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Abstract

Besides fractional Brownian motion most non-Gaussian fractional fields are obtained by integration of
deterministic kernels with respect to a random infinitely divisible measure. In this paper, generalized shot
noise series are used to obtain approximations of most of these fractional fields, including linear and harmo-
nizable fractional stable fields. Almost sure and Lr -norm rates of convergence, relying on asymptotic devel-
opments of the deterministic kernels, are presented as a consequence of an approximation result concerning
series of symmetric random variables. When the control measure is infinite, normal approximation has to
be used as a complement. The general framework is illustrated by simulations of classical fractional fields.
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1. Introduction

Irregular phenomena appear in various fields of scientific research: fluid mechanics,
image processing and financial mathematics for example. Experts in these fields often ask
mathematicians to develop models which are both easy to use and relevant for their applications.
In this perspective, fractional fields are very often used to model irregular phenomena. Among the
huge literature devoted to the topic, the reader can refer to [6] for a recent overview of fractional
fields for applications.
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One of the simplest models is the fractional Brownian motion introduced in [9] and further
developed in [13]. Simulation of fractional Brownian motion is now both theoretically and
practically well-understood (see [2] for a survey on this problem). Many other fractional fields
with heavy tailed marginals have been proposed for applications, see Chapter 7 in [21] for
an introduction to fractional stable processes. More recently other processes that are neither
Gaussian nor stable have been proposed to model Internet traffic (cf. [27,5]). The common
feature for many of these fields, see also [3,4,10], is the fact that they are obtained by a
stochastic integration of a deterministic kernel with respect to some random measure. In terms
of models, we can think that the probabilistic structure of the irregular phenomena (light or
heavy tails for instance) is implemented in the random measure and the correlation structure is
built in the deterministic kernel. Engineers will have to try many kernels and random measures
before finding the more appropriate one for their applications. Therefore, they need a common
framework to simulate fractional fields to make many attempts.

In the literature, there exist articles for simulation of the fractional fields that are non-
Gaussian. In [7] a wavelet expansion is used to approximate harmonizable and well-balanced
type of fractional stable processes. For the linear fractional stable processes the fast Fourier
transform is the main tool for simulation in [23,28]. One can also quote a recent work [14],
where another integral representation of the linear fractional stable processes is used to obtain
simulation of the sample paths. Even though, all these processes are stable, they have different
distributions and for each one a specific method is used. Concerning non-stable processes,
generalized shot noise series introduced for simulation of Lévy processes in [18–20] were used
for simulation of the sample paths of real harmonizable multifractional fields in [11]. One of the
advantages of this method is the fact that it can be applied to fractional fields that are neither with
stationary increments nor self-similar. Moreover, it is straightforward to apply this technique to
the simulation of fields indexed by multidimensional spaces. In this article, our main goal is to
show how this method can be applied to most of the fractional fields.

Let us describe how one can obtain an algorithm of simulation when an integral representation
of the fractional field is known. In particular, symmetric α-stable random fields can be
represented as stochastic integrals (see [21]). We will be interested in the simulation of stochastic
integrals of the form

X f (x) =

∫
Rd

f (x, ξ)Λ(dξ), x ∈ Rd ,

with Λ being an infinitely divisible random measure.
Basically, one has to transform the random measure Λ by a sum of weighted Dirac masses at

random points at the arrival times of a standard Poisson process. After the transformation, the
integrals are series which may be simulated by properly truncating the number of terms.

We also would like to stress that we have obtained rates of convergence for the truncating
series. More precisely, almost sure rates of convergence are given for each marginal of the field,
and uniformly if the field is simulated on a compact set. The almost sure convergence is related to
asymptotic developments of the deterministic kernel in the integral representation of the field. Let
us also emphasize Theorem 2.1 which is an important tool to reach rates of convergence for series
of symmetric random variables under moment assumptions. This theorem may be interesting in
its own sense and is needed in the heavy tail cases. Rates of convergence in Lr -norm with explicit
constants are further obtained.

When the control measure of Λ has infinite mass, a technical complication arises.
Following [1,11], one part of X f will then be approximated by a Gaussian field and the error
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due to this approximation will be given in terms of Berry–Esseen bounds. The other part will be
represented as a series.

In Section 2, rates of almost sure convergence for shot noise series are studied. Section 3 is
devoted to some basic facts concerning stochastic integrals with respect to random measures.
Then, convergence and rates of convergence of the generalized shot noise series are given in
Section 4. Section 5 gives an approximation of the stochastic integrals when the control measure
has infinite mass and establishes Berry–Esseen bounds. Examples, that include most of the
classical fractional fields, are given in Section 6, illustrated by simulations. Section 7 is devoted to
the case of complex random measures, which are important for harmonizable fields. The proofs
of Theorems 2.1 and 2.2 are given in the Appendix.

2. Rate of almost sure convergence for shot noise series

In this section, we first establish the main tools to reach rates of convergence of the
approximation proposed in Section 4. The two following theorems can be used to study rates
of convergence for series of symmetric random variables. In particular, they can be applied to

Sγ

N =

N∑
n=1

T −1/γ
n Xn, (1)

where 0 < γ < 2 and Tn is the nth arrival time of a Poisson process with intensity 1. Let
us recall that if (Xn)n≥1 is independent of (Tn)n≥1, the shot noise series (1) converges almost
surely to a stable random variable with index γ as soon as (Xn), n ≥ 1, are independent and
identically distributed (i.i.d) Lγ -symmetric random variables, see for instance [12,21]. Under a
stronger integrability assumption, a rate of almost sure convergence is given by Theorem 2.1.
Theorem 2.2 gives a rate of absolute almost sure convergence.

Theorem 2.1. Let (Xn)n≥1 be a sequence of i.i.d. symmetric random variables. Assume that
(Xn)n≥1 is independent of (Tn)n≥1 and of a sequence (Yn)n≥1 which satisfies

|Yn| ≤ CT −1/γ
n (2)

for some finite constants C > 0 and γ ∈ (0, 2). Furthermore, assume E(|Xn|
r ) < +∞ for some

r > γ . Then, for every ε ∈ (0, 1/γ − 1/(r ∧ 2)), almost surely,

sup
N≥1

N ε

∣∣∣∣∣ +∞∑
n=N+1

Yn Xn

∣∣∣∣∣ < +∞.

Proof. See the Appendix A. �

The Theorem 2.1 will give us a rate of almost sure convergence of our approximation by
generalized shot noise series (see Section 4). In this paper, we are also interested in the uniform
convergence of our approximation when the field X f is simulated on a compact set. The next
theorem will be the main tool to establish this uniform convergence and obtain a rate of uniform
convergence.

Theorem 2.2. Let (Xn)n≥1 be a sequence of i.i.d random variables and γ ∈ (0, 1). Assume that
(Xn)n≥1 is independent of (Tn)n≥1 and that E(|Xn|

r ) < +∞ for some r > γ . Then, for every
ε ∈ (0, 1/γ − 1/(r ∧ 1)), almost surely,
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sup
N≥1

N ε
+∞∑

n=N+1

T −1/γ
n |Xn| < +∞.

Proof. See the Appendix B. �

3. Stochastic integrals with respect to Poisson random measure

In this section, we first recall some classical facts concerning stochastic integrals with respect
to Poisson random measures (see [17] for more details). Let N (dξ, dv) be a Poisson random
measure on Rd

× R with intensity n(dξ, dv) = dξν(dv). Assume that the non-vanishing σ -finite
measure ν(dv) is a symmetric measure such that∫

R
(|v|

2
∧ 1)ν(dv) < +∞, (3)

where a ∧b = min(a, b). In particular, ν(dv) may not have a finite second-order moment. Under
the assumption (3), which is weaker than the assumptions made in [4], we can carry out the study
in the same framework fractional stable fields and the fields introduced in [4] (see Examples 3.1
and 3.2). Similarly, in Section 7, the control measure satisfies a weaker assumption than the one
made in [3,10,11], which introduces a common framework for harmonizable fractional stable
fields and harmonizable multifractional Lévy motions.

The stochastic integral∫
Rd×R

ϕ(ξ, v) [N (dξ, dv) − (1 ∨ |ϕ(ξ, v)|)−1 n(dξ, dv)],

where a ∨ b = max(a, b), is defined if and only if
∫
Rd×R(|ϕ(ξ, v)|2 ∧ 1)n(dξ, dv) < +∞, see

for instance Lemma 12.13 page 236 in [8].
Then, we can consider a random measure Λ(dξ) on Rd defined by∫

Rd
g(ξ)Λ(dξ) =

∫
Rd×R

g(ξ)v(N (dξ, dv) − (|g(ξ)v| ∨ 1)−1n(dξ, dv)) (4)

for every g : Rd
→ R such that

∫
Rd×R |g(ξ)v|

2
∧ 1n(dξ, dv) < +∞. We have that

E
[

exp
(

i
∫
Rd

g(ξ)Λ(dξ)

)]
= exp

[∫
Rd×R

[exp(ig(ξ)v) − 1 − ig(ξ)v1|g(ξ)v|≤1]dξν(dv)

]
, (5)

see for instance [8]. Therefore Λ is an infinitely divisible random measure.
As explained below (see Examples 3.1 and 3.2), Lévy random measures and stable random

measures are examples of such infinitely divisible random measures represented by a Poisson
random measure owing to (4). Here are some illustrations.

Example 3.1. Let ν(dv) be a symmetric measure such that∫
Rd

|v|
2ν(dv) < +∞.
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Then, for every g ∈ L2(Rd), (4) can be rewritten as∫
Rd

g(ξ)Λ(dξ) =

∫
Rd×R

g(ξ)v(N (dξ, dv) − n(dξ, dv)).

If the symmetric measure ν(dv) satisfies the assumptions made in [4], i.e. if

∀p ≥ 2,

∫
R

|v|
pν(dv) < +∞,

Λ(dξ) is a Lévy random measure, without Brownian component, represented by the Poisson
random measure N (dξ, dv) in the sense of [4]. Under the above assumptions, the field
(X H (x))x∈Rd , defined by

X H (x) =

∫
Rd

(‖x − ξ‖
H−d/2

− ‖ξ‖
H−d/2)Λ(dξ)

is a moving average fractional Lévy motion, in short MAFLM, with index H (0 < H < 1,
H 6= d/2).

Example 3.2. In the case where

ν(dv) =
dv

|v|1+α

with 0 < α < 2, the random measure Λ(dξ), defined by (4), is a symmetric α-stable random
measure in the sense of [21]. Then, for instance,

X H (x) = D(α)−1/α

∫
Rd

(‖x − ξ‖
H−d/α

− ‖ξ‖
H−d/α)Λ(dξ), x ∈ Rd ,

with

D(α) =

∫
R

1 − cos(r)

|r |1+α
dr, (6)

is a moving average fractional stable motion, in short MAFSM, with index H (0 < H < 1,
H 6= d/α).

In the following, we will be interested in the simulation of stochastic integrals of the form

X f (x) =

∫
Rd

f (x, ξ)Λ(dξ), x ∈ Rd , (7)

where Λ(dξ) is defined by (4) and f : Rd
× Rd

→ R is such that for every x ∈ Rd ,∫
Rd×R

(| f (x, ξ)v|
2
∧ 1)n(dξ, dv) < +∞. (8)

To analyze these stochastic integrals, we represent them as series (known as shot noise series)
for which we carefully study the rates of convergence.

4. Generalized shot noise series

An overview of representations of infinitely divisible laws as series is given in [20,19] and
the field X f is an infinitely divisible field. Such representation of RHMLMs, fields introduced
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in [10], has been studied in [11]. As in the case of RHMLMs, the infinitely divisible field X f can
be represented as a generalized shot noise series as soon as the control measure ν(dv) has finite
mass. Hence, in this section, we assume

ν(R) < +∞. (9)

Let us recall that ν(dv) is a non-vanishing measure, i.e. ν(R) 6= 0.
Let us now introduce some notations that will be used throughout the paper.

Notation. Let (Vn)n≥1 and (Un)n≥1 be independent sequences of random variables. We assume
that (Un, Vn)n≥1 is independent of (Tn)n≥1.

• (Vn)n≥1 is a sequence of i.i.d. random variables with common law ν(dv)/ν(R).
• (Un)n≥1 is a sequence of i.i.d. random variables such that U1 is uniformly distributed on the

unit sphere Sd−1 of the Euclidean space Rd .
• cd is the volume of the unit ball of Rd .

The following statement is the main series representation we will be using in our investigation.

Proposition 4.1. Assume that (8) is fulfilled. Then, for every x ∈ Rd , the series

Y f (x) =

+∞∑
n=1

f

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn (10)

converges almost surely. Furthermore, {X f (x) : x ∈ Rd
}

(d)
= {Y f (x) : x ∈ Rd

}.

Remark 4.2. In the framework of RHMLMs, [11] directly establishes the almost convergence
of the shot noise series in the space of continuous functions endowed with the topology of
uniform convergence on compact sets. Such a result assumes the continuity of the deterministic
kernel f and in our framework, this kernel function may be discontinuous. Nevertheless, under
assumptions on the asymptotics expansion of f as ‖ξ‖ tends to infinity, (10) also converges
almost surely on each compact set. Such result, stated in Theorem 4.6, will be deduced from the
Theorem 2.2. Note that we will also give a rate of uniform convergence.

Proof. Let p be an integer, p ≥ 1, (u1, . . . , u p) ∈ Rp and (x1, . . . , x p) ∈ (Rd)p. We consider
the Borel measurable map

H : ]0, +∞[×D −→ R

(r, ṽ) 7−→

p∑
j=1

u j f (x j ,

(
r

cdν(R)

)1/d

u)v,

where D = Sd−1
× R and ṽ = (u, v) ∈ D means u ∈ Sd−1 and v ∈ R. Then, define a measure

Q on the Borel σ -field B(R) by

∀B ∈ B(R), Q(B) =

∫
+∞

0

∫
D

1B\{0}(H(r, ṽ))λ(d̃v)dr,

where λ is the law of Ṽn = (Un, Vn). Hence, Q is the push-forward of λ(d̃v)dr by H and∫
R

|y|
2
∧ 1Q(dy) =

∫
]0,+∞[×D

H2(r, ṽ) ∧ 1drλ(d̃v).
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Then, proceeding as in the proof of Proposition 3.1 in [11], i.e. using the change of variable
ρ = (r/(cdν(R)))1/d and polar coordinates, one obtains that∫

R
|y|

2
∧ 1Q(dy) =

∫
Rd×R

[(
p∑

j=1

u j f 2(x j , ξ)v2

)
∧ 1

]
n(dξ, dv) < +∞.

Then, Q is a Lévy measure on R. Therefore, according to Theorem 2.4 in [19], the sequence

N∑
n=1

H(Tn, Ṽn) − A(TN ),

where for s ≥ 0,

A(s) =

∫ s

0

∫
D

H(r, ṽ)1|H(r,̃v)|≤1λ(d̃v)dr,

converges almost surely as N → +∞. Moreover, since ν is a finite and symmetric measure,
by the definition of H and of the measure λ(d̃v), A(s) = 0 for every s ≥ 0. Therefore, (taking
p = 1), for every x ,

Y f (x) =

+∞∑
n=1

f

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn

converges almost surely. Furthermore, due to Theorem 2.4 in [19], we have that

E

[
exp

(
i

p∑
j=1

u j Y
f (x j )

)]
= exp

[∫
R
(exp(iy) − 1 − iy1|y|≤1)Q(dy)

]
.

By the definition of Q and the symmetry of ν(dv), one easily sees that {X f (x) : x ∈ Rd
}

(d)
=

{Y f (x) : x ∈ Rd
}. The proof of Proposition 4.1 is then complete. �

On the basis of Proposition 4.1, Y f , which is equal in law to X f , is approximated by

Y f
N (x) =

N∑
n=1

f

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn, x ∈ Rd . (11)

We now explain in a few words how the rate of convergence of Y f
N to Y f can be studied.

Firstly, let us recall the following classical result for Poisson arrival times:

lim
n→+∞

Tn

n
= 1 almost surely. (12)

Hence, the asymptotics of (11) depends on (Vn)n≥1 and on the asymptotics of f (x, ξ) as ‖ξ‖

tends to infinity. Under an assumption on this asymptotics, the rate of convergence of Y f
N will be

deduced from the rate of convergence of some series of the kind of Sγ

N defined by (1).
Let us first study the almost sure and Lr -errors for each fixed x .

Theorem 4.3. Let x ∈ Rd . Assume that

∀ξ 6= 0, | f (x, ξ)| ≤
C

‖ξ‖β
, (13)
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where β > d/2 and C > 0. Furthermore, assume there exists r ∈ (d/β, 2] such that
E(|V1|

r ) < +∞.

1. Then, for every ε ∈ (0, β/d − 1/r), almost surely,

sup
N≥1

N ε
|Y f (x) − Y f

N (x)| < +∞.

2. Moreover, for every integer N > rβ/d,

E(|Y f
N (x) − Y f (x)|r ) ≤ C(r, β)

D(N , r, β)

N rβ/d−1 , (14)

where

D(N , r, β) =
Γ (N + 1 − rβ/d)(N + 1)rβ/d

Γ (N + 1)
(15)

and

C(r, β) =
dCr (cdν(R))rβ/dE(|V1|

r )

rβ − d
. (16)

Remark 4.4. Remark that limN→+∞ D(N , r, β) = 1 by the Stirling formula. Hence,
Theorem 4.3 gives a rate of convergence in Lr for the series Y f

N . Furthermore, (14) allows us
to control the error of approximation in simulation.

Remark 4.5. Assume that (13) is only fulfilled for ‖ξ‖ ≥ A. Then, let

g(x, ξ) = f (x, ξ)1‖ξ‖≥A

and remark that

Y f
= Y g

+ Y f −g, (17)

where Y h is associated with h by (10). Hence, since g satisfies the assumptions of Theorem 4.3,
an almost sure or Lr -error may be obtained. Furthermore, in view of (12),

Y f −g(x) =

+∞∑
n=1

( f − g)

(
x,

(
Tn

cdν(R)

)1/d

Un

)
Vn

is, almost surely, a finite sum since for n large enough, Tn > Adcdν(R). This remark is used for
MAFSMs or MAFLMs in Section 6.

Let us now prove Theorem 4.3.

Proof of Theorem 4.3. In the following,

ξn =

(
Tn

cdν(R)

)1/d

Un .

1. Proof of part 1: Rate of almost sure convergence
In view of (13),

| f (x, ξn)| ≤
C(cdν(R))β/d

T β/d
n

. (18)
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Then, by applying Theorem 2.1 with Xn = Vn and Yn = f (x, ξn),

sup
N≥1

N ε
|Y f (x) − Y f

N (x)| < +∞ almost surely

for every ε ∈ (0, β/d − 1/r).

2. Proof of part 2: Lr-error
Let εn, n ≥ 1 be a sequence of independent Bernoulli random variables taking values ±1 with

probability 1/2. Then, for every r ∈ (0, 2] and every real numbers a1, . . . , an ,

E

(∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
r)

≤

n∑
i=1

|ai |
r .

Indeed, by Jensen’s inequality

E

(∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
r)

≤

E

∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣
2
r/2

=

(
n∑

i=1

|ai |
2

)r/2

and the result follows since (a + b)r/2
≤ ar/2

+ br/2 (r ∈ (0, 2]) for every a, b ≥ 0.
Now, Vn, n ≥ 1, is a sequence of independent symmetric random variables. Thus, it has the

same distribution as εn Vn, n ≥ 1 where εn, n ≥ 1 is assumed to be independent of Vn, n ≥ 1,
as well as of the sequence ξn, n ≥ 1. Therefore, conditionally on Vn and ξn , it follows from the
latter that

E

(∣∣∣∣∣ P∑
n=N+1

f (x, ξn)Vn

∣∣∣∣∣
r)

≤

P∑
n=N+1

E(| f (x, ξn)|r |Vn|
r )

= E(|V1|
r )

P∑
n=N+1

E(| f (x, ξn)|r ).

Then, by (18),

E

(∣∣∣∣∣ P∑
n=N+1

f (x, ξn)Vn

∣∣∣∣∣
r)

≤ Cr (cdν(R))rβ/dE(|V1|
r )

P∑
n=N+1

E(T −rβ/d
n )

≤ Cr (cdν(R))rβ/dE(|V1|
r )

P∑
n=N+1

Γ (n − rβ/d)

Γ (n)
.

Therefore,

E

(∣∣∣∣∣ P∑
n=N+1

f (x, ξn)Vn

∣∣∣∣∣
r)

≤ Cr (cdν(R))rβ/dE(|V1|
r ) sup

n≥N
D(n, r, β)

+∞∑
n=N+1

1
nrβ/d

where D(n, r, β) is defined by (15). According to the proof of Proposition 3.2 in [11],

sup
n≥N

D(n, r, β) = D(N , r, β)

and then

E

(∣∣∣∣∣ P∑
n=N+1

f (x, ξn)Vn

∣∣∣∣∣
r)

≤
dCr (cdν(R))rβ/dE(|V1|

r )D(N , r, β)

(rβ − d)N rβ/d−1
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since r > d/β. Then, by the Fatou lemma,

E

(∣∣∣∣∣ +∞∑
n=N+1

f (x, ξn)Vn

∣∣∣∣∣
r)

≤
dCr (cdν(R))rβ/dE(|V1|

r )D(N , r, β)

(rβ − d)N rβ/d−1 .

The proof of Theorem 4.3 is complete. �

Actually, if f admits an expansion, roughly speaking uniform in x , as ‖ξ‖ tends to infinity,
the next theorem gives a rate of uniform convergence in x for Y f

N .

Theorem 4.6. Let K ⊂ Rd be a compact set, p ≥ 1 and (βi )1≤i≤p be a non-decreasing
sequence such that β1 > d/2 and βp > d. Assume that for every x ∈ K and ξ 6= 0,

| f (x, ξ) −

p−1∑
j=1

a j (x)b j (ξ/‖ξ‖)

‖ξ‖β j
| ≤

bp(ξ/‖ξ‖)

‖ξ‖βp
, (19)

where a j , j = 1, . . . , p − 1, are real-valued continuous functions. Furthermore, assume that
there exists r ∈ (d/β1, 2] such that E(|Vn|

r ) < +∞ and E(|b j (Un)|r ) < +∞ for j = 1, . . . , p.
Then for every ε ∈ (0, min(β1/d − 1/r, βp/d − 1/(1 ∧ r))),

sup
N≥1

N ε sup
x∈K

|Y f (x) − Y f
N (x)| < +∞ almost surely.

Remark 4.7. In (19), the non-radial (or anisotropic) part of the asymptotic expansion of f is
given by the functions b j .

Proof of Theorem 4.6. We have

|Y f (x) − Y f
N (x)| ≤

p−1∑
j=1

|a j (x)|

∣∣∣∣∣ +∞∑
n=N+1

(
Tn

cdν(R)

)−β j /d

b j (Un)Vn

∣∣∣∣∣
+

+∞∑
n=N+1

(
Tn

cdν(R)

)−βp/d

|bp(Un)Vn|.

Note that (b j (Un)Vn)n≥1 are i.i.d. symmetric random variables such that E(|b j (Un)Vn|
r ) <

+∞. Hence, since 0 < d/β j < r ≤ 2, by Theorem 2.1, for every ε ∈ (0, β j/d − 1/r),

sup
N≥1

N ε

∣∣∣∣∣ +∞∑
n=N+1

T
−β j /d
n b j (Un)Vn

∣∣∣∣∣ < +∞ almost surely.

In addition, since E(|bp(Un)Vn|
r ) < +∞ and d/βp < 1, by Theorem 2.2, for every ε ∈

(0, βp/d − 1/(1 ∧ r)),

sup
N≥1

N ε
+∞∑

n=N+1

T
−βp/d

n |bp(Un)Vn| < +∞ almost surely,

which ends the proof since a j , j = 1, . . . , p−1, are continuous and thus bounded on the compact
set K . �
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5. Normal approximation

When the assumption (9) is not fulfilled, the results of Section 4 cannot be directly applied.
In this case, the simulation of X f is not only based on a series expansion but also on a normal
approximation. Actually, following [1,11], we will split the field X f into two fields X f

ε,1 and

X f
ε,2. It leads to a decomposition of Λ into two random measures Λε,1 and Λε,2 such that the

control measure of Λε,2 satisfies the assumption (9). As a consequence of Section 4, X f
ε,2 can be

represented as a series. This section is thus devoted to the simulation of the first part X f
ε,1 that

will be handled by normal approximation of the Berry–Esseen type.
Suppose now that

ν(R) = +∞, (20)

which is the case for MAFSMs. Then let ε > 0 and let us split

X f
= X f

ε,1 + X f
ε,2

into two random fields where

X f
ε,1(x) =

∫
Rd×R

f (x, ξ)v1|v|<ε(N (dξ, dv) − (| f (x, ξ)v| ∨ 1)−1n(dξ, dv)) (21)

and

X f
ε,2(x) =

∫
Rd×R

f (x, ξ)v1|v|≥ε(N (dξ, dv) − (| f (x, ξ)v| ∨ 1)−1n(dξ, dv)). (22)

Consider the two independent Poisson random measures

Nε,1(dξ, dv) = 1|v|<ε N (dξ, dv) and Nε,2(dξ, dv) = 1|v|≥ε N (dξ, dv).

Let Λε,i (i = 1, 2) be the infinitely divisible random measure associated with Nε,i by (4). Remark
that X f

ε,1 and X f
ε,2 are independent and that

X f
ε,i (x) =

∫
Rd

f (x, ξ)Λε,i (dξ), i = 1, 2.

In addition, the control measure νε,2(dv) = 1|v|≥εν(dv) of Λε,2 is finite and symmetric. Therefore

X f
ε,2 can be simulated as a generalized shot noise series (see Section 4). It remains to properly

approximate X f
ε,1. To this task, notice that the control measure νε,1(dv) = 1|v|<εν(dv) of Λε,1

has moments of every order greater than 2. Hence, Λε,1 is a Lévy random measure in the sense
of [4].

Set

σ(ε) =

(∫ ε

−ε

v2ν(dv)

)1/2

. (23)

Proposition 5.1. Assume that for each x ∈ Rd , f (x, ·) ∈ L2(Rd) and limε→0+

σ(ε)
ε

= +∞.
Then

lim
ε→0+

(
X f

ε,1(x)

σ (ε)

)
x∈Rd

(d)
= (W f (x))x∈Rd , (24)
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where, with W (dξ) a real Brownian random measure,

W f (x) =

∫
Rd

f (x, ξ)W (dξ) (25)

and where the limit is understood in the sense of finite dimensional distributions.

Proof. Let r ≥ 1, u = (x1, . . . , xr ) ∈ (Rd)r and y = (y1, . . . , yr ) ∈ Rr . Then

E

[
exp

(
i

r∑
k=1

yk
X f

ε,1(xk)

σ (ε)

)]
= exp(Ψε(x, y))

with

Ψε(x, y) =

∫
Rd×R

(
exp

(
ig(ξ, x, y)v

σ (ε)

)
− 1 −

ig(ξ, x, y)v

σ (ε)
1|g(ξ,x,y)v|≤σ(ε)

)
dξνε,1(dv)

and g(ξ, x, y) =
∑r

k=1 yk f (xk, ξ). Then, by the Fubini theorem,

Ψε(x, y) =

∫
Rd

Iε(g(ξ, x, y))dξ,

where for every a ∈ R Iε(a) =
∫
R(ei av

σ(ε) − 1 − i av
σ(ε)

1|av|<σ(ε))1|v|<εν(dv). Since ν(dv) is a
symmetric Lévy measure,

Iε(a) =

∫
R

(
ei av

σ(ε) − 1 − i
av

σ(ε)

)
1|v|<εν(dv).

As limε→0+
σ(ε)/ε = +∞, according to [1], limε→0+

Iε(a) = −
a2

2 . Moreover, since |Iε(a)| ≤

a2

2 , for every a ∈ R, a dominated convergence argument yields

lim
ε→0+

Ψε(x, y) = −
1
2

∫
Rd

∣∣∣∣∣ r∑
k=1

yk f (xk, ξ)

∣∣∣∣∣
2

dξ = −
1
2

Var

(
r∑

k=1

yk W f (xk)

)
.

The proof is thus complete. �

As in the case of RHMLMs, an estimate in terms of Berry–Esseen bounds on the rate of
convergence stated in Proposition 5.1 may be given. The assumption of the following theorem
only ensures the existence of the moment of order (2 + δ) for X f

ε,1(x).

Theorem 5.2. Let x ∈ Rd and assume that f satisfies (8) and that

f (x, ·) ∈ L2+δ(Rd) (26)

for some δ ∈ (0, 1]. Then E(|X f
ε,1(x)|2+δ) < +∞ and

sup
u∈R

|P(X f
ε,1(x) ≤ u) − P(σ (ε)W f (x) ≤ u)| ≤ A(x, δ)

m2+δ
2+δ(ε)

σ 2+δ(ε)
,

where W f is defined by (25) in Proposition 5.1, m2+δ
2+δ(ε) =

∫ ε

−ε
|v|

2+δν(dv) and

A(x, δ) =
Aδ

∫
Rd | f (x, ξ)|2+δdξ

3(π
∫
Rd | f (x, ξ)|2dξ)(2+δ)/2
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with

Aδ =

{
0.7975 if δ = 1
53.9018 if 0 < δ < 1.

Remark 5.3. Assume that f satisfies assumptions (8) and (26). Then, for every x , f (x, ·) ∈

L2(Rd) and E(|X f
ε,1(x)|2) < +∞.

Proof. This proof is based on a generalization of Lemma 4.1 in [11].
Let µ be the distribution of the infinitely divisible variable X f

ε,1(x). The Lévy Q measure of
µ is then the push-forward of nε,1(dξ, dv) = dξνε,1(dv) by the map (ξ, v) 7→ f (x, ξ)v. Hence,
for every γ > 0,∫

R
|y|

γ Q(dy) = mγ
γ (ε)

∫
Rd

| f (x, ξ)|γ dξ,

where mγ
γ (ε) =

∫ ε

−ε
|v|

γ ν(dv). Note that m2
2(ε) = σ 2(ε). Then, since f (x, ·) ∈ L2+δ(Rd),∫

R
|y|

2+δ Q(dy) < +∞.

Therefore, according to Theorem 25.3 in [22],∫
R

|y|
2+δµ(dy) < +∞ i.e. E(|X f

ε,1(x)|2+δ) < +∞.

As in the proof of Lemma 4.1 in [11], we then consider a Lévy process (Z(t))t≥0 such that

Z(1)
(d)
= X f

ε,1(x). For each fixed n ∈ N \ {0},

Z(1) =

n−1∑
k=0

(
Z

(
k + 1

n

)
− Z

(
k

n

))
,

where Yk,n = Z( k+1
n ) − Z( k

n ), 0 ≤ k ≤ n − 1, are i.i.d real-valued centered random variables.
Furthermore,

E(|Yk,n|
2) =

E(|Z(1)|2)

n
=

σ 2(ε)
∫
Rd | f (x, ξ)|2 dξ

n

and since Z(1) ∈ L2+δ , Yk,n ∈ L2+δ . Therefore, according to [16], there exists a constant Aδ

such that for every n ∈ N \ {0},

sup
t∈R

∣∣∣∣∣P
(

Z(1)√
E(|Z(1)|2)

≤ t

)
− P(W ≤ t)

∣∣∣∣∣ ≤
n AδE(|Z( 1

n )|2+δ)

E(|Z(1)|2)1+δ/2 ,

where W is a normal random variable with mean 0 and variance 1. When δ = 1, the preceding
inequality is the classical Berry–Esseen inequality and we can take A1 = 0.7975. In [16], one
finds that Aδ = max(8/3, 64A1+1+14/(3

√
2π)) = 53.9018. Furthermore, it is straightforward

that

sup
t∈R

∣∣∣∣∣P
(

Z(1)√
E(|Z(1)|2)

≤ t

)
− P(W ≤ t)

∣∣∣∣∣ = sup
u∈R

|P(X f
ε,1(x) ≤ u)

− P(σ (ε)W f (x) ≤ u)|.
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According to [20],

lim
n→+∞

nE

(∣∣∣∣Z (1
n

)∣∣∣∣2+δ
)

=

∫
R

|y|
2+δ Q(dy),

which concludes the proof. �

We now summarize the approximation scheme based on the preceding splitting. First we
approximate X f

ε,1 by the Gaussian field σ(ε)W f . According to Section 4, an approximation of

X f
ε,2 may be given by

Y f
ε,N ,2(x) =

N∑
n=1

f

(
x,

(
Tn

cdνε,2(R)

)1/d

Un

)
Vε,n, x ∈ Rd ,

where (Vε,n)n is a sequence of i.i.d. random variables with common law νε,2(dv)/νε,2(R). Note
that Tn , Un and Vε,n are independent. Since X f

ε,1 and X f
ε,2 are independent, W f is assumed to be

independent of (Tn, Un, Vε,n). As a result, in the case where ν(R) = +∞, under the assumptions
of Proposition 5.1, an approximation of X f is

Y f
ε,N (x) = σ(ε)W f (x) +

N∑
n=1

f

(
x,

(
Tn

cdνε,2(R)

)1/d

Un

)
Vε,n, x ∈ Rd .

6. Examples

This section illustrates with various examples the range of application of the preceding results.
In all the following examples, K ⊂ Rd is a compact set and (13) is only fulfilled for ‖ξ‖ ≥ A.
Then, as noticed in Remark 4.5, we may split

Y f
N = Y g

N + Y f −g
N ,

with g(x, ξ) = f (x, ξ)1‖ξ‖≥A. Since, Y f −g
N is in fact a finite sum (almost surely), the rate of

convergence described below is actually the rate of convergence of Y g
N .

6.1. Moving average fractional Lévy motions

Let H ∈ (0, 1) such that H 6= d/2. Suppose that

fH,2(x, ξ) = ‖x − ξ‖
H−d/2

− ‖ξ‖
H−d/2

and that for every p ≥ 2,
∫
R |v|

pν(dv) < +∞. Then, X H,2 = X fH,2 is an MAFLM in the sense
of [4].

6.1.1. Case of finite control measures
An approximation, in law, of the MAFLM X H is given by

Y
fH,2

N (x) =

N∑
n=1

∥∥∥∥∥x −

(
Tn

cdν(R)

)1/d

Un

∥∥∥∥∥
H−d/2

−

(
Tn

cdν(R)

)H/d−1/2
 Vn .
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Let A = maxK ‖y‖ + 1, x ∈ K and ‖ξ‖ ≥ A. The mean value inequality leads to

| fH,2(x, ξ)| ≤

∣∣∣∣H −
d

2

∣∣∣∣ (A − 1) sup
0<θ<1

‖ξ − θx‖
H−d/2−1.

Remark that for θ ∈ (0, 1), ‖ξ −θx‖ ≥ ‖ξ‖−‖x‖ ≥ ‖ξ‖/A. Therefore, since H −d/2−1 < 0,
for every x ∈ K , for ‖ξ‖ ≥ A,

| fH,2(x, ξ)| ≤
C

‖ξ‖1−H+d/2 (27)

with C = |H − d/2|(A − 1)A1−H+d/2.
Let β1 = 1 − H + d/2 and gH,2(x, ξ) = fH,2(x, ξ)1‖ξ‖≥maxK ‖y‖+1. Note that β1 > d/2

since 1 > H . Then, the assumptions of Theorem 4.3 are satisfied with r = 2 and

E(|Y
gH,2
N (x) − Y gH,2(x)|2) ≤

C(2, β1)D(N , 2, β1)

N 2(1−H)/d

where C(2, β1) and D(N , 2, β1) are defined by (16) and (15). Therefore, the mean square error
converges at the rate N (1−H)/d .

We now focus on the uniform convergence of Y gH,2 . For every integer q ≥ 1, by a Taylor
expansion, one can prove that for every x ∈ K and for ‖ξ‖ ≥ A,

| fH,2(x, ξ) −

q−1∑
j=1

‖ξ‖
H− j−d/2d j (x, ξ/‖ξ‖)| ≤ Bq,A,H ‖ξ‖

H−d/2−q , (28)

for some positive constant Bq,A,H and where the d j ’s are polynomial functions in xi and ui ,
i = 1 . . . d , j = 1 . . . d . Since the d j ’s are polynomial functions, one can easily see that gH,2
satisfies the assumption (19) taking β1 = 1 − H + d/2 and βp = q − H + d/2. Since (28)
holds for every integer q ≥ 1, by Theorem 4.6, Y

gH,2
N converges uniformly on K at the rate N ε

for every ε ∈ (0, (1 − H)/d).
Let us now present one example (see Fig. 1) taking ν(dv) = (δ−1 + δ1)/2. In this example,

we first simulate a realization of the random variables (Tn, Un, Vn). Then, for these values of
(Tn, Un, Vn)1≤n≤N , we evaluate Y

fH,2
N for H = 0.3 and H = 0.7. We observe that the trajectory

regularity does not depend on the value of H . Actually, one can see that the derivatives of
Y

gH,2
N at each order converge uniformly on each compact set. Therefore, Y gH,2 has C∞ sample

paths almost surely. As a consequence, the sample paths of Y fH,2 are C∞ except at points
ξn = (Tn/cdν(R))1/dUn . At these points, the behavior depends on H : while when H < d/2,
Y

fH,2
N is not defined, when H > d/2 the pointwise Hölder exponent of Y

fH,2
N is given by H −d/2.

In Fig. 1, we observe that the sample paths are smooth on [0, 1] except at two points.

6.1.2. Case of infinite control measures
In this example,

ν(dv) =
1|v|≤1dv

|v|1+α
with 0 < α < 2.

Let (Vε,n)n≥1 be a sequence of i.i.d variables with common law

α1ε<|v|<1dv

2(ε−α − 1)|v|1+α
.
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Fig. 1. Examples of MAFLMs.

Moreover, let BH be a standard fractional Brownian motion (in short FBM) with index H and
assume that BH , (Un)n≥1, (Tn)n≥1 and (Vε,n)n≥1 are independent. An approximation of the
MAFLM X H is thus given by

Y
fH,2

ε,N (x) =

N∑
n=1

∥∥∥∥∥x −

(
Tn

cdνε,2(R)

)1/d

Un

∥∥∥∥∥
H−d/2

−

(
Tn

cdνε,2(R)

)H/d−1/2
 Vε,n

+ σ(ε)W fH,2(x), (29)

where

W fH,2(·) =

∫
Rd

fH,2(·, ξ)W (dξ)
(d)
= CH,d BH (·)

with

CH,d =

(∫
Rd

| fH,2(e1, ξ)|2dξ

)1/2

and e1 = (1, 0, . . . , 0). Actually, by a Fourier transform argument

CH,d =
2H−2

|d − 2H |Γ (H/2 + d/4)

Γ (d/4 + 1 − H/2)

(∫
Rd

|e−ie1·λ − 1|
2

‖λ‖2H+d
dλ

)1/2

.

As a result, due to [21] for d = 1 and to [11] for d ≥ 2,

CH,d =
2H−2

|d − 2H |Γ (H/2 + d/4)

Γ (d/4 + 1 − H/2)

(
π (d+1)/2Γ (H + 1/2)

HΓ (2H) sin(π H)Γ (H + d/2)

)1/2

. (30)

Since H > 0, there exists δ ∈ (0, 1] such that H > d/2 − d/(2 + δ), which implies that
fH,2(x, ·) ∈ L2+δ(Rd). Then, by Theorem 5.2, in terms of Berry–Esseen bounds, the rate of
convergence of the error due to the approximation of X f

ε,1(x) is of the order

δ(ε) =
(2 − α)1+δ/2εαδ/2

(2 + δ − α)2δ/2 .
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Fig. 2. Example of MAFLM with index H = 0.8.

Except at points ξn = (Tn/cdνε,2(R))1/dUn , the trajectory regularity of Y
fH,2

ε,N is given by the

trajectory regularity of W fH,2 . Between two points ξn , the pointwise Hölder exponent of Y
fH,2

ε,N is

equal to H . When H > d/2, the trajectories of Y
fH,2

ε,N are thus H ′-Hölder on each compact set for
every H ′ < H − d/2. Following [4], this is exactly what we expect for the trajectory regularity
of an MAFLM X H associated with an infinite control measure. Fig. 2 yields illustration of these
facts in the case where H = 0.8, α = 1, d = 1 and for the preceding control measure.

6.2. Moving average fractional stable motions

In this example,

ν(dv) =
dv

|v|1+α
with 0 < α < 2, (31)

and

fH,α(x, ξ) = D(α)−1/α(‖x − ξ‖
H−d/α

− ‖ξ‖
H−d/α),

with 0 < H < 1 and H 6= d/α and where D(α) is defined by (6). Note that

D(α) =


Γ (2 − α)|cos(πα/2)|

α|α − 1|
if α 6= 1

π

2
if α = 1.

(32)

Here σ 2(ε) = 2ε2−α/(2 − α) and νε,2(R) = 2/(αεα). The approximation of the MAFSM is
given by formula (29), replacing d/2 by d/α in the summation and with

W fH,α (·) =

∫
Rd

fH,α(·, ξ)W (dξ)
(d)
= D(α)−1/αCH+d/2−d/α,d BH+d/2−d/α(·).

More precisely, as previously, BH+d/2−d/α is a standard FBM with index H + d/2 − d/α

and CH+d/2−d/α,d is defined by (30). Furthermore, νε,2(dv) = 1|v|>εν(dv) and (Vε,n)n≥1, is
a sequence of i.i.d variables with common law νε,2(dv)/νε,2(R). Let us recall that the sequences
BH , (Un)n≥1, (Tn)n≥1 and (Vε,n)n≥1 are independent. Thus, the approximation of the MAFSM
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X H,α = X fH,α is given by

Y
fH,α

ε,N (x) = D(α)−1/α
N∑

n=1

∥∥∥∥∥x −

(
Tn

cdνε,2(R)

)1/d

Un

∥∥∥∥∥
H−d/α

−

(
Tn

cdνε,2(R)

)H/d−1/α


× Vε,n + σ(ε)W fH,α (x).

However, this approximation only holds if fH,α(x, ·) ∈ L2(Rd), i.e. the FBM BH+d/2−d/α is
defined, that is if 1 > H > d/α − d/2.

Observe that the asymptotic expansion of fH,α is given by (28), replacing d/2 by d/α. Then,

let gH,α(x, ξ) = fH,α(x, ξ)1‖ξ‖≥maxK ‖y‖+1 and note that Y
fH,α

ε,N = Y
gH,α

ε,N ,2 + Y
fH,α−gH,α

ε,N ,2 +

σ(ε)W fH,α (x) with

Y h
ε,N ,2(x) = D(α)−1/α

N∑
n=1

h

(
x,

Tn

cdνε,2(R)

)
Vε,N .

As noticed in Remark 4.5, Y
fH,α−gH,α

ε,N ,2 is a finite sum. In addition, gH,α satisfies the assumptions
of Theorem 4.3 for every r < α. In this case therefore,

E(|Y
gH,α

ε,N ,2(x) − Y
gH,α

ε,2 (x)|r ) ≤
C(r, β)D(N , r, β)

N r(1/d+1/α−H/d)−1
,

where β = 1 + d/α − H . Furthermore, by Theorem 4.6, Y
gH,α

ε,N ,2 converges uniformly on K at the
rate N ε for every ε ∈ (0, (1 − H)/d).

Finally, when H > d/α − d/2, there exists δ ∈ (0, 1] such that H > d/α − d/(2 + δ). Then,
E(|X f

ε,1(x)|2+δ) < +∞ and as in the case of MAFLMs, in terms of Berry–Esseen bounds, the

rate of convergence of the error due to the approximation of X f
ε,1(x) is of the order

δ(ε) =
(2 − α)1+δ/2εαδ/2

(2 + δ − α)2δ/2 .

Except at points ξn = (Tn/cdνε,2(R))1/dUn , the pointwise Hölder exponent of Y
fH,α

ε,N ,2 is given by
the W fH,α ’s one and thus is equal to H − d/α + d/2. When H > d/α, on each compact set,
Y

fH,α

ε,N has H ′-Hölder sample paths for every H ′ < H − d/α. Fig. 3 presents a realization of an
MAFSM when α = 1.5 and H = 0.7.

6.3. Linear fractional stable motions

Here d = 1 and we use the notation of Section 6.2. In particular, ν(dv) is given by (31). In
this example, the kernel function is

f (x, ξ) = D(α)−1/α
(
(x − ξ)

H−1/α
+ − (−ξ)

H−1/α
+

)
,

where (a)+ = a ∨ 0, D(α) is given by (32), H ∈ (0, 1), H 6= 1/α (with the convention
0H−1/α

= 0). Hence, L H,α = X f is a linear fractional stable motion with index H (see [21] for
more details on this process). Furthermore, we may approximate L H,α in distribution by
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Fig. 3. Example of MAFSM with index H = 0.7.

Y f
ε,N (x) = D(α)−1/α

N∑
n=1

((
x −

TnUn

2νε,2(R)

)H−1/α

+

−

(
−TnUn

2νε,2(R)

)H−1/α

+

)
Vε,n

+ σ(ε)W f (x),

where W f is defined by (25). As previously, W f is independent of ((Un, Tn, Vε,n))n≥1.
Moreover,

W f (·) =

∫
Rd

f (·, ξ)W (dξ)
(d)
= D(α)−1/αC̃H BH+1/2−1/α,

where BH+1/2−1/α is an FBM with index H + 1/2 − 1/α and

C̃H =

(∫
R
((x − ξ)

H−1/α
+ − (−ξ)

H−1/α
+ )2dξ

)1/2

= Γ (H + 1/2)

√
sin((H − 1/α)π)Γ (1 − 2H + 2/α)

2π(H + 1/2 − 1/α)(H − 1/α)
(33)

according to Lemma 4.1 in [26]. Obviously, this approximation only holds when 1 > H >

1/α − 1/2.
Furthermore, let us observe that for every x ∈ K ,

f (x, ξ) =

{
0 if ξ > max

K
|y|

fH,α(x, ξ) if ξ < − max
K

|y|.

As a consequence, we obtain the same estimates for the almost sure, the Lr -errors (r < α)
and the rate of convergence in terms of Berry–Esseen bounds as in the case of MAFSMs (see
Section 6.2).

Fig. 4 presents two realizations of LFSMs for α = 1.5. As noticed in [23], when H = 0.2,
we observe spikes which take place at points ξn . Actually, since H = 0.2 < 1/α, when x tends
to a point ξn , Y f

ε,N (x) tends to infinity, which explains the reason for spikes to appear. When
H = 0.7 > 1/α, as in the case of MAFSMs, the sample paths of the approximation are H ′-
Hölder on each compact set for every H ′ < H − 1/α.
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Fig. 4. Examples of LFSMs.

6.4. Log-fractional stable motion

Let d = 1 and 1 < α < 2 and assume that ν(dv) is given by (31). Furthermore, (Vε,n)n≥1 and
σ(ε) are defined as in Section 6.2. Remark that here (Un)n≥1 is a sequence of i.i.d symmetric
Bernoulli random variables. Then, let

f (x, ξ) = D(α)−1/α(ln |x − ξ | − ln |ξ |).

Hence, X f is a log-fractional stable motion and its approximation in law is given by

Y f
ε,N (x) = D(α)−1/α

N∑
n=1

(
ln

∣∣∣∣x −
TnUn

2νε,2(R)

∣∣∣∣− ln
(

Tn

2νε,2(R)

))
Vε,n + σ(ε)W f (x),

where

W f (x) = D(α)−1/α

∫
R
(ln |x − ξ | − ln |ξ |)W (dξ)

is independent of ((Un, Tn, Vε,n))n≥1. Note that W f (d)
= D(α)−1/αC B1/2, where B1/2 is a

standard Brownian motion and

C =

∫
R
(ln |1 − ξ | − ln |ξ |)2dξ.

Furthermore, by a Fourier transform argument, one proves that [21]

C =

(
π

2

∫
R

|e−iλ
− 1|

2

|λ|2
dλ

)1/2

= π.

As previously, the rate of almost sure convergence can be studied. In particular, if

g(x, ξ) = f (x, ξ)1|ξ |≥max
K

|y|+1,

Y g
ε,N ,2 converges uniformly on K at least at the rate N ε for every ε ∈ (0, 1 − 1/α). Furthermore,

the Lr -error can be controlled and decreases in N 1−1/r for every r < α. Let us notice that X f

is a self-similar field with index H = 1/α. Thus, we obtain the same rate of convergence for
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Fig. 5. Example of log-fractional stable motion.

log-fractional stable motion and MAFSMs. Furthermore, since f (x, ·) ∈ L3(R), Theorem 5.2
gives the same rate of convergence in terms of Berry–Esseen bounds as in the cases of MAFSMs
or MAFLMs (taking δ = 1).

Fig. 5 presents a trajectory of a log-fractional stable motion for α = 1.5. Note that except
at points ξn = TnUn/(2νε,2(R)), the sample paths are locally H ′-Hölder for every H ′ < 1/2:
actually the regularity of the trajectories is given by the Brownian part. At points ξn , Y f

ε,N is not
defined, which explains the spikes appearing in Fig. 5.

6.5. Linear multifractional stable motion

So far, the examples are fractional fields. However, our framework also contains
multifractional fields. Let us now give one example. This example is defined replacing in the
kernel of a LFSM the index H by h(x).

Here d = 1 and ν(dv) is given by (31). Then, assume that the kernel function is defined by

f (x, ξ) = (x − ξ)
h(x)−1/α
+ − (−ξ)

h(x)−1/α
+ ,

where h : R → (0, 1). The process X f is a linear multifractional stable motion in the sense
of [24,25]. The approximation of X f is then given by

Y f
ε,N (x) = D(α)−1/α

N∑
n=1

((
x −

TnUn

2νε,2(R)

)h(x)−1/α

+

−

(
−TnUn

2νε,2(R)

)h(x)−1/α

+

)
Vε,n

+ σ(ε)W f (x),

where W f is defined by (25). As previously, W f is independent of ((Un, Tn, Vε,n))n≥1.
Moreover,

W f (·) =

∫
Rd

f (·, ξ)W (dξ)
(d)
= D(α)−1/αC̃h(x) Bh+1/2−1/α,

where Bh+1/2−1/α is a standard multifractional Brownian motion in the sense of [15] with

multifractional function h + 1/2 − 1/α and C̃h(x) is given by (33). This approximation only
holds when 1 > h(x) > 1/α − 1/2.
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Fig. 6. Examples of linear multifractional stable motion.

As in the case of LFSM, we can observe that

f (x, ξ) =

{
0 if ξ > max

K
|y|

fh(x),α(x, ξ) if ξ < − max
K

|y|.

Therefore, for a fixed x , we obtain the same estimates for the almost sure, the Lr -errors (r < α)
and the rate of convergence in terms of Berry–Esseen bounds as in the case of LFSM (see
Section 6.3) or MAFSMs (see Section 6.2), replacing H by h(x). In particular, for a fixed x ,
the almost sure error converges at the rate N ε for every ε ∈ (0, 1 − h(x)).

Fig. 6 presents some trajectories of linear multifractional stable motions for α = 1.5.

7. Extension to complex random measure

Thanks to arguments used in Sections 4 and 5, the results obtained in the case of RHMLMs
in [11] can be extended to a larger class of infinitely divisible fields, in particular to the complex
case. More precisely, let N (dξ, dz) be a Poisson random measure on Rd

× C with intensity
n(dξ, dz) = dξν(dz). Assume that the σ -finite measure ν(dz) satisfies∫

C
(|z|2 ∧ 1)ν(dz) < +∞.

Furthermore, the control measure ν(dz) is assumed to be rotationally invariant, i.e.

P(ν(dz)) = dθνρ(dρ), (34)

where dθ is the uniform measure on [0, 2π) and P(ρeiθ ) = (θ, ρ) ∈ [0, 2π) × R+
∗ .

Then, following the definition of complex Lévy random measure (see [3]), we can consider a
complex random measure Λ(dξ) on Rd defined by∫

Rd
g(ξ)Λ(dξ) =

∫
Rd×C

(g(ξ)z + g(−ξ)z)(N (dξ, dz)

− (|g(ξ)z + g(−ξ)z| ∨ 1)−1n(dξ, dz)) (35)

for every g : Rd
→ C such that

∫
Rd×C(|g(ξ)z|2 ∧ 1)dξν(dz) < +∞.

Hence, following the arguments used in [11] in the case of RHFLMs, analogous results to
those of Sections 4 and 5 can be obtained and a way to simulate



S. Cohen et al. / Stochastic Processes and their Applications 118 (2008) 1489–1517 1511

X f (x) =

∫
Rd

f (x, ξ)Λ(dξ)

can be proposed. However, in this part, we will just focus on the case where

νρ(dρ) =
1ρ>0dρ

ρ1+α
, α ∈ (0, 2),

and the kernel function is

fH,α(x, ξ) =
(2α+1π D(α))−1/α(e−ix ·ξ

− 1)

‖ξ‖H+d/α

with D(α) given by (32). In this case,

X H,α(x) =

∫
Rd

fH,α(x, ξ)Λ(dξ), x ∈ Rd ,

is a real harmonizable fractional stable motion with index H ∈ (0, 1), i.e.

{X H,α(x), x ∈ Rd
}

(d)
= {SH,α(x), x ∈ Rd

}

where

SH (x) = R

(∫
Rd

fH,α(x, ξ)Mα(dξ)

)
with Mα(dξ) a complex isotropic α-stable random measure with control measure the Lebesgue
measure in the sense of [21].

Furthermore, in the case we are interested in, ν(C) = +∞. As we know, we have to split in
this case the random field X H,α = X

fH,α

ε,1 + X
fH,α

ε,2 into two random fields where

X
fH,α

ε,1 (x) = 2
∫
Rd×C

R( fH,α(x, ξ)z)1|z|<ε(N (dξ, dz)

− (|2R( fH,α(x, ξ)z)| ∨ 1)−1n(dξ, dz)) (36)

and

X
fH,α

ε,2 (x) = 2
∫
Rd×C

R( fH,α(x, ξ)z)1|z|≥ε(N (dξ, dz)

− (|2R( fH,α(x, ξ)z)| ∨ 1)−1n(dξ, dz)). (37)

As previously, X
fH,α

ε,1 and X
fH,α

ε,2 can be simulated independently. Furthermore,

X f
ε,2(x) =

∫
Rd

fH,α(x, ξ)Λε,2(dξ), x ∈ Rd ,

where the complex random measure Λε,2 is associated by (35) with a Poisson random measure
Nε,2 whose control measure νε,2(dz) = 1|z|≥εν(dz) is finite. Therefore, X f

ε,2 can be simulated
as a generalized shot noise series. More precisely, let (Zε,n)n≥1 be a sequence of i.i.d. random
variables with common law νε,2(dz)/νε,2(C). Moreover, (Zε,n)n≥1, (Tn)n≥1 and (Un)n≥1 are
independent. Then, as in the case of RHMLMs, a series expansion of X f

ε,2 can be given and this
series converges in the space of continuous functions endowed with the topology of the uniform
convergence on compact sets.
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Proposition 7.1. For every x ∈ Rd ,

Y
fH,α

ε,N (x) = 2
N∑

n=1

R

(
fH,α

(
x,

(
Tn

cdν(C)

)1/d

Un

)
Zε,n

)
(38)

converges almost surely to Y
fH,α

ε (x) as N → +∞. Furthermore, Y
fH,α

ε,N converges uniformly on
each compact set almost surely and

{X
fH,α

ε,2 (x) : x ∈ Rd
}

(d)
= {Y

fH,α
ε (x) : x ∈ Rd

}.

Proof. The arguments of proof of Proposition 4.1 lead to the almost sure convergence of
Y

fH,α

ε,N (x) for each fixed x . They also give the equality of the finite dimensional marginals of

X
fH,α

ε,2 and Y
fH,α

ε . In order to obtain the uniform convergence, one may follow the proof of
Proposition 3.1 in [11]. �

Due to the rotational invariance of Zε,n and to Theorem 4.3, a rate of almost sure convergence

for Y
fH,α

ε,N (x) can be given and the Lr -error can be controlled.

Proposition 7.2. Let x ∈ Rd .

1. Then, for every ε ∈ (0, H/d), almost surely,

sup
N≥1

N ε
|Y

fH,α
ε (x) − Y

fH,α

ε,N (x)| < +∞.

2. Moreover, for every r < α and every integer N > r(1/α + H/d),

E(|Y
fH,α

ε,N (x) − Y
fH,α

ε (x)|r ) ≤ C(r)
D(N , r, H + d/α)

N r/α+r H/d−1 , (39)

where D(N , r, β) is defined by (15) and

C(r) =
(21−απ D(α))−r/αd(cdν(R))r H/d+r/αE(|R(V1)|

r )

r H − d + rd/α
.

Proof. Since (Zε,n)n≥1 is a sequence of i.i.d. with common law invariant by rotation,

Y
fH,α

ε,N (x)
(d)
= 2

N∑
n=1

∣∣∣∣∣ fH,α

(
x,

(
Tn

cdν(C)

)1/d

Un

)∣∣∣∣∣R(Zε,n).

Hence, taking Vn = R(Zε,n), C = 21−1/α(π D(α))−1/α and β = H + d/α, the proof of
Theorem 4.3 leads to the conclusion. �

Finally, the next proposition gives the expected approximation of Xε,1. Let

σ(ε) =

(∫ ε

0
ρ2νρ(dρ)

)1/2
√

2ε2−α

2 − α
. (40)

Proposition 7.3. Assume that 0 < H + d/α − d/2 < 1, then

lim
ε→0+

(
Xε,1(x)

σ (ε)

)
x∈Rd

(d)
= (AH+d/α−d/2 BH+d/α−d/2(x))x∈Rd ,
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Fig. 7. Examples of RHFSMs.

where the convergence is in distribution on the space of continuous functions endowed with the
topology of uniform convergence on compact sets, BH+d/α−d/2 is a standard FBM with index
H + d/α − d/2 and for u ∈ (0, 1)

Au = (2α+1π D(α))−1/α

(
4π (d+3)/2Γ (u + 1/2)

uΓ (2u) sin(πu)Γ (u + d/2)

)1/2

. (41)

Remark 7.4. In Proposition 7.3, 0 < H + d/α − d/2 < 1 means that fH,α(x, ·) ∈ L2(Rd) for
every x ∈ Rd .

Proof. Actually

X f
ε,1(x) =

∫
Rd

fH,α(x, ξ)Λε,1(dξ), x ∈ Rd ,

where the complex random measure Λε,1 is associated by (35) with a Poisson random measure
Nε,1 whose control measure νε,1(dz) = 1|z|<εν(dz). Also, for every p ≥ 2,∫

C
|z|pνε,1(dz) < +∞

and then (2α+1π D(α))1/α X f
ε,1 is a RHFLM (real harmonizable fractional Lévy motion) since

fH,α(x, ·) ∈ L2(Rd) for every x ∈ Rd . Then, Proposition 4.1 in [11] yields the conclusion. �

As a consequence, as soon as the assumptions of Proposition 7.3 are fulfilled, we may
approximate the RHFSM X H,α by

Yε,N (x) = 2
N∑

n=1

R

(
fH,α

(
x,

(
Tn

cdν(C)

)1/d

Un

)
Zε,n

)
+ σ(ε)AH+d/α−d/2 BH+d/α−d/2(x), x ∈ Rd ,

where BH+d/α−d/2, Tn , Un and Zε,n are independent.
Fig. 7 exhibits some examples of trajectories of RHFSMs for α = 1.5.
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Appendix A. Proof of Theorem 2.1

Since 0 ≤ r ∧ 2 ≤ r and E(|X1|
r ) < +∞, we also have that E(|X1|

r∧2) < +∞. Then, we
can assume that r ≤ 2.

Set RN =
∑

+∞

n=N+1 Yn Xn and r = r ∧ 2 ∈ (0, 2). Then, let us fix M > 0 and set

ΩM = {sup
n≥1

n−1/r
|Xn| ≤ M}.

Hence for any ε > 0,

P(ΩM ∩ {|RN | ≥ N−ε
}) ≤ P

(∣∣∣∣∣ +∞∑
n=N+1

YnWn

∣∣∣∣∣ ≥ N−ε

)
,

where Wn = Xn1|Xn |≤Mn1/r . Since Xn , n ≥ 1, are i.i.d. and symmetric, (Wn)n≥1 is a sequence of
independent symmetric random variables. Then, since (Yn)n≥1 satisfies the assumption (2) and is
independent of (Wn)n≥1, by the contraction principle for symmetric random variables sequences,
see [12] page 95,

P(ΩM ∩ {|RN | ≥ N−ε
}) ≤ 2P

(
C

∣∣∣∣∣ +∞∑
n=N+1

T −1/γ
n Wn

∣∣∣∣∣ ≥ N−ε

)
.

Hence,

P(ΩM ∩ {|RN | ≥ N−ε
}) ≤ 2P

(
sup

n≥N+1

n

Tn
≥ 10

)
+ 2AN , (42)

where

AN = P

({
sup

n≥N+1

n

Tn
< 10

}
∩

{
C

∣∣∣∣∣ +∞∑
n=N+1

T −1/γ
n Wn

∣∣∣∣∣ ≥ N−ε

})
.

Step 1

P

(
sup

n≥N+1

n

Tn
≥ 10

)
≤

+∞∑
n=N+1

P(Tn ≤ n/10) ≤

+∞∑
n=N+1

nn

10nn!
.

Hence, by the Stirling formula,

P

(
sup

n≥N+1

n

Tn
≥ 10

)
≤ C1 exp(−C2 N ), (43)

with C1 > 0 and C2 > 0.
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Step 2 By the assumptions of independence, (Tn)n≥1 and (Wn)n≥1 are independent. Therefore,
by the contraction principle for symmetric random variables sequences,

AN ≤ 2P

(
C

∣∣∣∣∣ +∞∑
n=N+1

n−1/γ Wn

∣∣∣∣∣ ≥ 10−1/γ N−ε

)
.

Furthermore, by independence and symmetry,

AN ≤ 4P

(
C

+∞∑
n=N+1

n−1/γ Wn ≥ 10−1/γ N−ε

)

≤ 4 exp
(

−
10−1/γ λN−ε

C

) +∞∏
n=N+1

E(exp(λn−1/γ Wn)), (44)

since P(ξ ≥ x) ≤ eλxE(eλξ ), for all λ > 0. Moreover, since Wn is a symmetric random variable,

E(exp(λn−1/γ Wn)) = 1 +

+∞∑
j=1

λ2 j

(2 j)!
n−2 j/γ E(W 2 j

n ).

Then let a = 1/γ − 1/r and n ≥ N + 1. Note that for j ≥ 1, 2 j ≥ r and

E(W 2 j
n ) ≤ E(|X1|

r )(Mn1/r )2 j−r .

Therefore,

E(exp(λn−1/γ Wn)) ≤ 1 +
E(|X1|

r )λ2 M2−r exp(λ2 M2n−2a)

2n1+2a

≤ exp
(

E(|X1|
r )λ2 M2−r exp(λ2 M2 N−2a)

2n1+2a

)
.

As a consequence, taking λ = 101/γ N a in (44), there exist C3 > 0 and C4 > 0, which do not
depend on N , such that

AN ≤ C3 exp(−C4 N a−ε). (45)

Step 3 In view of (42), (43) and (45), for every M > 0 and every ε ∈ (0, 1/γ − 1/r),

+∞∑
N=1

P(ΩM ∩ {|RN | ≥ N−ε
}) < +∞.

Hence, by the Borel–Cantelli lemma, for almost all ω ∈ ΩM ,

sup
N≥1

N ε
|RN | < +∞.

Furthermore, we have

P(Ω c
M ) ≤

+∞∑
n=1

P(|Xn| > Mn1/r ) ≤
1

Mr E(|X1|
r ) → 0
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as M → +∞ and thus limM→+∞ P(ΩM ) = 1. Then, for every ε ∈ (0, 1/γ − 1/r), almost
surely,

sup
N≥1

N ε
|RN | < +∞,

which concludes the proof.

Appendix B. Proof of Theorem 2.2

It is a simple modification of the proof of Theorem 2.1.
Let M > 0, ΩM = {supn≥1 |n−1/r Xn| ≤ M}, Wn = Xn1|Xn |≤n1/r M and

RN =

+∞∑
n=N+1

T −1/γ
n |Xn|.

As in proof of Theorem 2.1,

P(ΩM ∩ {|RN | ≥ N−ε
}) ≤ P

(
sup

n≥N+1

n

Tn
≥ 10

)
+ AN (46)

where

AN = P

({
sup

n≥N+1

n

Tn
< 10

}
∩

{
+∞∑

n=N+1

T −1/γ
n |Wn| ≥ N−ε

})
.

Remark now that the contraction principle used in the proof of Theorem 2.1 cannot be applied
since |Wn| is not a symmetric random variable. However, since |Wn| ≥ 0,

AN ≤ P

(
+∞∑

n=N+1

n−1/γ
|Wn| ≥ 10−1/γ N−ε

)

≤ exp(−10−1/γ λN−ε)

+∞∏
n=N+1

E(exp(λn−1/γ
|Wn|)),

where λ > 0. Furthermore,

E(exp(λn−1/γ
|Wn|)) = 1 +

+∞∑
j=1

λ j

j !
n− j/γ E(|Wn|

j )

≤ 1 + E(|X1|
r )

+∞∑
j=1

λ j

j !
n− j/γ (Mn1/r ) j−r since r ≤ 1

≤ exp(E(|X1|
r )λn−1−a M1−r exp(λM N−a)),

where a = 1/γ − 1/r and n ≥ N + 1. Hence, choosing λ = 101/γ N a , there exists C , which
does not depend on N , such that

AN ≤ C exp(−N a−ε).

Consequently, the arguments used in step 3 of the proof of Theorem 2.1 lead to the conclusion.
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pp. 579–623.

[3] A. Benassi, S. Cohen, J. Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli
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