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Summary. We point out a simple argument relying on hypercontractivity to de-
scribe tail inequalities on the distribution of the largest eigenvalues of random ma-
trices at the rate given by the Tracy–Widom distribution. The result is illustrated
on the known examples of the Gaussian and Laguerre unitary ensembles. The argu-
ment may be applied to describe the generic tail behavior of eigenfunction measures
of hypercontractive operators.

Introduction

Let M = MN be a random matrix from the Gaussian Unitary Ensemble
(GUE), that is, with distribution

P(dM) = Z−1
N exp

(

−2N Tr
(

M2
))

dM

where dM is Lebesgue measure on the spaceHN of N×N Hermitian matrices.
Denote by λN

1 , . . . , λN
N the (real) eigenvalues of MN . Wigner’s theorem

indicates that the mean spectral measure mN = E[(1/N)
∑N

i=1 δλN
i

] converges

weakly to the semicircle law σ(dx) = (2/π)
√

1− x2 1{|x|61} dx (cf. [23]).
The largest eigenvalue λN

max = max16i6N λN
i may be shown to converge

almost surely to the right endpoint of the support of the semicircle law, that
is 1 with the normalization chosen here. Fluctuations of λN

max around 1 gave
rise to one main achievement due to C. A. Tracy and H. Widom in the recent
developments on random matrices. Namely, they showed that fluctuations
take place at the rate N2/3 and that N2/3(λN

max − 1) converges weakly to the
so-called Tracy–Widom distribution [TW] (cf. [5]). Universality of the Tracy–
Widom distribution is conjectured, and has been settled rigorously for large
classes of Wigner matrices by A. Soshnikov [19]. For the Laguerre ensemble
and Wishart matrices, see [11, 12, 20]. Large deviations for λN

max of the GUE
are described in [3].
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For fixed N , as a Lipschitz function of the Gaussian entries of MN , the
largest eigenvalue λN

max satisfies the concentration inequality around its mean

P
{
∣

∣λN
max − E(λN

max)
∣

∣ > r
}

6 2 e−2Nr2

(1)

for every r > 0 (cf. [15]). This result however does not yield the fluctuation rate
N2/3 that requires more refined tools, relying usually on delicate Plancherel–
Rotach asymptotics for Hermite polynomials involving the Airy function. The
aim of this note is actually to point out a simple argument, based on hyper-
contractivity, to reach the normalization N 2/3 and to recover tail inequalities
for the largest eigenvalues of some invariant ensembles of interest.

The starting point is the well-known fact (see [17, 5]) that the distribution
of the eigenvalues (λN

1 , . . . , λN
N ) of the GUE has density

1

Z

∏

16i<j6N

(xi − xj)
2 e−2N |x|2 , x = (x1, . . . , xN ) ∈ R

N , (2)

with respect to Lebesgue measure on R
N (where Z is the normalization fac-

tor). Denote by hk, k ∈ N, the normalized Hermite polynomials with respect
to the standard normal distribution γ on R. Since, for each k, hk is a polyno-
mial function of degree k, up to a constant depending on N , the Vandermonde
determinant

∏

16i<j6N (xi − xj) of (2) is easily seen to be equal to

det
(

hi−1(xj)
)

16i,j6N
.

Recall now the mean spectral measure mN = E[(1/N)
∑N

i=1 δλN
i

]. If f is a
bounded measurable real-valued function on R,

∫

R

f dmN =

∫

RN

1

N

N
∑

i=1

f

(

x

2
√

N

)

det2
(

hi−1(xj)
)

16i,j6N
e−|x|

2/2 dx

Z
.

Expanding the determinant and using the orthogonality properties of the Her-
mite polynomials shows that (cf. [17, 5], . . . )

∫

R

f dmN =

∫

R

f

(

x

2
√

N

)

1

N

N−1
∑

k=0

h2
k(x) γ(dx). (3)

In particular thus, for every ε > 0,

P
{

λN
max > 1 + ε

}

6 NmN
(

[1 + ε,∞)
)

=

∫ ∞

2
√

N(1+ε)

N−1
∑

k=0

h2
k(x) γ(dx).

Now, by Hölder’s inequality, for every r > 1, and every k = 0, . . . , N − 1,
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∫ ∞

2
√

N(1+ε)

h2
k(x) γ(dx) 6 γ

(

[

2
√

N(1 + ε),∞
)

)1−(1/r)
(

∫

|hk(x)|2r γ(dx)

)1/r

6 e−2N(1+ε)2(1−1/r)

(
∫

|hk(x)|2r γ(dx)

)1/r

.

Consider now the number operator Lf = f ′′−xf ′ with eigenfunctions hk and
corresponding eigenvalues −k, k ∈ N. The associated semigroup Pt = etL sat-
isfies the celebrated hypercontractivity property put forward by E. Nelson [18]

‖Ptf‖q 6 ‖f‖p

for every 1 < p < q < ∞ and t > 0 such that e2t > (q − 1)/(p − 1) (cf. [2]).
Norms are understood here with respect to γ. Since Pthk = e−kthk, it follows
that for every r > 1 and k > 0,

‖hk‖2r 6 (2r − 1)k/2.

Hence,

∫ ∞

2
√

N(1+ε)

N−1
∑

k=0

h2
k(x) γ(dx) 6 e−2N(1+ε)2(1−1/r)

N−1
∑

k=0

(2r − 1)k

6
1

2(r − 1)
e−2N(1+ε)2(1−1/r)+N log(2r−1).

Optimizing in r → 1 then shows that, for 0 < ε 6 1,

P
{

λN
max > 1 + ε

}

6 Cε−1/2 e−cNε3/2

(4)

for some numerical values C, c > 0.
The same method yields that for p = [tN 2/3] (integer part), t > 0,

Nap = E

( N
∑

i=1

(

λN
i

)2p
)

=
1

(

2
√

N
)2p

∫

R

x2p
N−1
∑

k=0

h2
k(x) γ(dx) 6 Ct−1N1/3ect3

(5)
(that may be used to recover (4)).

Besides the polynomial factors in front of the exponential, the preceding
bounds (4) and (5) indeed describe the rate N 2/3 in the fluctuations of λN

max.
It does not seem however that one can get rid of these polynomial factors
by the preceding hypercontractivity method, that might appear too naive to
this task. The optimal bound on the (even) moments ap of the mean spectral
measure may be obtained from the classical recurrence formula (cf. [10, 9])

ap =
2p− 1

2p + 2
ap−1 +

2p− 1

2p + 2
× 2p− 3

2p
× p(p− 1)

4N2
ap−2 (6)
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for every integer p (a0 = 1, a1 = 1
4 ). Note that the even moments bp, p > 0,

of the semicircle distribution satisfy the recurrence relation

bp =
2p− 1

2p + 2
bp−1 =

(2p)!

22pp! (p + 1)!
.

In particular, when p = [tN2/3], t > 0,

N bp 6 C t−3/2 (7)

for some numerical C > 0. Now, the recurrence formula (6) easily shows that
when p 6 tN2/3,

ap 6

(

1 +
t2

4N2/3

)p

bp.

Hence, for p = [tN2/3], t > 0, we get from (7) that

Nap 6 C t−3/2 ect3 . (8)

Therefore,

P
{

λN
max > 1 + ε

}

6 (1 + ε)−pNap 6 C(1 + ε)−pt−3/2 ect3 .

Optimizing in t > 0 yields the optimal tail inequality

P
{

λN
max > 1 + ε

}

6 C e−cNε3/2

(9)

for every 0 < ε 6 1, N > 1 and numerical constants C, c > 0.
It should be noted that inequality (9) was obtained recently by G.

Aubrun [1] using bounds over the integral operators considered in [22]. More-
over, the combinatorial techniques in the evaluation of the p-th moments of the
trace developed by A. Soshnikov [19] (for sample covariance matrices, see [20])
suggest the possible extension of (8) to large classes of Wigner matrices.

It may be mentioned that concentration bounds together with rates of
convergence to the semicircle law σ can be used to derive a deviation inequality
of λN

max under the level 1. For every ε > 0 and N > 1,

P
{

λN
max 6 1− 2ε

}

= P

{

1

N

N
∑

i=1

1{λN
i 61−2ε} > 1

}

.

Asymptotics of the Hermite polynomials applied to rates of convergence have
been used recently in [6] to show that, for every N > 1 and 0 < ε 6 1,

∣

∣mN
(

(−∞, 1− ε]
)

− σ
(

(−∞, 1− ε]
)∣

∣ 6
C

εN

where C > 0 is a numerical constant possibly changing from line to line below.
On the other hand,
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1− σ
(

(−∞, 1− ε]
)

6 Cε3/2

for every 0 < ε 6 1. In particular thus,

P
{

λN
max 6 1− 2ε

}

6 P

{

1

N

N
∑

i=1

1{λN
i 61−2ε} −mN

(

(−∞, 1− ε]
)

> C
(

ε3/2 − 1

εN

)

}

. (10)

Let ϕ be the Lipschitz piecewise linear function equal to 1 on (−∞, 1 − 2ε]
and to 0 on [1− ε, +∞). In particular,

P
{

λN
max 6 1− 2ε

}

6 P

{

1

N

N
∑

i=1

ϕ
(

λN
i

)

− E

[

1

N

N
∑

i=1

ϕ
(

λN
i

)

]

> C
(

ε3/2 − 1

εN

)

}

.

Assume now that ε3/2 > 2/(εN). Since ϕ is Lipschitz with Lipschitz coefficient

ε−1, measure concentration applied to the Lipschitz map (1/N)
∑N

i=1 ϕ(λN
i )

as a function of the Gaussian entries of the random matrix MN (see [8, 4])
yields that

P
{

λN
max 6 1− ε

}

6 C e−cε5N2

(11)

for every ε such that cN−2/5 6 ε 6 1, where C, c > 0 are numerical. Note
furthermore that, together with (1), it follows from (11) that

E
[

λN
max

]

> 1− C

N2/5

for some C > 0.
The ε3/2-phenomenon put forward in the GUE example may actually be

shown to be quite general in the context of eigenfunction measures. We de-
scribe in the next section similar decays for measures f 2 dµ where f is a
normalized eigenfunction of a hypercontractive operator with invariant prob-
ability measure µ. In the last section, we come back to the random matrix
models and apply the result to the largest eigenvalues of some classes of in-
variant ensembles including the Gaussian and Laguerre Unitary Ensembles.

1 Concentration of eigenfunction measures

Invariant measures of hypercontractive operators satisfy equivalently a so-
called logarithmic Sobolev inequality. Moreover, the typical Gaussian tail be-
havior of Lipschitz functions for measures satisfying logarithmic Sobolev in-
equalities has been studied extensively in the recent years (cf. [13]). We briefly
survey a few basic results. We adopt a general framework taken from [2, 14]
to which we refer for further details.
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Consider a measurable space (E, E) equipped with a probability measure µ.
We denote by Lp = Lp(µ), 1 6 p 6 ∞, the Lebesgue spaces with respect to µ,
and set ‖ . ‖p to denote the norm in Lp. Let (Pt)t>0 be a Markov semigroup
of non-negative operators, bounded and continuous on L2(µ). We denote by
D2(L) the domain in L2(µ) of the infinitesimal generator L of the semigroup
(Pt)t>0. We assume that µ is invariant and reversible with respect to (Pt)t>0.

The fundamental theorem of L. Gross [7] connects the hypercontractivity
property of (Pt)t>0, or L, to the logarithmic Sobolev inequality satisfied by
the invariant measure µ. Namely, if, and only if, for some ρ > 0,

ρ

∫

f2 log f2 dµ 6 2

∫

f(−Lf) dµ (12)

for all functions f in the domain of L with
∫

f2 dµ = 1, then, for all 1 < p <
q < ∞ and t > 0 large enough so that

e2ρt
>

q − 1

p− 1
,

we have
‖Ptf‖q 6 ‖f‖p (13)

for every f in Lp.
It is classical (see [2]) that whenever (12) holds, then

ρ

∫

f2 dµ 6

∫

f(−Lf) dµ

for every mean zero function f in the domain of L. In particular, any non-
trivial eigenvalue α of −L satisfies α > ρ.

Classes of measures satisfying a logarithmic Sobolev inequality (12) are
described in [2, 13, 14]. Some examples will be discussed in Section 2. In
particular, if µ(dx) = e−U dx on R

n where U is such that U − δ |x|2/2 is
convex for some δ > 0, then ρ > δ. The canonical Gaussian measure on R

n is
such that ρ = 1.

Concentration inequalities under a logarithmic Sobolev inequality (12)
may be obtained through the Herbst argument (cf. [13]). Let us call 1-Lipschitz
a function F in the domain of L such that

Γ (f, f) =
1

2
L

(

f2
)

− fLf 6 1

almost everywhere. In particular, when L = ∆−∇U · ∇ with invariant mea-
sure µ(dx) = e−U dx for some smooth potential U on R

n, Γ (f, f) = |∇f |2
so that Lipschitz simply means Lipschitz in the classical Euclidean sense. As-
sume more generally that Γ is a derivation in the sense that Γ (ϕ(f), ϕ(f)) =
ϕ′(f)2Γ (f, f) for every smooth ϕ : R → R. Then, under the logarithmic
Sobolev inequality (12), the Herbst argument shows that whenever F is 1-
Lipschitz, for every r > 0,
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µ
{

F >
∫

F dµ + r
}

6 e−ρr2/2. (14)

When applied to the Gaussian measure of the GUE and to the Lipschitz
function given by the largest eigenvalue, we obtain (1).

The following is the main result on eigenfunction measures.

Theorem 1. Let L be a hypercontractive operator with hypercontractive con-
stant ρ > 0. Let f be an eigenfunction of −L with eigenvalue α > 0. Assume
that f2 is normalized with respect to the invariant measure µ of L, and set
dν = f2 dµ. Then, whenever A is a measurable set with µ(A) 6 e−2α(1+a)/ρ

for some a > 0, then

ν(A) 6 e−cαρ−1 min(a,a3/2)

where c = 2
√

2/3 (which is not sharp).

Together with (14), we get the following corollary.

Corollary 1. Under the hypotheses of Theorem 1, let F be a 1-Lipschitz func-
tion. Then, for every r > 0,

ν
{

F >
∫

F dµ + 2
√

α ρ−1(1 + r)
}

6 e−cαρ−1 max(r2,r3/2).

Proof of Theorem 1. By Hölder’s inequality, for every r > 1,

ν(A) =

∫

A

f2 dµ 6 µ(A)1−(1/r)‖f‖22r.

Since Ptf = e−αtf , hypercontractivity (13) shows that

‖f‖2r 6 (2r − 1)α/2ρ.

Hence
ν(A) 6 e−αρ−1[2(1+a)(1−1/r)−log(2r−1)].

Optimizing over r > 1 yields that

ν(A) 6 e−2αρ−1 ϕ(a)

where

ϕ(a) =
√

a
√

1 + a− log

(
√

1 + a +
√

a√
1 + a−√a

)

.

Noticing that the derivative of ϕ(a2) is equal to

2a2

√
1 + a2

>
√

2 min(a, a2),

the conclusion easily follows. The proof is complete. ut
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2 Application to the largest eigenvalues of random

matrices

Before turning to the application sketched in the introduction, it might be
worthwhile mentioning the following general observation of possible indepen-
dent interest in the description of the eigenvalue distribution. Coming back
to the distribution (2) of the eigenvalues (λN

1 , . . . , λN
N ) of the GUE, the Van-

dermonde determinant

HN (x) =
∏

16i<j6N

(xi − xj), x = (x1, . . . , xN ) ∈ R
N ,

is actually an eigenvector of the Ornstein–Uhlenbeck generator L = ∆−x · ∇
in R

N , with eigenvalue N(N − 1)/2. Denote by γN the canonical Gaussian
measure on R

N . As a consequence of Theorem 1, we thus get the following
result that describes bounds on the distribution of the eigenvalues in terms of
the corresponding Gaussian measure.

Corollary 2. Let A be a Borel set in R
N with γN (2

√
N A) 6 e−N(N−1)(1+a)

for some a > 0. Then,

P
{(

λN
1 , . . . , λN

N

)

∈ A
}

6 e−cN(N−1)min(a,a3/2)

where c > 0 is numerical.

Together with the concentration inequality (14) for γN , it follows that
whenever F : R

N → R is 1-Lipschitz,

P

{

F
(

λN
1 , . . . , λN

N

)

>
∫

F (x/2
√

N) γN (dx) +
√

(N − 1)/2 (1 + r)
}

6 e−cN(N−1)max(r2,r3/2)

for every r > 0.
Examples where the setting of Section 1 applies are as follows. Let I be

some interval of the real line, and let µ be a probability measure on the Borel
sets of I such that

∫

ec|x| µ(dx) < ∞ for some c > 0. Denote by (Qk)k∈N the
orthonormal polynomials of the probability measure µ. We assume that there
exists a Markov semigroup (Pt)t>0 with invariant measure µ such that the
spectral decomposition of the generator L of (Pt)t>0 is actually given by the
polynomials Qk in the sense that there exist αk > 0, k ∈ N, such that for each
k and t,

PtQk = e−αktQk.

In other words, LQk = −αkQk, k ∈ N. See e.g. [16].
The classical orthogonal polynomials (cf. [21]) are well-known to enter

this setting. Let us mention the Hermite polynomials (hk)k∈N orthonormal

with respect to the canonical Gaussian measure γ(dx) = e−x2/2 dx/
√

2π on
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I = R. The Hermite polynomials hk, k ∈ N, are eigenfunctions of the Ornstein-
Uhlenbeck operator Lf = f ′′ − xf ′ with respective eigenvalues −k. As we
have seen, γ satisfies the logarithmic Sobolev inequality (12) with ρ = 1

and for every smooth enough function f , Γ (f, f) = f ′2. Similarly for the
Laguerre polynomials (Lθ

k)k∈N, θ > −1, orthonormal with respect to µθ(dx) =
Γ (θ+1)−1xθe−x dx on I = (0,∞), and associated with the Laguerre operator
Lθf = xf ′′ + (θ + 1− x)f ′. For every k ∈ N, LθLθ

k = −kLθ
k. In this example,

Γ (f, f) = xf ′2 and the logarithmic Sobolev constant of µθ may be shown to be
equal to 1/2, at least for θ > −1/2 (cf. [2]). On I = (−1, +1), we may consider

more generally the Jacobi polynomials (Ja,b
k )k∈N, a, b > −1, orthonormal with

respect to µa,b(dx) = Ca,b(1 + x)a(1− x)b dx. They are eigenfunctions of the
Jacobi operator

La,bf =
(

1− x2
)

f ′′ +
(

a− b− (a + b + 2)x
)

f ′

with eigenvalues −k(k +a+ b+1), k ∈ N. We have here Γ (f, f) = (1−x2)f ′2

while, when a = b, ρ = 2(a + 1) (cf. [2]).
If MN is a matrix from the GUE, its entries consist of random variables

MN
ij , 1 6 i, j 6 N such that MN

ij , i 6 j, are independent complex (real when
i = j) centered Gaussian variables with variances 1/(4N). The mean spectral
measure is given by (3). Since the Gaussian measure γ has hypercontractivity
constant 1, it follows from Theorem 1, or rather the developments of the
introduction, that

P
{

λN
max > 1 + ε

}

6 C min
(

1,
√

ε
)−1

e−cN max(ε2,ε3/2)

for numerical constants C, c > 0 and all ε > 0, N > 1.
Let now MN = M = B∗B where B is an N × N random matrix whose

entries consist of independent complex centered Gaussian variables with vari-
ances 1/(4N). The mean spectral measure mN of MN converges as N →∞ to
the image of the semicircle law under the map x 7→ x2 and the largest eigen-
value converges almost surely to the right-hand side of the support. See [9] for
a discussion where it is shown in particular that for every bounded measurable
function f : (0,∞) → R,

∫

R

f dmN =

∫ ∞

0

f
( x

4N

) 1

N

N−1
∑

k=0

(

L0
k

)2
(x) µ0(dx)

where we recall that (L0
k)k∈N are the Laguerre polynomials of parameter θ = 0.

The Laguerre operator L0 is hypercontractive with constant 1/2. We then get
as before that

P
{

λN
max > 1 + ε

}

6 C min
(

1,
√

ε
)−1

e−cN min(ε,ε3/2)

for numerical constants C, c > 0 and all ε > 0, N > 1. Asymptotically,
the result applies similarly to products B∗B of rectangular N ×K matrices
provided that K/N → 1 as N →∞.
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