
From Archimedes to statistics: the area of the sphere.

Gérard Letac∗

I The area of a sphere : some history.

Archimedes (287-212) has shown that when you put a sphere in a cylinder in the tightest
manner, the lateral area of the cylinder is the area of the sphere itself. This is not an easy
result, and Archimedes was so proud of it that he asked that the corresponding picture should
be engraved on his tomb in Agrigente in Sicily : 150 years after his murder during the siege of
Syracuse by an ignorant Roman soldier (imagine Werner von Braun killed by a GI in 1945), this
detail of the sphere inside the cylinder enabled Cicero to discover the grave and to restore it in
the year 75.

Actually, the Archimedes’ result is even more precise. Indeed if you cut off the whole by a
plane perpendicular to the axis of the cylinder, the remainders of the cylinder and of the sphere
have still the same area. I learnt of this result when I was a I5 years old schoolboy (with the
original proof that I shall sketch in a few seconds). In these far away times, the proof was actually
belonging to the syllabus of the ”classe de Première” of the lycées, the 11th grade of the French
system. Although these syllabus have changed, I have observed recently that the statement is
still fascinating for my grand children.

The principle of the proof given by Archimedes can be easily rediscovered by somebody who
likes mathematics, even elementary ones. However, it uses a clever trick which simplifies the
calculation : you are stalled if you do not have it. Finally, it still has two minor defects : slight
lack of rigor and complication. There are some other proofs, which use classical calculus learnt
during first years at the university. I will also give you a completely different proof which uses
a weapon borrowed to statistics : the normal distribution.

II Archimedes’ proof.

Consider a sphere of radius R in the three dimensional space and fix a number a in [0, 2R].
The lateral area of the cylinder of diameter 2R and height a is 2πRa : just incise and unfold to
get a rectangle of dimensions 2πR and a. The corresponding part of the sphere is called a calotte
if a ≤ R from the Italian calotta, a brimmed hat. We thus have to show that the area of the
calotte is 2πRa. For this, Archimedes approximates the calotte by a finite union of truncated
cones, computes the lateral area of each of these truncated cones sums up and passes to the
limit to get the desired result. Let us now work on the details :
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II.1 The area of a cone of revolution.

Imagine a clown’s hat of height h and with r as the radius of the basic circle (Well, rather
a Chinese hat if h/r is small). What is its area ? Answer : πr

√
r2 + h2. To see this, incise and

unfold the hat into a sector. The radius of the sector is
√

r2 + h2, but finding the value of the
angle of the sector 2πα, with 0 < α < 1 is not so easy. What is known is the length of the
circular arc of the sector, namely 2πr. Well, this gives α since this length is also 2πα

√
r2 + h2

and we get
α =

r√
r2 + h2

.

Now the area of the sector is exactly π(
√

r2 + h2)2 multiplied by α and we get the result.

II.2 The area of a truncated cone.

Now we take a clown’s hat associated to (h, r), we fix 0 < h′ < h and we truncate at height
h′ (that means that we create a new clown’s hat associated to (h′, r′) with h

r = h′
r′ . Removing

the new from the old gives a truncated cone T with area

A = πr
√

r2 + h2 − πr′
√

r′2 + h′2.

Another presentation of A is obtained by observing
√

1 +
h2

r2
=

√
1 +

h′2

r′2
⇒ r′

√
r2 + h2 = r

√
r′2 + h′2

(multiply both sides of the first equality by rr′ to get the second) which leads to

A = π(r + r′)(
√

r2 + h2 −
√

r′2 + h′2) = 2π
r + r′

2
× (

√
r2 + h2 −

√
r′2 + h′2) (2.1)

”The area of the truncated cone is the product of the half sum of the perimeter of the external
circles by the length of the lateral edge”.

II.3 Archimedes’ trick.

Consider the two circles limiting the truncated cone : there exists one (and only one) sphere
S containing these two circles. Take a plane P through the axis D of symmetry of T. The plane
P cuts S under a circle whose center is the center O of the sphere and cuts T under two segments
AA′ and BB′. The points A and B are symmetric with respect to D and we denote by C the
intersection of AB and D. Similarly, A′ and B′ are symmetric with respect to D and we denote
by C ′ the intersection of A′B′ and D. Finally, denote by H the midpoint of AA′ and by M the
midpoint of CC ′. A reformulation of 2.1 is

A = 2π ×MH ×AA′.

The basic remark, Archimedes’ trick, is that

A = 2π ×OH × CC ′. (2.2)
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There are many ways to see this but the closest to Archimedes’ method is to consider the
perpendicular projection A′′ from A′ onto AC to observe that the two triangles AA′A′′ and
HOM are similar since their sides are perpendicular and to conclude

HM

HO

(a)
=

A′′A′

AA′
(b)
=

CC ′

AA′

(here (a) comes from similarity and (b) comes from the obvious equality A′′A′ = CC ′).

II.4 End of the proof.

Now this is too easy. We split the calotte governed by the parameters R and a ≤ R with
parallel planes P1, . . . , Pn perpendicular to the axis of the calotte, with distances of each other
equal to a/n. These planes cut the calotte under circles C1, . . . Cn. We call C0 the pole of the
calotte. The pair Ck−1, Ck creates a truncated cone Tk whose area Ak is given by the formula
2.2. Adding the whole the approximation of the area of the calotte is, with obvious notations

A1 + . . . +An = 2π(OH1 × C0C1 + OH2 × C1C2 + · · ·+ OHn × Cn−1Cn)

= 2πa× 1
n

(OH1 + · · ·+ OHn)

(we have used Ck−1Ck = a/n). From modern standards, the only weak point of the Archimedes’
proof is that he considers the fact that limn→∞ 1

n(OH1 + · · ·+OHn) = R is obvious. If you want
something more rigorous, observe that

0 ≤ OHn ≤ OHn−1 ≤ OH1 ≤ R

and that limn→∞OHn = R. Thus

OHn ≤ 1
n

(OH1 + · · ·+ OHn) ≤ R

will lead to the result.

III The normal distribution and the uniform distribution on the
sphere.

Let us assume that you have heard some statistics. If you repeat independently the same
random experiment n times, with issues S (success) or F (failure) such that the probability
p ∈ (0, 1) of S does not change with the experiment, the number Sn of successes in these n
experiments is a random variable such that for k = 0, . . . , n one has

Pr(Sn = k) =
n!

(n− k)!k!
pk(1− p)n−k.

A great result of the 18th century mathematics is the Moivre Laplace theorem which says that

lim
n→∞Pr(

Sn − np√
np(1− p)

≤ x) =
∫ x

−∞
e−

t2

2
dt√
2π

.
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In some sense X = limn→∞ Sn−np√
np(1−p)

exists and is a continuous random variable with density

e−
x2

2
dx√
2π

. We call it a normal variable. One more hat in this story is the graph of its density :
after the calotte, the clown’s hat, the Chinese hat, we have the Napoleon’s hat.

Now, consider two other normal variables Y and Z such that X, Y, Z are independent (we
can construct other random sequences of independent experiments leading to S′n and S′′n for
obtaining such Y and Z if we have some doubts about their existence). A striking fact is that
the random vector of R3 defined by V = (X, Y, Z) has density

e−
x2

2
dx√
2π

e−
y2

2
dy√
2π

e−
z2

2
dz√
2π

= e−
x2+y2+z2

2
dxdydz

(2π)3/2
= e−

‖v‖2
2

dv

(2π)3/2
.

Denote by R = ‖V ‖ = (X2 + Y 2 + Z2)1/2 the distance to zero of the random point V of the
space R3 (this explicit formula comes from the Pythagoras’ Theorem). The remarkable point is
that the density of V is a function of r = ‖v‖ = (x2 + y2 + z2)1/2 only. This implies that the
distribution of U = V

R , which is by definition concentrated on the sphere S of R3 with center 0
and radius 1, will not change if we rotate the space R3 in an arbitrary manner. That means that
U has the uniform distribution on the sphere. That means that if E is any subset of S, then the
probability such that U falls into E is proportional to the area A(E) of E. More specifically :

Pr(U ∈ E) =
A(E)
A(S)

.

At this point, you may stop me and tell me that Archimedes says A(S) = 4π but since we are
suppose to have an other proof of Archimedes’ statements, we are not allowed to use it. Okay :
let us keep A(S) unknown for the proof. Actually, the statement of Archimedes that we aim to
prove is that the area of a calotte is the area of the surrounding cylinder. Let us call Ea a calotte
of S governed by a < 1. We want to prove that

A(Ea)
?=

a

2
A(S).

In terms of U this can be rewritten as

Pr(U ∈ Ea)
?=

a

2
.

And after all, since we can rotate the space in an arbitrary manner without changing the distri-
bution of U this can be rewritten

Pr(
Z

R
∈ [1− a, 1]) ?=

a

2
.

Because of the equality of distribution of Z/R and −Z/R we get

a
?= Pr(

Z

R
∈ [1− a, 1] ∪ [−1, a− 1])

?= Pr(
Z2

R2
∈ [(1− a)2, 1])

?= Pr(
Z2

X2 + Y 2 + Z2
∈ [(1− a)2, 1])

?= Pr(
1

X2+Y 2

Z2 + 1
∈ [(1− a)2, 1])
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For simplicity, let me write T = 1
2(X2 + Y 2) and S = 1

2Z2. Let me introduce k > 0 such that
1

k+1 = (1− a)2. We are led to

a
?= Pr(

T

S
≤ k), 1− a

?= Pr(
T

S
> k).

Classical calculations in statistics about chi square distributions show that

Pr(T > t) = e−t, Pr(S > s) =
∫ ∞

s
e−uu−1/2 du√

π

Thus
Pr(

T

S
> k) = Pr(T > kS) =

∫ ∞

0
e−(1+k)ss−1/2 ds√

π
=

1
(1 + k)1/2

= 1− a.

Have we proved that the area of Ea is the area of the surrounding cylinder ? Not quite, we
have only A(Ea) = a

2A(S) and the constant A(S) is still unknown. To find it, we analyze
lima→0A(Ea)/a = 1

2A(S). When a is very small, Ea is almost a disc, with radius

ra =
√

1− (1− a)2 =
√

2a− a2

(draw a picture and use Pythagoras) : If we draw a small circle around us on the earth, it creates
a calotte, but the earth is so locally flat that the area of the calotte is almost the area of the
circle. Thus A(Ea) is approximated by πr2

a = π(2a− a2). Taking the limit we get A(S) = 4π as
desired.

IV A more general result

What does Archimedes’ result say in terms of probability distributions ? It says that if U
is uniform on the sphere, then the orthogonal projection of U on any diameter is uniform on
this diameter. Can we extend the idea ? Actually we have done calculations with three normal
random variables since we had a definite geometrical application in mind. But consideration of n
normal independent variables is possible while n dimensional spaces can create dizziness among
the audience. The result which extends Archimedes’ result is this :

”Let U be a uniform random variable on the unit sphere Sn−1 of the n dimensional space Rn.
Select any n− 2 dimensional subspace H of Rn and consider the orthogonal projection W of U
on H. Then W is uniform on the unit ball of H.”

The difference of dimension equal to 2 is quite important. The uniform distribution on S3 is
projected on a two dimensional plane as a uniform distribution on a disc, but this is false if you
do this from S2 to a plane. Details and proof using the normal distribution can be found in G.
Letac, Integration and Probability, Springer (1995) pages 92-3.
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