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This paper describes some of the analytic tools developed recently by Ghirlanda
and Guerra in the investigation of the distribution of overlaps in the
Sherrington�Kirkpatrick spin glass model and of Parisi's ultrametricity. In par-
ticular, we introduce to this task a simplified (but also generalized) model on
which the Gaussian analysis is made easier. Moments of the Hamiltonian and
derivatives of the free energy are expressed as polynomials of the overlaps.
Under the essential tool of self-averaging, we describe with full rigour, various
overlap identities and replica independence that actually hold in a rather large
generality. The results are presented in a language accessible to probabilists and
analysts.

KEY WORDS: Sherrington�Kirkpatrick spin glass model; overlap; free
energy; Gaussian analysis; replica equivalence; Parisi's ultrametricity.

1. INTRODUCTION

Let N�2. The Hamiltonian of the Sherrington�Kirkpatrick (SK) model
(without external field) is defined as

H=HN(=, x)=
1

- N
:

1�i< j�N

=i =j xij

where ==(=i ) # [&1, +1]N and x=(x ij ) # RN(N&1)�2. We consider here the
Hamiltonian as a function of both the spins =i and the ``random'' interac-
tions xij between two spins =i and =j with i< j. The randomness of the x ij 's
will be represented by the canonical Gaussian measure # on RN(N&1)�2.
Integration with respect to # is denoted by � .
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Let

Z=ZN(x; ;)=| e ;HN (=, x) d=

be the SK partition function where d= denotes uniform measure on the
discrete cube [&1, +1]N and where ;>0 represents the inverse of the
temperature. We will usually suppress the dependence in N and ; in both
H and Z. We emphasize when necessary dependence on x or =. Integration
with respect to the Gibbs measure with density

1
Z

e ;H

with respect to d= (that depends on N, ; and x) will be denoted by ( } ) J .
The notation J is the commonly used one to describe the dependence of the
Gibbs measure with respect to the Gaussian interaction. The SK free
energy is defined as F=log Z. It is plain that, for fixed N, Z and F are C�

functions in x and ;. Integration with respect to

1
Z

e ;H d= d#

will be denoted by ( } ) (in other words, � ( } )J=( } ) ).
Consider now two independent copies (replicas) =1 and =2 of = and

define the so-called overlap of =1 and =2 as

q1, 2=
1
N

=1 } =2=
1
N

:
N

i=1

=1
i =2

i .

Note that |q1, 2|�1. When we speak of the distribution of such an overlap,
it has to be understood with respect to the (annealed) Gibbs measure

|
1

Z2(x)
e ;H(=1, x)e ;H(=2, x) d=1 d=2 d#(x)

averaging on the Gaussian realizations, represented similarly by ( } ), and
similarly if overlaps between a higher number of replicas has to be con-
sidered (such as in products q1, 2q2, 3 , q1, 2 q3, 4 , q1, 2 q2, 3q3, 1). The ( } )
averages are obviously invariant under permutations and relabeling of the
replicas.
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Overlaps arise naturally as moments of the Hamiltonian or derivatives
of the free energy (with respect to ;). For example,

�F
�;

=
1
Z

�Z
�;

=| H
1
Z

e ;H d==(H ) J .

Now, by definition of H,

|
�F
�;

=(H ) =
1

- N
:

i< j
|| =i =j xij

1
Z

e ;H d= d#.

Integration by parts along each coordinate xij shows that for every smooth
function . on RN(N&1)�2,

| xij . d#=| �xij
. d#.

Therefore,

|
�F
�;

=(H )=
1

- N
:

i< j
|| =i =j �xij \ 1

Z
e ;H+ d# d=

=
1

- N
:

i< j
|| =i =j \ ;

- N
=i =j&

�xij
Z

Z + 1
Z

e ;H d# d=.

Now,

�xij
F=

�xij
Z

Z
=

;

- N | =$i =$j
1
Z

e ;H(=$) d=$=
;

- N
(=$i =$j )J (1.1)

so that, by Fubini's theorem,

|
�F
�;

=(H )=
;
N

:
i< j

( (=i =j )
2&=i =j =$i =$j ) =

;N
2

[1&(q2)] (1.2)

where we set, for simplicity, q=q1, 2 to describe the basic overlap between
two replicas.

The preceding analytic procedure has been performed similarly at the
level of second moment and derivative by Guerra in ref. 1. In particular, it
is shown there that

(H2)=
N&1

2
+

;2N 2

4
[1&2(q2) &(q4) +2(q2

1, 2 q2
2, 3)]. (1.3)
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Similarly,

|
�2F
�;2 =| (H 2) J&| (H ) 2

J

=
N
2

[1&(q2)]&
;2N 2

2
[(q4) +3(q2

1, 2q2
3, 4)&4(q2

1, 2q2
2, 3)]. (1.4)

Note that � (q2) 2
J=(q2

1, 2q2
3, 4) . Together with self-averaging in quadratic

mean, this led Guerra to some remarkable overlap identities (in the thermo-
dynamical limit as N � �). Namely, it was shown by Pastur and Sherbina(2)

(see also ref. 3) and Guerra(1) that, at least along a subsequence N and for
almost every ;>0,

lim
N � �

1
N 2 [(H2) &(H ) 2]=0. (1.5)

The conjunction of (1.2)�(1.5) then leads to the overlap identities (in the
thermodynamical limit, along a subsequence and for almost every ;),

(q2
1, 2q2

2, 3) = 1
2 (q2) 2+ 1

2 (q4) (1.6)

and

(q2
1, 2q2

3, 4) = 2
3 (q2) 2+ 1

3 (q4). (1.7)

Equations (1.6) and (1.7) are due to Guerra.(1) They go in the direction of
the Parisi predictions on ultrametricity of overlaps (see below). Note in
particular the somewhat surprising feature of (1.7) since the overlaps q1, 2

and q3, 4 are independent for each fixed Gaussian realization.
The preceding identities have been extended recently by Ghirlanda

and Guerra(4) to show, again under self-averaging, that the overlap q1, l+1

between one amongst l replicas and the added one l+1 is, conditionally
to the first l replicas, either independent of the former ones, or identical to
one of the overlap q1, m , 1<m�l, each of these cases having equal prob-
ability 1�l. In other words, for any bounded function 8 of the first l

replicas (and not depending upon the Gaussian interaction),

(8q2
1, l+1)=

1
l

(8)(q2)+
1
l

:
l

m=2

(8q2
1, m) (1.8)

and similarly for any power of the overlaps. This property in particular
allows us to reduce overlaps to combination of overlaps involving a smaller
number of replicas.
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The purpose of this work is a thorough and hopefully rigorous exposition
of the preceding results by means of a simplified model on which the under-
lying analytical procedure (mainly Gaussian integration by parts) takes an
easy form. The model is not only simplified but also generalized, and covers
in a convenient language the classical SK model (with or without external
field), the p-spin model, p>2, the Derrida random energy model and so on.
While we outrageously loose with this model the spin structure, it is however
good enough, to some extent, to retain the analytical properties on the over-
lap distributions as investigated in refs. 1, 4�6. In particular, the preceding
overlap identities hold in a surprising generality. The model is presented in
Section 2 that contains the basic relations between the Hamiltonian and the
overlaps. In particular, we describe there moments of the Hamiltonian in
terms of polynomials of overlaps. By related arguments, we describe similarly
derivatives in terms of ; of the free energy. These relations lead to various
overlap identities that we further investigate in the next sections. In Section 3,
we present through a simplified approach, the self-averaging properties of
ref. 2, which are shown to hold at least for almost every temperature along
a subsequence, We then present the result (1.8) of Ghirlanda and Guerra(4)

in our generalized setting. Moreover, we describe, under some further self-
averaging property, how to reduce sets of overlaps to complete overlaps
involving a minimal number of replicas (replica equivalence): the joint dis-
tribution of l overlaps can be obtained by considering only l replicas. These
aspects are related to the recent contribution by Aizenman and Contucci(5)

where continuity in temperature is used to produce similar conclusions. In the
final section, we discuss the complete overlap q1, 2q2, 3q3, 1 (the simplest one
after q1, 2) and the Parisi ultrametricity as developed in ref. 7.

We do not consider here the difficult question of the existence of the
various limits as N � � of F, (H ), q2, etc. As is classical, these limits exist
at high temperature (0<;�1), in which case all the overlaps are essen-
tially 0. The delicate low temperature regime is investigated in refs. 3 and 8.

2. THE GENERALIZED MODEL

Let n�1, and let +=+n be a probability measure on the standard
sphere Sn&1 in Rn. For every !, x # Rn, let

H=Hn(!, x)=a(! } x)

where a=an>0 and where ! } x denotes the scalar product in Rn of ! and x.
For ;>0, set

Z=Zn(x; ;)=| e ;H d+=| e ;a(! } x) d+(!).
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Set F=log Z. Integration with respect to the Gibbs measure with density

\=
1
Z

e ;H

with respect to + (that depends on n, ; and x) is denoted by ( } )J . Besides,
we equipped Rn with the canonical Gaussian measure #, integration with
respect to which is denoted by � . By the integration by parts formula with
respect to #,

| x } u=| div(u) (2.1)

for every smooth function u: Rn � Rn. In particular,

| (! } x) v=| ! } {v (2.2)

for every ! # Rn and smooth function v: Rn � R. Integration with respect to
� ( } ) J is denoted by ( } ) . As in the introduction, we usually suppress
dependence on n and ;, and emphasize if necessary dependence on ! or x.

Overlaps in this framework are simply scalar product !1 } !2 between
independent elements (!1, !2) on Sn&1_Sn&1 (with respect to the product
measure +�+). We adopt again the notation ( } ) J and ( } ) when a higher
number of replicas, and thus of Gibbs measures, is involved.

To emphasize the technical simplifications with respect to the usual
SK model, it might be worthwhile to reproduce for this generalized model
the expression of (H ). Namely,

(H )=| H
1
Z

e ;H d+ d#=| \| a(! } x)
1
Z

e ;H d#+ d+

=a || _;a |!|2&! }
{Z
Z & 1

Z
e ;H d# d+

=;a2[1&(! } !$)]

where we used (2.2) and that

{Z=;a | !$e ;H(!$) d+(!$). (2.3)
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Writing more simply p=! } !$ for the basic overlap between ! and !$, we
thus have

(H ) =;a2[1&( p)]. (2.4)

To transpose this simplified model to the usual SK model, let n=
N(N&1)�2, a=- (N&1)�2, and let + be the image measure of the uniform
measure on the cube [&1, +1]N in RN by the map

= # [&1, +1]N [ !=
1

- n
(=i =j )1�i< j�N # Sn&1

Then,

H(=)=
1

- N
:

1�i< j�N

=i =j x ij=a(! } x)

Note furthermore that

N(= } =$)2&1=(N&1)(! } !$) (2.5)

that allows us to transfer scalar products to overlaps of the SK model. In
particular, it is then immediate to recover (1.2) from (2.4).

The generalized model includes a number of further examples of interest.
The same construction may indeed be applied to the p-spin SK model, p>2.
In this case,

H=\ p!
2N p&1+ :

1�i1< } } } <ip�N

=i1
} } } =ip

x i1 } } } ip

and we transfer the uniform measure on [&1, +1]N by the map

= # [&1, +1]N [ !=
1

- n
(=i1

} } } =ip
)1�i1< } } } <ip�N # Sn&1

where now n=( N
p ) and

a2=
N(N&1) } } } (N& p+1)

2N p&1 t
N
2

.

In the random energy model of Derrida, (9) that corresponds to the limit
value p=� in the p-spin model, we let x=(x=)= # [&1, +1]N # Rn, n=2N, be
independent standard Gaussian under # on Rn, and H=(1�- N ) x= This
model is handled similarly by mapping = # [&1, +1]N to the = th vector e=
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of the canonical basis of Rn. Here a=- N . The overlap structure is
however trivial in this example since = } =$=e= } e=$=0 whenever ={=$.

Another case of interest is the presence of an external field. For a
probability measure + now on Sn&1_R and ;>0, h # R, consider the
Gibbs measure with density

1
Zn(x; ;, h)

e ;Hn(!, x)+h`

with respect to d+(!, `). When pushing uniform measure on the cube
[&1, +1]N by the map

= # [&1, +1]N [ (!, `)=\ 1

- n
(=i =j )1�i< j�N , :

N

i=1

=i+ # Sn&1_R

we recover the SK model with external field described by the Hamiltonian

H=
1

- N
:

1�i< j�N

=i =j xij+h :
N

i=1

=i

(changing h into h�;). In this way, all the results presented below for h=0
readily extend to any value of h simply replacing + on Sn&1 by + on
Sn&1_R. For simplicity in the notation, we however only deal below with
the case h=0.

Our first task will be to describe moments of the Hamiltonian in terms
of overlaps. One basic lemma in the analysis of overlaps is the following
result, consequence of the Gaussian integration by parts formula (2.1).

Let I be a finite subset of integers �1, 8=8(!i , i # I ; x) bounded
(say) on Sn&1_ } } } _Sn&1_Rn, j �1, * # R. Set

K(8; *)=(8e*H(! j ))

Here ( } ) is thus understood with respect to \J d+J d# where we set
J=I _ [ j ] and \J=>m # J \(!m), d+J=}m # J d+(!m).

Lemma 2.1. Under the preceding notation,

�
�*

K(8; *)=aK(! j } {8; *)+a2*K(8; *)

+;a2 _ :
m # J

K(8(! j } !m); *)&|J | K(8(! j } !k); *)&
where |J | is the cardinal of J and k � J.
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Proof. By (2.2) with !=! j and v=8e*H(! j ),

�
�*

K(8; *)=a( (! j } x) 8e*H(! j ))

=a || (! j } x) 8e*H(! j )\J d# d+J

=a || (! j } {8e*H(! j )) \J d# d+J+a2* || 8e*H(! j )\J d# d+J

+a || (! j } {(log \J )) 8e*H(! j )\J d# d+J

where we used that ! j # Sn&1. Since

log \J=;a :
m # J

!m } x&|J | { log Z

and since

{ log Z=
{Z
Z

=;a | !k\(!k) d+(!k)

the lemma easily follows. K

The preceding lemma may be used to provide a simple induction for-
mula for the moments of H=a(! } x) with respect to ( } ) . Namely, for any
integer r�0,

(H r) =
�r

�*r K(1; *)|*=0

For example (with 8#1, j=1, k=2),

(H ) =
�
�*

K(1; *)|*=0=;a2[K(1; 0)&K(!1 } !2; 0)]=;a2[1&( p)]

and (with 8=!1 } !2, j=1, k=3),

(H2) =a2K(1; 0)+;a2 _ �
�*

K(1; *)|*=0&
�

�*
K(!1 } !2; *)| *=0&

=a2K(1; 0)+;a2[;a2(K(1; 0)&K(!1 } !2; 0))

&;a2(K(!1 } !2; 0)+K((!1 } !2)2; 0)&2K((!1 } !2)(!1 } !3); 0))]

=a2+;2a4[1&2( p) &( p2) +2( (!1 } !2)(!1 } !3))] (2.6)
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in accordance with (1.3) (via (2.5)). More generally, Lemma 2.1 may be
used to develop in terms of overlaps mixed moments such that

| (H r) J (H ) s
J , r, s # N.

It follows from Lemma 2.1 that moments of H may be developed as
polynomials in a2 with overlaps as coefficients, with degree 2r for the r th
moment. In particular, since overlaps are bounded (by 1), for any r�0 and
a�1,

( |H | r)�Ca2r (2.7)

where C>0 is polynomial in ;. This property is actually well-known on
the classical SK model. Indeed

( |H | r)=N &r�2 || } :
i< j

=i =j xij }
r 1

Z
e ;H(=, x) d= d#(x)

�N &r�2 | max
= # [&1, +1]N } :

i< j

=i =j x ij }
r

d#(x)

Under #, X(=)=�i< j =i =j x ij is a centered Gaussian random variable with
variance N(N&1)�2. Therefore, by classical Gaussian comparison
theorems, (10)

| max
= # [&1, +1]N

|X(=)| r d#�C \N(N&1)
2 +

r�2

(log Card([&1, +1]N ))r�2

where C>0 only depends on r. Hence (2.7) holds in this case (recall that
a=- (N&1)�2).

The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let 8=8(!1,..., !l), say bounded, on Sn&1_ } } }
_Sn&1, l�1. Then

(8H(!1)) =;a2 _ :
l

m=1

(8(!1 } !m)) &l(8(!1 } !l+1))&
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Following a somewhat more analytical procedure, one may describe
similarly the derivatives in ; of the free energy F as cumulants. By definition,
the r th cumulant }r of

K(t)=KH(t)=log(etH ) J , t�0,

is the coefficient of tr�r! in the Taylor expansion of K as a function of t. If
we center H at its mean (H ) J ,

KH&(H )J
(t)=KH(t)&t(H ) J

for every t so that }r may be expressed, for any r�0, as an algebraic
expression of the moments of H&(H ) J . Now, for each r�0,

}r=
�rK
�tr (0)=

�rF
�;r .

In particular,

�F
�;

=(H ) J ,

�2F
�;2 =( (H&(H ) J )2) J ,

�3F
�;3 =( (H&(H ) J )3) J ,

�4F
�;4 =( (H&(H ) J )4) J&3( (H&(H ) J )2) 2

J ,

b

We may express the derivatives of F as gradients along x. By definition
of Z=� e ;H d+ and since H=a(! } x), it is easily seen by induction that, for
every r�1,

;r �rZ
�;r =(x� } } } �x) } {rZ=x �r } {rZ.

Since F=log Z, we have similarly

;r �rF
�;r =x �r } {rF.
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Integrate now the right-hand side with respect to the canonical Gaussian
measure # on Rn and make use of (2.1). It follows that

;r |
�rF
�;r =| x �r } {rF

=(r&1) | x � (r&2) } {r&2(2F )+| x � (r&1) } {r&1(2F ).

In particular, ; � (�F��;)=� 2F. In other words

Proposition 2.3. Set Ar(,)=;r � (�r,��;r) with A0(,)=� ,. Then,
for every r�1,

Ar(F )=(r&1) Ar&2(2F )+Ar&1(2F ).

For example,

; |
�F
�;

=| 2F,

;2 |
�2F
�;2 =| [22F+2F ],

;3 |
�3F
�;3 =| [23F+322F ],

;4 |
�4F
�;4 =| [24F+623F+322F ],

b

As a consequence of the preceding, identifying the derivatives of the
free energy amounts to identify 2rF, r�1. To this task, note that, as a
function of x # Rn,

�2
ii Z=;2a2 | !2

i eH d+(!)

where �i is partial differentiation along the i th coordinate. Since + is
concentrated on Sn&1,

2Z= :
n

i=1

�2
iiZ=;2a2Z. (2.8)
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It follows, to start with, that

2F=2(log Z)=
2Z
Z

&
|{Z |2

Z2 =;2a2&
|{Z |2

Z2 =;2a2&|{F |2. (2.9)

It is important to observe that such a differential formula also leads to
overlaps since, by Fubini's theorem and (2.3),

|{F |2=
|{Z | 2

Z2 =;2a2 || ! } !$
1

Z2 e ;H(!)e ;H(!$) d+(!) d+(!$)=;2a2( p) J .

(2.10)

In particular, we recover in this way (2.4). In order to develop 2rF for
r�2, we borrow from ref. 11 a convenient notation for the iterated
gradients. Namely, set, for smooth functions ., � on Rn, 10(., �)=.�,
and, for every k�1,

1k(., �)= 1
2 [2(1k&1(., �))&1k&1(., 2�)&1k&1(2., �)]={k. } {k�.

Write furthermore 1k(.)=1k(., .). Let us test this notation for 22F. We
have, by (2.9),

22F=&2( |{F |2)=&212(F )&212(F, 2F )=&212(F )+211(F, 11(F )).

Thus by the chain rule formula (F=log Z) and (2.8),

22F=&
2

Z2 12(Z)&
6

Z4 11(Z)2+
4

Z3 11(Z, 11(Z)). (2.11)

Again, the definition of the 1k 's allows us to express (2.11) as overlaps. For
example,

12(Z)=|{2Z |2=;4a4 || (!�!) } (!$�!$)
1

Z2 e ;H(!)e ;H(!$) d+(!) d+(!$)

=;4a4( p2) J .

We get similarly

22F=&2;4a4[2( p2) J+3( p) 2
J&4( (!1 } !2)(!2 } !3)) J ].

Since ;2 � (�2F��;2)=� [22F+2F ], we recover in this way (1.4). Iteration
of the preceding shows that each 2rF may be developed in terms of iterated
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gradients of F. Since F=log Z, these can be turned into iterated gradients
of Z, and thus into overlaps. The important aspect drawn from this
development is that it is actually ``homogeneous'' in ;2a2, that is, 2rF is
equal to ;2ra2r times a linear combination of overlaps. To identify precisely
this linear combination would require a more careful analysis of the induc-
tion procedure. We do not pursue in this direction.

3. SELF-AVERAGING CONDITIONS

In what follows, we let a=an � �. Following the self-averaging
property (1.5), we consider the condition

(H2) &(H ) 2=o(a4) (3.1)

We first show, following refs. 1 and 2 (see also ref. 3), how positivity and
convexity may be used to check such conditions, at least along a sub-
sequence and for almost every ;>0.

To this task, write

|
;0

0
[(H 2)&(H ) 2] d;

=|
;0

0 _| ((H2) J&(H ) 2
J )& d;+|

;0

0 _| (H 2) J&\|(H ) J+
2

& d;

=|
;0

0
|

�2F
�;2 d;+|

;0

0 _| \�F
�; +

2

&\| �F
�;+

2

& d;. (3.2)

Now, by (2.4), for any ;0>0,

|
;0

0
|

�2F
�;2 d;=\| �F

�; + |;0

=(H ) |;0
=;0 a2[1&( p)] (3.3)

so that

1
a4 |

;0

0
|

�2F
�;2 d; � 0 (3.4)

as n � �. Turning to the second term on the right-hand side of (3.2), the
classical Poincare� inequality for Gaussian measures (see, e.g., ref. 11) first
indicates that

| F 2&\| F+
2

= 1
2 || |F(x)&F( y)|2 d#(x) d#( y)�| |{F |2. (3.5)
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As we have seen in (2.10),

|{F |2=;2a2( p) J�;2a2. (3.6)

By Taylor's formula, for any ;>0, $>0, and every x # Rn,

F(x; ;+$)=F(x; ;)+$F $(x; ;)+$2 |
1

0
(1&t) F"(x; ;+$t) dt

where we denote for simplicity by F $ and F" the first and second
derivatives of F(x; ;) in ;. It follows that

|F $(x; ;)&F $( y; ;)|�
1
$

|F(x; ;+$)&F( y; ;+$)|+
1
$

|F(x; ;)&F( y; ;)|

+$ | (1&t) F"(x; ;+$t) dt

+$ |
1

0
(1&t) F"( y; ;+$t) dt

where we used that F"�0. By (3.5) and (3.6),

|| |F(x; ;)&F( y; ;)| d#(x) d#( y)�- 2;a

and similarly with ;+$ instead of ;. Furthermore, for any ;0>0,

|
;0

0
|

1

0
(1&t) F"(x; ;+$t) dt d;=|

1

0
(1&t)[F $(x; ;0+$t)&F $(x; $t)] dt

so that, by (3.3),

|
;0

0
|

1

0
| (1&t) F"(x; ;+$t) d#(x) dt d;�(;0+$)2 a2.

Hence, summarizing the preceding estimates,

|
;0

0
|| |F $(x; ;)&F $( y; ;)| d#(x) d#( y) d;

�
- 2

$
;0 a0(;0+$)+2$(;0+$)2 a2.
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Letting n go to infinity, and then $ go to 0, shows that

1
a2 |

;0

0
|| |F $(x; ;)&F $( y; ;)| d#(x) d#( y) d; � 0.

But F $=(H ) J and we have seen in (2.7) that, for every r�0, ( |H | r) =
O(a2r) where O may be bounded uniformly on every interval [0, ;0].
Therefore, � |(H )J | r=O(a2r) and it follows that we also have that

1
a4 |

;0

0
|| |F $(x; ;)&F $( y; ;)| 2 d#(x) d#( y) d; � 0

and thus

1
a4 |

;0

0 _| \�F
�; +

2

&\| �F
�; +

2

& d; � 0. (3.7)

Therefore, from (3.2), (3.4) and (3.7),

1
a4 |

;0

0
[(H 2)&(H2)] d; � 0

for every ;0>0. Hence, at least along a subsequence and for almost every
;>0,

(H2) &(H ) 2=o(a4).

We now investigate, following refs. 1 and 4, the consequences of self-
averaging to overlap identities. In what follows, we assume that (3.1) holds,
possibly only for almost every ; and along a subsequence, as it was shown
above. By (2.7), we thus also have that for every integer r�1,

(H r) &(H ) r=o(a2r). (3.8)

In particular, since by (2.4), (H )=;a2[1&( p)], it follows that

(H r) &;r[1&( p)]r=o(a2r). (3.9)

For the derivatives of the free energy, we have similarly that for every r�2,

|
�rF
�;r =o(a2r), | 2rF=o(a2r). (3.10)

886 Ledoux



Since as we have seen in the preceding section, both (H r) and � (�rF��;r)
may be expressed in terms of overlaps, (3.9) and (3.10) describe various
overlap identities extending (1.6) and (1.7).

Now, we turn to the results of ref. 4. As a consequence of the self-
averaging condition (3.1) and the Cauchy�Schwarz inequality, for every
(say bounded) 8=8(!1,..., !l) depending on l replicas !1,..., !l (although
possibly not the first one !1),

(8H(!1)) =(8)(H ) +o(a2).

Hence, together with Corollary 2.2, we see that

;a2 _ :
l

m=1

(8(!1 } !m))&l(8(!1 } !l+1))]=(8) ;a2[1&( p)]+o(a2).

We may therefore conclude to the main observation of the work by
Ghirlanda and Guerra.(4) In the next statement and below, we use for sim-
plicity the notation (i, j ) for !i } ! j to represent the overlap between the
replicas !i and ! j. Somewhat surprisingly, this result holds in the generality
of our simplified model, for arbitrary probability measures + on Sn&1.

Proposition 3.1. For every bounded 8=8(!1,..., !l),

(8(1, l+1))=
1
l

(8)( p)+
1
l

:
l

m=2

(8(1, m)) +o(1).

Proposition 3.1 is a fundamental tool to reduce sets of overlaps to
more simple ones. A first example consists of course of the overlap iden-
tities (1.6) and (1.7) that read here

( (1, 2)(2, 3))= 1
2 ( p) 2+ 1

2 ( p2) (3.11)

and

( (1, 2)(3, 4))= 2
3 ( p) 2+ 1

3 ( p2). (3.12)

For simplicity, we omit here and below, the o(1) term. The identity (3.11)
is immediate from Proposition 3.1. For (3.12), apply Proposition 3.1 with
l=3 to get, by relabeling the replicas,

( (1, 2)(3, 4))=( (2, 3)(1, 4))= 1
3 ( p) 2+ 2

3 ( (1, 2)(2, 3))

and use (3.11). It might be worthwhile noting that by (2.4) and (2.6), the
self-averaging condition (3.1) is actually equivalent to (3.11).
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The identities of Proposition 3.1 extend to arbitrary powers of the
overlaps, however under stronger self-averaging properties, in the form of,
for any s�1,

(8(1, l+1)s) =
1
l

(8)( ps)+
1
l

:
l

m=2

(8(1, m)s)+o(1). (3.14)

To this task and according to ref. 4, we may add to H auxiliary
Hamiltonians H (s) and consider, for every integer s�2 and *>0,

H+*H (s)=Hn(!, x)+*H (s)
n (!, y)

=a(! } x)+*a(! �s } y), ! # Sn&1, x # Rn, y # Rns,

where ! �s=!� } } } �! s-times and the scalar product ! � s } y takes place
in Rns. Performing integration by parts along the y variable only, for example
shows as before that

(H (s)) =;a2[1&( ps)]

where the averages are now taken with respect to the Hamiltonian
H+*H (s) annnealed in the x, y Gaussian variables.

It may be proved similarly that, along a subsequence, almost every-
where in *>0,

( (H (s))2) &(H (s)) 2=o(a4) (3.15)

for every s�2. The line of reasoning leading to Proposition 3.1 then allows
us to raise overlaps to the s power so to get (3.14). However, in order to
recover the initial model as * � 0, one has to strengthen the self-averaging
properties (3.15) uniformly in * � 0, for example such as

lim inf
* � 0

lim sup
n � �

1
*2a4 [( (H (s))2)&(H (s)) 2]=0. (3.16)

Such type of conditions are close to continuity in temperature as discussed
in ref. 5. It is not clear however when and how these stronger self-averaging
conditions can be satisfied.

As we have seen, relations (3.14) are true under the addition of
auxiliary Hamiltonians. These small perturbations can deeply change the
system (to free SK to p-spin models, p>2), however possibly without
changing the free energy: the intuition would be that these perturbations
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are generic. Relations (3.14) are satisfied under the replica symmetry break-
ing solution and Parisi's ultrametricity, (7) and are strongly related to their
validity. We are grateful to Talagrand for helpful comments on this point.

Taken the relations (3.14) for granted, it gives, by the moment
theorem, some ledgitimity to assert that the overlap (1, l+1) between one
amongst l replicas and the added one l+1 is, conditionally to the first l

replicas, either independent of the former one, or identical to one of the
overlap (1, m), 1<m�l, each of these cases having equal probability 1�l.
In particular, for any integers s, r,

( (1, 2)s (2, 3)r) = 1
2 ( ps)( pr)+ 1

2 ( ps+r).

Therefore, the overlaps (1, 2) and (2, 3) are, with equal probability, either
independent or equal. In other words, letting Q the distribution (with
respect to the annealed measure � \(!1) \(!2) d# \(!3) d+(!1) d+(!2) d+(!3))
of the couple ((1, 2), (2, 3)) on [&1, +1]2, for any bounded measurable .
on [&1, +1]2,

|| .(x, y) dQ(x, y)= 1
2 || .(x, y) dP(x) dP( y)+ 1

2 | .(x, x) dP(x) (3.17)

where we denote by P the distribution of the basic overlap p=(1, 2) on
[&1, +1]. A similar result holds for the couple ((1, 2), (3, 4)).

4. THE COMPLETE OVERLAP (1, 2)(2, 3)(3, 1) AND PARISI'S
ULTRAMETRICITY

Proposition 3.1 allows us to reduce general overlaps to more simple
ones. Let us first illustrate this observation on sets of 3 overlaps that, by
invariance by permutation and labeling, reduce to the five overlaps
(1, 2)(1, 3)(1, 4), (1, 2)(2, 3)(3, 4), (1, 2)(3, 4)(4, 5), (1, 2)(3, 4)(5, 6) and
the complete overlap (1, 2)(2, 3)(3, 1). By means of Proposition 3.1, it is
easily checked that

( (1, 2)(1, 3)(1, 4)) = 1
6 ( p) 3+ 1

2 ( p)( p2)+ 1
3 ( p3)

( (1, 2)(2, 3)(3, 4)) = 1
6 ( p) 3+ 1

3 ( p)( p2)+ 1
6 ( p3) + 1

6 ( (1, 2)(2, 3)(3, 1))

( (1, 2)(3, 4)(4, 5)) = 1
4 ( p) 3+ 5

12 ( p)( p2) + 1
6 ( p3) + 1

6 ( (1, 2)(2, 3)(3, 1))

( (1, 2)(3, 4)(5, 6)) = 1
3 ( p) 3+ 6

15 ( p)( p2) + 2
15 ( p3)

+ 2
15 ( (1, 2)(2, 3)(3, 1)) .
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Let us check for example the second identity. Setting 8=(1, 2)(2, 3), l=3
and relabeling, by Proposition 3.1,

( (1, 2)(2, 3)(3, 4))=( (1, 2)(2, 3)(1, 4))

= 1
3 ( (1, 2)(2, 3))( p)+ 1

3 ( (1, 2)2 (2, 3))

+ 1
3 ( (1, 2)(2, 3)(1, 3))

Now, as for (3.11),

( (1, 2)2 (2, 3)) = 1
2 ( p)( p2)+ 1

2 ( p3)

from which the result follows.
We observe that the distribution of 3 overlaps reduces to the complete

overlaps p=(1, 2) and ((1, 2), (2, 3), (3, 1)). Under (3.14), one may state a
general result in this regard.

Proposition 4.1. Under the relations (3.14), the joint distribution
of l overlaps is determined by the distributions of j overlaps, j�l, involving
at most l replicas.

Proof. The statement is somewhat abusive since, according to (3.14),
we only express, in the limit, a product (i1 , i2):2 } } } (i2l&1 , i2l):2l of powers
of l disctinct overlaps by similar expressions involving at most l replicas.

The proof goes by induction on l and the number b of replicas.
Consider

(i1 , i2):2 } } } (i2l&1 , i2l):2l

and assume that it involves b>l replicas. It is impossible that all the
replicas repeat twice so that there is at least of the im 's that only occurs
once. Assume it is i1 . By (3.14) applied to 8=(i3 , i4):3 } } } (i2l&1 , i2l):2l that
involves a set I involving a<b replicas, we get that

( (i1 , i2):2 } } } (i2l&1 , i2l):2l )

=
1
a

(8)( p)+
1
a

:
m # I "[i2]

( (i2 , m)(i3 , i4):3 } } } (i2l&1 , i2l):2l ) .

Repeating the procedure concludes the proof. K

We conclude this work by comments around Parisi's ultrametricity of
the overlap distributions. Predictions based on the replica trick reveal
ultrametric structures of the overlap distributions. Generally speaking,
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ultrametricity implies that the probability distribution of the overlaps over
l replicas, which is a priori a function of l(l&1)�2 variables, depends only
on l&1 variables (cf. ref. 7). At the simple level of 3 replicas, ultrametricity
indicates that if (1, 2)>(2, 3) with strictly positive probability, then
(3, 1)=(2, 3). Recalling P the distribution of p=(1, 2) and denoting by R
the distribution of ((1, 2), (2, 3), (3, 1)) on [&1, +1]3, this may be
expressed by saying that, for any, say bounded, measurable function . on
[&1, +1]3,

| .(x, y, z) dR(x, y, z)

=||
[x< y]

.(x, y, x) dA(x, y)+||
[ y<z]

.( y, y, z) dA( y, z)

+||
[z<x]

.(x, z, z) dA(x, z)+| .(x, x, x) dB(x)

where A is a symmetric distribution on [&1, +1]2. (We assume
implicitely that overlaps have continuous distributions.) Since � dR(x, y, } )
=dQ(x, y) and �� dR(x, } , } )=dP(x), integrating successively with respect
to one or two variables and making use of Guerra's relations (3.17) allows
us to easily identify A and B. Namely, dA(x, y)= 1

2 dP(x) dP( y) and dB(x)
= 1

2 (�[ y<x] dP( y)) dP(x). Therefore,

| .(x, y, z) dR(x, y, z)

= 1
2 ||

[x< y]
[.(x, y, x)+.(x, x, y)+.( y, x, x)+.( y, y, y)] dP(x) dP( y).

In particular,

( (1, 2)(2, 3)(3, 1))= 1
2 ||

[x< y]
(3x2y+ y3+ dP(x) dP( y).

By the reduction of Proposition 4.1, we thus deduce the distribution of any
3 overlap. However, to interpret analytically the ultrametric structure, even
in this simple case, seems a challenging question.
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