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Abstract. – We present a one-dimensional version of the func-
tional form of the geometric Brunn-Minkowski inequality in free (non-
commutative) probability theory. The proof relies on matrix approxi-
mation as used recently by P. Biane and F. Hiai, D. Petz and Y. Ueda
to establish free analogues of the logarithmic Sobolev and transportation
cost inequalities for strictly convex potentials, that are recovered here
from the Brunn-Minskowski inequality as in the classical case. The
method is used to extend to the free setting the Otto-Villani theorem
stating that the logarithmic Sobolev inequality implies the transporta-
tion cost inequality. It is used further to recover the free analogue of
Shannon’s entropy power inequality put forward by S. Szarek and D.
Voiculescu.

1. Classical Brunn-Minkowski and functional inequalities

In its multiplicative form, the classical geometric Brunn-Minkowski inequality
indicates that for all bounded Borel measurable sets A,B in Rn, and every θ ∈ (0, 1),

vol
(
θA + (1− θ)B

)
≥ vol (A)θvol (B)1−θ

where θA+(1−θ)B = {θx+(1−θ)y;x ∈ A, y ∈ B} and where vol (·) denotes the volume
element in Rn. Equivalently on functions (known as the Prékopa-Leindler theorem),
whenever θ ∈ (0, 1) and u1, u2, u3 are non-negative measurable functions on Rn such
that

u3

(
θx + (1− θ)y

)
≥ u1(x)θu2(y)1−θ for all x, y ∈ Rn, (1)

then ∫
u3dx ≥

( ∫
u1dx

)θ( ∫
u2dx

)1−θ

(2)



(cf. [Ga], [Ba2] for modern expositions).

The Brunn-Minkowski inequality has been used recently in the investigation of
functional inequalities for strictly log-concave densities such as logarithmic Sobolev or
transportation cost inequalities (cf. [B-G-L], [Le1], [Le2], [Vi]...). Let dµ = e−Qdx be
a probability measure on Rn such that, for some c > 0, Q(x)− c

2 |x|
2 is convex on Rn.

Therefore,

Q(θx + (1− θ)y)− θQ(x)− (1− θ)Q(y) ≤ −cθ(1− θ)
2

|x− y|2

for all x, y ∈ Rn. The typical example is the standard Gaussian measure e−|x|
2/2 dx

(2π)n/2

(with c = 1). Let then f and g be two (bounded continuous) functions on Rn such
that g(x) ≤ f(y) + c

2 |x − y|2, x, y ∈ Rn. Choose u1 = e(1−θ)g−Q, u2 = e−θf−Q and
u3 = e−Q satisfying thus (1). According to (2), for every θ ∈ (0, 1),

log
∫

e(1−θ)gdµ +
1− θ

θ
log

∫
e−θfdµ ≤ 0.

When θ → 0,

log
∫

egdµ ≤
∫

fdµ. (3)

This inequality is actually the dual form of the quadratic transportation cost inequality

W2(µ, ν)2 ≤ 1
c

H (ν |µ) (4)

holding for all probability measures ν on Rn, where W2 is the Wasserstein distance
between probability measures and H (ν |µ) =

∫
log dν

dµ dν is the relative entropy of
ν << µ. The argument relies on the one side on the Monge-Kantorovitch-Rubinstein
dual characterization of the Wasserstein metric as

W2(µ, ν)2 = sup
[ ∫

gdν −
∫

fdµ

]
where the supremum runs over all (bounded continuous) functions f and g such that
g(x) ≤ f(y)+ 1

2 |x−y|2 for all x, y ∈ Rn (cf. e.g. [Vi]), and on the other on the entropic
inequality ∫

gdν ≤ log
∫

egdµ + H (ν |µ). (5)

The Brunn-Minkowski theorem also covers the logarithmic Sobolev inequality for
µ. Given ν <<µ, set f = log dν

dµ (assumed to be smooth enough), and let gt, t > 0, be

such that gt(x) ≤ f(y)+ 1
2t |x−y|2, x, y ∈ Rn. Apply Brunn-Minkowski to u1 = e

1
θ gt−Q

(t = 1−θ
cθ ), u2 = e−Q, u3 = ef−Q, to get that

log
∫

e(1+ct)gtdµ ≤ 0
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for every t > 0. Now, the optimal choice for gt is given by the infimum-convolution
of f with the quadratic cost, solution of the classical Hamilton-Jacobi equation
∂tgt + 1

2 |∇gt|2 = 0 with initial condition f . Hence, gt ∼ f − t
2 |∇f |2 as t → 0. In

the limit, we thus get the logarithmic Sobolev inequality

H (ν |µ) =
∫

fdν ≤ 1
2c

∫
|∇f |2dν =

1
2c

I (ν |µ) (6)

holding for every ν <<µ, where I (ν |µ) is the Fisher information of ν with respect to
µ.

It is worthwhile recalling that the Hamilton-Jacobi approach may also be used to
produce a quick proof of the Otto-Villani theorem [O-V] stating that the logarithmic
Sobolev inequality (6) implies the transportation cost inequality (4) for arbitrary
probability measures dµ = e−Qdx. Indeed, given ν << µ and f = log dν

dµ as before,
let gt be the infimum-convolution of f with the cost 1

2t |x|
2, t > 0. Set, for any real

number a, ft = (a + ct)gt − jt where jt = log
∫

e(a+ct)gtdµ. Define νt by ft = log dνt

dµ .
The logarithmic Sobolev inequality (6) applied to νt yields∫

ftdνt ≤
1
2c

∫
|∇ft|2dνt,

or, in other words,

c(a + ct)
∫

gtdνt − cjt ≤ −(a + ct)2
∫

∂tgtdνt.

Since
∫

∂tftdνt = 0, it follows that cjt ≥ (a + ct)∂tjt. Therefore, (a + ct)−1jt is
non-increasing in t. In particular, 1

a+1 j1/c ≤ 1
a j0, which for a = 0 amounts to (3).

For more details on this section, cf. [B-G-L], [Le2], [Vi].

2. Random matrix approximation

We now apply the preceding scheme to (one-dimensional) free probability theory
by random matrix approximation following the recent investigations by P. Biane [Bi]
and F. Hiai, D. Petz and Y. Ueda [H-P-U1], [H-P-U2]. This approach relies specifically
on the large deviation asymptotics of spectral measures of unitary invariant Hermitian
random matrices put forward by D. Voiculescu [Vo1] (as a microstate approximation)
and G. Ben Arous and A. Guionnet [BA-G] (as a Sanov theorem), cf. e.g. [H-
P] and the references therein. Given a continuous function Q : R → R such that
lim|x|→∞ |x| e−εQ(x) = 0 for every ε > 0, set

Z̃N (Q) =
∫

A

∆N (x)2 e−N
∑N

k=1
Q(xk)dx (7)
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where A = {x1 < x2 < · · · < xN} ⊂ RN and ∆N (x) =
∏

1≤k<`≤N (x` − xk) is the
Vandermonde determinant. In the random matrix context, Z̃N (Q) is the partition
function of the eigenvalue probability distribution. Namely, on the space HN of
Hermitian N ×N matrices X = XN , consider the probability density

fN (X) =
1

ZN (Q)
e−NTr (Q(X)) (8)

with respect to Lebesgue measure on HN . Then, as is classical (cf. [Me], [De], [H-P]...),
the joint distribution of the (ordered list of the) eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN of
X = XN ∈ HN under the law (8) is given by the probability distribution on RN

dPN (x) = ∆N (x)2 e−N
∑N

k=1
Q(xk)1A(x)

dx

Z̃N (Q)
.

(Note that Z̃N (Q) = κNZN (Q) where κN > 0 is the normalizing constant, only
depending on N , from Lebesgue measure on HN to the eigenvalue distribution.) The
large deviation theorem of [Vo1] and [BA-G] (see also [Jo]) then indicates that

lim
N→∞

1
N2

log Z̃N (Q) = EQ(νQ) (9)

where, for every probability measure ν on R,

EQ(ν) =
∫ ∫

log |x− y|dν(x)dν(y)−
∫

Q(x)dν(x)

is the weighted energy integral with extremal (compactly supported) measure νQ

maximizing EQ (cf. [S-T], [H-P]). (For the choice of Q(x) = x2

2 , νQ is the semicircle
law.)

Let U1, U2, U3 be real-valued continuous functions on R such that, for every ε > 0,
lim|x|→∞ |x| e−εUi(x) = 0, i = 1, 2, 3. The general idea would be to apply the Brunn-
Minkowski theorem to the functions e−NTr (Ui(X)), i = 1, 2, 3, on HN ' RN2

, and to
apply the large deviation asymptotics (9). However, while it is a classical fact that
Tr (Q(X)) is convex on HN whenever Q : R → R is convex, it is not true that given
U1, U2, U3 such that U3(θx+(1− θ)y) ≤ θU1(x)+ (1− θ)U2(y) for some θ ∈ (0, 1) and
all x, y ∈ R, then

Tr
(
U3(θX + (1− θ)Y )

)
≤ θTr

(
U1(X)

)
+ (1− θ)Tr

(
U2(Y )

)
for matrices X, Y in HN . The following counter-example was kindly communicated
to us by G. Aubrun, D. Cordero-Erausquin and M. Fradelizi. Denote by sp(X) and
sp(Y ) the spectrum of X and Y respectively, and choose for U1 and U2 (suitable
approximations of) respectively − log 1sp(X) and − log 1sp(Y ). The hypothesis, for

4



θ = 1
2 , is then satisfied with U3 = − log 1[sp(X)+sp(Y )]/2. The conclusion would however

imply that
sp(X + Y ) ⊂ sp(X) + sp(Y ),

which is not the case in general.

We work instead with the eigenvalue distribution. Given U1, U2, U3 as above, set

ui(x) = ∆N (x)2 e−N
∑N

k=1
Ui(xk)1A(x), x ∈ RN , i = 1, 2, 3.

Since − log ∆N is convex on the convex set A, assuming that, for some θ ∈ (0, 1) and
all x, y ∈ R,

U3

(
θx + (1− θ)y

)
≤ θU1(x) + (1− θ)U2(y),

the Brunn-Minkowski theorem applies to u1, u2, u3 on RN to yield

Z̃N (U3) ≥ Z̃N (U1)θZ̃N (U2)1−θ.

Taking the limit (9) immediately yields the following free analogue of the functional
Brunn-Minkowski inequality on R.

Theorem 1. Let U1, U2, U3 be real-valued continuous functions on R such that

lim|x|→∞ |x| e−εUi(x) = 0 for every ε > 0, i = 1, 2, 3. Assume that for some θ ∈ (0, 1)
and all x, y ∈ R,

U3

(
θx + (1− θ)y

)
≤ θU1(x) + (1− θ)U2(y).

Then

EU3(νU3) ≥ θEU1(νU1) + (1− θ)EU2(νU2).

3. Free logarithmic Sobolev and transportation cost inequalities

We next show how the preceding free (one-dimensional) Brunn-Minkowski inequal-
ity may be used, following the classical case, to recapture both the free logarithmic
Sobolev inequality of D. Voiculescu [Vo3] (in the form put forward in [B-S] and extended
in [Bi]) and the free quadratic transportation cost inequality of [B-V] and [H-P-U2] for
quadratic and more general strictly convex potentials.

Let Q be a real-valued continuous function on R such that lim|x|→∞ |x| e−εQ(x) = 0
for every ε > 0. For ν, probability measure on R, define the free entropy of ν (with
respect to νQ) [Vo3], [B-S], [Bi], as

Σ̃
(
ν | νQ

)
= EQ(νQ)− EQ(ν) (≥ 0).

If ϕ : R → R is bounded and continuous, it is convenient to set below

jQ(ϕ) = EQ−ϕ(νQ−ϕ)− EQ(νQ).
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For every probability measure ν on R,

jQ(ϕ) ≥
∫

ϕdν + EQ(ν)− EQ(νQ) =
∫

ϕdν − Σ̃
(
ν | νQ

)
(10)

with equality for ν = νQ−ϕ. In particular jQ(ϕ) ≥
∫

ϕdνQ. (Note that in the case of
the classical entropy from the Sanov theorem with respect to dµ = e−Qdx, jQ(ϕ) would
simply be log

∫
eϕdµ and (10) then appears as the analogue of the entropic inequality

(5).)

Assume now that (Q is C1 and such that) Q(x)− c
2 x2 is convex for some c > 0. For

bounded continuous functions f, g : R → R such that g(x) ≤ f(y) + c
2 |x− y|2, we may

apply the free Brunn-Minkowski theorem, as in the classical case, to U1 = Q− (1−θ)g,
U2 = Q + θf and U3 = Q. Thus, by Theorem 1,

jQ

(
(1− θ)g

)
+

1− θ

θ
jQ(−θf) ≤ 0.

As θ → 0, it follows that for every probability measure ν,∫
gdν −

∫
fdνQ ≤ Σ̃

(
ν | νQ

)
.

In other words, jQ(g) ≤
∫

fdνQ (cf. (3)). This is the dual form of the free quadratic
transportation cost inequality

W2(ν, νQ)2 ≤ 1
c

Σ̃
(
ν | νQ

)
(11)

recently put forward in [B-V] for the semicircle law associated to the quadratic
potential, and in [H-P-U2] for strictly convex potentials. (As discussed in [H-P-U2],
(11) does not compare to (4).)

The free logarithmic Sobolev inequality of [Vo3], extended to strictly convex
potentials in [Bi], follows in the same way from the Brunn-Minkowski theorem. We
follow [Bi] where the matrix approximation is used similarly to this task. Fix a
probability measure ν with compact support and smooth density p on R. Define a
C1 function R on R such that R(x) = 2

∫
log |x − y|dν(y) on supp (ν), R(x) = Q(x)

for |x| large, and such that R(x) ≥ 2
∫

log |x− y|dν(y) everywhere. By the uniqueness
theorem of extremal measures of weighted potentials (cf. [S-T]), it is easily seen that
the energy functional ER is maximized at the unique point νR = ν. Define then f ,
with compact support, by f = Q−R + C where the constant C (= EQ(νQ)− ER(νR))
is chosen so that jQ(f) = 0. Let gt(x) = infy∈R[f(y) + 1

2t (x − y)2], t > 0, x ∈ R, be
the infimum-convolution of f with the quadratic cost, solution of the Hamilton-Jacobi
equation ∂tgt + 1

2g′t
2 = 0 with initial condition f . As in the classical case, apply then

Theorem 1 to U1 = Q− 1
θ gt (t = 1−θ

cθ ), U2 = Q, U3 = Q− f , to get that

jQ

(
(1 + ct)gt

)
≤ jQ(f) = 0

6



for every t > 0. In particular therefore,∫
(1 + ct)gtdν ≤ Σ̃(ν | νQ)

and, since ν = νR = νQ−f , as t → 0,

Σ̃
(
ν | νQ

)
=

∫
fdν ≤ 1

2c

∫
f ′

2
dν. (12)

Now, f ′ = Q′ −Hp where

Hp(x) = p.v.

∫
2p(y)
x− y

dy

is the Hilbert transform (up to a multiplicative factor) of the (smooth) density p of ν.
Hence (12) amounts to the free logarithmic Sobolev inequality

Σ̃
(
ν | νQ

)
≤ 1

2c

∫ [
Hp−Q′]2dν =

1
2c

I
(
ν | νQ

)
(13)

as established in [Bi], where I (ν | νQ) is known as the free Fisher information of ν

with respect to νQ [Vo3], [B-S]. Careful approximation arguments to reach arbitrary
probability measures ν (with density in L3(R)) are described in [H-P-U1].

As in the classical case, the Hamilton-Jacobi approach may be used to prove the free
analogue of the Otto-Villani theorem [O-V]. To this task, given a compactly supported
C1 function f on R, and a ∈ R, set jt = jQ((a + ct)gt) and ft = (a + ct)gt − jt so that
jQ(ft) = 0. Denote for simplicity by νt the extremal measure for the potential Q− ft.
Then the logarithmic Sobolev inequality (12) reads as∫

ftdνt ≤
1
2c

∫
f ′t

2
dνt.

We may then repeat the classical case. By the Hamilton-Jacobi equation, the preceding
logarithmic Sobolev inequality amounts to

c(a + ct)
∫

gtdνt − cjt ≤ −(a + ct)2
∫

∂tgtdνt.

On the support of νt (cf. [S-T]),

2
∫

log |x− y|dνt(y) = Q− ft + Ct

where Ct =
∫∫

log |x− y|dνtdνt + EQ−ft(νt). Since jQ(ft) = EQ−ft(νt)− EQ(νQ) = 0,
it follows that

∫
∂tftdνt = 0. Therefore, cjt ≥ (a + ct)∂tjt. Hence (a + ct)−1jt is

non-increasing in t, so that in particular, 1
a+1 j1/c ≤ 1

a j0. Using that

lim
a→0

1
a

jQ(af) =
∫

fdνQ, (14)
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the latter thus amounts to jQ(g) ≤
∫

fdνQ, that is the dual form of the quadratic
transportation cost inequality (11). To briefly check (14), recall that jQ(af) ≥
a

∫
fdνQ. Conversely, we may write, for every a > 0,

1
a

jQ(af) = sup
[ ∫

fdρ− 1
a

Σ̃
(
ρ | νQ

)]
where the supremum runs over the set S of all probability measures ρ supported on a
given compact set, independent of a small enough (cf. [S-T]). Fix then δ > 0, and set

A =
{

ρ ∈ S;
∫

fdρ ≤
∫

fdνQ + δ

}
.

Then
1
a

jQ(af) ≤ max
( ∫

fdνQ + δ, ‖f‖∞ − 1
a

inf
ρ/∈A

Σ̃
(
ρ | νQ

))
.

By the lower semicontinuity of Σ̃ and uniqueness of the extremal measure νQ,

inf
ρ/∈A

Σ̃
(
ρ | νQ

)
> 0.

Therefore
lim sup

a→0

1
a

jQ(af) ≤
∫

fdνQ + δ.

Since δ > 0 is arbitrary, the claim (14) is proved. We may thus conclude to the
following statement. The preceding approach through Hamilton-Jacobi equations has
some similarities with the use of the (complex) Burgers equation in [B-V].

Theorem 2. Let Q be a real-valued C1 function on R such that, for every

ε > 0, lim|x|→∞ |x| e−εQ(x) = 0. Then the free logarithmic Sobolev inequality (13)

(holding for some constant c > 0 and every probability measure ν on R) implies the

free quadratic transportation inequality (11) (holding, with the same constant c > 0,

for every probability measure ν on R).

4. Shannon’s entropy power inequality

In this last part, we briefly indicate how the matrix approximation approach may
be used similarly to yield a direct proof of the free analogue of Shannon’s entropy power
inequality due to S. Szarek and D. Voiculescu [S-V1], [S-V2]. Their proof is based on
the microstate approximation of entropy together with an improved Brunn-Minkowski
inequality for restricted sums (see also [Ba1]).

Recall first that whenever f and g are probability densities on Rn, Shannon’s
entropy power inequality expresses that

e
2
n S(f∗g) ≥ e

2
n S(f) + e

2
n S(g) (15)

8



where S(f) = −
∫

f log fdx is the (classical) entropy of the density f (cf. e.g. [Ba2]).

Let ν be a compactly supported probability measure (with smooth density) on R.
As for the free logarithmic Sobolev inequality in Section 3, define a C1 potential R

such that ν = νR (with for example Q(x) = x2

2 ). Let, as in (8),

fN (X) =
1

ZN (R)
e−NTr (R(X))

be the probability density on HN (with respect to Lebesgue measure) induced by the
potential R. Then

S(fN ) = log ZN (R) +
∫

NTr
(
R(X)

)
fNdX.

Under fN , the eigenvalue distribution 1
N

∑N
i=1 δλi

converges almost surely to νR = ν,
and furthermore

lim
N→∞

1
N

∫
Tr

(
R(X)

)
fN (X)dX =

∫
Rdν.

On the other hand, recall the normalizing constant κN , only depending on N , from
Lebesgue measure on HN to the eigenvalue distribution. That is, Z̃N (R) = κNZN (R)
(where Z̃N (R) is defined in (7)). It follows from the large deviation property (9) that

lim
N→∞

1
N2

[
log ZN (R) + log κN

]
= ER(ν).

Hence
lim

N→∞

1
N2

[
S(fN ) + log κN

]
= Σ(ν) (16)

where we set
Σ(ν) =

∫ ∫
log |x− y|dν(x)dν(y).

(Actually, to overcome several integrability questions, the argument, here and below,
should rely on the large deviations for restricted self-adjoint random matrices ‖X‖∞ ≤
C as discussed in [Vo2] and [H-M-P] – cf. [H-P-U2]. For simplicity in the exposition,
we leave this out.)

Let now µ be another compactly supported probability measure on R, associated
to a potential T with corresponding probability density gN on HN . We aim to apply
Shannon’s entropy power inequality (15) on HN ' RN2

to fN and gN and to let
N →∞. By (15) thus,

e
2

N2 [S(fN∗gN )+κN ] ≥ e
2

N2 [S(fN )+κN ] + e
2

N2 [S(gN )+κN ]. (17)

By the entropic inequality, for every function ϕ on HN (integrable with respect to
fN ∗ gN ),

S(fN ∗ gN ) ≤
∫

ϕfN ∗ gNdX + log
∫

e−ϕdX.

9



Choose ϕ(X) = NTr (F (X)) where F : R → R is to be specified below. Hence

S(fN ∗ gN ) ≤
∫

NTr
(
F (X)

)
fN ∗ gNdX + log ZN (F ).

The density fN ∗ gN is the law of the sum of two independent random matrices from
HN with respective laws fN and gN . Under fN ∗gN , the normalized trace 1

N Tr (F (X))
is then known (cf. [V-D-N], [H-P]) to converge to

∫
Fdν +µ where ν +µ = νR + νT is

the free additive convolution of ν = νR and µ = νT . It thus follows again from the
large deviation asymptotics (9) that

lim sup
N→∞

1
N2

[
S(fN ∗ gN ) + κN

]
≤

∫
Fdν+µ + EF (νF ).

Choose finally F smooth enough given by F (x) = 2
∫

log |x − y|dν +µ(y) on the
(compact) support of ν +µ so that∫

Fdν +µ + EF (νF ) = Σ(ν +µ).

Therefore
lim sup
N→∞

e
2

N2 [S(fN∗gN )−κN ] ≤ e2Σ(ν+µ).

Together with (17) and (16), we thus conclude to the free version of Shannon’s entropy
power inequality of [S-V1], [S-V2].

Theorem 3. Let ν, µ be compactly supported probability measures on R. Then

e2Σ(ν + µ) ≥ e2Σ(ν) + e2Σ(µ).
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