boundary ∂Θ = Θ \Θ and at infinity. Denote
its density information by Iλ. Let Ω 3 w 7→
X(w) ∈ Rk be an arbitrary estimator of θ.
Write

C =
∫
Ω×Θ

[(X(w)−θ)⊗(X(w)−θ)]Pθ(dw)λ(θ)dθ

Under these circumstances the following 2k
symmetric matrix[

C Ik
Ik Iλ +

∫
Θ I(θ)λ(θ)dθ

]
(13)

is semi positive definite. In particular the k
symmetric matrix∫

Ω×Θ
[(X(w)− θ)⊗ (X(w)− θ)]Pθ(dw)λ(θ)dθ

−[Iλ +
∫
Θ
I(θ)λ(θ)dθ]−1

is semi positive definite (van Trees inequality)
provided that the matrix Iλ+

∫
Θ I(θ)λ(θ)dθ is

invertible.
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Proof. Denote Pθ(dw) = e`w(θ)ν(dw) as usual

and write λ(θ) = eg(θ). The basic trick of the

proof is the Stokes’ theorem, which says that

if f is a function on Θ valued in Rm which is

sufficiently regular and which is zero on ∂Θ

then ∫
Θ
f ′(θ)dθ = 0.

We apply this principle to the two following

functions

1. f(θ) = λ(θ)e`w(θ) and thus m = 1. Here

f ′(θ) = (g′(θ) + `′w(θ))λ(θ)e`w(θ) (14)

2. f(θ) = θλ(θ)e`w(θ) and thus m = k. Here

f ′(θ) = [Ik + θ ⊗ (g′(θ) + `′w(θ))]λ(θ)e`w(θ)

(15)
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From (14) and Stokes we get that X(w) ⊗∫
Θ(g′(θ)+ `′w(θ))λ(θ)e`w(θ)dθ = 0 and thus in-

tegrating with respect to ν(dw) we have∫
Ω×Θ

[(X(w)⊗(g′(θ)+`′w(θ))]λ(θ)e`w(θ)ν(dw)dθ = 0.

(16)

From (15) and Stokes we get that∫
Θ

[θ⊗(g′(θ)+`′w(θ))]λ(θ)e`w(θ)dθ = −Ik
∫
Θ
λ(θ)e`w(θ)dθ

and thus integrating with respect to ν(dw)

we have∫
Ω×Θ

[θ⊗(g′(θ)+`′w(θ))]λ(θ)e`w(θ)ν(dw)dθ = −Ik.

(17)

since P (dθ, dw) = λ(θ)e`w(θ)ν(dw)dθ is a pro-

bability on Ω×Θ. We now combine (16) and

(17) to get finally∫
Ω×Θ

[(X(w)−θ)⊗(g′(θ)+`′w(θ))]λ(θ)e`w(θ)ν(dw)dθ = Ik.
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Now consider the expectation under P (dθ, dw)

of the random variable (θ, w) 7→

[(X(w)−θ), (g′(θ)+`′w(θ)]⊗[(X(w)−θ), (g′(θ)+`′w(θ)]

which is valued in the set of semi positive

definite matrices of order 2k. This expecta-

tion is nothing but the matrix (13) which is

therefore semi positive definite also. To prove

this the only point left is to check that∫
Ω×Θ

[(g′(θ)+`w(θ))⊗(g′(θ)+`w(θ))]λ(θ)e`w(θ)ν(dw)dθ = Iλ+
∫
Θ
I(θ)λ(θ)dθ.

This comes from∫
Ω
`′w(θ)e`w(θ)ν(dw) = 0 ⇒

∫
Ω
[g′(θ)⊗`′w(θ)]e`w(θ)ν(dw) = 0 ⇒

∫
Ω×Θ

[g′(θ)⊗`′w(θ)]P (dθ, dw) = 0.

Finally, passing from (13) to the proper van

Trees inequality is standard and is done in

the same way as done for the Cramér-Rao

inequality.

29



Efficiency in the van Trees inequality

Proposition 8. We keep the hypothesis and

the notations of Proposition 8. Denote

Σ = [Iλ +
∫
Θ
I(θ)λ(θ)dθ]−1.

Then∫
Ω×Θ

[(X(w)−θ)⊗(X(w)−θ)]Pθ(dw)λ(θ)dθ−Σ = 0

if and only if the Fisher model is a general

exponential family on Ω generated by t(w) =

Σ−1X(w) and by a measure ν1(dw) equiva-

lent to ν. Under this circumstance, if µ(dx) is

the image in Rk of ν1(dw) by w 7→ t(w) with

Laplace transform Lµ = ekµ the density λ is

λ(θ) = Lµ(θ)e
−1

2〈θ,Σ
−1(θ)〉 = e−

1
2〈θ,Σ

−1(θ)〉+kµ(θ).

Furthermore µ1(dx) = e
1
2〈x, Σ

−1x〉µ(dx) is a

probability and λ is the convolution N(0,Σ) ∗
µ1.
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Proof. The hypothesis is saying that P (dθ, dw)

almost surely we have

X(w)− θ = Σ[g′(θ) + `′w(θ)].

This can be seen as in Proposition 5, af-

ter multiplication of the matrix of order 2k

of (13) by a suitable triangular matrix. As a

consequence we have

Σ−1X(w)− `′w(θ) = g′(θ) + Σ−1θ.

Integrating, there exists a function C(w) such

that

〈θ,Σ−1X(w)〉−`w(θ) = g(θ)+
1

2
〈θ,Σ−1θ〉+C(w).

and finally

λ(θ)e`w(θ) = e〈θ, Σ
−1X(w)〉−1

2〈θ, Σ
−1θ)〉−C(w).

Now we multiply both sides by ν(dw), we de-

note ν1(dw) = e−C(w)ν(dw) we integrate in w

and we use the equality (2) to claim that
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λ(θ) =
∫
Ω
e〈θ, Σ

−1X(w)〉−1
2〈θ, Σ

−1θ)〉ν1(dw)

= e−
1
2〈θ, Σ

−1θ)〉
∫
Rk
e〈θ,x〉µ(dx)

= Lµ(θ)e
−1

2〈θ,Σ
−1(θ)〉

= e−
1
2〈θ,Σ

−1(θ)〉+kµ(θ)

=
∫
Rk
e−

1
2〈θ−x, Σ

−1(θ−x))〉e
1
2〈x, Σ

−1x〉µ(dx)

Why do we have Θ = Rk? If not there exists

θ0 ∈ ∂Θ. Thus on this point θ0, in order to

fill the condition limθ→θ0 λ(θ) = 0 we have

limθ→θ0−
1
2〈θ,Σ

−1(θ)〉+kµ(θ) = −∞ and thus

limθ→θ0 kµ(θ) = −∞ which is impossible since

kµ is convex.

As a consequence the Fisher model is

e`w(θ)ν(dw) = e〈θ, Σ
−1X(w)〉−kµ(θ)ν1(dw)

which is a general exponential family as clai-

med.
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Restriction of the location parameter model

to a subspace. This example is motivated by a

correspondence with Abram Kagan who stu-

dies with his students the case of a two di-

mensional density with one dimensional unk-

nown parameter θ of the form

{f(x− θ, y − θ) ; θ ∈ R}.

This is a Fisher model on Ω = R2 if f is

differentiable and positive. If furthermore∫
R2
xf(x, y)dxdy =

∫
R2
yf(x, y)dxdy = 0

clearly aX + (1 − a)Y is an unbiased esti-

mator of θ for any a ∈ R. We abstract this

situation by replacing R2 by an arbitrary li-

near space E, by replacing the linear subspace

H = {(θ, θ) ; θ ∈ R} of R2 by an arbitrary sub-

space H of E, by replacing the projection

(x, y) 7→ (ax+ (1− a)y, ax+ (1− a)y)

from R2 to H of kernel

H1 = {(x, y) ; ax+ (1− a)y = 0}

by an arbitrary projection on H.
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Let E be a real linear space of dimension k.

Let {f(x−θ)dx ; θ ∈ E} be a location parame-

ter model and let H be a linear subspace of

E. We do not use any notion of orthogonality

on E. Thus we denote by H⊥ the subspace of

the elements α ∈ E∗ such that α(x) = 0 for

all x ∈ H. It is classical that H∗ is canonically

isomorphic to E∗/H⊥.

Consider the Fisher model

{f(x− θ)dx ; θ ∈ H}.

Since we assume f > 0 we write f = eg as

usual. We have `x(θ) = g(x−θ) and therefore

`′x(θ) is an element of H∗. Its realisation from

the differential of g is subtle, since g′(x) is an

element of E∗. Actually `′x(θ) is the image of

−g′(x − θ) in H∗ by the canonical projection

π from E∗ onto E∗/H⊥ = H∗.
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Thus the information

I(θ) =
∫
E
[`′x(θ)⊗ `′x(θ)]f(x− θ)dx

=
∫
E
[π(g′(x))⊗ π(g′(x))]f(x)dx

is an element of Ls(H,H∗). It does not depend

on θ.

We select a subspace H1 of E which is com-

plementary of H, i.e. such that H +H1 = E

and H ∩H1 = {0}. We assume
∫
E xf(x)dx =

0. We denote by π1 the projection from E

to H which is parallel to H1 and we consi-

der the estimator X1 = π1(X) of θ where

X ∼ f(x − θ)dx. Of course X is unbiased by

the hypothesis
∫
Rk xf(x)dx = 0 and by linea-

rity X1 is unbiased too. Now we prove the

following
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Proposition 9. Suppose that the unbiased es-

timator X1 realizes equality in the Cramér-

Rao inequality, that means Covθ(X1)−(I(θ))−1 =

0 for all θ ∈ H. Under such a circumstance

there exists Σ ∈ Ls(H∗, H) which is positive

definite and a probability density d(h1) on H1

such that

f(h, h1) = Ce−
1
2〈Σ

−1(h), h〉d(h1).
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Proof. It is convenient to write E = H × H1
and to denote the elements of E by (h, h1) =
x, with π1(x) = h. We rather write m instead
of θ. Thus the model is

{f(h−m,h1)dhdh1 ; m ∈ H}.
From Proposition 5 where (Ω, E,X,w) is re-
placed by (E,H,X1, x) we can claim that the
model is a general exponential family para-
meterized by the mean m. Thus it has the
form

f(h−m,h1)dhdh1 = e〈ψµ(m),h〉−kµ(ψµ(m))ν(dh, dh1)

for some unknown measure ν on E and where
µ is the image of ν by the projection (h, h1) 7→
h. The above equality shows that ν is ab-
solutely continuous with respect to dx and
that the converse is true : thus ν(dh, dh1) =
et(h,h1)dhdh1. We prefer to write t(h, h1) =
th1

(h) since we are going to use derivative
with respect to h only, and this avoids ∂ sym-
bols. Writing also f(h, h1) = e

gh1(h) we finally
get

gh1
(h−m) = 〈ψµ(m), h〉− kµ(ψµ(m))+ th1

(h).
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Taking differential of this expression with res-

pect to h we get

g′h1
(h−m) = ψµ(m) + t′h1

(h).

This shows that h 7→ g′h1
(h) is a linear func-

tion from H to R thus g′h1
(h) ∈ H∗. In principle

this linear function depends on h1. However

doing h = 0 shows that neither g′h1
nor t′h1

depend on h1. Finally m 7→ ψµ(m) is linear.

Let us write it ψµ(m) = Σ−1(m) where Σ ∈
Ls(H∗, H). Thus t′h1

(h) = −Σ−1(h) = g′h1
(h).

Integrating there exists a function r(h1) such

that gh1
(h) = −1

2〈Σ
−1(h), h〉+r(t1). This proves

the desired result.
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