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Abstract. – In a recent work, E. Mossel and J. Neeman pro-

vided a heat flow monotonicity proof of Borell’s noise sensitivity for

the Ornstein-Uhlenbeck semigroup. The argument actually includes in

a common framework noise sensitivity, Brascamp-Lieb inequalities (in-

cluding hypercontractivity) and even a weak form of Slepian inequalities.

The scheme applies furthermore to families of measures with are more

log-concave than the Gaussian measure. The discrete cube raises some

interesting issues on a class of concave functions on the plane.

1. Hypercontractivity and Gaussian noise sensitivity

Borell’s noise sensitivity theorem for the Ornstein-Uhlenbeck semigroup [Bor] ex-

presses that if γ is the standard Gaussian measure dγ(x) = dγn(x) = e−|x|
2/2 dx

(2π)n/2 on

Rn, and if A,B are Borel measurable sets in Rn and H,K are parallel half-spaces with

respectively the same Gaussian measures γ(A) = γ(H), γ(B) = γ(K), then, for every

t ≥ 0,

(1)

∫
A

Qt(1B)dγ ≤
∫
H

Qt(1K)dγ.

Here (Qt)t≥0 = (Qnt )t≥0 is the Ornstein-Uhlenbeck semigroup defined, on suitable

functions f : Rn → R, by

(2) Qtf(x) =

∫
Rn

f
(
e−tx+

√
1− e−2t y

)
dγ(y), t ≥ 0, x ∈ Rn.

Alternatively, Qtf(x) is given by the Mehler kernel

(3) Qtf(x) =

∫
Rn

f(y)qt(x, y)dγ(y)

where, for t > 0, (x, y) ∈ Rn × Rn,

(4) qt(x, y) = qnt (x, y) =
1√

1− e−2t
exp

(
− e−2t

2(1− e−2t)

[
|x|2 + |y|2 − 2 etx · y

])
.



According to the representation (2), setting ρ = e−t, if X = Xn and Y = Y n are

independent with distribution γ = γn,∫
A

Qt(1B)dγ = P
(
X ∈ A, ρX +

√
1− ρ2 Y ∈ B

)
so that the conclusion (1) reads equivalently as

P
(
X ∈ A, ρX +

√
1− ρ2 Y ∈ B

)
≤ P

(
X ∈ H, ρX +

√
1− ρ2 Y ∈ K

)
.

In other words, if Z = (X, ρX +
√

1− ρ2 Y ) is a (centered) Gaussian vector in Rn×Rn

with covariance matrix

(5)

(
Idn ρ Idn
ρ Idn Idn

)
,

then

(6) P(Z ∈ A×B) ≤ P(Z ∈ H ×K).

The result then extends to any ρ ∈ [−1,+1] with however the inequality in (6) reversed

when ρ ∈ [−1, 0]. For simplicity in the exposition, we mostly only consider ρ ∈ [0, 1]

below.

Note that since H and K are (parallel) half-spaces of the form (by rotational

invariance)

(7) H =
{

(x1, . . . , xn) ∈ Rn;x1 ≤ a
}
, K =

{
(x1, . . . , xn) ∈ Rn;x1 ≤ b

}
for some a, b ∈ R,

P
(
Xn ∈ H, ρXn +

√
1− ρ2 Y n ∈ K

)
= P

(
X1 ≤ a, ρX1 +

√
1− ρ2 Y 1 ≤ b

)
.

Then, by the kernel representation (3), if ρ = e−t,

(8) P
(
X1 ≤ a, ρX1 +

√
1− ρ2 Y 1 ≤ b

)
=

∫ a

−∞

∫ b

−∞
q1
t (x, y)dγ1(x)dγ1(y).

Towards the proof of (1), C. Borell [Bor] developed symmetrization arguments with

respect to the Gaussian measure introduced in [E]. Recently, E. Mossel and J. Neeman

[M-N] proposed an alternate semigroup proof. This proof actually involves a specific

function, called below Borell’s noise sensitivity function, satisfying some particular

concavity property. To describe this property, say that a C2 function J on R2 or some

open set O in R2 is ρ-convave for some ρ ∈ R if the matrix(
∂11J ρ ∂12J
ρ ∂12J ∂22J

)
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is (uniformly) semi-negative definite. ρ = 1 amounts to standard concavity while ρ = 0

amounts to concavity along each coordinate. Note that the preceding matrix is the

point-wise (Hadamard) product of the Hessian of J with the matrix (5) (with n = 1).

In this class of ρ-concave functions, two examples are of most interest. Let first

JH(u, v) = uαvβ , (u, v) ∈ [0,∞)2.

Since

∂11J
H = α(α− 1)uα−2vβ , ∂22J

H = β(β − 1)uαvβ−2, ∂12J
H = αβuα−1vβ−1,

JH is ρ-concave on (0,∞)2 as soon as α, β ∈ [0, 1] and

(9) (α− 1)(β − 1) ≤ ρ2αβ.

The function JH will be called the hypercontractive function in this context.

The second example is therefore Borell’s noise sensitivity function considered in

[M-N] defined for (u, v) ∈ [0, 1]2 by

JB(u, v) = JB
ρ (u, v) = P

(
X1 ≤ Φ−1(u), ρX1 +

√
1− ρ2 Y 1 ≤ Φ−1(v)

)
where Φ(a) = γ1((−∞, a]), a ∈ R, is the distribution of the standard normal on R
and ρ = e−t. For the connection with Borell’s theorem, observe that if H and K are

half-spaces in Rn as in (7),

(10) JB
(
γ(H), γ(K)

)
=

∫
H

Qt(1K)dγ.

In order to check the ρ-concavity of JB, note for example that by (8),

JB(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
q1
t (x, y)dγ1(x)dγ1(y).

Elementary calculus therefore yields

∂1J
B(u, v) =

∫ Φ−1(v)

−∞
q1
t

(
Φ−1(u), y)dγ1(y)

and

∂12J
B(u, v) = q1

t

(
Φ−1(u),Φ−1(v)

)
.

On the other hand, by the integral representations (2) and (3), for h smooth enough,

∂x

∫
R
h(y)q1

t (x, y)dγ1(y) = ∂xQ
1
th(x) = ρQ1

th
′(x) = ρ

∫
R
h′(y)q1

t (x, y)dγ1(y).

With h a smooth approximation of 1(−∞,b],

∂x

∫ b

∞
q1
t (x, y)dγ1(y) = −ρ q1

t (x, b)ϕ(b)
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where ϕ = Φ′ is the density of γ1. Therefore,

∂11J
B(u, v) = −ρ q1

t

(
Φ−1(u),Φ−1(v)

) ϕ ◦ Φ−1(v)

ϕ ◦ Φ−1(u)
.

Similarly,

∂22J
B(u, v) = −ρ q1

t

(
Φ−1(u),Φ−1(v)

) ϕ ◦ Φ−1(u)

ϕ ◦ Φ−1(v)
.

Hence, on (0, 1)2,

∂11J
B ∂22J

B − ρ2(∂12J
B)2 = 0

and ∂11J
B ≤ 0, ∂22J

B ≤ 0 so that JB is indeed ρ-concave.

When ρ ∈ [−1, 0], observe that

(11) JB
ρ (u, v) = u− JB

−ρ(u, 1− v)

so that JB is ρ-convex in this case.

The main result by E. Mossel and J. Neeman [M-N] expresses an integral concavity

property along the Mehler kernel (from (4)) for ρ-concave functions.

Theorem 1. Let ρ ∈ [0, 1] and let J be ρ-concave on O = I1 × I2 ⊂ R2 where

I1 and I2 are open intervals. For every functions f : Rn → I1, g : Rn → I2 suitably

integrable, and with ρ = e−t,∫
Rn

∫
Rn

J
(
f(x), g(y)

)
qt(x, y)dγ(x)dγ(y) ≤ J

(∫
Rn

f dγ,

∫
Rn

g dγ

)
.

The proof by E. Mossel and J. Neeman [M-N] of Theorem 1 relies on heat flow

monotonicity and will be emphasized in a more general context next. Before turning to

the sketch of the argument, let us illustrate its application to the two previous examples

of ρ-concave functions JH and JB, covering in this way hypercontractivity and noise

sensitivity at the same time.

Concerning hypercontractivity, let 1 < p < q < ∞ and let ρ = e−t ∈ (0, 1) be such

that
1

ρ2
=
q − 1

p− 1
.

Denote by q′ the conjugate of q, 1
q + 1

q′ = 1. Then, according to (9), the function JH

with α = 1
q′ and β = 1

p is ρ-concave on (0,∞)2. For then strictly positive functions

f, g : Rn → R,∫
Rn

∫
Rn

f1/q′(x)g1/p(y)qt(x, y)dγ(x)dγ(y) ≤
(∫

Rn

f dγ

)1/q′(∫
Rn

g dγ

)1/p

.

In other words, changing f into fq
′

and g into gp,∫
Rn

f Qtg dγ ≤ ‖f‖q′‖g‖p.
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By duality

‖Qtg‖q ≤ ‖g‖p

which amounts to hypercontractivity of the Ornstein-Uhlenbeck semigroup [Nel], [Gr]

([B-G-L]). Clearly, the conclusion of Theorem 1 for JH is actually equivalent to

hypercontractivity. Note that a prior to the proof of hypercontractivity along these

lines may be found in [H].

Apply now on the other hand Theorem 1 to the function JB. Since JB(u, 0) =

JB(0, v) = 0 and JB(1, 1) = 1, for f = 1A and g = 1B∫
Rn

∫
Rn

J
(
f(x), g(y)

)
qt(x, y)dγ(x)dγ(y) =

∫
A

∫
B

qt(x, y)dγ(x)dγ(y) =

∫
A

Qt(1B)dγ.

We then recover Borell’s noise sensitivity theorem (1) since by (10)

JB

(∫
Rn

f dγ,

∫
Rn

g dγ

)
= JB

(
γ(A), γ(B)

)
= JB

(
γ(H), γ(K)

)
=

∫
H

Qt(1K)dγ

for parallel half-spaces H and K such that respectively γ(A) = γ(H) and γ(B) = γ(K).

When ρ ∈ [−1, 0], the conclusion of Theorem 1 for the function JB
ρ is thus reversed by

(11). As pointed out in [M-N], (1) on sets may actually be turned to Theorem 1 (for

JB) through epigraphs of functions on Rn−1.

It is of interest to directly compare the conclusion of Theorem 1 for the hypercon-

tractive function JH and for Borell’s noise sensitivity function JB, and namely to show

that noise sensivity is a stronger statement implying hypercontractivity. One way to-

wards this end, however along a rather long detour, is to observe, as emphasized in [L],

that Borell’s noise sensitivity theorem may be used to reach the Gaussian isoperimetric

inequality. Now, the latter implies in turn the standard logarithmic Sobolev inequality

for the Gaussian measure, equivalent to hypercontractivity (cf. [L], [B-G-L]).

There is an alternate direct argument towards this relationship, applying the

conclusion for JB to εf and δg and letting ε, δ → 0. To this task, it is necessary

to investigate the asymptotics of JB(εu, δv) as ε, δ → 0. Similar asymptotics are

investigated in [DK-P-W].

Set ρ = e−t > 0 and fix 0 < u, v < 1. Let furthermore 0 < ε < 1, δ = εκ
2

where

ρ < κ < 1
ρ , and

Z =

√
2 log

1

ε
, U = log

1

u
, V = log

1

v
.

In this notation, after a change of variables,

JB(εu, δv) =
UV

κZ2

∫ ∞
A

∫ ∞
B

q̃1
t

(
− Z − Ux

Z
,−κZ − V y

κZ

)
dxdy

where

A = −Z
U

[
Z + Φ−1(εu)

]
and B = − Z

κV

[
κZ + Φ−1(δv)

]
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and

q̃1
t (x, y) = (2π)−1q1

t (x, y)e−(x2+y2)/2, (x, y) ∈ R× R.

After some algebra,

JB(εu, δv) =
UV eσZ

2

2π
√

1− ρ2κZ2

∫ ∞
A

∫ ∞
B

e−αUx−βV y−R(x,y)dxdy

where

σ = −1− 2κρ+ κ2

2(1− ρ2)
, α =

1− κρ
1− ρ2

, β =
1− κ−1ρ

1− ρ2

and

R(x, y) = − 1

2(1− ρ2)

(
U2x2

Z2
+
V 2x2

κ2Z2
− 2ρ

UV xy

κZ2

)
.

It is classical that

Φ−1(ε) = −
√

2 log
1

ε
+ o

(√
2 log

1

ε

)
as ε→ 0, so that

Φ−1(εu) = −Z − U

Z
+ o(Z)

as Z → ∞. Moreover, o(Z) can be made uniform over η ≤ u ≤ 1 − η for η > 0 fixed.

As a consequence, as ε→ 0, A,B → 1 and

2π
√

1− ρ2 κZ2e−σZ
2

JB(εu, δv)→ UV

∫ ∞
1

∫ ∞
1

e−αUx−βV ydxdy =
1

αβ
e−αU−βV .

By definition of U and V , the right-hand side is 1
αβ u

αvβ .

Let now f, g on Rn such that η ≤ f, g ≤ 1− η for some fixed η > 0. Translating the

preceding asymptotics in the inequality∫
Rn

∫
Rn

JB
(
εf(x), δg(y)

)
qt(x, y)dγ(x)dγ(y) ≤ JB

(
ε

∫
Rn

f dγ, δ

∫
Rn

g dγ

)
yields ∫

Rn

∫
Rn

f(x)αg(y)βqt(x, y)dγ(x)dγ(y) ≤
(∫

Rn

f dγ

)α(∫
Rn

g dγ

)β
.

This inequality extends to all positive measurable functions f, g : Rn → R by homogene-

ity. Now, as is immediatley checked, for the values of α, β defined above,

(α− 1)(β − 1) = ρ2αβ,

that is condition (9) of hypercontractivity holds. Given therefore any α, β ∈ (0, 1)

satisfying this relation, one may choose ρ < κ < 1
ρ such that α = 1−κρ

1−ρ2 and β = 1−κ−1ρ
1−ρ2

as above. The announced claim follows.
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It is a further interesting observation due to R. O’Donnell, and communicated to us

by J. Neeman, that the conclusion of Theorem 1 implies back the ρ-concavity property

by by taking f(x) = a + εx and g(y) = b + εy and letting ε → 0. It would also be of

interest to find other relevant examples of function J .

As announced, let us briefly sketch at this stage the heat flow proof of Theorem 1

following [M-N], the detailed argument being developed in the more general context of

Section 3. Consider, for t (> 0) fixed and (smooth) functions f : Rn → I1, g : Rn → I2,

ψ(s) =

∫
Rn

∫
Rn

J
(
Qsf(x), Qsg(y)

)
qt(x, y)dγ(x)dγ(y), s ≥ 0.

By ergodicity, Qsf →
∫
Rn fdγ and Qsg →

∫
Rn gdγ as s → ∞ so that it is enough

to show that ψ is non-decreasing in order that ψ(0) ≤ ψ(∞) (which amounts to the

conclusion of the theorem). Differentiating ψ and integrating by parts with respect to

the infinitesimal generator L = ∆− x · ∇ of the Ornstein-Uhlenbeck semigroup (Qs)s≥0

yields (see the details in Section 3),

ψ′(s) =

∫
Rn

∫
Rn

[
(−∂11J)|∇Qsf |2 + (−∂22J)|∇Qsg|2 − 2 ρ ∂12J∇Qsf · ∇Qsg

]
qtdγdγ.

From the hypothesis of ρ-concavity on J , it follows that ψ′ ≥ 0 which is the result.

It may be mentioned that due to the product structure of both the Mehler kernel

qn and the Gaussian measure γn, the inequality of Theorem 1 immediately tensorizes

so that it is actually enough to establish it in dimension one.

The purpose of this note is to somewhat broaden the scope of Theorem 1 by E. Mossel

and J. Neeman [M-N] and of its proof to cover in the same mould various related

inequalities such as Brascamp-Lieb or Slepian inequalities. Actually, heat flow arguments

towards Brascamp-Lieb inequalities have been investigated in the recent years by

E. Carlen, E. Lieb and M. Loss [C-L-L] and J. Bennett, A. Carbery, M. Christ and T. Tao

[B-C-C-T] (see also [B-CE-L-M]) with a similar principle applied to multi-dimensional

versions of the hypercontractive JH function. In Section 2, we thus consider in this

respect the multi-dimensional versions of Theorem 1 which were recently emphasized

in [Nee], and discuss their applications to various families of concave functions towards

applications to Brascamp-Lieb and Slepian-type inequalities. In the next section, we

address extensions from the Gaussian model to families of measures dµ = e−V dx with a

lower bound on the Hessian of V following the basic semigroup interpolation argument.

The last part briefly comments on some analogous issues on the discrete cube following

[D-M-N].

It would be worthwhile to examine similarly the noise sensitivity theorem for the

Lebesgue measure λ with respect to the standard heat kernel expressing that for Borel

sets A, B in Rn with finite volume,∫
A

Ht(1B)dx ≤
∫
C

Ht(1D)dx
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where

Htf(x) =

∫
Rn

f(y) e−|x−y|
2/4t dy

(4πt)n/2
, t > 0, x ∈ Rn,

and C and D are centered balls in Rn such that λ(A) = λ(C) and λ(B) = λ(D). This

classical result is going back to [B-L-L] and [B-T] by rearrangement tools and one might

wonder for a heat flow proof. A similar question may be formulated on the sphere.

2. Multi-dimensional extensions

On the basis of the heat flow proof of Theorem 1, we address in this section multi-

dimensional extensions and develop connections to Brascamp-Lieb and Slepian-type

inequalities. The multi-dimensional versions of noise sensitivity were already put forward

by J. Neeman in [Nee]. The Brascamp-Lieb applications are contained with the same

approach in [C-L-L] and [B-C-C-T]. At the same time, the investigation provides a

somewhat different analytical treatment of the conclusions of Section 1.

Let J be a (smooth) real-valued function on some open subset O of Rm. It will be

implicitly assumed below that a composition like J ◦ f is meant for functions f with

values in O.

Let f1, . . . , fm be (smooth) functions on Rn and consider, for f = (f1, . . . , fm),

ψ(s) =

∫
Rn

J ◦Qsf dγ, s ≥ 0,

where (Qs)s≥0 is the Ornstein-Uhlenbeck semigroup on Rn (extended on functions with

values in Rm). Arguing as in Section 1, by integration by parts with respect to the

Ornstein-Uhlenbeck generator,

ψ′(s) = −
m∑

k,`=1

∫
Rn

∂k`J ◦Qsf ∇Qsfk · ∇Qsf` dγ.

In the preceding, replace now n by qn, q ≥ 1 integer, and assume that for every

k = 1, . . . ,m,

fk = gk ◦Ak

where gk : Rp → R and Ak is a (constant) p× qn matrix such that Ak
tAk is the identity

matrix (of Rp). By the integral representation (2) of Qs,

∇Qsfk = e−s tAk∇Qsgk ◦Ak

where on the left-hand side the semigroup Qs is acting on Rqn and on the right-hand

side, it is acting on Rp. Hence

ψ′(s) = − e−2s
m∑

k,`=1

∫
Rqn

∂k`J ◦Qsf Γk`∇Qsgk ◦Ak · ∇Qsg` ◦A` dγ
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where Γk` = A`
tAk (which is a p×p matrix). The following proposition summarizes the

conclusion at this level of generality.

Proposition 2. In the preceding notation, provided the Hessian of J is such that

for all vectors vk, k = 1, . . . ,m, in Rp,

(12)
m∑

k,`=1

∂k`J Γk` vk · v` ≤ 0,

then
∫
Rqn J ◦ f dγ ≤ J(

∫
Rqn f dγ), that is∫

Rqn

J(g1 ◦A1, . . . , gm ◦Am)dγ ≤ J
(∫

Rqn

g1 ◦A1dγ, . . . ,

∫
Rqn

gm ◦Amdγ
)
.

To connect with Section 1, take for example p = n and q = m = 2 and let A1 and

A2 be the n× 2n matrices A1 = (Idn; 0n) and A2 = (ρ Idn;
√

1− ρ2 Idn) so that

f1(x, y) = g1(x) and f2(x, y) = g2

(
ρx+

√
1− ρ2 y

)
, (x, y) ∈ Rn × Rn.

Moreover, Γ11 = Γ22 = Idn and Γ12 = Γ21 = ρ Idn. Therefore

ψ′(s) = − e−2s
[
∂11J

∣∣∇Qsg1 ◦A1

∣∣2 + 2ρ ∂12J ∇Qsg1 ◦A1 · ∇Qsg2 ◦A2

+ ∂22J
∣∣∇Qsg2 ◦A2

∣∣2]
so that the monotonicity property similarly follows from the ρ-concavity of the Hessian

of J expressed by (12).

We next systematically investigate illustrations of Proposition 2 for some main

examples of interest. For simplicity, we consider the one-dimensional versions p = q = 1,

the multi-dimensional cases being often obtained by tensor products with the identity

matrix (as in the preceding example). In particular, the meaning of condition (12) is

that the point-wise (Hadamard) multiplication of the Hessian of J and of Γ is (semi-)

negative definite.

(i) The first illustration examines Brascamp-Lieb inequalities under geometric

conditions. Consider unit vectors A1, . . . , Am which decompose the identity in Rn in

the sense that for 0 ≤ ck ≤ 1, k = 1, . . . ,m,

(13)

m∑
k=1

ckAk ⊗Ak = Idn.

Then, for

J(u1, . . . , um) = uc11 · · ·ucmm
on (0,∞)m and fk(x) = gk(Ak · x), gk : R → R, k = 1, . . . ,m, condition (12) of

Proposition 2 amounts to

(14)
m∑

k,`=1

ckc`Ak ·A` vkv` ≤
m∑
k=1

ckv
2
k
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for all v1, . . . , vm ∈ R. Now, if x =
∑m
k=1 ckAkvk,

|x|2 =
m∑
k=1

ckAkvk · x ≤
( m∑
k=1

ckv
2
k

)1/2( m∑
k=1

ck(Ak · x)2

)1/2

Since by the decomposition (13) |x|2 =
∑m
k=1 ck(Ak · x)2, it follows that

|x|2 =

∣∣∣∣ m∑
k=1

ckAkvk

∣∣∣∣2 ≤ m∑
k=1

ckv
2
k

which is the precisely requested inequality (14). We therefore conclude to the following

result.

Corollary 3. Under the decomposition (13), for non-negative functions gk on R,

k = 1, . . . ,m, ∫
Rn

m∏
k=1

gckk (Ak · x)dγ ≤
m∏
k=1

(∫
R
gkdγ

)ck
.

This inequality is part of the Brascamp-Lieb inequalities (under the geometric

condition (13), cf. e.g. [B-CE-L-M]). It is more classically stated with respect to the

Lebesgue measure as ∫
Rn

m∏
k=1

f ckk (Ak · x)dx ≤
m∏
k=1

(∫
R
fkdx

)ck
which is immediately obtained after the change fk(x) = gk(x)e−x

2/2 (using that∑m
k=1 ck = n).

The heat flow proof of Corollary 3 is thus going back to [C-L-L] and [B-C-C-T] in

which more general statements are considered and achieved in this way. One of the

motivations of [C-L-L] was actually to investigate similar inequalities for coordinates

on the sphere. Let Sn−1 be the standard n-sphere in Rn and denote by σ the uniform

(normalized) measure on it. In this framework, one result then reads as follows. If gk,

k = 1, . . . , n, are, say bounded measurable, functions on R, then∫
Sn−1

J
(
g1(x1), . . . , gn(xn)

)
dσ ≤ J

(∫
Sn−1

g1(x1)dσ, . . . ,

∫
Sn−1

gn(xn)dσ

)
as soon as J : Rn → R is separately concave in any two variables. The proof proceeds

as the one of Proposition 2 along now the heat flow of the Laplace operator

∆ =
1

2

n∑
k,`=1

(xk∂` − x`∂k)2

on Sn−1. The condition (12) then takes the form

n∑
k,`=1

∂k`J (δk` − xkx`)vkv` ≤ 0

10



which is easily seen to be satisfied under concavity of J in any two variables. The case

considered in [C-L-L] simply corresponds to

J(u1, . . . , un) = (u1 · · ·un)1/2

on Rn+. More general forms under decompositions (13) of the identity have been

considered in [B-CE-M], [B-CE-L-M].

In the further illustrations, consider X = (X1, . . . , Xm) a centered Gaussian vector

on Rm with covariance matrix Γ = A tA such that Γkk = 1 for every k = 1, . . . ,m. The

vector X has the distribution of Ax, x ∈ Rn, under the standard normal distribution

γ on Rn. Applying the general Proposition 2 to the unit vectors (1 × n matrices) Ak,

k = 1, . . . ,m, which are the lines of the matrix A and to fk(x) = gk(Ak · x), x ∈ Rn,

where gk : R → R, k = 1, . . . ,m, with respect to γ, yields that under condition (12),

that is here

(15)
m∑

k,`=1

∂k`J Γk` vkv` ≤ 0

for all vk ∈ R, k = 1, . . . ,m (and suitable integrability properties on the gk’s),

(16) E
(
J
(
g1(X1), . . . , gm(Xm)

))
≤ J

(
E
(
g1(X1)

)
, . . . ,E

(
gm(Xm)

))
.

Note that, as in Section 1, the condition (15) is actually necessary and sufficient for

(16) to hold.

(ii) This illustration deals with a correlation inequality for Gaussian vectors which

covers in particular the classical hypercontractivity property. For a Gaussian vector X

as above, let as in the first illustration,

J(u1, . . . , um) = uc11 · · ·ucmm

on (0,∞)m, with ck ≥ 0, k = 1, . . . ,m. This function J is the suitable multi-dimensional

analogue of the hypercontractive function JH. Applying the preceding conclusion (16)

yields the following statement.

Corollary 4. Assume that Γkk = 1 for every k = 1, . . . ,m, and that

(17)

m∑
k,`=1

ckc` Γk` vkv` ≤
m∑
k=1

ck Γkkv
2
k

for all vk ∈ R, k = 1, . . . ,m. Then, for all non-negative functions gk : R → R,

k = 1, . . . ,m,

(18) E
( m∏
k=1

gckk (Xk)

)
≤

m∏
k=1

(
E
(
gk(Xk)

))ck
.

11



Note that condition (17) amounts to the fact that Γ ≤ ∆c in the sense of symmetric

matrices where ∆c is the diagonal matrix ( 1
ck

)
1≤k≤m

. Observe also that if Γ ≥ ∆c, the

conclusion is reversed in (18). While Corollary 4 is somewhat part of the folklore (implicit

for example in [B-CE-L-M]), it has been emphasized recently in [C-D-P] together with

multi-dimensional versions.

One illustration concerns the Ornstein-Uhlenbeck process Z = (Zt)t≥0 (in dimension

one) with stationary measure γ = γ1 and associated Markov semigroup (Qt)t≥0 =

(Q1
t )t≥0. If X is the vector (Zt1 , . . . , Ztm) with 0 ≤ t1 ≤ · · · ≤ tm, the covariance matrix

Γ has entries Γk` = e−|tk−t`|, k, ` = 1, . . . ,m. In particular, for t1 = 0 and t2 = t > 0,

the condition (17) reads

2 e−tc1c2v1v2 ≤ c1(1− c1)v2
1 + c2(1− c2)v2

2

for all v1, v2 ∈ R which amounts to (9)

(c1 − 1)(c2 − 1) ≤ e−2tc1c2

and the conclusion of Corollary 4 leads to hypercontractivity. The condition

m∑
k,`=1

ckc` e−|tk−t`|vkv` ≤
m∑
k=1

ckv
2
k

leads to a multi-dimensional form of hypercontractivity

E
( m∏
k=1

gckk (Zsk)

)
≤

m∏
k=1

(
E
(
gk(Zsk)

))ck
.

In terms of the Mehler kernel (4),∫
R
· · ·
∫
R

m∏
k=1

gckk (xk) qt2−t1(x1, x2) · · · qtm−tm−1
(xm−1, xm)dγ(x1) · · · dγ(xm)

≤
m∏
k=1

(∫
R
gkdγ

)ck
.

(iii) We next turn to the multi-dimensional versions of noise sensitivity following

[Nee]. Let X = (X1, . . . , Xm) be a centered Gaussian vector on Rm with (non-

degenerate) covariance matrix Γ. Define, for u1, . . . , um in (0, 1),

(19) J(u1, . . . , um) = P
(
X1 ≤ α1(u1), . . . , Xm ≤ αm(um)

)
where α1, . . . , αm are smooth functions on (0, 1). For specific choices of αk, this

function will turn as the multi-dimensional analogue of the noise sensitivity function JB.

Denoting by p the density of the distribution of X with respect to Lebesgue measure,

elementary (although a bit tedious, see [Nee]) differential calculus leads to

∂k`J = α′k(uk)α′`(u`)

∫ α1(u1)

−∞
· · ·
∫ αm(um)

−∞
pk` dx

12



for k 6= ` and

∂kkJ =

(
α′′k(uk)− αk(uk)α′k(uk)2

Γkk

)∫ α1(u1)

−∞
· · ·
∫ αm(um)

−∞
pk dx

− α′k(uk)2
∑
` 6=k

Γk`
Γkk

∫ α1(u1)

−∞
· · ·
∫ αm(um)

−∞
pk` dx

where

pk = p
(
x1, . . . , αk(uk), . . . , xm

)
,

pk` = p
(
x1, . . . , αk(uk), . . . , α`(u`), . . . , xm

)
.

Choose now αk = Φ−1, k = 1, . . . ,m, and where we recall the distribution function

Φ of the standard normal. Since

α′k =
1

ϕ ◦ Φ−1
and α′′k =

Φ−1

(ϕ ◦ Φ−1)2
,

in order for the condition (15) to be satisfied, it is thus sufficient that Γkk = 1 for every

k = 1, . . . ,m and
m∑
k=1

∑
6̀=k

Γk` pk` v
2
k −

∑
k 6=`

pk` Γk` vkv` ≥ 0

for all v1, . . . , vm ∈ R. This holds as soon as Γk` ≥ 0 for all k, `.

For the application to the following corollary, recall that for the choice of αk = Φ−1,

the function J of (19) is equal to 0 if one of the uk’s is (approaches) 0, and is equal to 1

if all the uk’s are equal to 1. The corollary then follows from the application of (16) to

gk = 1Bk
, k = 1, . . . ,m. The restriction Γkk = 1, k = 1, . . . ,m, is lifted after a simple

scaling of the Gaussian vector and the Borel sets.

Corollary 5. Let X = (X1, . . . , Xm) be a centered Gaussian vector in Rm with

(non-degenerate) covariance matrix Γ such that Γk` ≥ 0 for all k, ` = 1, . . . ,m. Then,

for any Borel sets B1, . . . , Bm in R,

P(X1 ∈ B1, . . . , Xm ∈ Bm) ≤ P(X1 ≤ b1, . . . , Xm ≤ bm)

where P(Xk ∈ Bk) = Φ(bk/σk), k = 1, . . . ,m, where σk =
√

Γkk.

When Γk` ≤ 0 whenever k 6= `, the inequality in the conclusion of Corollary 5

is reversed. As developed in [Nee], the result applies similarly to Gaussian vectors

X1, . . . , Xm with covariance identity matrix. A related work by M. Isaksson and E.

Mossel [I-M] establishes the conclusion of Corollary 5 under the hypothesis that the

off-diagonal elements of the inverse of Γ are non-positive. Their approach relies on a

rearrangement inequality for kernels on the sphere. Corollary 5 (as well as actually, after

some work, the result of [I-M] – see [Nee]) covers the example of the Ornstein-Uhlenbeck

process, and thus of C. Borell’s result [Bor] in the form of the following corollary.

13



Corollary 6. Let (Zt)t≥0 be the Ornstein-Uhlenbeck process on the line, and let

0 ≤ t1 ≤ · · · ≤ tm. For any Borel sets B1, . . . , Bm in R,

P(Zt1 ∈ B1, . . . , Ztm ∈ Bm) ≤ P(Zt1 ≤ b1, . . . , Ztm ≤ bm)

where P(Ztk ∈ Bk) = γ(Bk) = Φ(bk), k = 1, . . . ,m.

(iv) This illustration is a variation on the previous multi-dimensional noise sensitivity

result which actually leads to a weak form of the classical Slepian inequalities. Let

as above X = (X1, . . . , Xm) be a centered Gaussian vector on Rm with covariance

matrix Γ = ΓX such that ΓXkk = 1 for every k = 1, . . . ,m. Consider furthermore

Y = (Y1, . . . , Ym) a centered Gaussian vector on Rm with covariance matrix ΓY also

such that ΓYkk = 1 for every k = 1, . . . ,m, yielding a J function (19)

J(u1, . . . , um) = P
(
Y1 ≤ α1(u1), . . . , Ym ≤ αm(um)

)
, u1, . . . , um ∈ (0, 1).

Choose now again αk = Φ−1. Arguing as (iii) towards (15), the condition is now that

m∑
k=1

∑
` 6=k

ΓYk` pk` v
2
k −

∑
k 6=`

pk` ΓXk` vkv` ≥ 0

for all v1, . . . , vm ∈ R (where p is here the density of the law of Y ). This holds as soon

as ΓYk` ≥ 0 and

(ΓXk`)
2 ≤ (ΓYk`)

2

for all k 6= `. As a conclusion

Corollary 7. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be centered Gaussian

vectors on Rm with respective (non-degenerate) covariance matrices ΓX and ΓY . Assume

that ΓXkk = ΓYkk = 1 and ∣∣ΓXk`∣∣ ≤ ΓYk`

for all for every k, ` = 1, . . . ,m. Then, for any Borel sets B1, . . . , Bm in R,

P(X1 ∈ B1, . . . , Xm ∈ Bm) ≤ P(Y1 ≤ b1, . . . , Ym ≤ bm)

where P(Xk ∈ Bk) = Φ(bk), k = 1, . . . ,m. In particular, for every r1, . . . , rm in R,

P(X1 ≤ r1, . . . , Xm ≤ rm) ≤ P(Y1 ≤ r1, . . . , Ym ≤ rm).

This result is of course a (very) weak form (in particular through the constraint

ΓYk` ≥ 0) of the classical Slepian lemma which indicates that for Gaussian vectors X and

Y in Rm, the conclusion of Corollary 7 holds whenever ΓXkk = ΓYkk and ΓXk` ≤ ΓYk` for all

k, ` = 1, . . . ,m. Note that the traditional proof of Slepian’s lemma ([S], [F], [Go]) is an

interpolation between the covariances ΓX and ΓY which is not the same as the one at

the root of Corollary 7.
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3. Log-concave measures

In this section, we develop the heat flow proof of Theorem 1 of E. Mossel and

J. Neeman in the somewhat extended context of probability measures dµ = e−V dx

on Rn such that V is smooth potential with a uniform lower bound on its Hessian.

The typical application actually concerns potentials V which are more convex than the

quadratic one, corresponding to Gaussian measures. The argument may be developed in

the more general context of Markov diffusion semigroups and the Γ-calculus as exposed

in [B-G-L] although for the simplicity of this note, we stay in the familiar Euclidean

case.

Consider therefore a probability measure dµ = e−V dx on the Borel sets of Rn,

invariant and symmetric measure of the second order differential operator L = ∆−∇V ·∇
where V is a smooth potential on Rn. The (symmetric) semigroup (Pt)t≥0 with generator

L may be represented by (smooth) probability kernels

(20) Pth(x) =

∫
Rn

h(y)pt(x, dy).

It will be assumed that V − c |x|
2

2 is convex for some c ∈ R, in other words the Hessian

of V is bounded from below by c Idn as symmetric matrices. It is by now classical

(cf. [B-G-L]) that this convexity assumption ensures that for all (smooth) h : Rn → R,

(21) |∇Pth| ≤ e−ctPt
(
|∇h|

)
.

The Gaussian example of the Ornstein-Uhlenbeck semigroup (Qt)t≥0 with invariant

measure γ is included with c = 1. In this case, due to the representation (2), the

gradient bound (20) actually turns into the identity

∇Qth = e−tQt(∇h).

We start with the analogue of Theorem 1 in this context following therefore the

argument of [M-N].

Theorem 8. Let J be ρ-concave, ρ > 0, on O = I1 × I2 ⊂ R2 where I1 and I2 are

open intervals. Then, for every f : Rn → I1, g : Rn → I2 suitably integrable, and with

ρ = e−ct, t > 0,∫
Rn

∫
Rn

J
(
f(x), g(y)

)
pt(x, dy)dµ(x) ≤ J

(∫
Rn

f dµ,

∫
Rn

g dµ

)
.

Proof. It is enough to assume that f and g are taking values in respective compact

sub-intervals of I1 and I2. Set

ψ(s) =

∫
Rn

∫
Rn

J
(
Psf(x), Psg(y)

)
pt(x, dy)dµ(x), s ≥ 0.
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The task is to show that ψ is non-decreasing. Taking derivative in time s,

ψ′(s) =

∫
Rn

∫
Rn

∂1J
(
Psf(x), Psg(y)

)
LPsf(x)pt(x, dy)dµ(x)

+

∫
Rn

∫
Rn

∂2J
(
Psf(x), Psg(y)

)
LPsg(y)pt(x, dy)dµ(x).

By integration by parts in space with respect to the operator L, expressed by (for smooth

functions ξ, ζ : Rn → R), ∫
Rn

ξ(−Lζ)dγ =

∫
Rn

∇ξ · ∇ζ dγ,

it holds∫
Rn

∫
Rn

∂1J
(
Psf(x), Psg(y)

)
LPsf(x)pt(x, dy)dµ(x)

= −
∫
Rn

∫
Rn

∇x
[
∂1J

(
Psf(x), Psg(y)

)
pt(x, dy)

]
· ∇Psf(x)dµ(x)

= −
∫
Rn

∫
Rn

∂11J
(
Psf(x), Psg(y)

)∣∣∇Psf(x)
∣∣2pt(x, dy)dµ(x)

−
∫
Rn×Rn

∂1J
(
Psf(x), Psg(y)

)
∇Psf(x) · ∇xpt(x, dy)dµ(x).

For x ∈ Rn fixed, consider h(y) = ∂1J(Psf(x), Psg(y)), y ∈ Rn. Since

∇Pth(z) =

∫
Rn

h(y)∇zpt(z, dy), z ∈ Rn,

at z = x,∫
Rn

∂1J
(
Psf(x), Psg(y)

)
∇Psf(x) · ∇xpt(x, dy) = ∇Pth(x) · ∇Psf(x).

Now, by (21),

∣∣∇Pth(x)
∣∣ ≤ e−ctPt

(
|∇h|

)
(x) = e−ct

∫
Rn

∣∣∇h(y)
∣∣pt(x, dy).

Since

∇h(y) = ∂12J
(
Psf(x), Psg(y)

)
∇Psg(y),

it follows that∫
Rn

∫
Rn

∂1J
(
Psf(x), Psg(y)

)
∇xpt(x, dy) · ∇Psf(x)dµ(x)

≤ e−ct
∫
Rn

∫
Rn

|∂12J |
(
Psf(x), Psg(y)

)∣∣∇Psg(y)
∣∣∣∣∇Psf(x)

∣∣pt(x, dy)dµ(x).
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Summarizing, and by the symmetric conclusion in the y variable, ψ′(s) is bounded

from below by∫
Rn

∫
Rn

[
(−∂11J)|∇Psf |2 + (−∂22J)|∇Psg|2−2 e−cs|∂12J ||∇Psf ||∇Psg|

]
pt(x, dy)dµ(x).

From the hypothesis on the Hessian of J , it follows that ψ′ ≥ 0 which is the result.

As in the Gaussian case, the examples of illustration of Theorem 8 cover both

hypercontractivity and noise sensitivity for the choices of J = JH or J = JB. The

noise sensitivity part, with c > 0, actually turns into a comparison theorem.

Corollary 9. Let (Pt)t≥0 be the Markov semigroup with invariant reversible

measure dµ = e−V dx where V is a smooth potential on Rn such that Hess(V ) ≥ c Idn
with c > 0. Then, whenever A,B are Borel sets in Rn and H,K are respective parallel

half-spaces such that µ(A) = γ(H), µ(B) = γ(K), then∫
A

Pt(1B)dµ ≤
∫
H

Qct(1K)dγ.

As in the Gaussian (cf. [L]), this property may be shown to imply the isoperimetric

comparison theorem of [B-L] (see [B-G-L]) comparing the isoperimetric profile of

measures dµ = e−V dx with c > 0 to the Gaussian one. The choice of JH yields

hypercontractivity of the semigroup associated to this family of invariant measures,

and thus the equivalent logarithmic Sobolev inequality for µ (cf. [B-G-L]).

We next turn to the multi-dimensional version of the preceding result, with therefore

in the following c > 0. Let X = (Xt)t≥0 be the Markov process with generator

L = ∆−∇V · ∇ and initial invariant distribution dµ = e−V dx. We are interested in the

distribution of (Xt1 , . . . , Xtm) where 0 ≤ t1 ≤ · · · ≤ tm. Consider the covariance matrix

Γ the Ornstein-Uhlenbeck process at speed ct, that is Γk` = e−c|tk−t`|, k, ` = 1, . . . ,m. In

the Gaussian case, this extension (for thus the Ornstein-Uhlenbeck process) was achieved

by the study of general Gaussian vectors. In the present case, we deal with the kernels

as given by (20), for simplicity one-dimensional.

Theorem 10. In the preceding notation, assume that the point-wise product

of (|∂k`J |)1≤k,`≤m and Γ is (semi-) negative-definite. Then, for every fi : R → Ii,

i = 1, . . . ,m, suitably integrable,∫
R
· · ·
∫
R
J
(
f1(x1), . . . , fm(xm)

)
ptm−tm−1(xm−1, dxm) · · · pt2−t1(x1, dx2)dµ(x1)

≤ J
(∫

R
f1 dµ, . . . ,

∫
R
fm dµ

)
.

We outline the argument when m = 3. Consider

ψ(s) =

∫
R

∫
R

∫
R
J
(
Psf(x), Psg(y), Psh(z)

)
pt−u(y, dz)pt(x, dy)dµ(x), s ≥ 0,
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for t > u > 0 and three functions f, g, h. Differentiating ψ and integrating by parts in

space leads to consider expressions such as∫
R

∫
R

∫
R
∂1J pt−u(y, dz)∂xpu(x, dy)∂xPsf dµ(x).

Arguing as in the proof of Theorem 8, this expression is equal to∫
R
∂xPsk ∂xPsf dµ(x)

where k = k(y) =
∫
R ∂1J pt−u(y, dz). Now by (21)

|∂xPsk| ≤ e−csPs
(
|∂yk|

)
.

Since

∂yk =

∫
R
∂12J pt−u(y, dz) +

∫
R
∂1J ∂ypt−u(y, dz),

similarly

|∂yk| ≤
∫
R
|∂12J |pt−u(y, dz) + e−c(t−u)

∫
R
|∂13J |∂ypt−u(y, dz).

The proof is then completed in the same way.

With the J function (19) associated to a finite-dimensional distribution of the

Ornstein-Uhlenbeck process, the following consequence holds true.

Corollary 11. Let c > 0 and 0 ≤ t1 ≤ · · · ≤ tm. For any Borel sets B1, . . . , Bm in

R,

P(Xt1 ∈ B1, . . . , Xtm ∈ Bm) ≤ P(Zct1 ≤ b1, . . . , Zctm ≤ bm)

where P(Xtk ∈ Bk) = µ(Bk) = Φ(bk), k = 1, . . . ,m and where (Zct)t≥0 is the Ornstein-

Uhlenbeck with speed ct.

As suggested by J. Neeman following his arguments developed in [Nee], Corollary 11

may be used towards a comparison property between hitting times. For a Borel set B

in R, let eXB = inf{t ≥ 0 ;Xt /∈ B} be the exit time of the Markov process X = (Xt)t≥0

from the set B.

Corollary 12. Under the preceding notation, for any s ≥ 0,

P
(
eXB ≥ s

)
≤ P

(
eZH ≥ s

)
where H is a half-line in R such that γ(H) = µ(B) and Z = (Zct)t≥0 the Ornstein-

Uhlenbeck process at speed ct.
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4. The discrete cube

To conclude this note, we briefly address in this last section the corresponding noise

sensitivity issue on the discrete cube and collect a few remarks and questions.

The discrete framework actually leads to a 4-point definition of ρ-concavity similar

to the standard characterization of concavity. Say namely that a function J on some

open convex set O of R2 is strongly ρ-concave for some ρ ∈ R if for all (u, v) ∈ O,

(u′, v′) ∈ O,

(22)

1 + ρ

4
J(u, v) +

1− ρ
4

J(u′, v) +
1− ρ

4
J(u, v′) +

1 + ρ

4
J(u′, v′)

≤ J
(u+ u′

2
,
v + v′

2

)
,

Lemma 13. Strong ρ-concavity implies ρ-concavity (for smooth functions).

Proof. By a Taylor expansion, at any (a, b) ∈ O, (h, k) ∈ R2, such that

(a± h, b± k) ∈ O,

(1 + ρ)
[
J(a+ h, b+ k) + J(a− h, b− k)− 2J(a, b)

]
+(1− ρ)

[
J(a+ h, b− k) + J(a− h, b+ k)− 2J(a, b)

]
= 2h2∂11J(a, b) + 4ρhk∂12J(a, b) + 2k2∂22J(a, b) + o(h2 + k2)

With u = a+ h, v = b+ k, u′ = a− h, v′ = b− k, (22) implies the ρ-concavity of J as

h, k → 0.

The definition of strong concavity actually amounts to Theorem 1 on the two-point

space Σ = {−1,+1}. Namely, for the kernel Kρ(x, y) = 1 + ρxy, (x, y) ∈ Σ× Σ, (22) is

equivalent to saying that for every functions f, g : Σ→ R,∫
Σ

∫
Σ

J
(
f(x), g(y)

)
Kρ(x, y)dµ(x)dµ(y) ≤ J

(∫
Σ

f dµ,

∫
Σ

g dµ

)
where µ is the uniform probability measure on Σ = {−1,+1}.

It is immediately seen that strong ρ-concavity is stable by product on the discrete

cube. On Σn = {−1,+1}n equipped with the uniform product measure µ, let for ρ ∈ R
and x = (x1, . . . , xn) ∈ Σn, y = (y1, . . . , yn) ∈ Σn,

Kρ(x, y) =
n∏
i=1

(1 + ρ xiyi).

Proposition 14. Let J be strongly ρ-concave on O = I1 × I2 where I1 and I2 are

open intervals. Then for every f : Σn → I1, g : Σn → I2∫
Σn

∫
Σn

J
(
f(x), g(y)

)
Kρ(x, y)dµ(x)dµ(y) ≤ J

(∫
Σn

fdµ,

∫
Σn

gdµ

)
.
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It is a main result, namely the Bonami-Beckner hypercontrativity theorem [Bon],

[Be], that the hypercontractive function JH is strongly ρ-concave under (9) (along the

equivalence between hypercontractivity and Theorem 1 described in Section 1 for the

Ornstein-Uhlenbeck semigroup). However, we could not establish directly the strong

ρ-concavity of JH in this case. Such a proof could give a better understanding of the

strong ρ-concavity property.

On the other hand, it is not true in general that ρ-concavity implies back strong

ρ-concavity and one example, taken from [D-M-N], is simply Borell’s noise sensitivity

function JB (with parameter ρ ∈ (0, 1)). Indeed, for u = v = 1 and u′ = v′ = 0, (22)

would imply that

(23) 1 + ρ ≤ 4 JB
(1

2
,

1

2

)
since JB(1, 1) = 1 and JB(1, 0) = JB(0, 1) = JB(0, 0) = 0. But

JB
(1

2
,

1

2

)
=

∫ 0

−∞

∫ 0

−∞
q1
t (x, y)dγ1(x)dγ1(y) =

∫ ∞
0

Φ(αx)dγ1(x)

where α = ρ√
1−ρ2

and ρ = e−t. Taking the derivative in α easily shows that

4

∫ ∞
0

Φ(αx)dγ1(x) = 1 +
2

π
arctan(α)

so that (23) indeed fails as ρ→ 0.

It would be of interest to understand which additional property to ρ-concavity

ensures strong ρ-concavity. In this direction, A. De, E. Mossel and J. Neeman [D-M-N]

recently observed by a suitable Taylor expansion that there exists, for any ρ ∈ (−1,+1),

C(ρ) > 0 such that ∣∣∣∣∂3JB
ρ (u, v)

∂iu ∂jv

∣∣∣∣ ≤ C(ρ)
[
uv(1− u)(1− v)

]−C(ρ)

for all i, j ≥ 0 with i + j = 3. This property then implies that for every

u, u′, v, v′ ∈ [ε, 1− ε] for some ε > 0,

1 + ρ

4
JB
ρ (u, v)+

1− ρ
4

JB
ρ (u′, v) +

1− ρ
4

JB
ρ (u, v′) +

1 + ρ

4
JB
ρ (u′, v′)

≤ JB
ρ

(u+ u′

2
,
v + v′

2

)
+ C(ρ) ε−C(ρ)

(
|u− u′|3 + |v − v′|3

)
.

As a main achievement, the authors of [D-M-N] recover from this conclusion the majority

is stablest result of [M-OD-O]. One further observation of [D-M-N] is that the preceding

two-point inequality is still good enough to reach, after tensorization and the central

limit theorem, Borell’s noise sensitivity theorem for the Ornstein-Uhlenbeck semigroup.

Acknowledgements. This note grew up out of discussions and exchanges with J. Nee-

man and E. Mossel around their works [M-N], [Nee] and [D-M-N] . In particular, Sec-

tion 1, the first part of Section 2 and Section 4 are directly following their contributions.
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