
Hypercontractive Measures,
Talagrand’s Inequality, and Influences

Dario Cordero-Erausquin and Michel Ledoux

Abstract We survey several Talagrand type inequalities and their applica-
tion to influences with the tool of hypercontractivity for both discrete and
continuous, and product and non-product models. The approach covers simi-
larly by a simple interpolation the framework of geometric influences recently
developed by N. Keller, E. Mossel and A. Sen. Geometric Brascamp-Lieb de-
compositions are also considered in this context.

1 Introduction

In the famous paper [24], M. Talagrand showed that for every function f
on the discrete cube X = {−1,+1}N equipped with the uniform probability
measure µ,

Varµ(f) =

∫
X

f2dµ−
(∫

X

fdµ

)2

≤ C
N∑
i=1

‖Dif‖22
1 + log

(
‖Dif‖2/‖Dif‖1

) (1)

for some numerical constant C ≥ 1, where ‖ · ‖p denote the norms in Lp(µ),
1 ≤ p ≤ ∞, and for every i = 1, . . . , n and every x = (x1, . . . , xN ) ∈
{−1,+1}N ,

Dif(x) = f(τix)− f(x) (2)
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with τix = (x1, . . . , xi−1,−xi, xi+1, . . . , xN ). Up to the numerical constant,
this inequality improves upon the classical spectral gap inequality (see below)

Varµ(f) ≤ 1

4

N∑
i=1

‖Dif‖22 . (3)

The proof of (1) is based on an hypercontractivity estimate known as
the Bonami-Beckner inequality [9], [7] (see below). Inequality (1) was actu-
ally deviced to recover (and extend) a famous result of J. Kahn, G. Kalai
and N. Linial [12] about influences on the cube. Namely, applying (1) to the
Boolean function f = 1A for some set A ⊂ {−1,+1}N , it follows that

µ(A)
(
1− µ(A)

)
≤ C

N∑
i=1

2Ii(A)

1 + log
(
1/
√

2Ii(A)
) (4)

where, for each i = 1, . . . , N ,

Ii(A) = µ
(
{x ∈ A, τix /∈ A}

)
is the so-called influence of the i-th coordinate on the set A (noticing that
‖Di1A‖pp = 2Ii(A) for every p ≥ 1). In particular, for a set A with µ(A) = a,
there is a coordinate i, 1 ≤ i ≤ N , such that

Ii(A) ≥ a(1− a)

8CN
log
( N

a(1− a)

)
≥ a(1− a) logN

8CN
(5)

which is the main result of [12]. (To deduce (5) from (4), assume for example

that Ii(A) ≤
(a(1−a)

N

)1/2
for every i = 1, . . . , N , since if not the result holds.

Then, from (4), there exists i, 1 ≤ i ≤ N , such that

a(1− a)

CN
≤ 2Ii(A)

1 + log
(
1/
√

2Ii(A)
) ≤ 8Ii(A)

4 + log(N/4a(1− a))

which yields (5)). Note that (5) remarkably improves by a (optimal) factor
logN what would follow from the spectral gap inequality (3) applied to f =
1A. The numerical constants like C throughout this text are not sharp.

The aim of this note is to amplify the hypercontractive proof of Talagrand’s
original inequality (1) to various settings, including non-product spaces and
continuous variables, and in particular to address versions suitable to geomet-
ric influences. It is part of the folklore indeed (cf. e.g. [8]) that an inequality
similar to (1), with the same hypercontractive proof, holds for the standard
Gaussian measure µ on RN (viewed as a product measure of one-dimensional
factors), that is, for every smooth enough function f on RN and some con-
stant C > 0,
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Varµ(f) ≤ C
N∑
i=1

‖∂if‖22
1 + log(‖∂if‖2/‖∂if‖1)

. (6)

(A proof will be given in Section 2 below.) However, the significance of the lat-
ter for influences is not clear, since its application to characteristic functions
is not immediate (and requires notions of capacities). Recently, N. Keller,
E. Mossel and A. Sen [13] introduced a notion of geometric influence of a
Borel set A in RN with respect to a measure µ (such as the Gaussian mea-
sure) simply as ‖∂if‖1 for some smooth approximation f of 1A, and proved
for it the analogue of (5) (with

√
logN instead of logN) for the standard

Gaussian measure on RN . It is therefore of interest to seek for suitable ver-
sions of Talagrand’s inequality involving only L1-norms ‖∂if‖1 of the partial
derivatives. While the authors of [13] use isoperimetric properties, we show
here how the common hypercontractive tool together with a simple interpo-
lation argument may be developed similarly to reach the same conclusion. In
particular, for the standard Gaussian measure µ on RN , we will see that for
every smooth enough function f on RN such that |f | ≤ 1,

Varµ(f) ≤ C
N∑
i=1

‖∂if‖1
(
1 + ‖∂if‖1

)[
1 + log+

(
1/‖∂if‖1

)]1/2 . (7)

Applied to f = 1A, this inequality indeed ensures the existence of a coordi-
nate i, 1 ≤ i ≤ N , such that the geometric influence of A along i is at least

of the order of
√
logN
N , that is one of the main conclusions of [13] (where it

is shown moreover that the bound is sharp). In this continuous setting, the
hypercontractive approach yields more general examples of measures with
such an influence property in the range between exponential and Gaussian
for which only a logarithmic Sobolev type inequality is needed while [13]
required an isoperimetric inequality for the individual measures µi.

This note is divided into two main parts. In the first one, we present Tala-
grand type inequalities for various models, from the discrete cube to Gaussian
and more general product measures, by the general principle of hypercontrac-
tivity of Markov semigroups. The method of proof, originating in Talagrand’s
work, has been used recently by R. O’Donnell and K. Wimmer [20], [21] to
investigate non-product models such as random walks on some graphs which
enter the general presentation below. Actually, most of the Talagrand in-
equalities we present in the discrete setting are already contained in the work
by R. O’Donnell and K. Wimmer. It is worth mentioning that an approach
to the Talagrand inequality (1) rather based on the logarithmic Sobolev in-
equality was deviced in [22] and [11] a few years ago. The abstract semigroup
approach applies in the same way on the sphere along the decomposition of
the Laplacian. Geometric Brascamp-Lieb decompositions within this setting
are also discussed. In the second part, we address our new version (7) of
Talagrand’s inequality towards geometric influences and the recent results of
[13] by a further interpolation step on the hypercontractive proof.
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In the last part of this introduction, we describe a convenient framework
in order to develop hypercontractive proofs of Talagrand type inequalities.
While of some abstract flavor, the setting easily covers two main concrete
instances, probability measures on finite state spaces (as invariant measures
of some Markov kernels) and continuous probability measures of the form
dµ(x) = e−V (x)dx on the Borel sets of Rn where V is some (smooth) potential
(as invariant measures of the associated diffusion operators ∆−∇V · ∇). We
refer for the material below to the general references [2], [10], [23], [1], [4]...

Let µ be a probability measure on a measurable space (X,A). For a func-
tion f : X → R in L2(µ), define its variance with respect to µ by

Varµ(f) =

∫
X

f2dµ−
(∫

X

fdµ

)2

.

Similarly, whenever f > 0, define its entropy by

Entµ(f) =

∫
X

f log fdµ−
∫
X

fdµ log

(∫
X

fdµ

)
provided it is well-defined. The Lp(µ)-norms, 1 ≤ p ≤ ∞, will be denoted by
‖ · ‖p.

Let then (Pt)t≥0 be a Markov semigroup with generator L acting on a
suitable class of functions on (X,A). Assume that (Pt)t≥0 and L have an
invariant, reversible and ergodic probability measure µ. This ensures that the
operators Pt are contractions in all Lp(µ)-spaces, 1 ≤ p ≤ ∞. The Dirichlet
form associated to the couple (L, µ) is then defined, on functions f, g of the
Dirichlet domain, as

E(f, g) =

∫
X

f(−Lg)dµ.

Within this framework, the first example of interest is the case of a Markov
kernel K on a finite state space X with invariant (

∑
x∈X K(x, y)µ(x) = µ(y),

y ∈ X) and reversible (K(x, y)µ(x) = K(y, x)µ(y), x, y ∈ X) probability
measure µ. The Markov operator L = K − Id generates the semigroup of
operators Pt = etL, t ≥ 0, and defines the Dirichlet form

E(f, g) =

∫
X

f(−Lg)dµ =
1

2

∑
x,y∈X

[
f(x)− f(y)

][
g(x)− g(y)

]
K(x, y)µ(x)

on functions f, g : X → R. The second class of examples is the case of
X = Rn equipped with its Borel σ-field. Letting V : Rn → R be such that∫
Rn e−V (x)dx = 1, under mild smoothness and growth conditions on the po-

tential V , the second order operator L = ∆−∇V ·∇ admits dµ(x) = e−V (x)dx
as symmetric and invariant probability measure. The operator L generates
the Markov semigroup of operators (Pt)t≥0 and defines by integration by
parts the Dirichlet form
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E(f, g) =

∫
Rn
f(−Lg)dµ =

∫
Rn
∇f · ∇g dµ

for smooth functions f, g on Rn.
Given such a couple (L, µ), it is said to satisfy a spectral gap, or Poincaré,

inequality if there is a constant λ > 0 such that for all functions f of the
Dirichlet domain,

λVarµ(f) ≤ E(f, f). (8)

Similarly, it satisfies a logarithmic Sobolev inequality if there is a constant
ρ > 0 such that for all functions f of the Dirichlet domain,

ρEntµ(f2) ≤ 2 E(f, f). (9)

One speaks of the spectral gap constant (of (L, µ)) as the best λ > 0 for
which (8) holds, and of the logarithmic Sobolev constant (of (L, µ)) as the
best ρ > 0 for which (9) holds. We still use λ and ρ for these constants. It is
classical that ρ ≤ λ.

Both the spectral gap and logarithmic Sobolev inequalities translate equiv-
alently on the associated semigroup (Pt)t≥0. Namely, the spectral gap inequal-
ity (8) is equivalent to saying that

‖Ptf‖2 ≤ e−λt ‖f‖2

for every t ≥ 0 and every mean zero function f in L2(µ). Equivalently for the
further purposes, for every f ∈ L2(µ) and every t > 0,

Varµ(f) ≤ 1

1− e−λt
[
‖f‖22 − ‖Ptf‖

2
2

]
. (10)

On the other hand, the logarithmic Sobolev inequality gives rise to hyper-
contractivity which is a smoothing property of the semigroup. Precisely, the
logarithmic Sobolev inequality (9) is equivalent to saying that, whenever
p ≥ 1 + e−2ρt, for all functions f in Lp(µ),

‖Ptf‖2 ≤ ‖f‖p. (11)

For simplicity, we say below that a probability measure µ in this context is
hypercontractive with constant ρ.

A standard operation on Markov operators is the product operation. Let
(L1, µ1) and (L2, µ2) be Markov operators on respective spaces X1 and X2.
Then

L = L1 ⊗ Id + Id⊗ L2

is a Markov operator on the product space X1×X2 equipped with the prod-
uct probability measure µ1 ⊗ µ2. The product semigroup (Pt)t≥0 is similarly

obtained as the tensor product Pt = P 1
t ⊗P 2

t of the semigroups on each factor.
For the product Dirichlet form, the spectral gap and logarithmic Sobolev con-
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stants are stable in the sense that, with the obvious notation, λ = min(λ1, λ2)
and ρ = min(ρ1, ρ2). This basic stability by products will allow for constants
independent of the dimension in the Talagrand type inequalities under inves-
tigation. For the clarity of the exposition, we will not mix below products of
continuous and discrete spaces, although this may easily be considered.

Let us illustrate the preceding definitions and properties on two basic
examples. Consider first the two-point space X = {−1,+1} with the measure
µ = pδ+1 + qδ−1, p ∈ [0, 1], p+ q = 1, and the Markov kernel K(x, y) = µ(y),
x, y ∈ X. Then, for every function f : X → R,

E(f, f) =

∫
X

f(−Lf)dµ = Varµ(f)

so that the spectral gap λ = 1. The logarithmic Sobolev constant is known
to be

ρ =
2(p− q)

log p− log q
(= 1 if p = q). (12)

The product chain on the discrete cube X = {−1,+1}N with the product

probability measure µ = (pδ+1 + qδ−1)⊗N and generator L =
∑N
i=1 Li is

associated to the Dirichlet form

E(f, f) =

∫
X

N∑
i=1

f(−Lif)dµ = pq

∫
X

N∑
i=1

|Dif |2dµ

where Dif is defined in (2). By the previous product property, it admits 1
as spectral gap and ρ given by (12) as logarithmic Sobolev constant. In its
hypercontractive formulation, the case p = q is the content of the Bonami-
Beckner inequality [9], [7].

As mentioned before, M. Talagrand [24] used this hypercontractivity
on the discrete cube {−1,+1}N equipped with the product measure µ =
(pδ+1 + qδ−1)⊗N to prove that for any function f : {−1,+1}N → R,

Varµ(f) ≤ Cpq(log p− log q)

p− q

N∑
i=1

‖Dif‖22
1 + log

(
‖Dif‖2/2

√
pq ‖Dif‖1

) (13)

for some numerical constant C > 0 (this statement will be covered in
Section 2 below). This in turn yields a version of the influence result of [12]
on the biased cube.

In the continuous setting X = Rn, the case of a quadratic potential V
amounts to the Hermite or Ornstein-Uhlenbeck operator L = ∆−x·∇ with in-
variant measure the standard Gaussian measure dµ(x) = (2π)−n/2 e−|x|

2/2dx.
It is known here that λ = ρ = 1 independently of the dimension. (More gener-

ally, if V (x)−c |x|
2

2 is convex for some c > 0, then λ ≥ ρ ≥ c.) Actually, L may
also be viewed as the sum

∑n
i=1 Li of one-dimensional Ornstein-Uhlenbeck

operators along each coordinate, and µ as the product measure of standard
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normal distributions. Within this product structure, the analogue (6) of (13)
has been known for some time, and will be recalled below.

2 Hypercontractivity and Talagrand’s Inequality

This section presents the general hypercontractive approach to Talagrand
type inequalities including the discrete cube, the Gaussian product measure
and more general non-product models. The method of proof, directly inspired
from [24], has been developed recently by R. O’Donnell and K. Wimmer
[20], [21] towards non-product extensions on suitable graphs. Besides hyper-
contractivity, a key feature necessary to develop the argument is a suitable
decomposition of the Dirichlet form along “directions” commuting with the
Markov operator or its semigroup. These directions are immediate in a prod-
uct space, but do require additional structure in more general contexts.

In the previous abstract setting of a Markov semigroup (Pt)t≥0 with gener-
ator L, assume thus that the associated Dirichlet form E may be decomposed
along directions Γi acting on functions on X as

E(f, f) =

N∑
i=1

∫
X

Γi(f)2dµ (14)

in such a way that, for each i = 1, . . . , N , Γi commutes to (Pt)t≥0 in the
sense that, for some constant κ ∈ R, every t ≥ 0 and every f in a suitable
family of functions,

Γi(Ptf) ≤ eκt Pt
(
Γi(f)

)
. (15)

These properties will be clearly illustrated on the main examples of interest
below, with in particular explicit descriptions of the classes of functions for
which (14) and (15) may hold.

We first present the Talagrand inequality in this context. The proof is the
prototype of the hypercontractive argument used throughout this note and
applied to various examples.

Theorem 1. In the preceding setting, assume that (L, µ) is hypercontractive
with constant ρ > 0 and that (14) and (15) hold. Then, for any function f
in L2(µ),

Varµ(f) ≤ C(ρ, κ)

N∑
i=1

‖Γif‖22
1 + log(‖Γif‖2/‖Γif‖1)

where C(ρ, κ) = 4 e(1+(κ/ρ))+/ρ.

Proof. The starting point is the variance representation along the semigroup
(Pt)t≥0 of a function f in the L2(µ)-domain of the semigroup as
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Varµ(f) = −
∫ ∞
0

(
d

dt

∫
X

(Ptf)2dµ

)
dt = −2

∫ ∞
0

(∫
X

Ptf LPtfdµ

)
dt.

The time integral has to be handled both for the large and small values. For
the large values of t, we make use of the exponential decay provided by the
spectral gap in the form of (10) to get that, with T = 1/2ρ for example since
ρ ≤ λ,

Varµ(f) ≤ 2
[
‖f‖22 − ‖PT f‖

2
2

]
.

We are thus left with the variance representation of

‖f‖22 − ‖PT f‖
2
2 = −2

∫ T

0

(∫
X

Ptf LPtfdµ

)
dt = 2

∫ T

0

E(Ptf, Ptf)dt.

Now by the decomposition (14),

‖f‖22 − ‖PT f‖
2
2 = 2

N∑
i=1

∫ T

0

(∫
X

(
Γi(Ptf)

)2
dµ

)
dt.

Under the commutation assumption (15),∫
X

(
Γi(Ptf)

)2
dµ ≤ e2κt

∫
X

(
Pt
(
Γi(f)

))2
dµ.

Since (Pt)t≥0 is hypercontractive with constant ρ > 0, for every i = 1, . . . , N
and t ≥ 0, ∥∥Pt(Γi(f)

)∥∥
2
≤
∥∥Γi(f)

∥∥
p

where p = p(t) = 1 + e−2ρt ≤ 2. After the change of variables p(t) = v, we
thus reached at this point the inequality

Varµ(f) ≤ 2 e(1+(κ/ρ))+

ρ

N∑
i=1

∫ 2

1

∥∥Γi(f)
∥∥2
v
dv. (16)

This inequality actually basically amounts to Theorem 1. Indeed, by Hölder’s
inequality, ∥∥Γi(f)

∥∥
v
≤
∥∥Γi(f)

∥∥θ
1

∥∥Γi(f)
∥∥1−θ
2

where θ = θ(v) ∈ [0, 1] is defined by 1
v = θ

1 + 1−θ
2 . Hence∫ 2

1

∥∥Γi(f)
∥∥2
v
dv ≤

∥∥Γi(f)
∥∥2
2

∫ 2

1

b2θ(v)dv

where b = ‖Γi(f)‖1/‖Γi(f)‖2 ≤ 1. It remains to evaluate the latter integral
with 2θ(v) = s,



Hypercontractive Measures, Talagrand’s Inequality, and Influences 9∫ 2

1

b2θ(v)dv ≤
∫ 2

0

bsds ≤ 2

1 + log(1/b)

from which the conclusion follows. ut
Inequality (16) of the preceding proof may also be used towards a ver-

sion of Theorem 1 with Orlicz norms as emphasized in [24]. As in [24], let
ϕ : R+ → R+ be convex such that ϕ(x) = x2/ log(e + x) for x ≥ 1, and
ϕ(0) = 0, and denote by

‖g‖ϕ = inf

{
c > 0 ;

∫
X

ϕ
(
|g|/c

)
dµ ≤ 1

}
the associated Orlicz norm of a measurable function g : X → R. Then, for
some numerical constant C > 0,∫ 2

1

‖g‖2v dv ≤ C ‖g‖
2
ϕ (17)

so that (16) yields

Varµ(f) ≤ 2C e(1+(κ/ρ))+

ρ

N∑
i=1

∥∥Γi(f)
∥∥2
ϕ
. (18)

Since as pointed out in Lemma 2.5 of [24],

‖g‖2ϕ ≤
C ‖g‖22

1 + log(‖g‖2/‖g‖1)
,

we see that (18) improves upon Theorem 1. To briefly check (17), assume by
homogeneity that

∫
X
g2/ log(e+ g)dµ ≤ 1 for some non-negative function g.

Then, setting gk = g 1{2k−1<g≤2k}, k ≥ 1, and g0 = g 1{g≤1},∑
k∈N

1

k + 1

∫
X

g2kdµ ≤ C1 (19)

for some numerical constant C1 > 0. Hence, since gk ≤ 2k for every k,∫ 2

1

‖g‖2v dv =

∫ 2

1

(∑
k∈N

∫
X

gvkdµ

)2/v

dv

≤ 4

∫ 2

1

(∑
k∈N

2−(2−v)k
∫
X

g2kdµ

)2/v

dv

≤ C2

∑
k∈N

(∫ 2

1

(k + 1)2/v2−2(2−v)k/vdv

)
1

k + 1

∫
X

g2kdµ
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where we used (19) as convexity weights in the last step. Now, it is easy to
check that ∫ 2

1

(k + 1)2/v2−2(2−v)k/vdv ≤ C3

uniformly in k so that
∫ 2

1
‖g‖2v dv ≤ C1C2C3 concluding thus the claim.

We next illustrate the general Theorem 1 on various examples of interest.
On a probability space (X,A, µ), consider first the Markov operator Lf =∫

X
fdµ − f acting on integrable functions (in other words Kf =

∫
X
fdµ).

This operator is symmetric with respect to µ with Dirichlet form

E(f, f) =

∫
X

f(−Lf)dµ = Varµ(f).

In particular, it has spectral gap 1. Let now X = X1×· · ·×XN be a product
space with product probability measure µ = µ1 ⊗ · · · ⊗ µN . Consider the
product operator L =

∑N
i=1 Li where Li is acting on the i-th coordinate of a

function f as Lif =
∫
Xi
fdµi − f . The product operator L has still spectral

gap 1. Its Dirichlet form is given by

E(f, f) =

N∑
i=1

∫
X

f(−Lif)dµ =

N∑
i=1

∫
X

(Lif)2dµ.

We are therefore in the setting of a decomposition of the type (14). Moreover,
it is immediately checked that Li L = L Li for every i = 1, . . . , N , and thus
the commutation property (15) also holds (with κ = 0). Hence Theorem 1
applies for this model with hypercontractive constant ρ = min1≤i≤N ρi > 0.
In particular, Theorem 1 includes Talagrand’s inequality (13) for the hyper-
cube X = {−1,+1}N with the product measure µ = (pδ+1 + qδ−1)⊗N with
hypercontractive constant given by (12), for which it is immediately checked
that, for every r ≥ 1 and every i = 1, . . . , N ,∫

X

|Lif |rdµ = (pqr + prq)

∫
X

|Dif |rdµ.

More generally, as pointed out to us by J. van den Berg and D. Kiss (private
communication), we may consider similarly products of the complete graph
X1 = · · · = XN = {0, . . . , k}, each factor being equipped with the probability

measure µ1 =
∑k
j=0 pjδj . Talagrand’s approach is known to extend to this

case, as noted for instance in [14]. The hypercontractive constant of X1 has
been computed in [10] and is given by

ρ =
2(1− 2p∗)

log(1/p∗ − 1)
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with p∗ = min0≤j≤k pj , so that Theorem 1.3 from [14] follows from Theorem 1
above.

Non-product examples may be considered similarly as has been thus em-
phasized recently in [20] and [21] with similar arguments. Let for example G
be a finite group, and let S be a symmetric set of generators of G. The Cayley
graph associated to S is the graph with vertices the element of G and edges
the couples (x, xs) where x ∈ G and s ∈ S. The transition kernel associated
to this graph is

K(x, y) =
1

|S|
1S(yx−1), x, y ∈ G,

where |S| is the cardinal of S. The uniform probability measure µ on G is an
invariant and reversible measure for K. This framework includes the example
ofG = Sn the symmetric group on n elements with the set of transpositions as
generating set and the uniform measure as invariant and symmetric measure.

Given such a finite Cayley graph G with generator set S, kernel K and
uniform measure µ as invariant measure, the associated Dirichlet form may
be expressed on functions f : G→ R in the form (14)

E(f, f) =
1

2|S|
∑
s∈S

∑
x∈G

[
f(sx)− f(x)

]2
µ(x) =

1

2|S|
∑
s∈S
‖Dsf‖22

where for s ∈ S, Dsf(x) = f(sx)− f(x), x ∈ G. In order that the operators
Ds commute to K in the sense of (15) (with again κ = 0), it is necessary to
assume that S is stable by conjugacy in the sense that

for all u ∈ S, uS u−1 = S

as it is the case for the set of transpositions on the symmetric group Sn.
The following statement from [20] is thus an immediate consequence of the
general Theorem 1.

Corollary 2. Under the preceding notation and assumptions, denote by ρ the
logarithmic Sobolev constant of the chain (K,µ). Then for every function f
on G,

Varµ(f) ≤ 2e

ρ|S|
∑
s∈S

‖Dsf‖22
1 + log

(
‖Dsf‖2/‖Dsf‖1

) .
One may wonder for the significance of this Talagrand type inequality for

influences. For A ⊂ G and s ∈ S, define the influence Is(A) of the direction
s on the set A by

Is(A) = µ
(
{x ∈ G;x ∈ A, sx /∈ A}

)
.

As on the discrete cube, given A ⊂ G with µ(A) = a, Corollary 2 yields the
existence of s ∈ S such that



12 Dario Cordero-Erausquin and Michel Ledoux

Is(A) ≥ 1

C
a(1−a)ρ log

(
1+

1

Cρa(1− a)

)
≥ 1

C
a(1−a) ρ log

(
1+

1

Cρ

)
(20)

(where C ≥ 1 is numerical). However, with respect to the spectral gap in-
equality of the chain (K,µ)

λVarµ(f) ≤ 1

2|S|
∑
s∈S
‖Dsf‖22 ,

we see that (20) is only of interest provided that ρ log(1 + (1/ρ)) >> λ.
This is the case on the symmetric discrete cube {−1,+1}N for which, in
the Cayley graph normalization of Dirichlet forms, λ = ρ = 1/N . On the
symmetric group, it is known that the spectral gap λ is 2

n−1 whereas its
logarithmic Sobolev constant ρ is of the order of 1/n log n ([10], [17]) so that
ρ log(1 + (1/ρ)) and λ are actually of the same order for large n, and hence
yield the existence of a transposition τ with influence at least only of the
order of 1/n. It is pointed out in [21] that this result is however optimal. The
paper [20] presents examples in the more general context of Schreier graphs
for which (20) yields influences strictly better than the ones from the spectral
gap inequality.

Theorem 1 may also be illustrated on continuous models such as Gaussian
measures. While the next corollary is stated in some generality, it is already
of interest for products of one-dimensional factors and covers in particular
the example (6) of the standard Gaussian product measure.

Corollary 3. Let dµi(x) = e−Vi(x)dx, i = 1, . . . , N , on Xi = Rni be hyper-
contractive with constant ρi > 0. Let µ = µ1⊗· · ·⊗µN on X = X1×· · ·×XN .
Assume in addition that V ′′i ≥ −κ, κ ∈ R, i = 1, . . . , N . Then, for any smooth
function f on X,

Varµ(f) ≤ C(ρ, κ)

N∑
i=1

‖∇if‖22
1 + log

(
‖∇if‖2/‖∇if‖1

)
where ρ = min1≤i≤N ρi, and where ∇if denotes the gradient of f in the
direction Xi, i = 1, . . . , N .

Corollary 3 again follows from Theorem 1. Indeed, the product structure
immediately allows for the decomposition (14) of the Dirichlet form

E(f, f) =

∫
X

|∇f |2dµ =

N∑
i=1

∫
X

|∇if |2dµ

along smooth functions with thus Γi(f) = |∇if |. On the other hand, the basic
commutation (15) between the semigroup and the gradients ∇i is described
here as a curvature condition. Namely, whenever the Hessian V ′′ of a smooth
potential V on Rn is (uniformly) bounded below by −κ, κ ∈ R, the semigroup
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(Pt)t≥0 generated by the operator L = ∆−∇V ·∇ commutes to the gradient
in the sense that, for every smooth function f and every t ≥ 0,

|∇Ptf | ≤ eκt Pt
(
|∇f |

)
. (21)

In the product setting of Corollary 3, the semigroup (Pt)t≥0 is the tensor
product of the semigroups along every coordinate so that (21) ensures that

|∇iPtf | ≤ eκt Pt
(
|∇if |

)
(22)

along the partial gradients ∇i, i = 1, . . . , N and hence (15) holds on smooth
functions. This commutation property (with κ = −1) is for example explicit
on the integral representation

Ptf(x) =

∫
Rn
f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y), x ∈ Rn, t ≥ 0, (23)

of the Ornstein-Uhlenbeck semigroup with generator L = ∆ − x · ∇ and
invariant and symmetric measure the standard Gaussian distribution. The
assumption V ′′ ≥ −κ describes a curvature property of the generator L and
is linked to Ricci curvature on Riemannian manifolds. Since only κ ∈ R is
required here, it appears as a mild property, shared by numerous potentials
such as for example double-well potentials on the line of the form V (x) =
ax4 − bx2, a, b > 0. Recall that the assumption V ′′ ≥ c > 0 (for example
the quadratic potential with the Gaussian measure as invariant measure)
actually implies that µ satisfies a logarithmic Sobolev inequality, and thus
hypercontractivity (with constant c). We refer for example to [2], [15], [4]...
for an account on (21) and the preceding discussion.

Corollary 3 admits generalizations in broader settings. Weighted measures
on Riemannian manifolds with a lower bound on the Ricci curvature may
be considered similarly with the same conclusions. In another direction, the
hypercontractive approach may be developed in presence of suitable geomet-
ric decompositions. The next statements deal with the example of the sphere
and with geometric decompositions of the identity in Euclidean space which
are familiar in the context of Brascamp-Lieb inequalities (see [6] for further
illustrations in a Markovian framework).

A non-product example in the continuous setting is the one of the standard
sphere Sn−1 ⊂ Rn (n ≥ 2) equipped with its uniform normalized measure
µ. Consider, for every i, j = 1, . . . , n, Dij = xi∂j − xj∂i. These will be the
directions along which the Talagrand inequality may be considered since

E(f, f) =

∫
Sn−1

f(−∆f)dµ =
1

2

n∑
i,j=1

∫
Sn−1

(Dijf)2dµ.

The operators Dij namely commute in an essential way to the spherical
Laplacian ∆ = 1

2

∑n
i,j=1D

2
ij so that (15) holds with κ = 0. Finally, the
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logarithmic Sobolev constant is known to be n− 1 [2], [15], [4].... Corollary 4
thus again follows from the general Theorem 1.

Corollary 4. For every smooth enough function f : Sn−1 → R,

Varµ(f) ≤ 4e

n

n∑
i,j=1

‖Dijf‖22
1 + log

(
‖Dijf‖2/‖Dijf‖1

) .
Up to the numerical constant, this inequality improves upon the Poincaré

inequality for µ (with constant λ = n− 1).
We turn to geometric Brascamp-Lieb decompositions. Consider thus Ei,

i = 1, . . . ,m, subspaces in Rn, and ci > 0, i = 1, . . . ,m, such that

IdRn =

m∑
i=1

ciQEi (24)

where QEi is the projection onto Ei. In particular, for every x ∈ Rn, |x|2 =∑m
i=1 ci|QEi(x)|2 and thus, for every smooth function f on Rn,

E(f, f) =

∫
Rn
|∇f |2dµ =

m∑
i=1

ci

(∫
Rn

∣∣QEi(∇Ptf)
∣∣2dµ).

Furthermore, QEi(∇Ptf) = e−tPt(QEi(∇f)) which may be examplified on
the representation (23) of the Ornstein-Uhlenbeck semigroup with hypercon-
tractive constant 1. Theorem 1 thus yields the following conclusion.

Corollary 5. Under the decomposition (24), for µ the standard Gaussian
measure on Rn, and for every smooth function f on Rn,

Varµ(f) ≤ 4

m∑
i=1

ci

∥∥QEi(∇f)
∥∥2
2

1 + log
(
‖QEi(∇f)‖2/‖QEi(∇f)‖1

) .

3 Hypercontractivity and Geometric Influences

In the continuous context of the preceding section, and as discussed in the
introduction, the L2-norms of gradients in Corollary 3 are not well-suited to
the (geometric) influences of [13] which require L1-norms. In order to reach
L1-norms through the hypercontractive argument, a further simple interpo-
lation trick will be necessary.

To this task, we use an additional feature of the curvature condition
V ′′ ≥ −κ, κ ≥ 0, namely that the action of the semigroup (Pt)t≥0 with gen-
erator L = ∆−∇V · V on bounded functions yields functions with bounded
gradients. More precisely (cf. [15], [4]...), for every smooth function f with
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|f | ≤ 1, and every 0 < t ≤ 1/2κ,

|∇Ptf | ≤
1√
t
. (25)

This property may again be illustrated in case of the Ornstein-Uhlenbeck
semigroup (22) for which, by integration by parts,

∇Ptf(x) =
e−t

(1− e−2t)1/2

∫
Rn
y f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y).

With this additional tool, the following statement then presents the ex-
pected result. The setting is similar to the one of Corollary 3. Dependence
on ρ and κ for the constant C ′(ρ, κ) below may be drawn from the proof. It
will of course be independent of N .

Theorem 6. Let dµi(x) = e−Vi(x)dx, i = 1, . . . , N , on Xi = Rni be hyper-
contractive with constant ρi > 0. Let µ = µ1⊗· · ·⊗µN on X = X1×· · ·×XN ,
and set as before ρ = min1≤i≤N ρi. Assume in addition that V ′′i ≥ −κ, κ ≥ 0,
i = 1, . . . , N . Then, for some constant C ′(ρ, κ) ≥ 1 and for any smooth func-
tion f on X such that |f | ≤ 1,

Varµ(f) ≤ C ′(ρ, κ)

N∑
i=1

‖∇if‖1
(
1 + ‖∇if‖1

)[
1 + log+

(
1/‖∇if‖1

)]1/2 .
Proof. We follow the same line of reasoning as in the proof of Theorem 1,
starting on the basis of (10) from

‖f‖22 − ‖PT f‖
2
2 = 2

N∑
i=1

∫ T

0

(∫
X

|∇iPtf |2dµ
)
dt

≤ 4

N∑
i=1

∫ T

0

(∫
X

|∇iP2tf |2dµ
)
dt

for some T > 0. By (22) along each coordinate, for each t ≥ 0,

|∇iP2tf | ≤ eκt Pt
(
|∇iPtf |

)
.

Hence, by the hypercontractivity property as in Theorem 1,

‖∇iP2tf‖2 ≤ eκt ‖∇iPtf‖p

where p = p(t) = 1 + e−2ρt ≤ 2. We then proceed to the interpolation trick.
Namely, by (25) and the tensor product form of the semigroup, |∇iPtf | ≤
t−1/2 for 0 < t ≤ 1/2κ, so that in this range,

‖∇iP2tf‖2 ≤ eκ(1+1/p)t t−(1−1/p)/2 ‖∇if‖1/p1
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(where we used again (22)). As a consequence, provided T ≤ 1/2κ,

‖f‖22 − ‖PT f‖
2
2 ≤ 4 e4κT

N∑
i=1

‖∇if‖1
∫ T

0

t−(1−1/p(t))‖∇if‖(2/p(t))−11 dt.

We are then left with the estimate of the latter integral that only requires
elementary calculus. Set b = ‖∇if‖1 and θ(t) = 2

p(t) − 1 ≤ 1. Assuming

T ≤ 1, ∫ T

0

t−(1−1/p(t)) bθ(t)dt ≤
∫ T

0

t−1/2 bθ(t)dt.

Distinguish between two cases. When b ≥ 1,∫ T

0

t−1/2 bθ(t)dt ≤ b
∫ T

0

t−1/2dt ≤ 2b
√
T .

When b ≤ 1, use that θ(t) ≥ ρt/2 for every 0 ≤ t ≤ 1/2ρ. Hence, provided
T ≤ 1/2ρ,∫ T

0

t−1/2 bθ(t)dt ≤
∫ T

0

t−1/2 bρt/2dt ≤ C
√
ρ
· 1[

1 + log(1/b)
]1/2

where C ≥ 1 is numerical. Summarizing, in all cases, provided T is chosen
smaller than min

(
1, 1

2ρ

)
, we have∫ T

0

t−(1−1/p(t))bθ(t)dt ≤ 2C
√
ρ
· 1 + b[

1 + log+(1/b)
]1/2 .

Choosing for example T = min
(
1, 1

2ρ ,
1
2κ

)
and using (10), Theorem 6 follows

with C ′(ρ, κ) = C ′/ρ3/2T for some further numerical constant C ′. If κ ≤ cρ,
then this constant is of order ρ−1/2. ut

The preceding proof may actually be adapted to interpolate between
Corollary 3 and Theorem 6 as

Varµ(f) ≤ C
N∑
i=1

‖∇if‖qq
(
1 + ‖∇if‖21/‖∇if‖

q
q

)[
1 + log+

(
‖∇if‖qq/‖∇if‖

2
1

)]q/2
for any smooth function f on X such that |f | ≤ 1, and any 1 ≤ q ≤ 2 (where
C depends on ρ, κ and q).

As announced in the introduction, the conclusion of Theorem 6 may be
interpreted in terms of influences. Namely, for f = 1A (or some smooth
approximation), define ‖∇if‖1 as the geometric influence Ii(A) of the i-th
coordinate on the set A. In other words, Ii(A) is the surface measure of
the section of A along the fiber of x ∈ X = X1 × · · · × XN in the i-th
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direction, 1 ≤ i ≤ N , averaged over the remaining coordinates (see [13]).
Then Theorem 6 yields that

µ(A)
(
1− µ(A)

)
≤ C(ρ, κ)

N∑
i=1

Ii(A)
(
1 + Ii(A)

)[
1 + log+

(
1/Ii(A)

)]1/2 .
Proceeding as in the introduction for influences on the cube, the following
consequence holds.

Corollary 7. In the setting of Theorem 6, for any Borel set A in X with
µ(A) = a, there is a coordinate i, 1 ≤ i ≤ N , such that

Ii(A) ≥ a(1− a)

CN

(
log

N

a(1− a)

)1/2

≥ a(1− a)(logN)1/2

CN

where C only depends on ρ and κ.

It is worthwhile mentioning that when N = 1, I1(A) corresponds to the
surface measure (Minkowski content)

µ+(A) = lim inf
ε→0

1

ε

[
µ(Aε)− µ(A)

]
of A ⊂ Rn1 , so that Corollary 7 contains the quantitative form of the isoperi-
metric inequality for Gaussian measures

µ+(A) ≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

.

Recall indeed (cf. e.g. [15,16]) that the Gaussian isoperimetric inequality in-

dicates that µ+(A) ≥ ϕ ◦ Φ−1(a) (a = µ(A)) where ϕ(x) = (2π)−1/2 e−x
2/2,

x ∈ R, Φ(t) =
∫ t
−∞ ϕ(x)dx, t ∈ R, and that ϕ ◦ Φ−1(u) ∼ u(2 log 1

u )1/2 as
u → 0. This conclusion, for hypercontractive log-concave measures, was es-
tablished previously in [3]. See [18,19] for recent improvements in this regard.

Theorem 6 admits also generalizations in broader settings such as weighted
measures on Riemannian manifolds with a lower bound on the Ricci curvature
(this ensures that both (21) and (25) hold).

Besides the Gaussian measure, N. Keller, E. Mossel and A. Sen [13] also
investigate with isoperimetric tools products of one-dimensional distributions
of the type cαe−|x|

α

dx, 1 < α <∞, for which they produce influences at least

of the order of (logN)β/2

N where β = 2(1 − 1
α ) (α = 2 corresponding to the

Gaussian case). The proof of Theorem 6 may be adapted to cover this result
but only seemingly for 1 < α < 2. Convexity of the potentials |x|α ensures
(21) and (25). When 1 < α < 2, measures cαe−|x|

α

dx are not hypercontrac-
tive. Nevertheless, the hypercontractive theorems in Orlicz norms of [5] still
indicate that the semigroup (Pt)t≥0 generated by the potential |x|α is such
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that, for every bounded function g with ‖g‖∞ = 1 and every 0 ≤ t ≤ 1,

‖Ptg‖22 ≤ C ‖g‖1 exp
(
− c t logβ(1 + (1/‖g‖1))

)
(26)

for β > 0 and some constants C, c > 0, and similarly for the product semi-
group with constants independent of N . The hypercontractive step in the
proof of Theorem 6 is then modified into

∥∥|∇iP2tf |
∥∥2
2
≤ C‖∇if‖1

∫ 1

0

t−1/2 exp
(
− ct logβ(1 + (1/‖∇if‖1))

)
dt.

As a consequence, for any smooth f with |f | ≤ 1,

Varµ(f) ≤ C
N∑
i=1

‖∇if‖1
(
1 + ‖∇if‖1

)[
1 + log+

(
1/‖∇if‖1

)]β/2 . (27)

We thus conclude to the influence result of [13] in this range. When α > 2
(β ∈ (1, 2)), the potentials are hypercontractive in the usual sense so that
the preceding proofs yield (27) but only for β = 1. We do not know how to
reach the exponent β/2 in this case by the hypercontractive argument.

We conclude this note by the L1 versions of Corollaries 4 and 5. In the case
of the sphere, the proof is identical to the one of Theorem 6 provided one
uses that |Dijf | ≤ |∇f | which ensures that |DijPtf | ≤ 1/

√
t. The behavior

of the constant is drawn from the proof of Theorem 6.

Theorem 8. For every smooth enough function f : Sn−1 → R such that
|f | ≤ 1,

Varµ(f) ≤ C√
n

n∑
i,j=1

‖Dijf‖1
(
1 + ‖Dijf‖1

)[
1 + log+

(
1/‖Dijf‖1

)]1/2 .
Application to geometric influences Iij(A) as the limit of ‖Dijf‖1 as f

approaches the characteristic function of the set A may be drawn as in the
previous corresponding statements. From a geometric perspective, Iij(A) can
be viewed as the average over x of the boundary of the section of A in the
2-plane x + span(ei, ej). We do not know if the order n−1/2 of the constant
in Theorem 8 is optimal.

As announced, the last statement is the L1-version of the geometric decom-
positions of Corollary 5 which seems again of interest for influences. Under
the corresponding commutation properties, the proof is developed similarly.

Proposition 9. Under the decomposition (24), for µ the standard Gaussian
measure on Rn and for every smooth function f on Rn such that |f | ≤ 1,

Varµ(f) ≤ C
m∑
i=1

ci
‖QEi(∇f)‖1

(
1 + ‖QEi(∇f)‖1

)[
1 + log+

(
1/‖QEi(∇f)‖1

)]1/2
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where C > 0 is numerical.

Let us illustrate the last statement on a simple decomposition. As in the
Loomis-Whitney inequality, consider the decomposition

IdRn =

n∑
i=1

1

n− 1
QEi

with Ei = ei
⊥, i = 1, . . . , n, (e1, . . . , en) orthonormal basis. Proposition 9

applied to f = 1A for a Borel set A in Rn with µ(A) = a then shows that
there is a coordinate i, 1 ≤ i ≤ n, such that

∥∥QEi(∇f)
∥∥
1
≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

for some constant C > 0. Now, ‖QEi(∇f)‖1 may be interpreted as the bound-
ary measure of the hyperplane section

Ax·ei =
{

(x·e1, . . . , x·ei−1, x·ei+1, . . . , x·en); (x·e1, . . . , x·ei, . . . , x·en) ∈ A
}

along the coordinate x ·ei ∈ R averaged over the standard Gaussian measure.
By Fubini’s theorem, there is x · ei ∈ R (or even a set with measure as close
to 1 as possible) such that

µ+(Ax·ei) ≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

. (28)

The interesting point here is that a is the full measure of A. Indeed, recall
that the isoperimetric inequality for µ indicates that µ+(A) ≥ ϕ ◦ Φ−1(a),
hence a quantitative lower bound for µ+(A) of the same form as (28). When
A is a half-space in Rn, thus extremal set for the isoperimetric problem
and satisfying µ+(A) = ϕ ◦ Φ−1(a), it is easy to see that there is indeed a
coordinate x ·ei such that Ax·ei is again a half-space in the lower-dimensional
space. The preceding (28) therefore extends this property to all sets.
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