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Abstract. Thispaperisconcerned with ageneral class of self-interacting diffusions{X,};~o0
living on a compact Riemannian manifold M. These are solutions to stochastic differential
equations of the form : d X, = Brownian increments + drift term depending on X, and u;,
the normalized occupation measure of the process. It is proved that the asymptotic behavior
of {u;} can be precisely related to the asymptotic behavior of a deterministic dynamical
semi-flow & = {®,},-, defined on the space of the Borel probability measures on M. In
particular, the limit sets of {u,} are proved to be almost surely attractor free sets for @.
These results are applied to several examples of self-attracting/repelling diffusions on the
n-sphere. For instance, in the case of self-attracting diffusions, our results apply to prove
that {u,} can either converge toward the normalized Riemannian measure, or to a gaussian
measure, depending on the value of a parameter measuring the strength of the attraction.

1. Introduction

The study of processes with path-interaction or reinforcement has been avery ac-
tive research areain the recent years. For random walks, the original ideaiis dueto
Coppersmith and Diaconis (1987) who have introduced arich family of processes
called reinforced random walks studied later by Davis (1990), Pemantle (1988a,b,
1992), Benaim (1997), Pemantle and Volkov (1999) among other.

For continuoustime processes, Cranston and L e Jan (1995) and Raimond (1997)
have studied a class of self-attracting diffusions and proved the ailmost sure con-
vergence of these processes (see also Norris, Rogers and Williams (1987), Durrett
and Rogers (1991) and Cranston and Mountford (1996)).

In this paper we are concerned with a general class of self-interacting diffu-
sion processes. These are continuous time stochastic processes living on acompact
Riemannian manifold M which can be typically described as solutions to a sto-
chastic differential equation of the form
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1 t
0
where {W,} isaBrownian vector field on M and V,,(x) a*“potential” function.
This type of equation is similar to the SDE’s considered by Cranston and Le
Jan (1995), or Raimond (1997). The main difference is that, here, the drift term
depends on the normalized occupation measure

1 t
Wy = — / (SXSdS
tJo

of the process, rather than the occupation measure [, 8x,ds.

The main goal of this paper is to give a systematic treatment of this class of
processes and to describe with a great deal of generality the asymptotic behavior
of {u;} ast - oc.

1.1. A motivating example

Before entering abstract considerations we describe here a simple example and
present some of our results. Let V : R — R be a smooth 2 -periodic function,
{6,} asolution to the SDE

1 t
doy = dB, — - ( / V(6 — 0,)ds) dt (1)
0

and X; = 6, mod 27 € S! where ST = R/27Z denotes the flat 1-dimensional
torus.

To investigate the long term behavior of {u;} we introduce the (random) set
L({u}) consisting of al thelimit pointsof {u,} (for the topology of weak* conver-
gence). By compactness of S* and Prohorov theorem, L({u,}) is (almost surely) a
nonempty compact set. It isintuitively clear that L({u,}) should depend crucially
on the shape of V.

We shall provein section 4.3 the following results :

Theorem 1.1. Letc € R, ¢ € [0, 2] and V (0) = 2c cos(0 + ¢).

(i) Supposea = ccos(¢p) > —1/2. Then {u,} converges almost surely (for the
topology of weak* convergence) toward the normalized Lebesgue measure on
S~ [0, 2], A(dx) = 4X.

(i) Supposea = ccos(¢) < —1/2. Then there exists a constant 8(a) such that
(@) If¢ € {0, m}, then there exists a random variable 6 < [0, 2x[ such that
{u;} converges almost surely toward the measure

eﬁ(a) cos(x—0)
fsl eB(@) cosy) j (dy)

(b) If ¢ & {0, 7} let {v(6)}ys1 denote the family of probability measures on
S defined by

Ma,p(dx) = A(dx).

1 2/ @)
v(0) = m/o €’ [La, (tan($)s+6)dS-
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Then there exists a random variable 6 < [0, 2| such that for all continuous
function f : T - R

Jim (i f = vitan(g) log(r) +6) f) = 0

with probability one. Here wf stands for fM fdu.

In order to interpret Theorem 1.1, observe that
V(61 — 62) = 2¢ COS(61 — b2 + ¢p) = —cd?(61 + ¢, 62) + 2¢

where d(61, 62) = |/ — ¢/%] is the distance on ST (viewed as a subset of C)
between 61 and 02. Therefore (1) can be rewritten as

d@t = dBt + CW;(G[)dt

where W;(a) = X [3 d?(a, 6; + ¢) ds and W/ (o) = 2L

When ¢ = 0, W, («) isnothing but the temporal mean squaredistancefrom« to
thetrajectory {6; : 0 < s < r}. If we furthermore assume that ¢ < O (respectively
¢ > 0) wethen have a simple model of self-attracting (respectively self-repelling)
process. Theorem 1.1 exhibits the critical value ¢ = —1/2. For ¢ < —1/2 the
“attraction” is strong enough to counter the effect of the Brownian motion and the
empirical occupation measure converges almost surely to a Gaussian distribution,
whilefor ¢ > —1/2 it behaves like those of a Brownian motion.

If wenow supposethat ¢ ¢ {0, 7 } andthat thereisenough attraction (i.e ¢ cos(¢)
< —1/2) the biasterm induced by ¢ forces u, to circle around and the limit set of
{u:} isa“circle” of measures {v(0)}ges1-

The next result partially generalizes Theorem 1.1 (i) to arbitrary trigonometric
polynomials :

Theorem 1.2. Let V(x) = 2 }_;(ax cos(kx) + by Sin(kx)).

(i) Supposethereexists1 < k < n suchthat ay < —1/2. Then u, almost surely

doesn’t converge toward A.

(i) Supposethat for all 1 < k < n,a; > —1/2. Then u, convergestoward A with
positive probability.

(iii) Suppose that one of the two following conditions holds
(@ Forall1 <k <n,by=0anda; >0,
(b) Foralll<k<n,br=0,ar <0and ), ax > —1/2.
Then {u,} converges almost surely toward A.

This last theorem is far from being intuitive. Suppose for instance that V(x) =
—2(1 — cos(x))3. Then the shape of V makes the process self-repelling and one
could expect that ., — 1. However, condition (i) shows that thisis not the case
(see dso figure 4 below).

Numerical simulations. The following figures have been obtained by numerical
integration of {X,} over the timeinterval (0, T) for T = 1500, using a one step
(Cauchy-Euler) method with a step size of 0.05 and 30000 iterations.



4 M. Benaimet al.

Figures 1, 2 and 4 represent the density (rescaled in [0, 1]) of w7 with respect
to Lebesgue measure. Figure 3 represents, in the plane, the trgjectory of the mean
value [ xpu;(dx) forO<t <T.
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Fig. 1. lllustration of Theorem 1.1 (ii)-(a).
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Fig. 2. lllustration of Theorem 1.1 (ii)-(b).
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Fig. 3. lllustration of Theorem 1.1 (ii)-(b).
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Fig. 4. lllustration of Theorem 1.2 (i), with a reppelling interaction, V(x) = —2(1 —
cos(x))3.
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a=-2, g=1v4

1.2. Notation and hypotheses

Let M denotead-dimensional, compact connected smooth (C°°) Riemannian man-
ifold (without boundary). Welet C"(M),r =0, 1, ..., oo denote the space of C”
real valued functionson M, M (M) the space of Borel bounded measureson M, (i.e
the dual of CO(M)) and P(M) C M (M) the space of Borel probability measures
onM.

Throughout this paper we will assume given a measurable mapping

V.MxM-—R, (u,x) = V(u,x) =V, (x).
The standing assumptionon V is:

Hypothesis1.3. For all u € M, V,, : M — R isa C* function whose first deriva-
tives are bounded (in the variables u and x).

The existence and basic properties of self-interacting diffusionswill be proved,
insection 2, under this standing assumption. However, the main results of the paper
(sections 3, 4 and 5) will be proved under the following stronger assumption :

Hypothesis1.4. Forall u € M, V, : M — R isa C? function whose first and
second derivatives are continuous in the variables 1 and x.

1.3. Outline of contents

Self-interacting diffusions on M are defined in section 2 and their existence is
proved (under Hypothesis 1.3). Section 3 introduces a (deterministic) dynamical
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system associated to a self-interacting diffusion. This dynamical system is a con-
tinuous semi-flow defined on P (M) and obtained by suitable averaging. It isshown
(under Hypothesis 1.4) that theempirical occupation measure of the self-interacting
diffusionisamost surely an asymptotic pseudotrajectory of thissemi-flow. Wethen
rely on results by Benaim (1999) and Benaim and Hirsch (1996) to characterize the
limit set of the empirical occupation measure trajectory as an attractor free set of
this semi-flow. Such atopological characterization provides, in various situation, a
precise description of the limiting behavior of the self-interacting diffusion. This
approachisillustrated in Section 4. Wefirst prove ageneral result stating that every
limit point of the empirical occupation measure trajectory has a smooth density
and can be represented as a mixture of Gibbs measures. Then we analyze models
of self-interacting diffusions on the n-sphere and derive several results including
Theorems 1.1 and 1.2 above.

2. Sdf-interacting diffusions

For n € M(M) welet V,, € C1(M) denote the function defined by

Vi(x) = /M V(u, x)p(du), @

and A,, the operator defined on C*° (M) by
1 1
Auf = SAf = (VVy, Vf) = Se?rdivie ™V f)

where (-, -), V and A stand, respectively, for the Riemannian inner product, the
associated gradient and Laplacian on M.

Let 2 bethe space of continuous pathsw : Ry — M, equipped with the topol-
ogy of uniform convergence on compact intervals. Let B = B(2) denote the Borel
o-fieldof Q. Let X, bethe M-valued random variabledefined by X; (w) = w(¢) and
B; = B,;(2) bethe o-field generated by the random variables {X; : 0 <s < t}.

Letr > 0,u € P(M)andw € Q. Theempirical occupation measure of w with
initial weight » andinitial measure u isthesequence{u; (r, u, w) € P(M) : t > 0}
defined by

ru 4+ 'S ds
I'Lt(ry /’Lv w) = —}‘{‘0_‘_ ?(S)
where [ 8u)ds (A) = [3 La(w(s)) ds for every Borel set A C M. Inthefollow-
ing we will denote by u, (r, ) or simply by u, the P(M)-valued random variable
w = w(r, w, w), (P(M) being equipped with the Borel o-field induced by the
weak* topology).

Definition 2.1. A self-interacting diffusion associated to V' is a family {Px‘fw :
xeM, r>0, ueP(M)} of probability measures on (2, B) such that
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0 Px‘{r,u(XO =x)=1foral x, r, u.

(i) Forall f e C*(M),x e M,r >0andu € P(M)
t
M = F(X) - fx) — /O (Ao ) (Xs) ds

isa Px‘fr’ﬂ—rmrtingalerelativeto {B; : t > 0}.

The proof of the following remark is classical.

Remark 2.2. The martingal e bracket of Mtf isgiven by

M/, M1 = /0 IV £IP(X,) ds. €)

Definition 2.3. A family {X"* : r > 0, u € P(M)} of continuous stochastic
processeson M is called a self-interacting diffusion process associated to V if the
probability law of X"-# = {X"H(t)} takes the form

Py() = / PY, (Hv(dx)
M

where {P/, .} is a self-interacting diffusion associated to V and v denotes the
probability law of X"#(0).

Example 2.4. Let M = T be the flat d-dimensional torus, T¢ = R?/7Z4. Lift
V:TixT? > RtoV:RY x RY — R by setting V (x, y) = V([x], [y]) where
[ ] isthe quotient map from R? onto 7¢.
Now, let 6*"-# be asolution to the following stochastic differential equation on
Rd
{d@, —dB - & [rvvﬂ(e,) + Vv, (9,)ds] dr @

0(0) = x,

where {B;} is ad-dimensional Brownian motion.

Let XUy = [6*71(1)] and let Py}, bethelaw of {(X*"#(1)};>0. It
follows from 1t0’s formula that {P[‘;]’W} is a self-interacting diffusion, and that

(X171 (1)}, 0 is aself-interacting diffusion process.
More generally, we have the following proposition
Proposition 2.5. There exists a unique self-interacting diffusion associated to V.

Proof. By atheorem of Nash (1956) we can always suppose that M is a subman-
ifold isometrically embedded in RV for some N large enough. Let (eq, ..., ex)
be the canonical basis of RY. For x € M define F;(x) € T M to be the orthog-
onal projection of ¢; onto T, M and extend the vector field F; : M — TM toa
smooth bounded vector field F; : RY — RY having bounded derivatives. Extend
thefunction V : M x M — R to asmooth function V : RN x RN — R.
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Observe thet for al x € M, VV,(x) is the orthogonal projection of V\_/,L (x)
onto T, M. Hence,

N N
V() = Y (VVu(x), e) Fi(x) = Y (VV,(x), FE0))Fix)  (5)
i=1 i=1
foral x e M.
Now consider the following stochastic differential equation on RV

{dxt = LiL1 Fi(X) o dBf = 3L (VV, (X0, FX)VF(X dt g
X(0) = x,

where B, = (B}, ..., B,N) isa N-dimensional Brownian motion and od designs
the Stratonovitch differential.

Let (X;, B;) bea(weak) solution of (6) and P, ., denotethelaw of the process
X.Forx € M, X livesin M, therefore P, ., isaprobability measure on (2, B)
which obviously satisfies assertion (i) of Definition 2.1. For every f € C®(RY)
with compact support, 1t0’s formulaimplies that

t

FOXD) = FG0) — /O Ly f(Xy) ds )

isa Py ,-martingae relativeto {5, : ¢+ > 0} where

1

1 _
Luf =3 ) Fi(F(f) = Y (Vf F)NVVy, Fi)

and F; (f) standsfor (V f, F;).Foralx e MY, F;(F;(f)(x) = A(fIM)(x), and
(VV,(x), V(fIM)(x)) = (VV,(x), Vf(x)). Therefore L, fIM = A, (f|M) and
assertion (ii) of Definition 2.1 is satisfied.

By Proposition IV.2.1 of Ikedaand Watanabe (1981), the existence of asolution
to the martingale problem ((ii) of Definition 2.1) is equivalent to the existence of a
solution of the SDE (6), and the two solutions are having the same law. Therefore,
if we prove existence and uniqueness of the law of the solution to the SDE (6), the
proposition is proved.

Note that there exists a unique solution (W;, B;) to the SDE

N
dW, =Y Fi(W))odB] : W(O) =xeM. (8)
i=1
Let P, bethelaw of W, itisthelaw of a Brownian motion on M starting at x. Let
(F; . t > 0) bethefiltration associated to B;. Let

t 1t
Mt=exp<f0 D (Vi (W), Fi(W)dB] — 3 fo ||vvm<wg>||2ds>, ©)

with u, = % (m + o 8w, ds) .M, isa (Py, F;)-martingale and by the trans-

formation of drift formula (see section IV 4.1 and Theorem |1V 4.2 of Ikeda and
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Watanabe, 1981), since the equation (8) has a unique solution, the equation (6) has
aunique solution, and itslaw is given by

Pl ,=M-P. (10)
This concludes the proof of the proposition. O

Remark 2.6. (a) Girsanov's formula (10) shows that Px‘f,, . and Py (the law of a
Brownian motion on M started at x) are equivalent.

(b) If (4, x) — VV,(x)isassumedto beLipschitz, then standard arguments prove
that (6) has a unique strong solution.

As a consequence of Proposition 2.5 we obtain the following corollary whose
proof is similar to the proof of Theorem 1V.5.1 in Ikeda and Watanabe (1981).

Corollary 2.7. (Strong Markov Property). Let {F;} be a Brownian filtration and
lett: Q@ — R, bean {F;} stoppingtime. Thenfor all A € B

-1
Px‘{r,u(e)r (A)|‘7:T) = Pu‘)/(r),r—i-r,ur(r,u,w)(A)
where O, isthe shift on  defined by ®, (w)(#) = w( + t(w)).

Remark 2.8. Let {X"*} beaself-interacting diffusion processassociatedto V. Cor-
ollary 2.7 just means that {X"*(¢), r +t, pt; (r, 1) };>0 Satisfies the strong Markov

property.
3. Thelimiting ODE

Themaingoal of thissectionisto show that thelong term behavior of the self-inter-
acting diffusion associated to V can be described in terms of acertain deterministic
semi-flow on P(M).

3.1. Thelimiting ODE

For u € M(M) and f € CO(M) let uf = [, f(x)u(dx) and

lul = sup{luf|: f e COM), |flleo = 1}.
Welet M, (M) denote the Banach space (M (M), | - ) (i.e. thedua of CO(M)) and
M, (M) the metric space obtained by equipping M (M) with the weak* topology.
Recall that the weak* topology is the topology on M., (M) induced by the family
of semi-norms {u > |uf|: f € CO(M)}. We let Py(M) (respectively P, (M))
denote the induced metric space on P(M).
Let IT() bethe Borel probability measure defined by

= 2Vu )

Z(w)
where A isthe normalized Riemannian measure on M and

() (dx) = A(dx) (11)

Z(w) = / e V™) (dx)
M
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is the normalization constant. It is well known that I1(w) is the unique invariant
probability measure of the diffusion process whose generator is A,
Consider now the vector field

F:Mg(M) — Mg(M), u— —p+TI(w). (12

Lemma3.1. (i) The vector field F is C*° and completely integrable. It then
inducesa C* flow @ : R x M;(M) — M (M) defined by

d®: ()
dt

(i) F isglobally Lipschitzwith Lipschitzconstant L = 1+ 4|| V| co.-
(iii) Forall uw e M(M)andt >0

Do() = u; = F(®,(n)).

disty (D, (), P(M)) < e~ "dists (i, P(M))
wheredist, (i, X) = inf{|u — v| : v € X}. In particular,
o, (P(M)) Cc P(M) forall t > 0.

Proof. (i). Write
HoGolL(p

M) = oG o L) (13)

where L : My(M) — C°(M), G : CO(M) — CO(M) and H : CO(M) —
M (M) are respectively defined by L(n) = V., G(f) = e 2/ and H(f) =
f(x)A(dx). Itiseasy to seethat L and H arelinear continuous and that G is C*°.
This proves that IT, hence F, is C*°. Moreover since I1(u) € P(M), |F(n)| <
|ul + 1. Hence F is completely integrable and generates a C*® flow @ : R x
Ms(M) — M(M).

(i1). Using (13) itiseasily seen that the derivative of IT at i isthelinear operator
DII(p) : Ms(M) — Ms(M), v > DII(u) - v

given by
DIT(n) - v(dx) = =2 [Vu(x) - / Vu(y)l'l(u)(dy)] M(u)(dx). (14

Therefore | DIT(w) || = 4[|Vllee where [DTI(w)ll = supy,; yj=q) |DTTI(1).v].
Consequently
supIDF() =1+ 4|Vl = L.
"
(iii). For dl v € P(M)
1D (1) — vl = A=)+ 1T(w) —v+o®)] = [(X—)u+1TI(1) —v[+ o).

Thendist, (®; (), P(M))) < dist;(L—1)pu+tTI(w), P(M)))+o(t). SinceP(M)
is convex, u > dist;(u, P(M)) is a convex function. Therefore dist; (P, (u),
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P(M)) < (1—p)disty(u, P(M)) + o(¢). Since x — dist;(x, P(M)) isconvex, the
mapping ¢ > dist; (P, (), P(M)) admits aright derivative, Thus

d . .
Edlas(th(M)v P(M))li=0 < —dists (1, P(M)).

This proves the resullt. O

The preceding lemma shows that the family {®, },cr defines a smooth dynam-
ical system on M (M) leaving P (M) positively invariant.

However for analyzing the long term behavior of the self-interacting diffusion
associated to V it is more convenient to work with the weak* topology. We then
define a new mapping as follows:

Definition 3.2. The limiting dynamical system associated to V is the mapping
VR x Py(M) — My(M), (t, 1) = W (n) givenby W, (u) = &, (n), where
@ isthe flow induced by (12).

By Lemma (3.1) ¥ leaves P(M) positively invariant :
vt >0, ¥, (P(M)) C P(M)
and satisfies the flow property :

W5 (u) = Wy o W ()

forals,s e Randu € P(M) N d_(P(M)).
Furthermore,

Lemma 3.3. The mapping W is continuous.

Proof. Claim: Suppose u, — w in Py, (M) (i.e for the weak* topology). Then
Wy (uy) = Yr(u)in My, (M) foral T € R.

Proof of theclaim: For0 < ¢ < 1land u € P(M) let uf : R — P(M) bethe
function defined inductively by

@ n0 = pn.
(b) uf(r) = uf(ke) foralr e [ke, (k+ e[ andall k € Z.
(© pf(k+ De) = (1 —e)u(ke) + ell(u®(ke)), fork e Z+,

wE((k —1e) = L+ e)uf(ke) — ell(u(ke)), fork € Z~. (15)
Forr > 0let B, = {u € M(M) : |u| < r}. It followsfrom (15) that

wé (ke), uf (ke) € By (16)

foral k € Z, wherer(k) = 1fork > Oand r(k) = 2(1 + &)kl — 1 < 2¢lkle — 1
fork < 0.

Equation (15) can be seen as a Cauchy-Euler approximation scheme for nu-
merically solving the differential equation (12). A basic result on such numerical
methods is that for al 7 € R : |u(T) — ®7(n)| < C(T)e where C(T) only
dependson T and L (the Lipschitz constant of F).
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Let £ € Co(M). Then

(@7 (1n) — P (W) f1 = (1 P7 () — py (D] + 115(T) — P (DI flloo
H(py (T) — p*(T) £
< 2| fllocC(T)e + [(uy (T) — w*(T) f1.

Itiseasily seenthat IT : B, € M, (M) — P, (M) is continuous for the to-
pology of weak* convergence. Therefore, (15) and (16) imply (by induction on k)
that lim,,—, o 15 (ke) = puf(ke) in My, (M) foral k € Z. Hencelim,,_, oo 5 (T) =
wE(T) in M, (M) and

limsup [(®7 (n) — P ()) f1 = 2]l fllowC(T)e

n—o0

for al ¢ > 0. This provesthe claim.
To conclude the proof of the lemma it remains to show that if 7, — T then
[(®y, () — Pr (1)) f| — 0. Thisis obvious since

(@, (un) — Pr () f1 < [(Pr (1) — P () 1+ | Pr (1) — Pr,, ()| | flloo

Thefirst term goesto zero according to the claim while the second term is bounded

by | ;| F(®: (1)) dt| < 2T — 1. O
A point u € P(M) is caled an equilibriumif W,;(u) = p foral ¢ € R, or

equivalently F(u) = 0. Welet £(W¥) denote the equilibria set of W.

Lemma 3.4. £(V) isa nonempty compact subset of Py, (M).

Proof. The space M., (M) is alocaly convex topological vector space, and the
mapping IT maps continuously the compact convex set P, (M) into itself. Hence
by L eray-Schauder-Tychonoff fixed point Theorem, £(W¥) is nonempty. 0

3.2. Asymptotic pseudotrajectories

Let W be asin Definition 3.2. Let dist,, be a metric on P,,(M). Using the termi-
nology introduced in Benaim and Hirsch (1996), a continuous function ¢ : Ry —
P (M) iscaled an asymptotic pseudotrajectory for W if

=00 \ g<p<T

lim ( Sup diStw(C(tJrh),‘I’h(é(t)))) =0 (17)

forany T > 0. Thusfor each fixed T > 0, the curve
[0,T] > M :h+— c(t+h)

shadows the W-trajectory of the point ¢ (¢) over the interval [0, T] with arbitrary
accuracy for sufficiently large¢.

Observe that our definition of asymptotic pseudotrajectories makes an explicit
reference to the metric on P, (M). However this is a purely topological notion.
More precisaly, if dist,, and dist,, are two metrics on P, (M) (inducing the same
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topology) and ¢ satisfies (17) with dist,, then ¢ satisfies (17) with dist,,. Thisisa
direct consequence of the characterization of asymptotic pseudotrajectories used
in our proof of Proposition 3.5 below.

In view of this fact we are then free to choose any metric on P, (M). Let
S = { fi}xens beasequence of C* functionsdensein {f € CO(M) : || flloo < 1}
(with respect to the C° topology). Define

disty : Pu(M) x Pu(M) — R,

. , 1
by dist, (v, 1) = ) s = v frl. (18)
keNx*

Itiswell knownthat dist,, isametric and that P (M) equipped withdist,, isP,, (M).
In the sequel we shall always assume that dist,, isthe metric given by (18).

Givenr > 0, u € P(M) and w € 2 set

M = Mf(r» M, w) and ;Z = Mt (rv u, w) (19)

Let {&(s):t > 0,5 > 0} ¢ M (M) denote the family of measures (depending on
r, i and w) defined by

eH—S

t+s Sw - o .
&(s) = / Gueny — T1(5w) du, = / Suww = M)
t

et u

du. (20)

Proposition 3.5. The following assertions are equivalent :

(i) Thefunction¢ : Ry — Py (M), t — . (r, 1, w) is an asymptotic pseudo-
trajectory for .
(i) Forall f e C®(M)and T > 0lim;_ o (SUPg<,<7 l&r(s) f1)) = O.
(iii) Forall f e Sand T € QT lim;_ 00 (SUPg<s<7 l€:(s) f1)) = 0.

Proof. Let CO(R, P, (M)) denotethe space of continuous pathsv : R — P, (M)
equipped with the topology of uniform convergence on compact intervals. Let

0 : COR, Py(M)) x R — COUR, P,y (M)), (v,1) > O (v)
be the trand ation flow defined by ®’ (v)(s) = v(z + s), and let
§: COR, Pyy(M)) — COR, Py (M))
be the mapping defined by \fJ(v)(t) = ¥, (v(0)). By Theorem 3.2in Benaim (1999)

acontinuous function v : Ry — P, (M) is an asymptotic pseudotrajectory for &
if and only if

(@) v isuniformly continuous, R
(b) Every limit point of {©'(v) : t > 0} isafixed point for W.
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This characterization of asymptotic pseudotrajectories justifies our remark accord-
ing to which the notion of asymptotic pseudotrajectoriesis purely topological. For,
by compactnessof P, (M) (a) isindependent of the choice of the distance, and (b)
isclearly atopological statement.

We shall now verify that ¢ satisfies (a) (i.e is uniformly continuous) and that
(b) isequivalent to assertion (i) of Proposition 3.5.

Let f € CO(M). Taking the time derivative of ¢; f gives

dof
di ~ r+e

(=& f + flwe))]. (21)
Therefore (5145 f — & f| < 2| fllools| for @l ¢, s. Hence disty, (&5, &) < 2|s|

proving that ¢ is uniformly continuous.
Let Ly : COR, P, (M)) — COR, M,,(M)) denote the mapping defined by

t
Lr(w)(®) =v(0) +/ F(v(s))ds,
0
where F isthe vector field given by (12). Then (21) implies that

O'(¢) = LF(®'(¢) + () + ()

where

t+s r
re(s)f :/ —(=Cuf + f(w(e)du.
‘ r+e

Thus|r;(s) f| < 2| flleore™". Therefore by compactness of P, (M) and continuity
of Lr, lim_os & = 0in CO(R, M,,(M)) if and only if every limit point 5 of
(©7(7)) satisfies s = Lp(n*). That isns = W ().

Thisprovesthat (i) and (ii) areequivalent. It remainsto provethat (iii) implies
@ii).

Let f € C®°(M). Assume f #0andset g = Hfjﬁoo. Then for all ¢ > 0 there

exists fx € Ssuchthat ||g — filloo < &. Choose T’ € Q suchthat 7’ > T. Then

sup e (s) fl =< ||f||oo( sup e:(s) fil + sup I8z(S)|8>

0<s<T 0<s<T’ 0<s<T’

< 1 flleo ( sup e (s) fxl ~|—2T’5) )
0<s<T’

Since ¢ is arbitrary, this provesthat (iii) implies (ii). O

From now on, we will assumethat V satisfies Hypothesis 1.4. The main result
of this section (from which most of our main results will be derived) is Theorem
3.6 below.

Theorem 3.6. (i) Forall f €e C®(M)andeveryT > 0:
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(@) Thereexistsa positive constant K (depending only on V and M) such that
for all § > O,

Px‘{r,,u |: sup |e(s)fl =6

0<s<T

1 -
Be’j| = 8_2K||f||ooe "

(b) For P, , almostall w e 2,

limsup — Iog( sup |g,(s)f|) < _}

t—00 0<s<T 2

(ii) For PY . dlmost all w e  the function ¢ (as defined in Proposition 3.5) is
an asymptotic pseudotrajectory for .

The proof of (i) isquite technical and is postponed to section 5 for the reader’s
convenience. The second assertion follows from (i) combined with Proposition
3.5.

3.3. Limit setsof {u;} are attractor free sets

For every continuousfunction¢ : Ry — P, (M) (for instancethe function defined
in Proposition 3.5 (i)) the limit set L(¢) of ¢, defined in analogy to the omegalimit
set of atrajectory, isthe set of limits of convergent sequences ¢ (t), ty — oo. That
is

L{¢y = ()¢, oo)

>0

where A stands for the closure of A in Py, (M).

A subset A C P, (M) issaid to beinvariant (respectively positively invariant)
for W if U, (A) C Aforall t € R (respectively ¢ > 0).

Let A be an invariant (positively invariant) set for . Then ¥ induces a flow
(semi-flow) on A, W|A = {¥;|A}seT, (WithT = R foraflowand T = R, for a
semi-flow) defined by taking the restriction of {¥;} to A. Thatis (V|A); = ¥, |A.

Given aninvariant (positively invariant) set A, aset K C A iscalled an attrac-
tor (in the sense of Conley (1978)) for W|A if it is compact, invariant and has a
neighborhood W in A such that

lim disty, (W, (1), K) = 0
—0o0

uniformly inpu € W.
An attractor K C A for W|A which is different from ¢ and A is called proper.
The basin of attraction of attractor K C A for W|A isthe open set (in A)

B(K,W|A) = (€ A @ lim disty(¥: (). K) = 0).

If B(K, W|A) = Athen K issaidtobeaglobal attractor for W|A. To shorten nota-
tionwelet B(A) = B(A, ). Anattractor free setisanonempty compact invariant
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set A C Py, (M) withthe property that W| A hasno proper attractor. Equivalently, A
is anonempty compact connected invariant set such that W|A isachain-recurrent
flow (Conley, 1978). Theimportance of attractor free setsisgiven by thefollowing
theorem due to Benaim and Hirsch (1996). For more details on attractor free set
and their relation with asymptotic pseudotrajectory we refer the reader to Benaim
(1999).

Theorem 3.7. Thelimit set of an asymptotic pseudotrajectory is attractor free.

Combining Theorem 3.6 with Theorem 3.7 easily implies

Theorem 3.8. For P, , almost all w e Q the limit set of {u, (r, i, w)}i=0 isan
attractor free set of .

Among the useful consequences of Theorem 3.8 isthe following :

Proposition 3.9. Let L C P, (M) be an attractor free set for ¥ and A € P, (M)
an attractor for W. If L N B(A) # @ then L C A.

In particular, if L = L({u(r, , w)}) denote the limit set of {wu, (r, i, w)}i>o0
theevents {L N B(A) # ¥} and {L C A} coincide.

Proof. If L N B(A) # @ invariance of L makes L N A a nonempty attractor for
W|A. Therefore L C A. O

The following corollary of Theorem 3.8, although a little bit formal, will be
quite useful in the forthcoming sections.

Corollary 3.10. Let (E,d) be a metric space, ¥ : E xR — E a flow on E
and G : P,(M) — E a continuous function. Assume that G o ¥; = ¥, o G.
Let L = L({s;(r, 1, w)}) denote the limit set of {1, (r, i, w)};=0. Thenfor PY, |

almost all w € ©, G(L) isan attractor free set of W.

Proof. Let ¢ be asin Theorem 3.6. Theorem 3.6, compactness of P, (M) and
continuity of G imply that G(¢) is (Px‘fr, ., dmost surely) an asymptotic pseudo-
trajectory of W. Its limit set is then (Theorem 3.7) an attractor free set for . By
continuity of G and compactness of P, (M) thislimit set coincides with theimage
under G of the limit set of ¢. O

4. Some applications of Theorem 3.8
4.1. A representation theorem

As a first consequence of Theorem 3.8 we obtain the following representation
theorem :

Theorem 4.1. Suppose V,, is C¥, k > 2. Thenfor P,  almost all w €  every

limit point of {u, (r, i, w)};>0 hasa C* density with respect to 1. Moreover, let 1*
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be such a limit point. Then there exists a Borel probability measure p on P, (M)

such that
dﬂ* 672V,L(x)
(x) = / p(du).
dx Py Z(1)

Proof. Let X C P, (M) denote acompact subset of P,,(M). Welet P(X) denote
the set of Borel probability measures on X (X being equipped with its Borel o-
field), P, (X) thetopological space obtained by endowing P (X) with the topology
of weak* convergence and

Cri(x) = {fxn(u)p(dm: P eP(X)}.

Here fX M(w)p(dr) € P(M) denotes the probability measure defined by

( / H(M)p(du)> f= f () f p(dp)
X X

foral f e CO(M).

Themap p — [, I(w)p(dw) isclearly continuous from P, (X) into P, (M).
Hence, by compactness of P, (X), Cr1(X) isacompact subset of Py, (M).

Now set X = P, (M) and C1 = Cy(Py(M)). We claim that C1 contains ev-
ery subset of P, (M) negatively invariant under . Since — by Corollary 3.8 —the
limit set of {u; (. 4. w)}i=0 isinvariant under W for P, amostal w € Q this
concludes the proof of the theorem.

To prove the claim, observe that C; is convex and contains I1(P(M)). There-
fore, by a proof similar to the proof of Lemma3.1 (ii) we get that

dIStS (q>l (M)» Cl) S e*l‘dias (Mv Cl) S 267t

foral u € P(M) andt > 0. Now it is always possible to choose the metric dist,,
on P, (M) such that dist,, < dist, (for instance the metric given by formula (18)).
Hence

dist, (¥ (1), C1) < 2¢”"
foral u € P(M) andt > 0. This provesthe claim. O

Remark 4.2. The measure p in Theorem 4.1 can be very general. For an example
see Theorem 1.1 (ii), (b) (or Theorem 4.11 (ii).)

Remark 4.3. By a successive application of the proof above, one can prove the
dightly stronger result : Let {C,} be the decreasing sequence of compact sets
defined recursively by

Co =Py(M) and Cy41 = Cri(Cp).

Thenfor PV amost al w € Q the limit set of {u; (r, i, w)};>0 iScontained in

X,

Coo = mneN Ca.
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Corollary 4.4. Let

Sy (x, y) = sup(Vu(x) — Vi (y)) — inf (Vi (x) — Vi ().

ueM ueM
Suppose that 8y (x, y) < 1for all x, y € M. Then IT has a unique fixed point p*
and

m e (r, o, w) = p*
11— 00

for PV almostall w € .

X,r )

Proof. Let E1 ={u e M;M): ul=1}and Eg = {u € M;(M) : nl = 0}.
Let I1|E1 denote the restriction of T to E1. Then I1|Eq is C! and for all i €
E1, D(IT|E1) (1) = DIT(w)| Eo.

Let v € Ep. Using the Hahn-Jordan decomposition of v we easily get

[v]
IVo(x) = Vu(»)] < év(x, y);-
It then follows from equation (14) that

|DIT(w) - v| = IVI/SV(x,y)H(M)(dx)H(M)(dy)

foral u € E1 and v € Eg. Therefore the condition 8y (x, y) < 1 makesII|E; a
contraction and the set Co, (defined in Remark 4.3) reduces to a singleton. O

4.2. SHf-interacting diffusions on S”
4.2.1. Symmetric case

In this section we shall analyze a simple class of self-interacting diffusions on
S™ which illustrates the power of Theorems 3.6 and 3.8 beyong Theorems 4.1 or
Corollary 4.4.

Let || - || denote the Euclidean norm on R**1 and let

S"={x e R x| =1}

be the embedded unit n-sphere.
Fora e R, defineVv? : §" x $" — Ras

V&u,x) = Vi(x) = —allu — x||12 = —2a + 2a cos(d(x, u)),

whered(x, y) isthedistanceon §”. For a # 0, one may interpret the self-interact-
ing diffusion associated to V¢ as the self-interacting diffusion on the n-sphere of
radius /[a] associated to the potential sign(a) V™.

For u # —x thevector —VV!(x) € T,S" istangent to the geodesic joining x
to u. It “points’ toward u for a < 0 and outward « for a > 0. Hence, the self-in-
teracting diffusion associated to V¢ is self-attracting for a < 0 and self-repelling
fora > 0.
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In the following we continue to use the notation w, for w,(r, u, w) and & =
e . We let p denote a reference point of S”, for example the north pole p =
©,...,0,1).LetH, : R — Rand A, : R — R bethe functions defined by

Hy(B) = f ’ exXp(—p Cosx)A, (dx), (22)
0
An(,B) = |09 Hn(,B) (23)
: n—1
where An(dx) = (Snx)™ dx (24)

Jo (sinx)"—1dx
Theorem 4.5. Consider the self-interacting diffusion on S" associated to V.

(i) Ifa>—(n+1)/4then Px‘ff)ﬂ almost surely, i, converges toward A.
(ii) Ifa < —(n+1)/4thenthereexistsarandomvariablev € §” suchthat, P)"

L' 7
almost surely, i, converges toward w, ., where

eBr(@(x.v) e—Br@lx—v|?/2
Mv,a(dx) = ————A(dx) =

———F——A(dx),
Za e_ﬁn (a) Za ( )

Z, isthe normalization constant, and 3, (a) is the unique positive solution to
theimplicit equation

dal,(B)+ B =0.

The proof of this theorem is based on a precise description of the dynamics
of W,
Let us begin with the following useful observation :

Lemma 4.6. For any continuous function ¢ : R — R and every v € "

() [on o(x, v)A(x) = [ou @((x, p))A(dx),
(i) [on @({x, v))(x — (x, v)v)A(dx) = 0.

Proof. Let O(n + 1) denote the orthogonal group of R"*+1. For all v € §”, there
existsg € O(n + 1) such that v = gp. Hence

/S Co(fx, v)adx) = /S e((g™hx, i)

and (i) follows from the fact that A isinvariant under g.

Let (v) denotetheleft handterminequality (ii) (tobeproved). Then (v (v), v)
= Oandforal g € O(n+1),invarianceof A under g impliesthat ¥ (gp) = gv¥ (p).
Foreveeyh e On) ={th € O(n+1) : hp = p}, ¥(p) = hy(p). Thisimplies
¥(p)=0and ¥ (v) =0. U

Forpu € P(M)setit = [, x ju(dx). Thenitiseasy toverify that IT(x) = ()

where
exp(—4a )

(x, [

() (dx) = Adx). (25)
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Therefore, W, (1) is solution to the differential equation

dm _
withinitial condition m(0) = i, where
F(m) = —m +/ x TI(m)(dx) (27)
SVL

Lemma4.7. Letm = pv withp > 0and v € ", then
/ x T(m)(dx) = — A/ (4ap) v. (28)

Proof. Writev = gp for someg € O(n + 1) and set 8 = 4ap. Then, A being
invariant under g, we have

/ x Tlom) (dx) = J3 ¥ EPCA L gPIMx)

n Jn &XP(—B(x, gp))A(dx)

_ Jn gx &XP(—B(x, p))A(dx)
Sgn €XP(—B{x, p))A(dx)

From this, using (ii) of Lemma 4.6,

] [, p)p EXP(—x., p>>x(dx>>
I1 dx) =
/ ,F o =g ( Jor XP(— B x, p)A(dx)

= —% log <fs" exp(—p(x, P))/\(dx)) v.

Let (6; : 1 <i < n) bethe spherical coordinates on §", with0 < 6; < 2=
and 0 < 6; < 7 fori # 1. The spherical coordinates are linked to the Cartesian
coordinates by the formulas

X1 = Sing,...sinf2sinby,

X2 = Sing,...Sinf, coshy,

x, = Siné, cosb,_1,
Xpa1 = COSO,.

Fori =1,...,n, let g;(6;) denote therotation of O (n + 1) defined by

gi(0)ex eprfork g {i,i +1}
gi(0;)e; = (cost;) e — (sinG;) ei11 (29)
gi(0eiy1 = (SinG;) e; + (COSH;) ;1.
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Then x = g1(01)g2(02) - - - gn (6,) p and
Adx) = ( [] s 19) -+ dOy,
2<i<n

With ¢, = 27 [pzizy Jo SN 6; d6;.
Using the spherical coordinates, we easily get

/ exp(—B{x, p)r(dx) = in" 16, do,

S)l

This concludes the proof of thislemma. O

Using Lemma4.7 with p = ||m| and v = ﬁ we obtain
dp _
=— A (4a 30

- = P~ Ayap), (30)
dv
— =0. 31
T (31)

Let 8 =4|alp and F,, ,(B) = —B — da A}, (B), then equation (30) (we use the fact
that A),(—B) = —A,(B)) becomes

dp
E - Fn,a(ﬂ)' (32)

Lemma 4.8. Theonedimensional differential equation (32) defined on R under-
goes a (transcritical) bifurcation at the parameter valuea = —(n + 1)/4. More
precisely :

For a > —(n+ 1)/4, 0isthe unique equilibrium of (32) and a global attractor
for (32).

For a < —(n + 1)/4, O islinearly unstable and there is another equilibrium
Bn(a) whichislinearly stable (i.e F,; ,(B.(a)) < 0) and whose basin of attraction
isR; \ {0}.

Proof. By an integration by parts, we get

H,(B) = S[Hn(m — H/(B)]

n H”(ﬁ)) (33)

da
Fn,a(ﬁ):_ﬂ7< +E_ H(ﬂ)

Hy (B)

H/(O) _ H!'(B) HJ(B)
N1-a=Ho <5p < M- ge =1

Weclaimthat : (i) < i (H"(ﬂ)) > 0 and
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It follows from this claim and equation (33) that there exists a positive solution
to F, .(B) = Oif and only if 1+ n/(4a) €]1/(n + 1), 1, which is equivalent
toa < —(n + 1)/4. Therefore, if a < —(n + 1)/4, there is a unique positive
stable equilibrium 8, (a) (0 being unstable) and if a > —(n + 1) /4, Oisthe unique
equilibrium and is stable.

We now pass to the proof of claim. We have

d (W(ﬁ)) )
ap \H,(B)) ~ Ha(B)?

where
F.(B) = //(COSX)Z(COSy — cosx) exp[—B(cosx + cosy) |1, (dx)r, (dy),

and (by Cauchy-Schwarz)

/ —p cosx
F,(B) / (o) x epoosxy e~ PO, (dx)
H,(B)? O H.(B)

— </ (COS)C)2 X M)z > 0

Therefore F,,(8) > F,(0) = 0for 8 > 0 proving the first statement of the claim.
The second assertion is obvious. O

Proof of Theorem (4.5) (i)

Let G : Py (M) — Rt be the mapping defined by G (1) = 2 and let ¥ be the
flow induced by (26). By Corollary (3.10) the limit set of i, is (almost surely) an
attractor free set of W. In the situation a > —(n + 1)/4, (26) admits the origin as
aglobal attractor, hence every attractor free set for ¥ reduces to the origin. This
proves that /i, converges (almost surely) to 0. Thus L({x;}) € G~1(0).

The definition of F (equation (12)) and equation (25) show that G~1(0) is
invariant under W and that the dynamics of W restricted to G~1(0) is given as

UG HO)() = e (u— A) + A

Thisimplies that W|G~1(0) admits A as aglobal attractor. Thus (Proposition 3.9)
every attractor free set reducesto A and, by Theorem 3.8, L({it;}) = A.

Proof of Theorem (4.5) (ii)

Recall that z; = .. Thenforall f € CO(M)

d
f;f= " ( &Gf + TG f + €0 f)
t e
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d . . . .
where &;(s) stands for d—et(s). Applying this equation to the function f(x) =
S
prilx)=x;,i =1,...,n+ 1leadsto
dEl‘ e

! - - - -
o = oy E@ 00 =F) +m+ 0™

where F isdefined by (27) and 5, € R"*1 isthe random vector whose ith coordi-
nateis &, (0) pr;.

Theorigin being linearly unstable equilibrium of F it can be proved, following
the lines of the proof in Tarres (1999, 2000) that

Lemma4.9.

X1,

PYe {w: lim¢ =0)=0.
— 00

Let WU denote the flow induced by the vector field F. By Lipschitz continuity
of F and standard Gronwall’s inequality we deduce that

SUP (|45 — W (G < K(T) sup  sup e (s)pril (34)
O<s<T 0<s<Ti=1,...n+1

where K (T) depends only on F and T. Thus, Theorem 3.6 (i), (b) implies that
almost surely

. 1 - -
lim sup — |09< SUp (1845 — ‘IJs(Cz)II) =-1j2

t—oo I 0<s<T

To conclude the proof we use the following result quoted from (Benaim, 1999,
Corollary 8.10).

Proposition 4.10. Let ¥ = {W}, denote a smooth flow on a finite dimensional
Riemannian manifold E (e.g a finite dimensional vector space). Let A C E bea
compact submanifold invariant by W. Let W4 = W|A denote the flow W restricted
to A and DWA(x) : Ty A — Ty,(x)A the derivative at x of ¥4, Let¢ : Ry — E
be a continuous function. Assume

(@) Thereexists A < Osuchthatforall T > 0

. 1 - -
limsup — Iog( Sup (€4 — ‘I/s(éz)ll) <X

t—oo I 0<s<T

(b) Thelimit set of ¢ iscontainedin A.
(c) Thereisaneighborhood U of A whichisattracted exponentially at ratea < O

by A. Thatis )
. d(‘lft(x),A))
limsuplog| sup ————— | <«
t—>oop 9 (xeB d(x, A) -

(d) B = sup(e, &) < min(0, E(T4))

where £(U4) = lim,_, o 2 log(inf e || DF/ (x) 7|1 isthe expansion rate
of WA,
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Thenthereexistsr > 0 and x € A such that

. 1
limsup = log|¢ — Wrir (X)) < B.
t—oo I
We now apply Proposition 4.10 to the flow W induced by F on E = R*+1,
Equation (30) makes the set

A:{m:pveR"+l:p=pn(a)=%andveS"},

amanifold invariant by W.

Assertion (a) of Proposition 4.10 holdswith A = —1/2.

Assertion (b) : Thelimit set L(¢) of ¢ being attractor free (Theorem 3.8), equa-
tion (30) impliesthat L(z) = {0}, or L(¢) C A. It follows from Lemma 4.9 that
L(¢) C A almost surely.

Assertion (c) : Equation (30) easily impliesthat A attracts a neighborhood of
itself at any exponential rate o €]F, ,(Bu(a)), O[.

Assertion (d) : Clearly, equation (31) impliesthat W/ = Id|A, hence&(¥4) =
0.

Therefore, by Proposition 4.10, there existsarandom variable v € S" such that
amost surely,

. 1 -
“mSUIO; log l1¢; — pn(a)v|l < max(F;, ,(Ba(a)), —1/2).
—00
The end of the proof follows by the same argument asin our proof of Theorem
4.5, (i) : Ononehand L({x,}) isan attractor free set of W restricted to G1(p(a)v)
where (G(n) = ji). On the other hand W|G~1(p(a)v) admits Hy,q 8 aglobal
attractor. Thus L({14+}) = tv.a-

4.2.2. Non-symmetric case

This section generalizes results of the preceding section and illustrates the fact that
certain type of interactions can force {u, } to oscillate.
Fora e Ry andh € O(n + 1), definethe potential V4" : §" x §" — R as

VDl (u, x) = V& (x) = 2a(x, hu) = 2a cos(d (x, hu)).

Here, the vector —VV,f”h(x) € T, S" istangent to the geodesic joining x to & (u).

Theorem 4.11. Suppose h istherotation 2 = g1(«), witha € [0, 27 (see equa-
tion (29)) and consider the self-interacting diffusion on S” associated to V",

(i) Suppose 4a cos(a) + (n + 1) > 0. Then p, convergestoward A almost surely.
(il) Suppose4a cos(w) + (n +1) < 0.
(@) If o # 7 thenthelimit set of {u,} isalmost surely the set
L{uh) = {v(©®) 1 0 €[0,2r[} withv(0)
1

Ty
= 1/0 €’ Wy (tan()s+6),a cos() A5
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where Ty, = 27/ tan(«), fy,q cos(a) 1S defined in Theorem 4.5 and
v(0) = g1(0)er € SV ={v e §": v; =0foralli > 3.
More precisely, there exists a random variable 6 such that
tlLr‘Qo dist,, (u;, v(tan(a) log(t) + 6g)) =0
almost surely.
(b) If @« = 7 then we are in the situation of Theorem 4.5 (ii).
Proof. Inthiscase (withm = pv)

fsn X exp(_4a10<x’ hv)))‘-(dx)

= eXp(—ap . hoidn)

Since there exists g € O(n + 1) such that v = gp, then by invariance of A under
hg,

/Sn exp(—B(x, hg(p))A(dx) = /s exp(—=pB(x, p))r(dx) = H,(B).

Furthermore, by invariance of A under A,
f x exp(—pB{x, hv)r(dx) = h </ x exp(—pix, v))/\(dx)).
n S}'I

Using Lemma 4.7, we get

[s, X eXp(=px, hv))r(dx) i
Jon €XP(—B(x, hv))A(dx) = —A,(B) hv.

If B = 4ap,theODEdm/dt = F (m) yieldsthefollowing system of differential
equations:

& = —B—dafhv,v)ALB) -
% = —%‘ x AL (B)(hv — (hv, v)v).
Setz = vy +iv2 = re'?, then (hv, v) = 1 — r(1 — cosa) and
z’_j = —% x AL (B)[e" — 1+ r?(1— cosa)]z.
Thisimplies
& = % x AL (B)(L— cosa)(1—r?)r
o —  _da Al (B)sina.
jﬁt} ’ 2 l (36)
5 = B —4a(l—r“(1—cosa))A,(B)
o —%‘ x AL (B)r?(1— cosa)v;, for i>3
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Since A, is strictly convex and A/,(0) = 0, we have BA/,(8) > Ofor g # 0.
From thiswe get that theset A = {r = 1, v; = Ofori > 3} isagloba attractor
for (36). The dynamicson A isthus given by

fl_f = —B —4dacosa x AL (B)).

Using Lemma 4.8, we get abifurcation at 4a cosa + (n + 1) =0:

o Ifdacosa + (n+ 1) > 0,theset A’ = AN {B = 0} isaglobal attractor for
(36) and by a now usual argument (the same as in our proof of Theorem 4.5 (i)),
weget u, — A amost surely.

elfdacosa +(n+1) < 0,theset A” = AN {B = B,(acosa)} isaglobal
attractor for (36). The dynamics on A” isthus given by

a9 da A (B(acosa)) sin tan
—_—= a o o= o,
dt Bu(acosa) "

since 4a cosa x A, (B, (a cosa)) + By (a cosa) = 0.
Asin the proof of Theorem (4.5) (ii), we use the shadowing Proposition 4.10
to prove that there exists 8 < 0 and arandom variable 6p such that

_ Bn(acosa)

” v(tan(a)t + 6p)

& ) <B (37)

. 1
limsup - log <
t—o0 I
almost surely.

To finish the proof, the knowledge of the dynamicson A” is not enough and we
have to analyze the dynamical system on M (M) x R" defined by

{Z—‘; = iv—i—l:I(m) (39)
dn = F(m)
where

flGn)(dx) = — SPCAalxhm) (39)

fsn eXp(_4a<y’ m)))‘-(dy)

Theorem 3.8 implies that L({u;}) x A” is an attractor free set for the flow
induced by (38)(on P, (M) x R") and the dynamicson L({u,}) x A” isgiven by

o _
{dt v+ 7 (0) (40)

= = lana

where 7(0) = (v(6),a cos(a))- NOte that 7 (0) is 2 -periodic. The general solution
to (40) can be written

vy = eit I:f(; esn(tal’l(a)s + 90) ds + UO:I (41)
6, = 6p+ttana
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Let o (s) = (s + 0) and T, = 27t/ tan(x). Then,
t t+Ty
Viyr, = e (T [ f ' g, (tan(ar)s) ds + vo + f e g, (tan(a)s) ds]
0 t
Ty
= ¢ (HT0) [e’v, +é / e’ gy (tan(e)s) ds}
0

Ty
—e¢ o v + e Ta f e’ g, (tan(a)s) ds.
0

Let
v(6o) =

To
o 1/(; e (tan(a)s + o) ds.

Thenforalr e R
Vet — V(B0) = e~ (v, — v(bp)).

Thisimpliesthat for all n € N
V_n1, — (B0) = "1 (vg — v (o).

Suppose now that (vo, Wu(@o)) e L({ju;}) x A”. Since L({u,}) x A” is

compact and invariant in P, (M) x R" , v, is a probability measure for al t € R
and we must have vg = v(6p). Then v, is T,-periodic and for al ¢ € [0, T,

t
v =e"! [v(@o) +/ e’ g, (tan(a)s) ds:|
0

et [ [T
= / e’ g, (tan(a)s) ds + ele /
t 0

ela —1 |

t

e’ g, (tan(a)s) ds:|

1

T, /
=1 / e’ g, (tan(a)s) ds +/ eS_HTO‘ngO(tan(oc)s) ds:|
ele —1 1), o

1 t+Ty

- AT,
= / es_’ngo(tan(a)s) ds + /
t T,

ela —1 |
= v(tan(a)r + 6o).

e’ g, (tan(ar)s) dsi|

a

Thisimplies L ({u;}) = {v(0) : 6 € [0, 27 [} amost surely. Thiseasily impliesthe
existenceof acontinuousfunctiony : R,y — Rsuchthatlim,_, o dist,, (1, v(¥1))
=0.SinceG : P(M) - R"; m — m isuniformly continuous,

_ Bn(acosa)
! 4q

lim ‘,u
—>00

Equation (37) combined with (42) implies

v(yp)| = 0. (42)

lim Jju(y:) — v(tan() log(r) + 6o)ll = 0.

This concludes the proof of the theorem. O
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4.3. Salf-interacting diffusions on §t

Let V(u,x) = V(x —u), where V : R — R isa2r periodic function and
Js1 V(x) M(dx) = 0 (x being the normalized L ebesgue measure on St~ 10, 27]).
We can write its Fourier decomposition as :

V(x) =2 (axcostkx) + by sin(kx)) = Y cpe’™, (43)
k>1 keZx
where
C_k=Cr=ay+iby = / V(x)et** A(dx), (44)
Sl

for k > 1. Throughout this section we furthermore assume the existence of n € Z*
such that ¢ = Ofor k| > n. Let u € M(S1) and

I g =Z =Xk +iyp = /Sl e p(dx), (45)
for k > 1. We then have
Vux) = Z crzee ™. (46)
kelZ*

Let G : Py (SYH — C", w > (z1, ..., z0).G iscontinuous and IT(p) = (G (w)),
where

I(z)(dx) = —exp|: 2Y " aue :| r(dx), (47)
keZ*
7k = zx and
Z(x) =/ [ 2Y " aue ] A(dx). (48)
keZ*

Let ¥ : C" x R — C" betheflow induced by the differential equation

dzx _ —7 +/ e T (z) (dx). (49)
dt 51

We then have
GO‘IJI:‘BIOG. (50)

Note that A (respectively 0) is an equilibrium for W, (respectively for v,),i.e
TT(A) = A (respectively T1(0) = 0).

Theorem 4.12. (a) If thereexists 1 < k < n such that ¢, < —1/2, then P

[lim; ooy =A] =0.
(b) Ifforeveryl <k <n,a; > —1/2,then P

xru

xru[llmlﬁoo M = )\'] > 0.
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Proof of Theorem 4.12 (a).

Asfor Lemma4.9, we only have to study the stability at 0 of theflow W, . It iseasy
to see that

- / ) ) = (L 2002+ O(2ID),
S

2 2
where [|z[|© = > 14 <, lz&|*. Hence

Pl e —> <P

X, T

[G(u) — O] =0.
Proof of Theorem 4.12 (b)

The proof is a consequence of the following general result proved in (Benaim,
1999) Theorem 3.7.

Proposition 4.13. Let ¢ = {¥,} denote a continuous flow on a metric space
(E,d). Let {z;} bea E-valued stochastic process with continuous paths defined on
a probability space (2, F, P) and adapted to afiltration {F;, r > 0}. Assume that

t+T
Fi 5/ r(s, 8, T)ds
t

for some function » > 0 such that f0°° r(t, 8, T)dt < oo.

Let A C M be an attractor for W with basin of attraction B(A) and U an
open set with compact closure U C B(A). Then there exist numbers §, 7 > 0
(depending on U and W) such that for all + > 0

P|: sup ||Zt+s - \ps(Zt)” >46
0<s<T

o
P[tlim d(zs, A) =0] > (1—/ r(s, 8, T)ds) P[3s >t .z, € U]
— 00 t
Forwe Q,r >0andu € P(M) set

t
B(t, w) = _1 </ Vi(w, — wg)ds + r/ Vi(w; — u)u(du))
t+r 0

= _VV/L[(V,/L,w)(wl)'

Let B = {B;};>0 denote astandard one dimensional Brownian motion starting at O.
Welet F; = o{B; : s <e'}. Let {6;) bethe solution to the stochastic differential
equation

do, = dB, + B(t,0)dt

with initial condition 6g = x € [0, 27[, X, = 6, mod 27 € S and
it = G(Me’ (rv l'l’v X))

Asinexample (2.4) thelaw of {X,}is P}, ,.
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We shall now apply Proposition 4.13 with ¥ the flow induced by (49) An esti-
mate similar to (34) combined with Theorem 3.6 () proves that the assumption of
Proposition 4.13 holds with

1 —t
r6,8,T) = 0™,

The condition a; > —1/2 makes the origin an attractor for W. Therefore by Prop-
osition 4.13
Plz; > 0 > (1—0( H))P@Es >t iz € U)

where U is asufficiently small neighborhood of the originin C”.

Let A(U,t) ={w € Q: G(us(r, u, w)) € U}. By Girsanov’s formula

Plz; € U] = E[M(e)1peAw.e)]
with
t 1 t 2
M(t) = exp [/ B(s,x + B)dBs — E/ B(s,x + B) ds]
0 0

Let Qo = {w €  : w(0) = 0}. The mapping w € Qo — G(u(r, u, w))

being continuous, A(U, ¢") is an open subset of ¢ which is clearly nonempty

provided ¢ is large enough. Therefore P[B € A(U, e')] (the Wiener measure of
A(U, ")) is positive. Hence P[z; € U] > Oand P[lim,_.» z; = 0] > 0. O

We conclude this section with a result giving sufficient conditions (on «; and
b;) ensuring amost sure convergence of ., toward A.

Theorem 4.14. Supposethat for all i, b; = 0 and

(@ foralli,a; > 0Qor,
(b) foralli,aq; <Oand} ;a; > —1/2.

Then, PY

X1,

almost surely, u; converges toward A.

Proof. Without loss of generality we assumethat a; # Oforal 1 <i < n (Oth-
erwise it would suffices in our proof to suppress the equations corresponding to
a; = 0.) When b; = Ofor al i, we can rewrite (49), with z; = xx — iy :

dxi _ x S5 cos(kx) exp[—43"'i_q a;j(x; cos(jx) + y; SIN(jx))]x(dx)
dt S exp[—4 3"} ax(x cos(kx) + yx Sin(kx))]A(dx)
dyr Js1sinkx) exp[—4 37"y a;(x; €oS(jx) + y; Sin(jx))]r(dx)
R T el 4y, ar (ux cos(kx) + vg SNGkx))]A(dx)

Leta, = 8;{04,3, with e, = ay/|ax| and a,g = |a|, x, = 20xg, y, = 20y, and let
v denote the probability measure whose density with respect to A is

Z—: exp[— Z exog (x;, cos(kx) + yy. sin(kx))]

(x) = ;
COHWLY) =

where H (x’, y") isanormalization constant.
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When g, = ¢ for all k, it isnot hard to verify that 7/ = (x’, y’) is solution of a
gradient ODE, with potential

W(z) = IZ11%/2 + e log(H (2)).

A classical computation showsthat the gradient of log(H ) vanishesat theorigin
and that the Hessian of log H at 7’ is the covariance matrix under v of the vector

Y (x) = (o cos(kx), o SIN(kX))k=1,....n-

If e = 1, W isthen convex with aglobal minimum at the origin. If e = —1:

2 ’ _ 1— 2 _ 2 _ 2
(DWW (Z)v, v) = 2||v|| (v, Y (x))"v(dx) (v, Y (x))v(dx)

[Ell% (% - / ||Y<x>||2v<dx>) = ||v||2<% - ;af).

Thisprovesthat W isconvex with aglobal minimumeat theoriginprovided Y ", a; >
—1/2. Under these conditions the origin is a global attractor of W. Therefore by
Proposition 3.9, G (u«;) — 0 amost surely (because G (1,) isan asymptotic pseu-
do trajectory of W). Hence L{u,} isan attractor free set for W restricted to G ~1(0).
Therefore u; — A amost surely. O

v

Remark 4.15. Note that Corollary 4.4 impliesthat if

> lail + kil < 1/8
i

then u, converges aimost surely toward A. almost surely
Inthe particular casewherefor dl i, b; = 0 and al the q;’s havethe same sign,
this condition is weaker than the one given in Theorem 4.14.

5. Proof of Theorem 3.6
5.1. Guideline for reading the proof

This section is devoted to the proof of the estimate given by Theorem 3.6 (i). To
achieve this goal we adopt the strategy introduced in Métivier and Priouret (1987)
in the framework of stochastic approximation and already used in Benaim (1997)
for analyzing vertex reinforced random walks. The key ideaisto rewrite g, (s) f as

L,H—S
A
/ Hu Q,uu f du
e

t u

where 0, “theinverse” of — A, satisfies

—AuQuf=rf-Twf
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The proof isdivided intwo parts. Thefirst part (section 5.2) introduces Q,, and
contains severa preliminary estimates. The second part (section 5.3) concludes
the proof. We encourage the reader to look at section 5.3 before reading section
5.2 for understanding the general idea of the proof and the motivations behind the
estimates of the section 5.2.

5.2. Preliminary estimates

Let L2 = L2()) denote the space of Borel rea valued functions f : M — R
such that fM | £ (X)|2A(dx) < oo. Given i € P(M), welet (-, -), denote theinner
product on L2 defined by

(g = /M FO8(OT(w) (dx)

and || - ||2,, the associated norm where we recall that IT(u)(dx) = UZZ(V% Aldx).
Note that since V is bounded and [|V,llo < IVllco When p € P(M), L? =
L?(1) = LA(TI(w)).

Given i € P(M), recall the second-order differential operator A, = %A -
(VV,, V) and denote by D?(w) its domain in L2 : D?() isthe completion in L2
of the C*° (for example) functions f for the norm

I f D2y = I f 2w + 1AL fll2,p-

Note that the norms || - [ pz(,,, are equivalents (since [VVy oo < [VV]loo < 00).
Thisimplies D2(u) = D?(1) = D2.
For every f € D?,

(fs Aufp = — /M IV £)[IPTL () (dx) < 0.

The spectrum of —A, is thus contained in [0, oo), 0 being aways an eigenvalue
with eigenvector 1 since A, 1 = 0. Moreover, by (53) below, the spectrum of A,
isactually contained in {0} U [k, co) for some« > 0. The non-positive self-adjoint
operator A, on D? admits a spectral decomposition A, =— f[o,oo) udE, where
E, isaresolution of identity. Denotethenby Q, = f]o,oo[ u~1dE, theinverse of
—A,, that satisfies

VieL? Auo0Qu(f)=—Kuf, (51)

and

VfeD? QuoAu(f)=—Kuf. (52)
where K, : L? — L2 isthe projection operator defined by Kuf=f-wf=
f—(f, 1), (cf. Yoshida, 1968, Fukushima, 1980).

Let P* = (P}"),. o denotes the semigroup of the diffusion with generator A,,.
Then P/ = [ ¢ “/dE,. Hence P/ is the exponential ¢/4» in the sense of self-
adjoint operatorsand & P/ = P/'A,, = A, P'. Foreacht > 0, P/ maps L? into
itself and is self-adjoint with respect to (-, -) ;.
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It iswell known and classical (cf. e.g. Aubin, 1982 or Hebey, 1999) that there
exist, on the compact manifold M, both a spectral gap and a Sobolev inequality in
the sense that, for some constants a, b, ¢ > 0 and every smooth f on M,

/M 2 - ( /M fd/\>2 <a /M IV £ 1%d2

(n—2)/2
</fzn/<n—2>dk) < b/ fzdk+c/ IV £11%dx.
M M

Since ||V, lloo < IV lloo for u € P(M), simple perturbations arguments, using

in particular the fact that

2 1
/ P2 — ( / fdk) -3 f 1) = FO)Prldn)(dy),
M M MxM

show that the two precedings inequalities also hold with () instead of A and
with constants a, b, ¢ > 0 now also depending on ||V llco < IV |lco-

These inequalities in turn imply standard semigroup estimates on (P,")ZZO
(cf. Davies, 1989, Bakry, 1994) of the form

and

1P/ (K Pllz < e NKy fllzp. t>0 (53)

and
IPF (oo < Ct7"2| fllz, O0<t<1, (54)

for somex > 0and0 < C < oo and every f € L2. (The fact that (54) also
holds when n = 1, 2 may be obtained working with Nash or logarithmic Sobolev
inequalities asin Davies, 1989). It followsin particular from (53) that

iswell defined (in L?) for al f € L2.
The next crucial lemmabounds Q,, f and VQ,, f in terms of the L> norm of
f.
Lemmab5.1. Thereexists K > 0 (independent of 1) such that
104 flloo < K|l flloos

for all f € L*. Furthermore, if fissay C*®, Q. f € ctand

IVOuflloo = Kl fllco-
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Proof. To provethefirst inequality, it isenough to bound f(;’o | P (K ) llsodt by
K| flloo forany f in L°°. Using successively (54) and (53),

/0 1P (K P)lloodt < 2|| flloo + /0 I Py (P} (K ) lloodt
< 2| fllc +C /0 1P (K ) 2, udt (55)

o0
<2 fllcc + CIIKu fll2p fo e /¥ dt

sothat |Qu flleo < K|l flleo Where K > O dependsonly on M and || V|| .
Toreach asimilar inequality for VQ,, f, onehasto complete (53) and (54) with
the gradient estimate
IVP! flloo < = 1 flloes O<1=2, (56)
\/; .

for some D > 0 and every f. Inequality (56) for the heat kernel on M is awell
known consequence of the Li-Yau estimates in manifolds with Ricci curvature
bounded below (Li-Yau, 1986). That it also holdsfor (P/*), ., under some regular-
ity on the Hessian of V,, may be shown along the same lines, or by means of the
abstract I, criterion of Bakry, 1994 (cf. Ledoux, 1998) that easily handles genera-
tors of the form A + drift. Specifically, the constant D in (56) only depends on a
lower bound of the Ricci curvature on M and the Hessian of V.

Theinequality |VQ, fllcec < K|l flloo Will follow, by dominated convergence,
from the inequality

o0
/0 IVP} flloodt < K|l flloo

for f in C*°(M) for example (showing by the same way that Q,, f € cl(m)).
The proof follows the same lines as before : One may write together with (56), for
every f € C®(M),

o) 2 00
/O IV PP flloodt = /O IV Y flloodt + /0 IV P, Flloodt

2 di > I pht
< DIl /0 T+ /0 IV PEPE (K ) oot
o0
< 2V2D||fll + D/O IIP,'il(KMf)Iloodt
and the conclusion follows by the same argument as in (55). The proof of Lemma
5.1 isthus complete. O

Remark 5.2. An alternate proof of Lemma5.1 may certainly be provided by esti-
mates on the Green function of open setsin R” asin Aubin (1982) for the case of
the Laplace operator. The preceding proof gives perhaps a better way to follow the
dependence of the constant K upon the potential V.
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Given two Banach spaces X’ and Y we let L(X, )) denote the Banach space
of bounded linear operators from X" into ), equipped with the operator norm. For
f e Xwelet Lr(X, V) denote the closed subset of £L(X, ))) consisting of op-
erators A such that Af = 0. Setthen E = L£1(D?, L?), F = L1(L? D?) and
G = L£1(D?, D?) wherewerecall that D? isthe domain of A, (its definition being
independent of ).

Lemmab5.3. For every i € P(M),wehave A, € E,Q, € FandK, € G.

Proof. The only things we have to prove are the facts that A, : D? — L? and
0, : L? — D? are bounded.
A, isobviously bounded since for any f € D2,

AL Sl = ILfIp2gu)-

And Q,, isalso bounded sincefor any f e L2,

1
191 Ip2quy < A4 DIf 2 O

In the following Lemmas 5.4 t0 5.6, 1, isdefined asin (19).

Lemma5.4. (i) t — A, isaC! map fromR™ in E and its vector derivativeis

the operator
d

SA ==
"™ r 4t

(i) t = K, isa C! map fromR* in G and its vector derivative is the operator
defined by

(VVy, = VVyn), V). (57)

(5 Ku) s =ct. 5®)

for all f € D?, where

ct, f)= /M S (dx) — /M S x)A(dx) /M vy (dx)

and )
v(dx) = r—H(Vw(z)(X) -V (X))H(M:)(dX)~

Proof. (i) Writer — A, asthe composition of the three following mappings :
Hy Rt — Rf x CY(M), Hp : R} x CY(M) — CY(M) and H3 : CY(M) — E

defined by
] t_, }/ : t_’ ‘/w(s) S .

Ho(s, W) = sW, and H3(W) = 3A + L(W) where L(W) = —(VW, V). Then
Ay, = HzoHpo Hy(2). Itiseasily seenthat the mappings H» and L arerespectively
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bilinear continuous and linear continuous, hence C*°, and that Hy is C* with vector

derivative at ¢ 1
Hi(t) = <_m, Vw(t)> )

Assertion (i) now follows by application of the chain rule.
The proof of (ii) issimilar. Details are | eft to the reader.

Lemmab.5. ¢+ Q,, isaC! mapfromR* in F, with vector derivative

d d d
EQ/M = (dl KIM + Qﬂtd lh) th (59)

Proof. Let L : R* x F — G, (t, Q) = QA,, + K,,. Themap L is C* by
Lemma54and (t, Qu,) satisfiesby (52) theimplicit equation L(z, Q,,,) = 0. Set
Ly=2 70 L, 0.,)-Then L1 € L(F, G) istheoperator defined by L1(B) = BA,,.

Let L2 € L(G, F) be defined by L>(C) = CQ,,,. Sincefor dl C € F and
B € G,C1 = B1 = 0, (51) shows that L, is the inverse of L. Therefore by
application of the implicit functions theorem in Banach spaces, themap ¢ — Q,,,
is C1 and its derivative is given as

d (LN d d
EQW——(@) o (S0t

d d
= dt K,ut + Q,ut dt I/«t Ql/’«t g

Lemma 5.6. Thereexistsa constant K’ such that for everyr > 0 and f € D?

|5 0us] = 171

Proof. Put C1 = 8||V e and C2 = 2||VV |- It follows from Lemma 5.4 (i)
and(ii) that

PN
dt Kt

2 IVVIellV flleo = < IVAI
r—‘,—t oo o0 +t . (o o]

4 C
| K] = Vi = Vi ool llow = -2 1l
dt r+t r+t

Hence, by Lemma5.5 and Lemma 5.1

|7l < H(dt K )0t |+ [0n (Gan) 0t
< 10wl + K (5 ) 2 s

r+t
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5.3. Proof of Theorem 3.6

To shorten notationwe set A, = A;, Q,, = Q; ad K, = K;.
Let F: Rx M — R, (¢, x) — F;(x) beClinthetimevariableand C2 inthe
space variable. By 1t0’sformula,

t

t
F/(X,) — Fo(Xo) = My — Mo + / 0, Fy(X,) ds + / AFy(X,) ds,  (60)
0 0

where M, isamartingale with quadratic variation (see remark 2.2)
t
| 1 E ol as.

Let f € C2(M) and F,(x) = 7 Q, f (x). Equations (20) and (51) yield

et ts ¢
&) f = / Mdu = _/ Ay Fy(X,)du.
el u e

Let T > 0. Using 1t0's formula (60), we get for any positive r and any s € [0, T1,
619 f =616V f +E2() [ + () f + 616 f,

with,

1 1 1
6150 f = =y Quree f (X) + = Qu f(Xer)

gtz(s)f:_/e COuf X

t le

elts i X
gg(s)f:/t Mdu

u

eds)f = M), — M),
where Mtf — le is amartingale with quadratic variation
t 1 2
—IVOs f (X)) ds.
1 S

Then, using the estimatesin Lemma 5.1 and Lemma 5.6,

et () f1 < e (I1Qer+s flloo + 1Qer flloo) < 2Ke™ || flloo

el +s

Zofi= [ 1 < ke s
t+s d t+s
I 0 s  du
3 du /
|8t (S)fl = ‘/et 7 du = K /‘:t u(r + u)

< K'e™" | flloo-
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Since the quadratic variation of MEJ;H — Mj is bounded by ¢~ K2|| £ 12, (Lemma
5.1), Doobs'sinequality implies

0<s<T

P[ sup [e}(s) f] > 8

1_
Ber] < ¢ K215 (61)

The proof of Theorem 3.6 (i), (a) now follows directly from the bounds on
lel(f)l,i = 1,2, 3and inequality (61).
To prove Theorem 3.6 (i), (b) remark that (61) implies that

P [ sup e (s) f| = exp(—(1— 5)t/2)} <e K2 f1%-

0<s<T

Therefore, by the Borel-Cantelli lemma,

nmwplmg( sup |s:‘<s>f|) <—(1-9)/2

t—oo I 0<s<T

almost surely, for al 0 < § < 1, and hence

nmwphog( sup |e,4(s>f|> <-1/2

t—oo 1 0<s<T

almost surely. This concludes the proof of Theorem 3.6 (i), (b). O

6. Concluding remarks

We conclude with afew questions.

e Thefirst natural question concerns the behavior of the joint process {X;, u;}.
Suppose, for example, that we are in the convergent situation where u;, — u©
with positive probability (see e.g Theorems 4.4 and 4.5). Then it should be pos-
sible to compare precisely (for large ) the law of {X;1}s>0 with the law of
the diffusion associated to A,,. This question will be adressed in a forthcoming
paper.

e Again in the convergent situation u, — , one could ask for rates of conver-
gence, centra limit theorems, and large deviations properties of w, toward L.
Herewe guessthat stochastic approximationstechniques (seee.g Pelletier, 1998,
1999) could be used with success.

e In general, one could ask for large deviation properties of the measure valued
processes {iis-+s}o<s OF {&r-+s}o<s-

e A chalenging question isto compute/describe the law of the random variable v
in Theorem 4.5 (ii).

e Another challenging question is to investigate the behavior of self-interacting
diffusions living on noncompact manifolds (e.g. RY).
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