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Abstract. This paper is concerned with a general class of self-interacting diffusions {Xt }t≥0

living on a compact Riemannian manifold M . These are solutions to stochastic differential
equations of the form : dXt = Brownian increments + drift term depending on Xt and µt ,
the normalized occupation measure of the process. It is proved that the asymptotic behavior
of {µt } can be precisely related to the asymptotic behavior of a deterministic dynamical
semi-flow � = {�t }t≥0 defined on the space of the Borel probability measures on M . In
particular, the limit sets of {µt } are proved to be almost surely attractor free sets for �.
These results are applied to several examples of self-attracting/repelling diffusions on the
n-sphere. For instance, in the case of self-attracting diffusions, our results apply to prove
that {µt } can either converge toward the normalized Riemannian measure, or to a gaussian
measure, depending on the value of a parameter measuring the strength of the attraction.

1. Introduction

The study of processes with path-interaction or reinforcement has been a very ac-
tive research area in the recent years. For random walks, the original idea is due to
Coppersmith and Diaconis (1987) who have introduced a rich family of processes
called reinforced random walks studied later by Davis (1990), Pemantle (1988a,b,
1992), Benaı̈m (1997), Pemantle and Volkov (1999) among other.

For continuous time processes, Cranston and Le Jan (1995) and Raimond (1997)
have studied a class of self-attracting diffusions and proved the almost sure con-
vergence of these processes (see also Norris, Rogers and Williams (1987), Durrett
and Rogers (1991) and Cranston and Mountford (1996)).

In this paper we are concerned with a general class of self-interacting diffu-
sion processes. These are continuous time stochastic processes living on a compact
Riemannian manifold M which can be typically described as solutions to a sto-
chastic differential equation of the form
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dXt = dWt(Xt )− 1

t

(∫ t

0
∇VXs (Xt )ds

)
dt

where {Wt } is a Brownian vector field on M and Vu(x) a “potential” function.
This type of equation is similar to the SDE’s considered by Cranston and Le

Jan (1995), or Raimond (1997). The main difference is that, here, the drift term
depends on the normalized occupation measure

µt = 1

t

∫ t

0
δXs ds

of the process, rather than the occupation measure
∫ t

0 δXs ds.
The main goal of this paper is to give a systematic treatment of this class of

processes and to describe with a great deal of generality the asymptotic behavior
of {µt } as t → ∞.

1.1. A motivating example

Before entering abstract considerations we describe here a simple example and
present some of our results. Let V : R → R be a smooth 2π -periodic function,
{θt } a solution to the SDE

dθt = dBt − 1

t

(∫ t

0
V ′(θs − θt )ds

)
dt (1)

and Xt = θt mod 2π ∈ S1 where S1 = R/2πZ denotes the flat 1-dimensional
torus.

To investigate the long term behavior of {µt } we introduce the (random) set
L({µt }) consisting of all the limit points of {µt } (for the topology of weak* conver-
gence). By compactness of S1 and Prohorov theorem, L({µt }) is (almost surely) a
nonempty compact set. It is intuitively clear that L({µt }) should depend crucially
on the shape of V.

We shall prove in section 4.3 the following results :

Theorem 1.1. Let c ∈ R, φ ∈ [0, 2π [ and V (θ) = 2c cos(θ + φ).

(i) Suppose a = c cos(φ) ≥ −1/2. Then {µt } converges almost surely (for the
topology of weak* convergence) toward the normalized Lebesgue measure on
S1 ∼ [0, 2π [, λ(dx) = dx

2π .

(ii) Suppose a = c cos(φ) < −1/2. Then there exists a constant β(a) such that
(a) If φ ∈ {0, π}, then there exists a random variable θ ∈ [0, 2π [ such that
{µt } converges almost surely toward the measure

µa,θ (dx) = eβ(a) cos(x−θ)∫
S1 eβ(a) cos(y)λ(dy)

λ(dx).

(b) If φ �∈ {0, π} let {ν(θ)}θ∈S1 denote the family of probability measures on
S1 defined by

ν(θ) = 1

e2π/ tan(φ) − 1

∫ 2π/ tan(φ)

0
esµa,(tan(φ)s+θ)ds.
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Then there exists a random variable θ ∈ [0, 2π [ such that for all continuous
function f : S1 → R

lim
t→∞ (µtf − ν(tan(φ) log(t)+ θ)f ) = 0

with probability one. Here µf stands for
∫
M

f dµ.

In order to interpret Theorem 1.1, observe that

V (θ1 − θ2) = 2c cos(θ1 − θ2 + φ) = −cd2(θ1 + φ, θ2)+ 2c

where d(θ1, θ2) = |eiθ1 − eiθ2 | is the distance on S1 (viewed as a subset of C)
between θ1 and θ2. Therefore (1) can be rewritten as

dθt = dBt + cW ′
t (θt )dt

where Wt(α) = 1
t

∫ t

0 d2(α, θs + φ) ds and W ′
t (α) = ∂Wt (α)

∂α
.

When φ = 0, Wt(α) is nothing but the temporal mean square distance from α to
the trajectory {θs : 0 ≤ s ≤ t}. If we furthermore assume that c < 0 (respectively
c > 0) we then have a simple model of self-attracting (respectively self-repelling)
process. Theorem 1.1 exhibits the critical value c = −1/2. For c < −1/2 the
“attraction” is strong enough to counter the effect of the Brownian motion and the
empirical occupation measure converges almost surely to a Gaussian distribution,
while for c ≥ −1/2 it behaves like those of a Brownian motion.

If we now suppose thatφ �∈ {0, π} and that there is enough attraction (i.e c cos(φ)
< −1/2) the bias term induced by φ forces µt to circle around and the limit set of
{µt } is a “circle” of measures {ν(θ)}θ∈S1 .

The next result partially generalizes Theorem 1.1 (i) to arbitrary trigonometric
polynomials :

Theorem 1.2. Let V (x) = 2
∑n

k=1(ak cos(kx)+ bk sin(kx)).

(i) Suppose there exists 1 ≤ k ≤ n such that ak < −1/2. Then µt almost surely
doesn’t converge toward λ.

(ii) Suppose that for all 1 ≤ k ≤ n, ak > −1/2. Then µt converges toward λ with
positive probability.

(iii) Suppose that one of the two following conditions holds
(a) For all 1 ≤ k ≤ n, bk = 0 and ak ≥ 0,
(b) For all 1 ≤ k ≤ n, bk = 0, ak ≤ 0 and

∑
k ak > −1/2.

Then {µt } converges almost surely toward λ.

This last theorem is far from being intuitive. Suppose for instance that V (x) =
−2(1 − cos(x))3. Then the shape of V makes the process self-repelling and one
could expect that µt → λ. However, condition (i) shows that this is not the case
(see also figure 4 below).

Numerical simulations. The following figures have been obtained by numerical
integration of {Xt } over the time interval (0, T ) for T = 1500, using a one step
(Cauchy-Euler) method with a step size of 0.05 and 30000 iterations.
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Figures 1, 2 and 4 represent the density (rescaled in [0, 1]) of µT with respect
to Lebesgue measure. Figure 3 represents, in the plane, the trajectory of the mean
value

∫
S1 xµt (dx) for 0 ≤ t ≤ T .
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Fig. 1. Illustration of Theorem 1.1 (ii)-(a).
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Fig. 2. Illustration of Theorem 1.1 (ii)-(b).
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Fig. 3. Illustration of Theorem 1.1 (ii)-(b).
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Fig. 4. Illustration of Theorem 1.2 (i), with a reppelling interaction, V (x) = −2(1 −
cos(x))3.
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Fig. 5.

1.2. Notation and hypotheses

LetM denote a d-dimensional, compact connected smooth (C∞) Riemannian man-
ifold (without boundary). We let Cr(M), r = 0, 1, . . . ,∞ denote the space of Cr

real valued functions onM,M(M) the space of Borel bounded measures onM, (i.e
the dual of C0(M)) and P(M) ⊂ M(M) the space of Borel probability measures
on M.

Throughout this paper we will assume given a measurable mapping

V : M ×M → R, (u, x) �→ V (u, x) = Vu(x).

The standing assumption on V is :

Hypothesis 1.3. For all u ∈ M , Vu : M → R is a C1 function whose first deriva-
tives are bounded (in the variables u and x).

The existence and basic properties of self-interacting diffusions will be proved,
in section 2, under this standing assumption. However, the main results of the paper
(sections 3, 4 and 5) will be proved under the following stronger assumption :

Hypothesis 1.4. For all u ∈ M , Vu : M → R is a C2 function whose first and
second derivatives are continuous in the variables u and x.

1.3. Outline of contents

Self-interacting diffusions on M are defined in section 2 and their existence is
proved (under Hypothesis 1.3). Section 3 introduces a (deterministic) dynamical
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system associated to a self-interacting diffusion. This dynamical system is a con-
tinuous semi-flow defined on P(M) and obtained by suitable averaging. It is shown
(under Hypothesis 1.4) that the empirical occupation measure of the self-interacting
diffusion is almost surely an asymptotic pseudotrajectory of this semi-flow. We then
rely on results by Benaı̈m (1999) and Benaı̈m and Hirsch (1996) to characterize the
limit set of the empirical occupation measure trajectory as an attractor free set of
this semi-flow. Such a topological characterization provides, in various situation, a
precise description of the limiting behavior of the self-interacting diffusion. This
approach is illustrated in Section 4. We first prove a general result stating that every
limit point of the empirical occupation measure trajectory has a smooth density
and can be represented as a mixture of Gibbs measures. Then we analyze models
of self-interacting diffusions on the n-sphere and derive several results including
Theorems 1.1 and 1.2 above.

2. Self-interacting diffusions

For µ ∈ M(M) we let Vµ ∈ C1(M) denote the function defined by

Vµ(x) =
∫
M

V (u, x)µ(du), (2)

and Aµ the operator defined on C∞(M) by

Aµf = 1

2
,f − 〈∇Vµ,∇f 〉 = 1

2
e2Vµdiv(e−2Vµ∇f )

where 〈·, ·〉, ∇ and , stand, respectively, for the Riemannian inner product, the
associated gradient and Laplacian on M .

Let - be the space of continuous paths w : R+ → M , equipped with the topol-
ogy of uniform convergence on compact intervals. Let B = B(-) denote the Borel
σ -field of-. LetXt be theM-valued random variable defined byXt(w) = w(t) and
Bt = Bt (-) be the σ -field generated by the random variables {Xs : 0 ≤ s ≤ t}.

Let r > 0, µ ∈ P(M) and w ∈ -. The empirical occupation measure of w with
initial weight r and initial measureµ is the sequence {µt(r, µ,w) ∈ P(M) : t ≥ 0}
defined by

µt(r, µ,w) = rµ+ ∫ t

0 δw(s) ds

r + t

where
∫ t

0 δw(s)ds (A) = ∫ t

0 1A(w(s)) ds for every Borel set A ⊂ M . In the follow-
ing we will denote by µt(r, µ) or simply by µt the P(M)-valued random variable
w �→ µt(r, µ,w), (P(M) being equipped with the Borel σ -field induced by the
weak* topology).

Definition 2.1. A self-interacting diffusion associated to V is a family {PV
x,r,µ :

x ∈ M, r > 0, µ ∈ P(M)} of probability measures on (-,B) such that
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(i) PV
x,r,µ(X0 = x) = 1 for all x, r, µ.

(ii) For all f ∈ C∞(M), x ∈ M , r > 0 and µ ∈ P(M)

M
f
t = f (Xt )− f (x)−

∫ t

0
(Aµs(r,µ)f )(Xs) ds

is a PV
x,r,µ-martingale relative to {Bt : t ≥ 0}.

The proof of the following remark is classical.

Remark 2.2. The martingale bracket of Mf
t is given by

[Mf
t ,M

f
t ] =

∫ t

0
‖∇f ‖2(Xs) ds. (3)

Definition 2.3. A family {Xr,µ : r > 0, µ ∈ P(M)} of continuous stochastic
processes on M is called a self-interacting diffusion process associated to V if the
probability law of Xr,µ = {Xr,µ(t)} takes the form

Pν(·) =
∫
M

PV
x,r,µ(·)ν(dx)

where {PV
x,r,µ} is a self-interacting diffusion associated to V and ν denotes the

probability law of Xr,µ(0).

Example 2.4. Let M = T d be the flat d-dimensional torus, T d = Rd/Zd . Lift
V : T d × T d → R to V : Rd × Rd → R by setting V (x, y) = V ([x], [y]) where
[ ] is the quotient map from Rd onto T d.

Now, let θx,r,µ be a solution to the following stochastic differential equation on
Rd {

dθt = dBt − 1
t+r

[
r∇Vµ(θt )+

∫ t

0 ∇Vθs (θt )ds
]
dt

θ(0) = x,
(4)

where {Bt } is a d-dimensional Brownian motion.
Let X[x],r,µ(t) = [θx,r,µ(t)] and let PV

[x],r,µ be the law of {Xx,r,µ(t)}t≥0. It

follows from Itô’s formula that {PV
[x],r,µ} is a self-interacting diffusion, and that

{X[x],r,µ(t)}t≥0 is a self-interacting diffusion process.

More generally, we have the following proposition

Proposition 2.5. There exists a unique self-interacting diffusion associated to V.

Proof. By a theorem of Nash (1956) we can always suppose that M is a subman-
ifold isometrically embedded in RN for some N large enough. Let (e1, . . . , eN)

be the canonical basis of RN . For x ∈ M define Fi(x) ∈ TxM to be the orthog-
onal projection of ei onto TxM and extend the vector field Fi : M → TM to a
smooth bounded vector field Fi : RN → RN having bounded derivatives. Extend
the function V : M ×M → R to a smooth function V̄ : RN × RN → R.
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Observe that for all x ∈ M , ∇Vµ(x) is the orthogonal projection of ∇V̄µ(x)

onto TxM. Hence,

∇Vµ(x) =
N∑
i=1

〈∇Vµ(x), ei〉Fi(x) =
N∑
i=1

〈∇V̄µ(x), Fi(x)〉Fi(x) (5)

for all x ∈ M.

Now consider the following stochastic differential equation on RN

{
dXt =

∑N
i=1 Fi(Xt ) ◦ dBi

t −
∑N

i=1〈∇V̄µt (Xt ), Fi(Xt )〉Fi(Xt ) dt

X(0) = x,
(6)

where Bt = (B1
t , . . . , B

N
t ) is a N -dimensional Brownian motion and ◦d designs

the Stratonovitch differential.
Let (Xt , Bt ) be a (weak) solution of (6) and Px,r,µ denote the law of the process

X. For x ∈ M , X lives in M , therefore Px,r,µ is a probability measure on (-,B)

which obviously satisfies assertion (i) of Definition 2.1. For every f ∈ C∞(RN)

with compact support, Itô’s formula implies that

f (Xt )− f (x)−
∫ t

0
Lµs(r,µ)f (Xs) ds (7)

is a Px,r,µ-martingale relative to {Bt : t ≥ 0} where

Lµf = 1

2

∑
i

Fi(Fi(f ))−
∑
i

〈∇f, Fi〉〈∇V̄µ, Fi〉

andFi(f ) stands for 〈∇f, Fi〉. For all x ∈ M
∑

i Fi(Fi(f ))(x) = ,(f |M)(x), and
〈∇Vµ(x),∇(f |M)(x)〉 = 〈∇Vµ(x),∇f (x)〉.ThereforeLµf |M = Aµ(f |M) and
assertion (ii) of Definition 2.1 is satisfied.

By Proposition IV.2.1 of Ikeda and Watanabe (1981), the existence of a solution
to the martingale problem ((ii) of Definition 2.1) is equivalent to the existence of a
solution of the SDE (6), and the two solutions are having the same law. Therefore,
if we prove existence and uniqueness of the law of the solution to the SDE (6), the
proposition is proved.

Note that there exists a unique solution (Wt , Bt ) to the SDE

dWt =
N∑
i=1

Fi(Wt) ◦ dBi
t : W(0) = x ∈ M. (8)

Let Px be the law of W , it is the law of a Brownian motion on M starting at x. Let
(Ft : t ≥ 0) be the filtration associated to Bt . Let

Mt = exp

(∫ t

0

∑
i

〈∇Vµs (Ws), Fi(Ws)〉dBi
s −

1

2

∫ t

0
‖∇Vµs (Ws)‖2ds

)
, (9)

with µt = 1
t+r

(
rµ+ ∫ t

0 δWs ds
)
.Mt is a (Px,Ft )-martingale and by the trans-

formation of drift formula (see section IV 4.1 and Theorem IV 4.2 of Ikeda and
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Watanabe, 1981), since the equation (8) has a unique solution, the equation (6) has
a unique solution, and its law is given by

PV
x,r,µ = M · Px. (10)

This concludes the proof of the proposition. �
Remark 2.6. (a) Girsanov’s formula (10) shows that PV

x,r,µ and Px (the law of a
Brownian motion on M started at x) are equivalent.

(b) If (u, x) �→ ∇Vu(x) is assumed to be Lipschitz, then standard arguments prove
that (6) has a unique strong solution.

As a consequence of Proposition 2.5 we obtain the following corollary whose
proof is similar to the proof of Theorem IV.5.1 in Ikeda and Watanabe (1981).

Corollary 2.7. (Strong Markov Property). Let {Ft } be a Brownian filtration and
let τ : - → R+ be an {Ft } stopping time. Then for all A ∈ B

PV
x,r,µ(4

−1
τ (A)|Fτ ) = PV

w(τ),r+τ,µτ (r,µ,w)(A)

where 4τ is the shift on - defined by 4τ (w)(t) = w(t + τ(w)).

Remark 2.8. Let {Xr,µ} be a self-interacting diffusion process associated toV.Cor-
ollary 2.7 just means that {Xr,µ(t), r + t, µt (r, µ)}t≥0 satisfies the strong Markov
property.

3. The limiting ODE

The main goal of this section is to show that the long term behavior of the self-inter-
acting diffusion associated to V can be described in terms of a certain deterministic
semi-flow on P(M).

3.1. The limiting ODE

For µ ∈ M(M) and f ∈ C0(M) let µf = ∫
M

f (x)µ(dx) and

|µ| = sup{|µf | : f ∈ C0(M), ‖f ‖∞ = 1}.
We let Ms(M) denote the Banach space (M(M), | · |) (i.e. the dual of C0(M)) and
Mw(M) the metric space obtained by equipping M(M) with the weak* topology.
Recall that the weak* topology is the topology on Mw(M) induced by the family
of semi-norms {µ �→ |µf | : f ∈ C0(M)}. We let Ps(M) (respectively Pw(M))
denote the induced metric space on P(M).

Let 5(µ) be the Borel probability measure defined by

5(µ)(dx) = e−2Vµ(x)

Z(µ)
λ(dx) (11)

where λ is the normalized Riemannian measure on M and

Z(µ) =
∫
M

e−2Vµ(x)λ(dx)
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is the normalization constant. It is well known that 5(µ) is the unique invariant
probability measure of the diffusion process whose generator is Aµ.

Consider now the vector field

F : Ms(M) → Ms(M), µ �→ −µ+5(µ). (12)

Lemma 3.1. (i) The vector field F is C∞ and completely integrable. It then
induces a C∞ flow � : R × Ms(M) → Ms(M) defined by

�0(µ) = µ; d�t(µ)

dt
= F(�t(µ)).

(ii) F is globally Lipschitz with Lipschitz constant L = 1 + 4‖V ‖∞.

(iii) For all µ ∈ M(M) and t ≥ 0

dists(�t (µ),P(M)) ≤ e−tdists(µ,P(M))

where dists(µ,X) = inf{|µ− ν| : ν ∈ X}. In particular,

�t(P(M)) ⊂ P(M) for all t ≥ 0.

Proof. (i). Write

5(µ) = H ◦G ◦ L(µ)

(H ◦G ◦ L(µ))1
(13)

where L : Ms(M) → C0(M), G : C0(M) → C0(M) and H : C0(M) →
Ms(M) are respectively defined by L(µ) = Vµ, G(f ) = e−2f and H(f ) =
f (x)λ(dx). It is easy to see that L and H are linear continuous and that G is C∞.

This proves that 5, hence F , is C∞. Moreover since 5(µ) ∈ P(M), |F(µ)| ≤
|µ| + 1. Hence F is completely integrable and generates a C∞ flow � : R ×
Ms(M) → Ms(M).

(ii). Using (13) it is easily seen that the derivative of 5 at µ is the linear operator

D5(µ) : Ms(M) → Ms(M), ν �→ D5(µ) · ν
given by

D5(µ) · ν(dx) = −2

[
Vν(x)−

∫
Vν(y)5(µ)(dy)

]
5(µ)(dx). (14)

Therefore ‖D5(µ)‖ ≤ 4‖V ‖∞ where ‖D5(µ)‖ = sup{ν: |ν|=1} |D5(µ).ν|.
Consequently

sup
µ

‖DF(µ)‖ ≤ 1 + 4‖V ‖∞ = L.

(iii). For all ν ∈ P(M)

|�t(µ)− ν| = |(1 − t)µ+ t5(µ)− ν + ◦(t)| ≤ |(1 − t)µ+ t5(µ)− ν| + ◦(t).
Then dists(�t (µ),P(M))) ≤ dists((1−t)µ+t5(µ),P(M)))+◦(t). Since P(M)

is convex, µ �→ dists(µ,P(M)) is a convex function. Therefore dists(�t (µ),
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P(M)) ≤ (1− t)dists(µ,P(M))+◦(t). Since x �→ dists(x,P(M)) is convex, the
mapping t �→ dists(�t (µ),P(M)) admits a right derivative, Thus

d

dt
dists(�t (µ),P(M))|t=0 ≤ −dists(µ,P(M)).

This proves the result. �
The preceding lemma shows that the family {�t }t∈R defines a smooth dynam-

ical system on Ms(M) leaving P(M) positively invariant.
However for analyzing the long term behavior of the self-interacting diffusion

associated to V it is more convenient to work with the weak* topology. We then
define a new mapping as follows :

Definition 3.2. The limiting dynamical system associated to V is the mapping
: : R × Pw(M) → Mw(M), (t, µ) �→ :t(µ) given by :t(µ) = �t(µ), where
� is the flow induced by (12).

By Lemma (3.1) : leaves P(M) positively invariant :

∀t ≥ 0, :t (P(M)) ⊂ P(M)

and satisfies the flow property :

:t+s(µ) = :t ◦:s(µ)

for all t, s ∈ R and µ ∈ P(M) ∩�−s(P(M)).
Furthermore,

Lemma 3.3. The mapping : is continuous.

Proof. Claim: Suppose µn → µ in Pw(M) (i.e for the weak* topology). Then
:T (µn) → :T (µ) in Mw(M) for all T ∈ R.

Proof of the claim: For 0 < ε < 1 and µ ∈ P(M) let µε : R → P(M) be the
function defined inductively by

(a) µε(0) = µ.
(b) µε(t) = µε(kε) for all t ∈ [kε, (k + 1)ε[ and all k ∈ Z.
(c) µε((k + 1)ε) = (1 − ε)µε(kε)+ ε5(µε(kε)), for k ∈ Z+,

µε((k − 1)ε) = (1 + ε)µε(kε)− ε5(µε(kε)), for k ∈ Z−. (15)

For r > 0 let Br = {µ ∈ M(M) : |µ| ≤ r}. It follows from (15) that

µε
n(kε), µ

ε(kε) ∈ Br(k) (16)

for all k ∈ Z, where r(k) = 1 for k ≥ 0 and r(k) = 2(1 + ε)|k| − 1 ≤ 2e|k|ε − 1
for k ≤ 0.

Equation (15) can be seen as a Cauchy-Euler approximation scheme for nu-
merically solving the differential equation (12). A basic result on such numerical
methods is that for all T ∈ R : |µε(T ) − �T (µ)| ≤ C(T )ε where C(T ) only
depends on T and L (the Lipschitz constant of F ).
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Let f ∈ C0(M). Then

|(�T (µn)−�T (µ))f | ≤ (|�T (µn)− µε
n(T )| + |µε(T )−�T (µ)|)‖f ‖∞

+|(µε
n(T )− µε(T ))f |

≤ 2‖f ‖∞C(T )ε + |(µε
n(T )− µε(T ))f |.

It is easily seen that 5 : Br ⊂ Mw(M) → Pw(M) is continuous for the to-
pology of weak* convergence. Therefore, (15) and (16) imply (by induction on k)
that limn→∞ µε

n(kε) = µε(kε) in Mw(M) for all k ∈ Z. Hence limn→∞ µε
n(T ) =

µε(T ) in Mw(M) and

lim sup
n→∞

|(�T (µn)−�T (µ))f | ≤ 2‖f ‖∞C(T )ε

for all ε > 0. This proves the claim.
To conclude the proof of the lemma it remains to show that if tn → T then

|(�tn(µn)−�T (µ))f | → 0. This is obvious since

|(�tn(µn)−�T (µ))f | ≤ |(�T (µn)−�T (µ))f | + |�T (µn)−�tn(µn)| ‖f ‖∞
The first term goes to zero according to the claim while the second term is bounded
by | ∫ T

tn
F (�t (µn)) dt | ≤ 2|T − tn|. �

A point µ ∈ P(M) is called an equilibrium if :t(µ) = µ for all t ∈ R, or
equivalently F(µ) = 0. We let E(:) denote the equilibria set of :.

Lemma 3.4. E(:) is a nonempty compact subset of Pw(M).

Proof. The space Mw(M) is a locally convex topological vector space, and the
mapping 5 maps continuously the compact convex set Pw(M) into itself. Hence
by Leray-Schauder-Tychonoff fixed point Theorem, E(:) is nonempty. �

3.2. Asymptotic pseudotrajectories

Let : be as in Definition 3.2. Let distw be a metric on Pw(M). Using the termi-
nology introduced in Benaı̈m and Hirsch (1996), a continuous function ζ : R+ →
Pw(M) is called an asymptotic pseudotrajectory for : if

lim
t→∞

(
sup

0≤h≤T

distw(ζ(t + h),:h(ζ(t)))

)
= 0 (17)

for any T > 0. Thus for each fixed T > 0, the curve

[0, T ] → M : h �→ ζ(t + h)

shadows the :-trajectory of the point ζ(t) over the interval [0, T ] with arbitrary
accuracy for sufficiently large t .

Observe that our definition of asymptotic pseudotrajectories makes an explicit
reference to the metric on Pw(M). However this is a purely topological notion.
More precisely, if distw and distw are two metrics on Pw(M) (inducing the same
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topology) and ζ satisfies (17) with distw then ζ satisfies (17) with distw. This is a
direct consequence of the characterization of asymptotic pseudotrajectories used
in our proof of Proposition 3.5 below.

In view of this fact we are then free to choose any metric on Pw(M). Let
S = {fk}k∈N∗ be a sequence of C∞ functions dense in {f ∈ C0(M) : ‖f ‖∞ ≤ 1}
(with respect to the C0 topology). Define

distw : Pw(M)× Pw(M) → R+

by distw(ν, ν
′) =

∑
k∈N∗

1

2k
|νfk − ν′fk|. (18)

It is well known that distw is a metric and that P(M) equipped with distw is Pw(M).

In the sequel we shall always assume that distw is the metric given by (18).

Given r > 0, µ ∈ P(M) and w ∈ - set

µt = µt(r, µ,w) and ζt = µet (r, µ,w). (19)

Let {εt (s) : t ≥ 0, s ≥ 0} ⊂ M(M) denote the family of measures (depending on
r, µ and w) defined by

εt (s) =
∫ t+s

t

(δw(eu) −5(ζu)) du,=
∫ et+s

et

δw(u) −5(µu)

u
du. (20)

Proposition 3.5. The following assertions are equivalent :

(i) The function ζ : R+ → Pw(M), t �→ µet (r, µ,w) is an asymptotic pseudo-
trajectory for :.

(ii) For all f ∈ C∞(M) and T > 0 limt→∞
(
sup0≤s≤T |εt (s)f |)

) = 0.
(iii) For all f ∈ S and T ∈ Q+ limt→∞(sup0≤s≤T |εt (s)f |)) = 0.

Proof. Let C0(R,Pw(M)) denote the space of continuous paths ν : R → Pw(M)

equipped with the topology of uniform convergence on compact intervals. Let

4 : C0(R,Pw(M))× R → C0(R,Pw(M)), (ν, t) �→ 4t(ν)

be the translation flow defined by 4t(ν)(s) = ν(t + s), and let

:̂ : C0(R,Pw(M)) → C0(R,Pw(M))

be the mapping defined by :̂(ν)(t) = :t(ν(0)). By Theorem 3.2 in Benaı̈m (1999)
a continuous function ν : R+ → Pw(M) is an asymptotic pseudotrajectory for :
if and only if

(a) ν is uniformly continuous,
(b) Every limit point of {4t(ν) : t ≥ 0} is a fixed point for :̂.
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This characterization of asymptotic pseudotrajectories justifies our remark accord-
ing to which the notion of asymptotic pseudotrajectories is purely topological. For,
by compactness of Pw(M) (a) is independent of the choice of the distance, and (b)

is clearly a topological statement.
We shall now verify that ζ satisfies (a) (i.e is uniformly continuous) and that

(b) is equivalent to assertion (ii) of Proposition 3.5.
Let f ∈ C0(M). Taking the time derivative of ζtf gives

dζtf

dt
= et

r + et
[−ζtf + f (w(et ))]. (21)

Therefore |ζt+sf − ζtf | ≤ 2‖f ‖∞|s| for all t, s. Hence distw(ζt+s , ζt ) ≤ 2|s|
proving that ζ is uniformly continuous.

Let LF : C0(R,Pw(M)) → C0(R,Mw(M)) denote the mapping defined by

LF (ν)(t) = ν(0)+
∫ t

0
F(ν(s))ds,

where F is the vector field given by (12). Then (21) implies that

4t(ζ ) = LF (4
t(ζ ))+ εt (·)+ rt (·)

where

rt (s)f =
∫ t+s

t

r

r + eu
(−ζuf + f (w(eu)))du.

Thus |rt (s)f | ≤ 2‖f ‖∞re−t . Therefore by compactness of Pw(M) and continuity
of LF , limt→∞ εt = 0 in C0(R,Mw(M)) if and only if every limit point η∗ of
{4t(ζ )} satisfies η∗ = LF (η∗). That is η∗ = :̂(η∗).

This proves that (i) and (ii) are equivalent. It remains to prove that (iii) implies
(ii).

Let f ∈ C∞(M). Assume f �= 0 and set g = f
‖f ‖∞ . Then for all ε > 0 there

exists fk ∈ S such that ‖g − fk‖∞ ≤ ε. Choose T ′ ∈ Q such that T ′ ≥ T . Then

sup
0≤s≤T

|εt (s)f | ≤ ‖f ‖∞
(

sup
0≤s≤T ′

|εt (s)fk| + sup
0≤s≤T ′

|εt (s)|ε
)

≤ ‖f ‖∞
(

sup
0≤s≤T ′

|εt (s)fk| + 2T ′ε

)
.

Since ε is arbitrary, this proves that (iii) implies (ii). �

From now on, we will assume that V satisfies Hypothesis 1.4. The main result
of this section (from which most of our main results will be derived) is Theorem
3.6 below.

Theorem 3.6. (i) For all f ∈ C∞(M) and every T > 0 :
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(a) There exists a positive constant K (depending only on V and M) such that
for all δ > 0,

PV
x,r,µ

[
sup

0≤s≤T

|εt (s)f | ≥ δ

∣∣∣∣∣ Bet

]
≤ 1

δ2
K‖f ‖∞e−t .

(b) For PV
x,r,µ almost all w ∈ -,

lim sup
t→∞

1

t
log

(
sup

0≤s≤T

|εt (s)f |
)

≤ −1

2
.

(ii) For PV
x,r,µ almost all w ∈ - the function ζ (as defined in Proposition 3.5) is

an asymptotic pseudotrajectory for :.

The proof of (i) is quite technical and is postponed to section 5 for the reader’s
convenience. The second assertion follows from (i) combined with Proposition
3.5.

3.3. Limit sets of {µt } are attractor free sets

For every continuous function ζ : R+ → Pw(M) (for instance the function defined
in Proposition 3.5 (i)) the limit set L(ζ ) of ζ , defined in analogy to the omega limit
set of a trajectory, is the set of limits of convergent sequences ζ(tk), tk → ∞. That
is

L{ζ } =
⋂
t≥0

ζ([t, ∞))

where A stands for the closure of A in Pw(M).
A subset A ⊂ Pw(M) is said to be invariant (respectively positively invariant)

for : if :t(A) ⊂ A for all t ∈ R (respectively t ≥ 0).
Let A be an invariant (positively invariant) set for :. Then : induces a flow

(semi-flow) on A,:|A = {:t |A}t∈T, (with T = R for a flow and T = R+ for a
semi-flow) defined by taking the restriction of {:t } to A. That is (:|A)t = :t |A.

Given an invariant (positively invariant) set A, a set K ⊂ A is called an attrac-
tor (in the sense of Conley (1978)) for :|A if it is compact, invariant and has a
neighborhood W in A such that

lim
t→∞ distw(:t (µ),K) = 0

uniformly in µ ∈ W.

An attractor K ⊂ A for :|A which is different from ∅ and A is called proper.
The basin of attraction of attractor K ⊂ A for :|A is the open set (in A)

B(K,:|A) = {µ ∈ A : lim
t→∞ distw(:t (µ),K) = 0}.

If B(K,:|A) = A then K is said to be a global attractor for :|A. To shorten nota-
tion we let B(A) = B(A,:). An attractor free set is a nonempty compact invariant
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set A ⊂ Pw(M) with the property that :|A has no proper attractor. Equivalently, A
is a nonempty compact connected invariant set such that :|A is a chain-recurrent
flow (Conley, 1978). The importance of attractor free sets is given by the following
theorem due to Benaı̈m and Hirsch (1996). For more details on attractor free set
and their relation with asymptotic pseudotrajectory we refer the reader to Benaı̈m
(1999).

Theorem 3.7. The limit set of an asymptotic pseudotrajectory is attractor free.

Combining Theorem 3.6 with Theorem 3.7 easily implies

Theorem 3.8. For PV
x,r,µ almost all w ∈ - the limit set of {µt(r, µ,w)}t≥0 is an

attractor free set of :.

Among the useful consequences of Theorem 3.8 is the following :

Proposition 3.9. Let L ⊂ Pw(M) be an attractor free set for : and A ⊂ Pw(M)

an attractor for :. If L ∩ B(A) �= ∅ then L ⊂ A.

In particular, if L = L({µt(r, µ,w)}) denote the limit set of {µt(r, µ,w)}t≥0
the events {L ∩ B(A) �= ∅} and {L ⊂ A} coincide.

Proof. If L ∩ B(A) �= ∅ invariance of L makes L ∩ A a nonempty attractor for
:|A. Therefore L ⊂ A. �

The following corollary of Theorem 3.8, although a little bit formal, will be
quite useful in the forthcoming sections.

Corollary 3.10. Let (E, d) be a metric space, :̄ : E × R → E a flow on E

and G : Pw(M) → E a continuous function. Assume that G ◦ :t = :̄t ◦ G.

Let L = L({µt(r, µ,w)}) denote the limit set of {µt(r, µ,w)}t≥0. Then for PV
x,r,µ

almost all w ∈ -, G(L) is an attractor free set of :̄.

Proof. Let ζ be as in Theorem 3.6. Theorem 3.6, compactness of Pw(M) and
continuity of G imply that G(ζ) is (PV

x,r,µ almost surely) an asymptotic pseudo-
trajectory of :̄. Its limit set is then (Theorem 3.7) an attractor free set for :̄. By
continuity of G and compactness of Pw(M) this limit set coincides with the image
under G of the limit set of ζ. �

4. Some applications of Theorem 3.8

4.1. A representation theorem

As a first consequence of Theorem 3.8 we obtain the following representation
theorem :

Theorem 4.1. Suppose Vu is Ck , k ≥ 2. Then for PV
x,r,µ almost all w ∈ - every

limit point of {µt(r, µ,w)}t≥0 has a Ck density with respect to λ. Moreover, let µ∗
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be such a limit point. Then there exists a Borel probability measure ρ on Pw(M)

such that
dµ∗

dλ
(x) =

∫
P(M)

e−2Vµ(x)

Z(µ)
ρ(dµ).

Proof. Let X ⊂ Pw(M) denote a compact subset of Pw(M). We let P(X) denote
the set of Borel probability measures on X (X being equipped with its Borel σ -
field), Pw(X) the topological space obtained by endowing P(X) with the topology
of weak* convergence and

C5(X) =
{∫

X

5(µ)ρ(dµ) : ρ ∈ P(X)

}
.

Here
∫
X
5(µ)ρ(dµ) ∈ P(M) denotes the probability measure defined by(∫

X

5(µ)ρ(dµ)

)
f =

∫
X

5(µ)f ρ(dµ)

for all f ∈ C0(M).

The map ρ �→ ∫
X
5(µ)ρ(dµ) is clearly continuous from Pw(X) into Pw(M).

Hence, by compactness of Pw(X), C5(X) is a compact subset of Pw(M).

Now set X = Pw(M) and C1 = C5(Pw(M)). We claim that C1 contains ev-
ery subset of Pw(M) negatively invariant under :. Since – by Corollary 3.8 – the
limit set of {µt(r, µ,w)}t≥0 is invariant under : for PV

x,r,µ almost all w ∈ - this
concludes the proof of the theorem.

To prove the claim, observe that C1 is convex and contains 5(P(M)). There-
fore, by a proof similar to the proof of Lemma 3.1 (ii) we get that

dists(�t (µ), C1) ≤ e−tdists(µ, C1) ≤ 2e−t

for all µ ∈ P(M) and t ≥ 0. Now it is always possible to choose the metric distw
on Pw(M) such that distw ≤ dists (for instance the metric given by formula (18)).
Hence

distw(:t (µ), C1) ≤ 2e−t

for all µ ∈ P(M) and t ≥ 0. This proves the claim. �

Remark 4.2. The measure ρ in Theorem 4.1 can be very general. For an example
see Theorem 1.1 (ii), (b) (or Theorem 4.11 (ii).)

Remark 4.3. By a successive application of the proof above, one can prove the
slightly stronger result : Let {Cn} be the decreasing sequence of compact sets
defined recursively by

C0 = Pw(M) and Cn+1 = C5(Cn).

Then for PV
x,r,µ almost all w ∈ - the limit set of {µt(r, µ,w)}t≥0 is contained in

C∞ =⋂n∈N
Cn.
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Corollary 4.4. Let

δV (x, y) = sup
u∈M

(Vu(x)− Vu(y))− inf
u∈M

(Vu(x)− Vu(y)).

Suppose that δV (x, y) < 1 for all x, y ∈ M. Then 5 has a unique fixed point µ∗
and

lim
t→∞µt(r, µ,w) = µ∗

for PV
x,r,µ almost all w ∈ -.

Proof. Let E1 = {µ ∈ Ms(M) : µ1 = 1} and E0 = {µ ∈ Ms(M) : µ1 = 0}.
Let 5|E1 denote the restriction of 5 to E1. Then 5|E1 is C1 and for all µ ∈
E1, D(5|E1)(µ) = D5(µ)|E0.

Let ν ∈ E0. Using the Hahn-Jordan decomposition of ν we easily get

|Vν(x)− Vν(y)| ≤ δV (x, y)
|ν|
2
.

It then follows from equation (14) that

|D5(µ) · ν| ≤ |ν|
∫

δV (x, y)5(µ)(dx)5(µ)(dy)

for all µ ∈ E1 and ν ∈ E0. Therefore the condition δV (x, y) < 1 makes 5|E1 a
contraction and the set C∞ (defined in Remark 4.3) reduces to a singleton. �

4.2. Self-interacting diffusions on Sn

4.2.1. Symmetric case

In this section we shall analyze a simple class of self-interacting diffusions on
Sn which illustrates the power of Theorems 3.6 and 3.8 beyong Theorems 4.1 or
Corollary 4.4.

Let ‖ · ‖ denote the Euclidean norm on Rn+1 and let

Sn = {x ∈ Rn+1 : ‖x‖ = 1}
be the embedded unit n-sphere.

For a ∈ R, define V a : Sn × Sn → R as

V a(u, x) = V a
u (x) = −a‖u− x‖2 = −2a + 2a cos(d(x, u)),

where d(x, y) is the distance on Sn. For a �= 0, one may interpret the self-interact-
ing diffusion associated to V a as the self-interacting diffusion on the n-sphere of
radius

√|a| associated to the potential sign(a)V 1.

For u �= −x the vector −∇V a
u (x) ∈ TxS

n is tangent to the geodesic joining x

to u. It “points” toward u for a < 0 and outward u for a > 0. Hence, the self-in-
teracting diffusion associated to V a is self-attracting for a < 0 and self-repelling
for a > 0.
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In the following we continue to use the notation µt for µt(r, µ,w) and ζt =
µet . We let p denote a reference point of Sn, for example the north pole p =
(0, . . . , 0, 1). Let Hn : R → R and Dn : R → R be the functions defined by

Hn(β) =
∫ π

0
exp(−β cos x)λn(dx), (22)

Dn(β) = logHn(β) (23)

where λn(dx) = (sin x)n−1 dx∫ π

0 (sin x)n−1dx
. (24)

Theorem 4.5. Consider the self-interacting diffusion on Sn associated to V a.

(i) If a ≥ −(n+ 1)/4 then PV a

x,r,µ almost surely, µt converges toward λ.

(ii) If a < −(n+1)/4 then there exists a random variable v ∈ Sn such that, PV a

x,r,µ

almost surely, µt converges toward µv,a , where

µv,a(dx) = eβn(a)〈x,v〉

Za

λ(dx) = e−βn(a)‖x−v‖2/2

e−βn(a)Za

λ(dx),

Za is the normalization constant, and βn(a) is the unique positive solution to
the implicit equation

4aD′
n(β)+ β = 0.

The proof of this theorem is based on a precise description of the dynamics
of :.

Let us begin with the following useful observation :

Lemma 4.6. For any continuous function ϕ : R → R and every v ∈ Sn

(i)
∫
Sn ϕ(〈x, v〉)λ(dx) =

∫
Sn ϕ(〈x, p〉)λ(dx),

(ii)
∫
Sn ϕ(〈x, v〉)(x − 〈x, v〉v)λ(dx) = 0.

Proof. Let O(n + 1) denote the orthogonal group of Rn+1. For all v ∈ Sn, there
exists g ∈ O(n+ 1) such that v = gp. Hence∫

Sn

ϕ(〈x, v〉)λ(dx) =
∫
Sn

ϕ(〈g−1x, p〉)λ(dx)

and (i) follows from the fact that λ is invariant under g.
Letψ(v)denote the left hand term in equality (ii) (to be proved). Then 〈ψ(v), v〉

= 0 and for all g ∈ O(n+1), invariance of λ under g implies thatψ(gp) = gψ(p).
For every h ∈ O(n) = {h ∈ O(n+ 1) : hp = p}, ψ(p) = hψ(p). This implies
ψ(p) = 0 and ψ(v) = 0. �

Forµ ∈ P(M) set µ̄ = ∫
Sn x µ(dx).Then it is easy to verify that5(µ) = 5̄(µ̄)

where

5̄(µ̄)(dx) = exp(−4a〈x, µ̄〉)∫
Sn exp(−4a〈y, µ̄〉)λ(dy)λ(dx). (25)
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Therefore, :̄t (µ̄) is solution to the differential equation

dm

dt
= F̄ (m) (26)

with initial condition m(0) = µ̄, where

F̄ (m) = −m+
∫
Sn

x 5̄(m)(dx) (27)

Lemma 4.7. Let m = ρv with ρ ≥ 0 and v ∈ Sn, then∫
Sn

x 5̄(m)(dx) = −D′
n(4aρ) v. (28)

Proof. Write v = gp for some g ∈ O(n + 1) and set β = 4aρ. Then, λ being
invariant under g, we have

∫
Sn

x 5̄(m)(dx) =
∫
Sn x exp(−β〈x, gp〉)λ(dx)∫
Sn exp(−β〈x, gp〉)λ(dx)

=
∫
Sn gx exp(−β〈x, p〉)λ(dx)∫
Sn exp(−β〈x, p〉)λ(dx) .

From this, using (ii) of Lemma 4.6,

∫
Sn

x 5̄(m)(dx) = g

(∫
Sn〈x, p〉p exp(−β〈x, p〉)λ(dx)∫

Sn exp(−β〈x, p〉)λ(dx)
)

= − d

dβ
log

(∫
Sn

exp(−β〈x, p〉)λ(dx)
)

v.

Let (θi : 1 ≤ i ≤ n) be the spherical coordinates on Sn, with 0 ≤ θ1 < 2π
and 0 ≤ θi ≤ π for i �= 1. The spherical coordinates are linked to the Cartesian
coordinates by the formulas

x1 = sin θn... sin θ2 sin θ1,

x2 = sin θn... sin θ2 cos θ1,

.........................

xn = sin θn cos θn−1,

xn+1 = cos θn.

For i = 1, . . . , n, let gi(θi) denote the rotation of O(n+ 1) defined by

gi(θi)ek = ek for k �∈ {i, i + 1}
gi(θi)ei = (cos θi) ei − (sin θi) ei+1
gi(θi)ei+1 = (sin θi) ei + (cos θi) ei+1.

(29)
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Then x = g1(θ1)g2(θ2) · · · gn(θn)p and

λ(dx) = 1

cn


 ∏

2≤i≤n

sini−1 θi


 dθ1 · · · dθn,

with cn = 2π
∏

2≤i≤n

∫ π

0 sini−1 θi dθi .
Using the spherical coordinates, we easily get∫

Sn

exp(−β〈x, p〉)λ(dx) = cn−1

cn

∫ π

0
exp(−β cos θn) sinn−1 θn dθn

= Hn(β).

This concludes the proof of this lemma. �

Using Lemma 4.7 with ρ = ‖m‖ and v = m
‖m‖ we obtain

dρ

dt
= −ρ −D′

n(4aρ), (30)

dv

dt
= 0. (31)

Let β = 4|a|ρ and Fn,a(β) = −β − 4aD′
n(β), then equation (30) (we use the fact

that D′
n(−β) = −D′

n(β)) becomes

dβ

dt
= Fn,a(β). (32)

Lemma 4.8. The one dimensional differential equation (32) defined on R+ under-
goes a (transcritical) bifurcation at the parameter value a = −(n + 1)/4. More
precisely :

For a ≥ −(n+ 1)/4, 0 is the unique equilibrium of (32) and a global attractor
for (32).

For a < −(n + 1)/4, 0 is linearly unstable and there is another equilibrium
βn(a) which is linearly stable (i.e F ′

n,a(βn(a)) < 0) and whose basin of attraction
is R+ \ {0}.
Proof. By an integration by parts, we get

H ′
n(β) =

β

n
[Hn(β)−H ′′

n (β)]

and

Fn,a(β) = −β
4a

n

(
1 + n

4a
− H ′′

n (β)

Hn(β)

)
. (33)

We claim that : (i) d
dβ

(
H ′′

n (β)

Hn(β)

)
> 0 and

(ii) 1 − n
n+1 = H ′′

n (0)
Hn(0)

<
H ′′

n (β)

Hn(β)
< limβ→∞

H ′′
n (β)

Hn(β)
= 1.
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It follows from this claim and equation (33) that there exists a positive solution
to Fn,a(β) = 0 if and only if 1 + n/(4a) ∈]1/(n + 1), 1[, which is equivalent
to a < −(n + 1)/4. Therefore, if a < −(n + 1)/4, there is a unique positive
stable equilibrium βn(a) (0 being unstable) and if a ≥ −(n+ 1)/4, 0 is the unique
equilibrium and is stable.

We now pass to the proof of claim. We have

d

dβ

(
H ′′

n (β)

Hn(β)

)
= Fn(β)

Hn(β)2

where

Fn(β) =
∫ ∫

(cos x)2(cos y − cos x) exp[−β(cos x + cos y)]λn(dx)λn(dy),

and (by Cauchy-Schwarz)

F ′
n(β)

Hn(β)2
=
∫ π

0
(cos x)4 × e−β cos xλn(dx)

Hn(β)

−
(∫ π

0
(cos x)2 × e−β cos xλn(dx)

Hn(β)

)2

> 0.

Therefore Fn(β) > Fn(0) = 0 for β > 0 proving the first statement of the claim.
The second assertion is obvious. �

Proof of Theorem (4.5) (i)

Let G : Pw(M) → Rn+1 be the mapping defined by G(µ) = µ̄ and let :̄ be the
flow induced by (26). By Corollary (3.10) the limit set of µ̄t is (almost surely) an
attractor free set of :̄. In the situation a ≥ −(n + 1)/4, (26) admits the origin as
a global attractor, hence every attractor free set for :̄ reduces to the origin. This
proves that µ̄t converges (almost surely) to 0. Thus L({µt }) ⊂ G−1(0).

The definition of F (equation (12)) and equation (25) show that G−1(0) is
invariant under : and that the dynamics of : restricted to G−1(0) is given as

:t |G−1(0)(µ) = e−t (µ− λ)+ λ.

This implies that :|G−1(0) admits λ as a global attractor. Thus (Proposition 3.9)
every attractor free set reduces to λ and, by Theorem 3.8, L({µt }) = λ.

Proof of Theorem (4.5) (ii)

Recall that ζt = µet . Then for all f ∈ C0(M)

dζtf

dt
= et

et + r
(−ζtf +5(ζt )f + ε̇t (0)f )
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where ε̇t (s) stands for
d

ds
εt (s). Applying this equation to the function f (x) =

pri(x) = xi , i = 1, . . . , n+ 1 leads to

dζ̄t

dt
= et

et + r
(F̄ (ζ̄t )+ ηt ) = F̄ (ζ̄t )+ ηt +O(e−t )

where F̄ is defined by (27) and ηt ∈ Rn+1 is the random vector whose ith coordi-
nate is ε̇t (0)pri .

The origin being linearly unstable equilibrium of F̄ it can be proved, following
the lines of the proof in Tarres (1999, 2000) that

Lemma 4.9.

PVa
x,r,µ{w : lim

t→∞ ζ̄t = 0} = 0.

Let :̄ denote the flow induced by the vector field F̄ . By Lipschitz continuity
of F̄ and standard Gronwall’s inequality we deduce that

sup
0≤s≤T

‖ζ̄t+s − :̄s(ζ̄t )‖ ≤ K(T ) sup
0≤s≤T

sup
i=1,...,n+1

|εt (s)pri | (34)

where K(T ) depends only on F̄ and T . Thus, Theorem 3.6 (i), (b) implies that
almost surely

lim sup
t→∞

1

t
log

(
sup

0≤s≤T

‖ζ̄t+s − :̄s(ζt )‖
)

≤ −1/2.

To conclude the proof we use the following result quoted from (Benaı̈m, 1999,
Corollary 8.10).

Proposition 4.10. Let :̄ = {:̄}t denote a smooth flow on a finite dimensional
Riemannian manifold E (e.g a finite dimensional vector space). Let A ⊂ E be a
compact submanifold invariant by :̄. Let :̄A = :̄|A denote the flow :̄ restricted
to A and D:̄A(x) : TxA → T:t (x)A the derivative at x of :̄A. Let ζ̄ : R+ → E

be a continuous function. Assume

(a) There exists λ < 0 such that for all T > 0

lim sup
t→∞

1

t
log

(
sup

0≤s≤T

‖ζ̄t+s − :̄s(ζt )‖
)

≤ λ.

(b) The limit set of ζ̄ is contained in A.

(c) There is a neighborhood U of A which is attracted exponentially at rate α < 0
by A. That is

lim sup
t→∞

log

(
sup
x∈U

d(:̄t (x), A)

d(x,A)

)
≤ α.

(d) β = sup(α, λ) < min(0, E(:̄A))

where E(:̄A) = limt→∞ 1
t

log(infx∈A ‖D:̄A
t (x)

−1‖−1) is the expansion rate
of :̄A.
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Then there exists r ≥ 0 and x ∈ A such that

lim sup
t→∞

1

t
log ‖ζ̄t − :̄t+r (x)‖ ≤ β.

We now apply Proposition 4.10 to the flow :̄ induced by F̄ on E = Rn+1.

Equation (30) makes the set

A = {m = ρv ∈ Rn+1 : ρ = ρn(a) = βn(a)

4a
and v ∈ Sn},

a manifold invariant by :̄.

Assertion (a) of Proposition 4.10 holds with λ = −1/2.
Assertion (b) : The limit set L(ζ̄ ) of ζ being attractor free (Theorem 3.8), equa-

tion (30) implies that L(ζ̄ ) = {0}, or L(ζ̄ ) ⊂ A. It follows from Lemma 4.9 that
L(ζ̄ ) ⊂ A almost surely.

Assertion (c) : Equation (30) easily implies that A attracts a neighborhood of
itself at any exponential rate α ∈]F ′

n,a(βn(a)), 0[.
Assertion (d) : Clearly, equation (31) implies that :̄A

t = Id|A, hence E(:̄A) =
0.

Therefore, by Proposition 4.10, there exists a random variable v ∈ Sn such that
almost surely,

lim sup
t→∞

1

t
log ‖ζ̄t − ρn(a)v‖ ≤ max(F ′

n,a(βn(a)),−1/2).

The end of the proof follows by the same argument as in our proof of Theorem
4.5, (i) : On one hand L({µt }) is an attractor free set of : restricted to G−1(ρ(a)v)

where (G(µ) = µ̄). On the other hand :|G−1(ρ(a)v) admits µv,a as a global
attractor. Thus L({µt }) = µv,a.

4.2.2. Non-symmetric case

This section generalizes results of the preceding section and illustrates the fact that
certain type of interactions can force {µt } to oscillate.

For a ∈ R+ and h ∈ O(n+ 1), define the potential V a,h : Sn × Sn → R as

V a,h(u, x) = V a,h
u (x) = 2a〈x, hu〉 = 2a cos(d(x, hu)).

Here, the vector −∇V
a,h
u (x) ∈ TxS

n is tangent to the geodesic joining x to h(u).

Theorem 4.11. Suppose h is the rotation h = g1(α), with α ∈ [0, 2π [ (see equa-
tion (29)) and consider the self-interacting diffusion on Sn associated to V a,h.

(i) Suppose 4a cos(α)+ (n+ 1) ≥ 0. Then µt converges toward λ almost surely.
(ii) Suppose 4a cos(α)+ (n+ 1) < 0.

(a) If α �= π then the limit set of {µt } is almost surely the set

L({µt }) = {ν(θ) : θ ∈ [0, 2π [} with ν(θ)

= 1

eTα − 1

∫ Tα

0
esµv(tan(α)s+θ),a cos(α) ds
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where Tα = 2π/ tan(α), µv,a cos(α) is defined in Theorem 4.5 and

v(θ) = g1(θ)e1 ∈ S1,n = {v ∈ Sn : vi = 0 for all i ≥ 3}.
More precisely, there exists a random variable θ0 such that

lim
t→∞ distw (µt , ν(tan(α) log(t)+ θ0)) = 0

almost surely.
(b) If α = π then we are in the situation of Theorem 4.5 (ii).

Proof. In this case (with m = ρv)

F̄ (m) = −m+
∫
Sn x exp(−4aρ〈x, hv〉)λ(dx)∫
Sn exp(−4aρ〈x, hv〉)λ(dx) .

Since there exists g ∈ O(n + 1) such that v = gp, then by invariance of λ under
hg, ∫

Sn

exp(−β〈x, hg(p)〉)λ(dx) =
∫
Sn

exp(−β〈x, p〉)λ(dx) = Hn(β).

Furthermore, by invariance of λ under h,∫
Sn

x exp(−β〈x, hv〉)λ(dx) = h

(∫
Sn

x exp(−β〈x, v〉)λ(dx)
)
.

Using Lemma 4.7, we get∫
Sn

x exp(−β〈x, hv〉)λ(dx)∫
Sn exp(−β〈x, hv〉)λ(dx) = −D′

n(β) hv.

Ifβ = 4aρ, the ODE dm/dt = F̄ (m) yields the following system of differential
equations : {

dβ
dt

= −β − 4a〈hv, v〉D′
n(β)

dv
dt

= − 4a
β

×D′
n(β)(hv − 〈hv, v〉v). (35)

Set z = v1 + iv2 = reiθ , then 〈hv, v〉 = 1 − r2(1 − cosα) and

dz

dt
= −4a

β
×D′

n(β)[e
iα − 1 + r2(1 − cosα)]z.

This implies


dr
dt

= 4a
β

×D′
n(β)(1 − cosα)(1 − r2)r

dθ
dt

= − 4a
β

×D′
n(β) sin α.

dβ
dt

= −β − 4a(1 − r2(1 − cosα))D′
n(β)

dvi
dt

= − 4a
β

×D′
n(β)r

2(1 − cosα)vi, for i ≥ 3

(36)
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Since Dn is strictly convex and D′
n(0) = 0, we have βD′

n(β) > 0 for β �= 0.
From this we get that the set A = {r = 1; vi = 0 for i ≥ 3} is a global attractor
for (36). The dynamics on A is thus given by

dβ

dt
= −β − 4a cosα ×D′

n(β)).

Using Lemma 4.8, we get a bifurcation at 4a cosα + (n+ 1) = 0 :
• If 4a cosα + (n+ 1) ≥ 0, the set A′ = A ∩ {β = 0} is a global attractor for

(36) and by a now usual argument (the same as in our proof of Theorem 4.5 (i)),
we get µt → λ almost surely.

• If 4a cosα + (n + 1) < 0, the set A′′ = A ∩ {β = βn(a cosα)} is a global
attractor for (36). The dynamics on A′′ is thus given by

dθ

dt
= − 4a

βn(a cosα)
D′

n(β(a cosα)) sin α = tan α,

since 4a cosα ×D′
n(βn(a cosα))+ βn(a cosα) = 0.

As in the proof of Theorem (4.5) (ii), we use the shadowing Proposition 4.10
to prove that there exists β < 0 and a random variable θ0 such that

lim sup
t→∞

1

t
log

(∥∥∥∥ζ̄t − βn(a cosα)

4a
v(tan(α)t + θ0)

∥∥∥∥
)

< β (37)

almost surely.
To finish the proof, the knowledge of the dynamics on A′′ is not enough and we

have to analyze the dynamical system on M(M)× Rn defined by

{
dν
dt

= −ν + 5̄(m)

dm
dt

= F̄ (m)
(38)

where

5̄(m)(dx) = exp(−4a〈x, hm〉)∫
Sn exp(−4a〈y,m〉)λ(dy)λ(dx). (39)

Theorem 3.8 implies that L({µt }) × A′′ is an attractor free set for the flow
induced by (38)(on Pw(M)× Rn) and the dynamics on L({µt })× A′′ is given by

{
dν
dt

= −ν + π(θ)

dθ
dt

= tan α
(40)

where π(θ) = µ(v(θ),a cos(α)). Note that π(θ) is 2π -periodic. The general solution
to (40) can be written{

νt = e−t
[∫ t

0 esπ(tan(α)s + θ0) ds + ν0

]
θt = θ0 + t tan α

(41)
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Let πθ(s) = π(s + θ) and Tα = 2π/ tan(α). Then,

νt+Tα = e−(t+Tα)

[∫ t

0
esπθ0(tan(α)s) ds + ν0 +

∫ t+Tα

t

esπθ0(tan(α)s) ds

]

= e−(t+Tα)

[
etνt + et

∫ Tα

0
esπθ0(tan(α)s) ds

]

= e−Tανt + e−Tα

∫ Tα

0
esπθ0(tan(α)s) ds.

Let

ν(θ0) = 1

eTα − 1

∫ Tα

0
esπ(tan(α)s + θ0) ds.

Then for all t ∈ R

νt+Tα − ν(θ0) = e−Tα (νt − ν(θ0)).

This implies that for all n ∈ N

ν−nTα − ν(θ0) = enTα (ν0 − ν(θ0)).

Suppose now that
(
ν0,

βn(a cosα)
4a v(θ0)

)
∈ L({µt }) × A′′. Since L({µt }) × A′′ is

compact and invariant in Pw(M) × Rn , νt is a probability measure for all t ∈ R

and we must have ν0 = ν(θ0). Then νt is Tα-periodic and for all t ∈ [0, Tα[,

νt = e−t

[
ν(θ0)+

∫ t

0
esπθ0(tan(α)s) ds

]

= e−t

eTα − 1

[∫ Tα

t

esπθ0(tan(α)s) ds + eTα
∫ t

0
esπθ0(tan(α)s) ds

]

= 1

eTα − 1

[∫ Tα

t

es−tπθ0(tan(α)s) ds +
∫ t

0
es−t+Tαπθ0(tan(α)s) ds

]

= 1

eTα − 1

[∫ Tα

t

es−tπθ0(tan(α)s) ds +
∫ t+Tα

Tα

es−tπθ0(tan(α)s) ds

]
= ν(tan(α)t + θ0).

This implies L({µt }) = {ν(θ) : θ ∈ [0, 2π [} almost surely. This easily implies the
existence of a continuous functionγ : R+ → R such that limt→∞ distw (µt , ν(γt ))

= 0. Since G : P(M) → Rn; m �→ m̄ is uniformly continuous,

lim
t→∞

∥∥∥∥µ̄t − βn(a cosα)

4a
v(γt )

∥∥∥∥ = 0. (42)

Equation (37) combined with (42) implies

lim
t→∞‖v(γt )− v(tan(α) log(t)+ θ0)‖ = 0.

This concludes the proof of the theorem. �
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4.3. Self-interacting diffusions on S1

Let V (u, x) = V (x − u), where V : R → R is a 2π periodic function and∫
S1 V (x) λ(dx) = 0 (λ being the normalized Lebesgue measure on S1 ∼ [0, 2π [).

We can write its Fourier decomposition as :

V (x) = 2
∑
k≥1

(ak cos(kx)+ bk sin(kx)) =
∑
k∈Z∗

cke
ikx, (43)

where

c−k = c̄k = ak + ibk =
∫
S1

V (x)eikx λ(dx), (44)

for k ≥ 1. Throughout this section we furthermore assume the existence of n ∈ Z+
such that ck = 0 for |k| > n. Let µ ∈ M(S1) and

z−k = z̄k = xk + iyk =
∫
S1

eikx µ(dx), (45)

for k ≥ 1. We then have

Vµ(x) =
∑
k∈Z∗

ckzke
ikx . (46)

Let G : Pw(S
1) → Cn, µ �→ (z1, ..., zn).G is continuous and 5(µ) = 5̄(G(µ)),

where

5̄(z)(dx) = 1

Z̄(z)
exp

[
−2

∑
k∈Z∗

ckzke
ikx

]
λ(dx), (47)

z−k = z̄k and

Z̄(x) =
∫
S1

exp

[
−2

∑
k∈Z∗

ckzke
ikx

]
λ(dx). (48)

Let :̄ : Cn × R → Cn be the flow induced by the differential equation

dzk

dt
= −zk +

∫
S1

e−ikx5̄(z)(dx). (49)

We then have

G ◦:t = :̄t ◦G. (50)

Note that λ (respectively 0) is an equilibrium for :t (respectively for :̄t ), i.e.
5(λ) = λ (respectively 5̄(0) = 0).

Theorem 4.12. (a) If there exists 1 ≤ k ≤ n such that ak < −1/2, then PV
x,r,µ

[limt→∞ µt = λ] = 0.
(b) If for every 1 ≤ k ≤ n, ak > −1/2, then PV

x,r,µ[limt→∞ µt = λ] > 0.
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Proof of Theorem 4.12 (a).

As for Lemma 4.9, we only have to study the stability at 0 of the flow :̄t . It is easy
to see that

−zk +
∫
S1

e−ikx5̄(z)(dx) = −(1 + 2ck)zk +O(‖z‖2),

where ‖z‖2 =∑1≤k≤n |zk|2. Hence

PV
x,r,µ[µt → λ] ≤ PV

x,r,µ[G(µt) → 0] = 0.

Proof of Theorem 4.12 (b)

The proof is a consequence of the following general result proved in (Benaı̈m,
1999) Theorem 3.7.

Proposition 4.13. Let :̄ = {:̄t } denote a continuous flow on a metric space
(E, d). Let {zt } be a E-valued stochastic process with continuous paths defined on
a probability space (-,F, P ) and adapted to a filtration {Ft , t ≥ 0}. Assume that

P

[
sup

0≤s≤T

‖zt+s − :̄s(zt )‖ ≥ δ

∣∣∣∣∣ Ft

]
≤
∫ t+T

t

r(s, δ, T )ds

for some function r ≥ 0 such that
∫∞

0 r(t, δ, T )dt < ∞.

Let A ⊂ M be an attractor for : with basin of attraction B(A) and U an
open set with compact closure U ⊂ B(A). Then there exist numbers δ, T > 0
(depending on U and :̄) such that for all t ≥ 0

P [ lim
t→∞ d(zt , A) = 0] ≥

(
1 −

∫ ∞

t

r(s, δ, T )ds

)
P [∃s ≥ t : zs ∈ U ].

For w ∈ -, r > 0 and µ ∈ P(M) set

β(t, w) = − 1

t + r

(∫ t

0
V ′(wt − ws)ds + r

∫
V ′(wt − u)µ(du)

)
= −∇Vµt (r,µ,w)(wt ).

Let B = {Bt }t≥0 denote a standard one dimensional Brownian motion starting at 0.
We let Ft = σ {Bs : s ≤ et }. Let {θt } be the solution to the stochastic differential
equation

dθt = dBt + β(t, θ)dt

with initial condition θ0 = x ∈ [0, 2π [, Xt = θt mod 2π ∈ S1 and

zt = G(µet (r, µ,X)).

As in example (2.4) the law of {Xt } is PV
x,r,µ.
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We shall now apply Proposition 4.13 with :̄ the flow induced by (49) An esti-
mate similar to (34) combined with Theorem 3.6 (a) proves that the assumption of
Proposition 4.13 holds with

r(t, δ, T ) = 1

δ2
O(e−t ).

The condition ak > −1/2 makes the origin an attractor for :̄. Therefore by Prop-
osition 4.13

P [zt → 0] ≥ (1 −O(e−t ))P (∃s ≥ t : zs ∈ U)

where U is a sufficiently small neighborhood of the origin in Cn.

Let A(U, t) = {w ∈ - : G(µt(r, µ,w)) ∈ U}. By Girsanov’s formula

P [zt ∈ U ] = E[M(et )1{B∈A(U,et )}]

with

M(t) = exp

[∫ t

0
β(s, x + B)dBs − 1

2

∫ t

0
β(s, x + B)2ds

]
Let -0 = {w ∈ - : w(0) = 0}. The mapping w ∈ -0 �→ G(µt(r, µ,w))

being continuous, A(U, et ) is an open subset of -0 which is clearly nonempty
provided t is large enough. Therefore P [B ∈ A(U, et )] (the Wiener measure of
A(U, et )) is positive. Hence P [zt ∈ U ] > 0 and P [limt→∞ zt = 0] > 0. �

We conclude this section with a result giving sufficient conditions (on ai and
bi) ensuring almost sure convergence of µt toward λ.

Theorem 4.14. Suppose that for all i, bi = 0 and

(a) for all i, ai ≥ 0 or,
(b) for all i, ai ≤ 0 and

∑
i ai > −1/2.

Then, PV
x,r,µ almost surely, µt converges toward λ.

Proof. Without loss of generality we assume that ai �= 0 for all 1 ≤ i ≤ n (Oth-
erwise it would suffices in our proof to suppress the equations corresponding to
ai = 0.) When bi = 0 for all i, we can rewrite (49), with zk = xk − iyk :

dxk

dt
= −xk +

∫
S1 cos(kx) exp[−4

∑n
j=1 aj (xj cos(jx)+ yj sin(jx))]λ(dx)∫

S1 exp[−4
∑n

k=1 ak(xk cos(kx)+ yk sin(kx))]λ(dx)

dyk

dt
= −yk +

∫
S1 sin(kx) exp[−4

∑n
j=1 aj (xj cos(jx)+ yj sin(jx))]λ(dx)∫

S1 exp[−4
∑n

k=1 ak(xk cos(kx)+ yk sin(kx))]λ(dx)
.

Let ak = εkα
2
k , with εk = ak/|ak| and α2

k = |ak|, x′k = 2αkxk , y′k = 2αkyk and let
ν denote the probability measure whose density with respect to λ is

dν

dλ
(x) = 1

H(x′, y′)
exp[−

n∑
k=1

εkαk(x
′
k cos(kx)+ y′k sin(kx))]

where H(x′, y′) is a normalization constant.
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When εk = ε for all k, it is not hard to verify that z′ = (x′, y′) is solution of a
gradient ODE, with potential

W(z) = ‖z′‖2/2 + ε log(H(z′)).

A classical computation shows that the gradient of log(H) vanishes at the origin
and that the Hessian of logH at z′ is the covariance matrix under ν of the vector

Y (x) = (αk cos(kx), αk sin(kx))k=1,...,n.

If ε = 1, W is then convex with a global minimum at the origin. If ε = −1 :

〈D2W(z′)v, v〉 = 1

2
||v||2 −

[∫
〈v, Y (x)〉2ν(dx)−

(∫
〈v, Y (x)〉ν(dx)

)2
]

≥ ||v||2
(

1

2
−
∫

||Y (x)||2ν(dx)
)
= ||v||2(1

2
−
∑
k

α2
k ).

This proves thatW is convex with a global minimum at the origin provided
∑

i ai >

−1/2. Under these conditions the origin is a global attractor of :̄. Therefore by
Proposition 3.9, G(µt) → 0 almost surely (because G(µet ) is an asymptotic pseu-
do trajectory of :̄). Hence L{µt } is an attractor free set for : restricted to G−1(0).
Therefore µt → λ almost surely. �

Remark 4.15. Note that Corollary 4.4 implies that if∑
i

|ai | + |bi | < 1/8

then µt converges almost surely toward λ. almost surely
In the particular case where for all i, bi = 0 and all the ai’s have the same sign,

this condition is weaker than the one given in Theorem 4.14.

5. Proof of Theorem 3.6

5.1. Guideline for reading the proof

This section is devoted to the proof of the estimate given by Theorem 3.6 (i). To
achieve this goal we adopt the strategy introduced in Métivier and Priouret (1987)
in the framework of stochastic approximation and already used in Benaı̈m (1997)
for analyzing vertex reinforced random walks. The key idea is to rewrite εt (s)f as

∫ et+s

et

AµuQµuf

u
du

where Qµ “the inverse” of −Aµ satisfies

−AµQµf = f −5(µ)f.
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The proof is divided in two parts. The first part (section 5.2) introduces Qµ and
contains several preliminary estimates. The second part (section 5.3) concludes
the proof. We encourage the reader to look at section 5.3 before reading section
5.2 for understanding the general idea of the proof and the motivations behind the
estimates of the section 5.2.

5.2. Preliminary estimates

Let L2 = L2(λ) denote the space of Borel real valued functions f : M → R

such that
∫
M
|f (x)|2λ(dx) < ∞. Given µ ∈ P(M), we let (·, ·)µ denote the inner

product on L2 defined by

(f, g)µ =
∫
M

f (x)g(x)5(µ)(dx)

and ‖ · ‖2,µ the associated norm where we recall that 5(µ)(dx) = e−2Vµ(x)

Z(µ)
λ(dx).

Note that since V is bounded and ‖Vµ‖∞ ≤ ‖V ‖∞ when µ ∈ P(M), L2 =
L2(λ) = L2(5(µ)).

Given µ ∈ P(M), recall the second-order differential operator Aµ = 1
2 , −

〈∇Vµ,∇〉 and denote by D2(µ) its domain in L2 : D2(µ) is the completion in L2

of the C∞ (for example) functions f for the norm

‖f ‖D2(µ) = ‖f ‖2,µ + ‖Aµf ‖2,µ.

Note that the norms ‖ · ‖D2(µ) are equivalents (since ‖∇Vµ‖∞ ≤ ‖∇V ‖∞ < ∞).
This implies D2(µ) = D2(λ) = D2.

For every f ∈ D2,

(f,Aµf )µ = −
∫
M

‖∇f (x)‖25(µ)(dx) ≤ 0.

The spectrum of −Aµ is thus contained in [0,∞), 0 being always an eigenvalue
with eigenvector 1 since Aµ1 = 0. Moreover, by (53) below, the spectrum of Aµ

is actually contained in {0} ∪ [κ,∞) for some κ > 0. The non-positive self-adjoint
operator Aµ on D2 admits a spectral decomposition Aµ = − ∫[0,∞)

udEu where

Eu is a resolution of identity. Denote then by Qµ = ∫]0,∞[ u
−1dEu the inverse of

−Aµ that satisfies

∀ f ∈ L2, Aµ ◦Qµ(f ) = −Kµf, (51)

and
∀ f ∈ D2, Qµ ◦ Aµ(f ) = −Kµf, (52)

where Kµ : L2 → L2 is the projection operator defined by Kµf = f −5(µ)f =
f − (f, 1)µ (cf. Yoshida, 1968, Fukushima, 1980).

Let Pµ = (P
µ
t )t≥0 denotes the semigroup of the diffusion with generator Aµ.

Then P
µ
t = ∫∞0 e−utdEu. Hence P

µ
t is the exponential etAµ in the sense of self-

adjoint operators and d
dt
P

µ
t = P

µ
t Aµ = AµP

µ
t . For each t ≥ 0, Pµ

t maps L2 into
itself and is self-adjoint with respect to (·, ·)µ.
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It is well known and classical (cf. e.g. Aubin, 1982 or Hebey, 1999) that there
exist, on the compact manifold M , both a spectral gap and a Sobolev inequality in
the sense that, for some constants a, b, c > 0 and every smooth f on M ,

∫
M

f 2dλ−
(∫

M

f dλ

)2

≤ a

∫
M

‖∇f ‖2dλ

and (∫
f 2n/(n−2)dλ

)(n−2)/2

≤ b

∫
M

f 2dλ+ c

∫
M

‖∇f ‖2dλ.

Since ‖Vµ‖∞ ≤ ‖V ‖∞ for µ ∈ P(M), simple perturbations arguments, using
in particular the fact that

∫
M

f 2dλ−
(∫

M

f dλ

)2

= 1

2

∫
M×M

|f (x)− f (y)|2µ(dx)µ(dy),

show that the two precedings inequalities also hold with 5(µ) instead of λ and
with constants a, b, c > 0 now also depending on ‖Vµ‖∞ ≤ ‖V ‖∞.

These inequalities in turn imply standard semigroup estimates on (P
µ
t )t≥0

(cf. Davies, 1989, Bakry, 1994) of the form

‖Pµ
t (Kµf )‖2,µ ≤ e−t/κ‖Kµf ‖2,µ, t > 0 (53)

and

‖Pµ
t (f )‖∞ ≤ Ct−n/2‖f ‖2,µ, 0 < t ≤ 1, (54)

for some κ > 0 and 0 < C < ∞ and every f ∈ L2. (The fact that (54) also
holds when n = 1, 2 may be obtained working with Nash or logarithmic Sobolev
inequalities as in Davies, 1989). It follows in particular from (53) that

Qµf = −
∫ ∞

0
P

µ
t (Kµf )dt = −

∫ ∞

0
(P

µ
t f −5(µ)f )dt

is well defined (in L2) for all f ∈ L2.
The next crucial lemma bounds Qµf and ∇Qµf in terms of the L∞ norm of

f .

Lemma 5.1. There exists K > 0 (independent of µ) such that

‖Qµf ‖∞ ≤ K‖f ‖∞,

for all f ∈ L∞. Furthermore, if f is say C∞, Qµf ∈ C1 and

‖∇Qµf ‖∞ ≤ K‖f ‖∞.
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Proof. To prove the first inequality, it is enough to bound
∫∞

0 ‖Pµ
t (Kµf )‖∞dt by

K‖f ‖∞ for any f in L∞. Using successively (54) and (53),∫ ∞

0
‖Pµ

t (Kµf )‖∞dt ≤ 2‖f ‖∞ +
∫ ∞

0
‖Pµ

1 (P
µ
t (Kµf ))‖∞dt

≤ 2‖f ‖∞ + C

∫ ∞

0
‖(Pµ

t (Kµf ))‖2,µdt (55)

≤ 2‖f ‖∞ + C‖Kµf ‖2,µ

∫ ∞

0
e−t/κdt

so that ‖Qµf ‖∞ ≤ K‖f ‖∞ where K > 0 depends only on M and ‖V ‖∞.

To reach a similar inequality for ∇Qµf , one has to complete (53) and (54) with
the gradient estimate

‖∇P
µ
t f ‖∞ ≤ D√

t
‖f ‖∞, 0 < t ≤ 2, (56)

for some D > 0 and every f . Inequality (56) for the heat kernel on M is a well
known consequence of the Li-Yau estimates in manifolds with Ricci curvature
bounded below (Li-Yau, 1986). That it also holds for (Pµ

t )t≥0 under some regular-
ity on the Hessian of Vµ may be shown along the same lines, or by means of the
abstract R2 criterion of Bakry, 1994 (cf. Ledoux, 1998) that easily handles genera-
tors of the form , + drift. Specifically, the constant D in (56) only depends on a
lower bound of the Ricci curvature on M and the Hessian of V .

The inequality ‖∇Qµf ‖∞ ≤ K‖f ‖∞ will follow, by dominated convergence,
from the inequality ∫ ∞

0
‖∇P

µ
t f ‖∞dt ≤ K‖f ‖∞

for f in C∞(M) for example (showing by the same way that Qµf ∈ C1(M)).
The proof follows the same lines as before : One may write together with (56), for
every f ∈ C∞(M),∫ ∞

0
‖∇P

µ
t f ‖∞dt =

∫ 2

0
‖∇P

µ
t f ‖∞dt +

∫ ∞

0
‖∇P

µ
t+2f ‖∞dt

≤ D‖f ‖∞
∫ 2

0

dt√
t
+
∫ ∞

0
‖∇P

µ
1 (P

µ
t+1(Kµf ))‖∞dt

≤ 2
√

2D‖f ‖∞ +D

∫ ∞

0
‖Pµ

t+1(Kµf )‖∞dt

and the conclusion follows by the same argument as in (55). The proof of Lemma
5.1 is thus complete. �

Remark 5.2. An alternate proof of Lemma 5.1 may certainly be provided by esti-
mates on the Green function of open sets in Rn as in Aubin (1982) for the case of
the Laplace operator. The preceding proof gives perhaps a better way to follow the
dependence of the constant K upon the potential V .
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Given two Banach spaces X and Y we let L(X , Y) denote the Banach space
of bounded linear operators from X into Y, equipped with the operator norm. For
f ∈ X we let Lf (X , Y) denote the closed subset of L(X , Y) consisting of op-
erators A such that Af = 0. Set then E = L1(D2, L2), F = L1(L

2,D2) and
G = L1(D2,D2) where we recall that D2 is the domain of Aµ (its definition being
independent of µ).

Lemma 5.3. For every µ ∈ P(M), we have Aµ ∈ E, Qµ ∈ F and Kµ ∈ G.

Proof. The only things we have to prove are the facts that Aµ : D2 → L2 and
Qµ : L2 → D2 are bounded.

Aµ is obviously bounded since for any f ∈ D2,

‖Aµf ‖2,µ ≤ ‖f ‖D2(µ).

And Qµ is also bounded since for any f ∈ L2,

‖Qµf ‖D2(µ) ≤ (1 + 1

κ
)‖f ‖2,µ. �

In the following Lemmas 5.4 to 5.6, µt is defined as in (19).

Lemma 5.4. (i) t �→ Aµt is a C1 map from R+ in E and its vector derivative is
the operator

d

dt
Aµt =

1

r + t
〈(∇Vµt − ∇Vw(t)),∇〉. (57)

(ii) t �→ Kµt is a C1 map from R+ in G and its vector derivative is the operator
defined by ( d

dt
Kµt

)
f = c(t, f )1 (58)

for all f ∈ D2, where

c(t, f ) =
∫
M

f (x)νt (dx)−
∫
M

f (x)λ(dx)

∫
M

νt (dx)

and

νt (dx) = 2

r + t

(
Vw(t)(x)− Vµt (x)

)
5(µt)(dx).

Proof. (i) Write t → Aµt as the composition of the three following mappings :
H1 : R+ → R+∗ × C1(M), H2 : R+∗ × C1(M) → C1(M) and H3 : C1(M) → E

defined by

H1(t) =
(

1

t + r
, (t + r)Vµt

)
=
(

1

t + r
,

∫ t

0
Vw(s) ds

)
,

H2(s,W) = sW , and H3(W) = 1
2, + L(W) where L(W) = −〈∇W,∇〉. Then

Aµt = H3◦H2◦H1(t). It is easily seen that the mappingsH2 andL are respectively
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bilinear continuous and linear continuous, hence C∞, and that H1 is C1 with vector
derivative at t

H ′
1(t) =

(
− 1

(t + r)2
, Vw(t)

)
.

Assertion (i) now follows by application of the chain rule.
The proof of (ii) is similar. Details are left to the reader.

Lemma 5.5. t �→ Qµt is a C1 map from R+ in F , with vector derivative

d

dt
Qµt = −

(
d

dt
Kµt +Qµt

d

dt
Aµt

)
Qµt (59)

Proof. Let L : R+ × F → G, (t,Q) �→ QAµt + Kµt . The map L is C1 by
Lemma 5.4 and (t,Qµt ) satisfies by (52) the implicit equation L(t,Qµt ) = 0. Set
L1 = ∂L

∂Q
(t,Qµt ). Then L1 ∈ L(F,G) is the operator defined by L1(B) = BAµt .

Let L2 ∈ L(G, F ) be defined by L2(C) = CQµt . Since for all C ∈ F and
B ∈ G, C1 = B1 = 0, (51) shows that L2 is the inverse of L1. Therefore by
application of the implicit functions theorem in Banach spaces, the map t �→ Qµt

is C1 and its derivative is given as

d

dt
Qµt = −

(
∂L

∂Q

)−1

(t,Qµt )

(
d

dt
Kµt +Qµt

d

dt
Aµt

)

= −
(

d

dt
Kµt +Qµt

d

dt
Aµt

)
Qµt . �

Lemma 5.6. There exists a constant K ′ such that for every t ≥ 0 and f ∈ D2

∥∥∥ d

dt
Qµt f

∥∥∥∞ ≤ K ′

r + t
‖f ‖∞.

Proof. Put C1 = 8‖V ‖∞ and C2 = 2‖∇V ‖∞. It follows from Lemma 5.4 (i)
and(ii) that∥∥∥ d

dt
Aµt f

∥∥∥∞ ≤ 2

r + t
‖∇V ‖∞‖∇f ‖∞ ≤ C2

r + t
‖∇f ‖∞,∥∥∥ d

dt
Kµt f

∥∥∥∞ ≤ 4

r + t
‖Vµt − Vw(t)‖∞‖f ‖∞ ≤ C1

r + t
‖f ‖∞.

Hence, by Lemma 5.5 and Lemma 5.1∥∥∥ d

dt
Qµt f

∥∥∥∞ ≤
∥∥∥( d

dt
Kµt

)
Qµt f

∥∥∥∞ +
∥∥∥Qµt

( d

dt
Aµt

)
Qµt f

∥∥∥∞
≤ C1

r + t
‖Qµt f ‖∞ +K

∥∥∥( d

dt
Aµt

)
Qµt f

∥∥∥∞
≤ C1K + C2K

2

r + t
‖f ‖∞.

�



38 M. Benaı̈m et al.

5.3. Proof of Theorem 3.6

To shorten notation we set Aµt = At , Qµt = Qt and Kµt = Kt .
Let F : R×M → R, (t, x) �→ Ft(x) be C1 in the time variable and C2 in the

space variable. By Itô’s formula,

Ft(Xt )− F0(X0) = Mt −M0 +
∫ t

0
∂sFs(Xs) ds +

∫ t

0
AsFs(Xs) ds, (60)

where Mt is a martingale with quadratic variation (see remark 2.2)∫ t

0
‖∇Fs(Xs)‖2 ds.

Let f ∈ C2(M) and Ft(x) = 1
t
Qtf (x). Equations (20) and (51) yield

εt (s)f =
∫ et+s

et

Kuf (Xu)

u
du = −

∫ et+s

et
AuFu(Xu)du.

Let T > 0. Using Itô’s formula (60), we get for any positive t and any s ∈ [0, T ],

εt (s)f = ε1
t (s)f + ε2

t (s)f + ε3
t (s)f + ε4

t (s)f,

with,

ε1
t (s)f = − 1

et+s
Qet+s f (Xet+s )+ 1

et
Qet f (Xet )

ε2
t (s)f = −

∫ et+s

et

Quf (Xu)

u2
du

ε3
t (s)f =

∫ et+s

et

( d
du

Qu)f (Xu)

u
du

ε4
t (s)f = M

f

et+s −M
f

et
,

where M
f
t −M

f

1 is a martingale with quadratic variation∫ t

1

1

s2
‖∇Qsf (Xs)‖2 ds.

Then, using the estimates in Lemma 5.1 and Lemma 5.6,

|ε1
t (s)f | ≤ e−t

(‖Qet+s f ‖∞ + ‖Qet f ‖∞
) ≤ 2Ke−t ‖f ‖∞

|ε2
t (s)f | ≤

∫ et+s

et

‖Quf ‖∞
u2

du ≤ Ke−t ‖f ‖∞

|ε3
t (s)f | ≤

∫ et+s

et

‖( d
du

Qu)f ‖∞
u

du ≤ K ′
∫ et+s

et

du

u(r + u)

≤ K ′e−t ‖f ‖∞.
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Since the quadratic variation of Mf

et+s −M
f

et
is bounded by e−tK2‖f ‖2∞ (Lemma

5.1), Doobs’s inequality implies

P

[
sup

0≤s≤T

|ε4
t (s)f | ≥ δ

∣∣∣∣∣ Bet

]
≤ 1

δ2
e−tK2‖f ‖2

∞. (61)

The proof of Theorem 3.6 (i), (a) now follows directly from the bounds on
|εit (f )|, i = 1, 2, 3 and inequality (61).

To prove Theorem 3.6 (i), (b) remark that (61) implies that

P

[
sup

0≤s≤T

|ε4
t (s)f | ≥ exp(−(1 − δ)t/2)

]
≤ e−δtK2‖f ‖2

∞.

Therefore, by the Borel-Cantelli lemma,

lim sup
t→∞

1

t
log

(
sup

0≤s≤T

|ε4
t (s)f |

)
≤ −(1 − δ)/2

almost surely, for all 0 < δ < 1, and hence

lim sup
t→∞

1

t
log

(
sup

0≤s≤T

|ε4
t (s)f |

)
≤ −1/2

almost surely. This concludes the proof of Theorem 3.6 (i), (b). �

6. Concluding remarks

We conclude with a few questions.

• The first natural question concerns the behavior of the joint process {Xt, µt }.
Suppose, for example, that we are in the convergent situation where µt → µ

with positive probability (see e.g Theorems 4.4 and 4.5). Then it should be pos-
sible to compare precisely (for large t) the law of {Xt+s}s≥0 with the law of
the diffusion associated to Aµ. This question will be adressed in a forthcoming
paper.

• Again in the convergent situation µt → µ, one could ask for rates of conver-
gence, central limit theorems, and large deviations properties of µt toward µ.

Here we guess that stochastic approximations techniques (see e.g Pelletier, 1998,
1999) could be used with success.

• In general, one could ask for large deviation properties of the measure valued
processes {µt+s}0≤s or {ξt+s}0≤s .

• A challenging question is to compute/describe the law of the random variable v

in Theorem 4.5 (ii).

• Another challenging question is to investigate the behavior of self-interacting
diffusions living on noncompact manifolds (e.g. Rd ).
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