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Convergence of Empirical Processes for Interacting
Particle Systems with Applications to Nonlinear
Filtering
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In this paper, we investigate the convergence of empirical processes for a class
of interacting particle numerical schemes arising in biology, genetic algorithms
and advanced signal processing. The Glivenko�Cantelli and Donsker theorems
presented in this work extend the corresponding statements in the classical
theory and apply to a class of genetic type particle numerical schemes of the
nonlinear filtering equation.
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1. INTRODUCTION

1.1. Background and Motivations

Let E be a Polish space endowed with its Borel _-field B(E ). We denote
by M1(E ) the space of all probability measures on E equipped with the
weak topology. We recall that the weak topology is generated by the
bounded continuous functions on E and we denote by Cb(E ) the space of
these functions. Let ,n : M1(E ) � M1(E ), n�1, be a sequence of continuous
functions. Starting from this family we can consider an interacting N-par-
ticle system !n=(!1

n ,..., !N
n ), n�0, which is a Markov process with state

space EN and transition probability kernels

P(!n # dx | !n&1=z)= `
N

p=1

,n \ 1
N

:
N

q=1

$zq+ (dx p) (1.1)
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where dx =
def dx1_ } } } _dxN is an infinitesimal neighborhood of the point

x=(x1,..., xN) # EN, z=(z1,..., zN) # EN and $a stands for the Dirac measure
at a # E.

Let us introduce the empirical distributions ?N
n of the N-particle

system !n

?N
n =

1
N

:
N

i=1

$!i
n

which is a random measure on E. Assume that !0=(!1
0 ,..., !N

0 ) is a sequence
of N-independent variables with common law ?0 # M1(E ). Under rather
general assumptions, it can be shown that ?N

n converges weakly to a non-
random probability distribution ?n # M1(E ) as N � � [see Del Moral;(1)

and Del Moral and Guionnet(15)] and that [?n ; n�0] solves the following
nonlinear measure valued process equation

?n=,n(?n&1), n�1

This class of interacting particle schemes has been introduced in Del
Moral(12, 13) to solve numerically the so-called nonlinear filtering equation.
The study of the convergence for abstract functions ,n was initiated in Del
Moral, (11) whereas large deviation principles and the associated fluctua-
tions are presented in Del Moral and Guionnet.(14, 15) As described in these
papers, under certain conditions on the mappings [,n , n�1], versions of
the law of large numbers and the central limit theorem in the sense of con-
vergence of finite dimensional distributions are available. Namely, for any
bounded test function f : E � R,

?N
n ( f ) www�

N � �
?n( f ) P. a.s.

and

WN
n ( f )=- N (?N

n ( f )&?( f )) www�
N � �

Wn( f )

where Wn is a centered Gaussian field.
The aim of this paper is to make these two statements uniform over

a class of functions F, following the theory of empirical processes for inde-
pendent samples [cf. van der Vaart and Wellner(38) and the references
therein]. Our results apply to a class of measure valued processes and
genetic type interacting particle systems arising in biology, in the theory of
genetic type interacting particle systems and in advanced signal processing.
We prove in this setting Glivenko�Cantelli and Donsker theorems under
entropy conditions, as well as exponential bounds for Vapnik�Cervonenkis
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classes of sets or functions. We provide finally some uniform bounds in
both space and time for a class of processes without memory.

1.2. Description of the Model and Statements of the Results

1.3. Description of the Model

To describe precisely our model, we need first introduce some nota-
tions. For any Markov transition kernel K and any probability measure
+ on E, we denote by +K the probability measure defined by, for any
f # Cb(E ),

+K( f )=| +(dx) K(x, dz) f (z)

Our measure valued dynamical system is then described by the equation

?n=,n(?n&1), n�1 (1.2)

where

,n(+)=�n(+) Kn , �n(+)( f )=
+(gn f )
+(gn)

and

v [Kn ; n�1] is a sequence of Markov kernels on E,

v [gn ; n�1] is a collection of bounded positive functions on E such
that, for any n�1, there exist an # [1, �) with

\x # E, \n�1,
1
an

�gn(x)�an (1.3)

Using the fact that

�n \ 1
N

:
N

i=1

$x i+= :
N

i=1

gn(xi )
�N

j=1 gn(x j )
$x i

we see that the resulting motion of the particles is decomposed into two
separate mechanisms

!n&1=(!1
n&1 ,..., !N

n&1) � !� n&1=(!� 1
n&1 ,..., !� N

n&1) � !n=(!1
n ,..., !N

n )
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These two transitions can be modelled as follows:

Initial particle system:

Py(!0 # dx)= `
N

p=1

?0(dx p)

Selection�Updating:

Py(!� n&1 # dx | !n&1=z)= `
N

p=1

:
N

i=1

gn( yn&hn(zi ))
�N

j=1 gn( yn&hn(z j ))
$zi (dx p)

Mutation�Prediction:

Py(!n # dz | !� n&1=x)= `
N

p=1

Kn(x p, dz p) (1.4)

Thus, we see that the particles move according to the following rules. In
the selection transition, one updates the positions in accordance with the
fitness functions [gn ; n�1] and the current configuration. More precisely,
at each time n�1, each particle examines the system of particles !n&1=
(!1

n&1 ,..., !N
n&1) and chooses randomly a site ! i

n&1 , 1�i�N, with a prob-
ability which depends on the entire configuration !n&1 and given by

gn(! i
n&1)

�N
j=1 gn(! j

n&1)

This mechanism is called the Selection�Updating transition as the particles
are selected for reproduction, the most fit individuals being more likely to
be selected. In other words, this transition allows particles to give birth to
some particles at the expense of light particles which die. The second
mechanism is called Mutation�Prediction since at this step each particle
evolves randomly according to a given transition probability kernel.

The preceding scheme is clearly a system of interacting particles under-
going adaptation in a time nonhomogeneous environment represented by
the fitness functions [gn ; n�1]. Roughly speaking the natural idea is to
approximate the two step transitions of the system (1.1)

?n&1 www�Updating ?̂n&1 =
def �n&1(?n&1) www�Prediction ?n=?̂n&1Kn&1

228 Del Moral and Ledoux



by a two step Markov chain taking values in the set of finitely discrete
probability measures with atoms of size some integer multiple of 1�N.
Namely,

?N
n&1=

1
N

:
N

i=1

$!i
n&1

www�Selection ?̂N
n&1=

1
N

:
N

i=1

$!� i
n&1

www�Mutation ?n=
1
N

:
N

i=1

$!i
n

1.4. Statement of the Main Results

Given a collection F of measurable functions f : E � R, the particle
density profiles ?N

n at time n induce a map from F to R given by

?N
n : f # F � ?N

n ( f ) # R

The F-indexed collection [?N
n ( f ); f # F] is usually called the F-empirical

process associated to the empirical random measures ?N
n . The semi-metric

commonly used in such a context is the Zolotarev semi-norm defined by

&+&&&F=sup[ |+( f )&&( f )|; f # F], \+, & # M1(E )

[see for instance Rachev(32)]. In order to control the behavior of the
supremum &?N

n &?n &F as N � �, we will impose conditions on the class
F that are classicaly used in the statistical theory of empirical processes for
independent samples. To avoid technical measurability conditions, and in
order not to obscure the main ideas, we will always assume the class F to
be countable and uniformly bounded. Our conclusions also hold under
appropriate separability assumptions on the empirical process. We do not
enter these questions here [see van der Vaart and Wellner(38)]. The
Glivenko�Cantelli and Donsker theorems are uniform versions of the law
of large numbers and the central limit theorem for the empirical measures.
In the classical theory of independent random variables, these properties
are usually shown to hold under entropy conditions on the class F.
Namely, to measure the size of a given class F, one considers the covering
numbers N(=, F, Lp(+)) defined as the minimal number of Lp(+)-balls of
radius =>0 needed to cover F. With respect to the classical theory, we will
need assumptions on these covering numbers uniformly over all probability
measures +. Classically also, this supremum can be taken over all discrete
probability measures. Since we are dealing with interacting particle
schemes, we however need to strengthen the assumption and take the
corresponding supremum over all probability measures. Several examples
of classes of functions satisfying the foregoing uniform entropy conditions
are discussed [see van der Vaart and Wellner(38)]. Denote thus by

229Convergence of Empirical Processes for Interacting Particle Systems



N(=, F), =>0, and by I(F) the uniform covering numbers and entropy
integral given by

N(=, F)=sup[N(=, F, L2(+)); + # M1(E )]

I(F)=|
1

0
- log N(=, F) d=

Our results will then take the following form.

Theorem 1 [Glivenko�Cantelli]. If N(=, F)<� for any =>0,
then, for any time n�0,

lim
N � �

&?N
n &?n &F =0 P. a.s.

If I(F)<�, we will prove that the F-indexed process W N
n is asymp-

totically tight. Together with the central limit theorem for finite dimen-
sional distributions described by Del Moral and Guionnet, (14), this leads
to a uniform version in the Banach space l �(F) of all bounded functions
on F.

Theorem 2 [Donsker]. Under some regularity conditions on the
transition kernels Kn , if I(F)<�, then, for any time n�0, the empirical
process

WN
n : f # F � W N

n ( f )=- N (?N
n ( f )&?n( f ))

converges in law in l �(F) to a centered Gaussian process [Wn( f ); f # F].
The proofs of Theorems 1 and 2 are given in Section 2. Our method

of proof is essentially based on a precise study of the dynamical structure
of the limiting measure valued process (1.2) and on properties of covering
numbers. For reasons which will appear clearly later on, this approach
provides a natural and simple way to extend several results of the classical
theory of empirical processes to genetic-type interacting particle systems.
For these reasons, we present at the very beginning of Section 2 some key
lemmas that will be used in extending these results.

Section 3 is concerned with further uniform results. We first establish
a precise exponential bound for classes of functions F with polynomial
covering numbers, such as the well-known Vapnik�Cervonenkis classes.
More precisely we will prove the following extension of a theorem due to
Talagrand(37) in the independent case.
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Theorem 3. Let F be a countable class of measurable functions
f : E � [0, 1] satisfying

N(=, F)�\C
= +

V

for every 0<=<C

for some constants C and V. Then, for any n�0, $>0 and N�1, we have

P(&W N
n &F >$_n)�(n+1) \ D$

- V +
V

e&2$2

where D, resp. _n , is a constant that only depends on C, resp. on the fitness
functions [gn ; n�1].

In the second part of Section 3, we present a uniform convergence
result with respect to time under some additional conditions on the limiting
system (1.2).

Theorem 4. When the class of function F is sufficiently regular and
under certain conditions on the mappings [,n ; n�1], there exists a con-
vergence rate :>0 such that

sup
n�0

E(&?N
n &?n&F )�

C
N:�2 I(F)

for some constant C that does not depend on the time parameter n�0.
Application of these results to nonlinear filtering problems are presented

in the last section.

2. GLIVENKO�CANTELLI AND DONSKER THEOREMS

Before turning to the proof of Theorems 1 and 2, we present three
simple lemmas on the dynamical structure of (1.2) and the covering num-
bers. These properties will also be useful in the further developments of
Section 3.

Let us introduce before some additional notations. Denote by [,n | p ;
0�p�n] the composite mappings

,n | p=,n b ,n&1 b } } } b ,p+1 , 0�p�n

(with the convention ,n | n=Id ). A clear backward induction on the
parameter p shows that the composite mappings ,n | p have the same form
as the one step mappings [,n ; n�1]. This is the content of the next
lemma.
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Lemma 1. For any 0�p�n, we have

,n | p(+)( f )=
+(gn | pKn | p( f ))

+(gn | p)

for all f # Cb(E ) where

Kn | p&1( f )=
Kp(gn | p Kn | p( f ))

Kp(gn | p)
, gn | p&1= gpKp(gn | p) (2.1)

with the conventions gn | n=1 and Kn | n=Id.
Under our assumptions and using these notations we also notice that

\x # E, \0�p�n,
1

an | p
�gn | p(x)�an | p (2.2)

where

an | p= `
n

q= p+1

aq , 0�p�n

Lemma 2. For any 0�p�n, any +, & # M1(E ) and any function f

,n | p(+)( f )&,n | p(&)( f )

=
1

&(gn | p)
[(+( fn | p)&&( fn | p))+,n | p(+)( f )(&(gn | p)&+(gn | p))] (2.3)

where

fn | p =
def gn | pKn | p( f )

If, for any g: E � R such that &g&�1 and for any Markov kernel K on
E we define

g } KF=[gK( f ); f # F]

then we have

Lemma 3. For any p�1, =>0 and + # M1(E ),

N(=, g } KF, Lp(+))�N(=, F, Lp(+K ))
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and therefore,

N(=, g } KF)�N(=, F), I(g } KF)�I(F)

Lemma 3 follows from the fact that N(=, g } F, Lp(+))�N(=, F, Lp(+))
and N(=, KF, Lp(+))�N(=, F, Lp(+K )). The first assertion is trivial. To
establish the second inequality, simply note that, for every function f,
|K( f )| p�K( | f | p) and go back to the definition of the covering numbers.

2.1. Glivenko�Cantelli Theorem

To establish a Glivenko�Cantelli property in our setting, we make use
of the following basic decomposition: for any f # F,

?N
n ( f )&?n( f )= :

n

p=0

[,n | p(?N
p )( f )&,n | p(,p(?N

p&1))( f )] (2.4)

with the convention ,0(?N
&1)=?0 . There is no loss of generality in assum-

ing that 1 # F. Then, by Lemma 2, we get

&,n | p(+)&,n | p(&)&F �2a2
n | p&+&&&Fn | p

(2.5)

where Fn | p= g� n | p } Kn | pF and g� n | p=a&1
n | p gn | p so that &g� n | p &�1). It easily

follows that, for every =>0,

P(&?N
n &?n&F >=)

�(n+1) sup
0�p�n

P \&,n | p(?N
p )&,n | p(,p(?N

p&1))&F >
=

n+1+
Using (2.5), this implies that

P(&?N
n &?n&F >=)�(n+1) sup

0�p�n
P \&,N

p &,p(?N
p&1)&:>

=
_n+ (2.6)

where _n=2(n+1) a2
n | 0 .

Our main assumption in this section will be

(H1) \=>0, N(=, F)<�

The Glivenko�Cantelli theorem may then be stated as follows.

Theorem 5. Assume that F is a countable collection of functions f
such that & f &�1 and (H1) holds. Then, for any time n�0, &?N

n &?n &F

converges almost surely to 0 as N � �.
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Proof. It is based on the following standard lemma in the theory of
empirical processes.

Lemma 4. Let [X i, N; 1�i�N ] be independent random variables
with common law P(N ) and let F be a countable collection of functions f
such that & f &�1. Then, for any =>0 and - N �4=&1 we have that

P(&mN(X )&P(N ))&F >8=)�8N(=, F) e&N=2�2

where mN(X )=(1�N ) �N
i=1 $X i, N .

Before turning to the sketch of the proof of this lemma, let us show
how it implies the theorem. n is fixed throughout the argument. Using (2.6)
and Lemma 4 one easily gets that, for - N �4=&1

n where =n==�8_n ,

P(&?N
n &?n&F >=)�8(n+1) e&N=2

n �2 sup
0�p�n

N(=n , Fn | p)

Furthermore by definition of the class Fn | p and with the help of Lemma 3,
we know that, for each =>0, and 0�p�n,

N(=, Fn | p)�N(=, F)

Therefore,

P(&?N
n &?n&F >=)�8(n+1) N(=n , F) e&N=2

n �2

as soon as - N �4=&1
n . The end of proof of Theorem 5 is an immediate

consequence of the Borel�Cantelli lemma.

Proof of Lemma 4. Using the classical symmetrization inequalities
[see van der Vaart and Wellner, (38) Lem. 2.3.7 or Pollard, (31) pp. 14�15]
for any =>0 and - N �4=&1,

P(&mN(X )&P(N )&F >=)�4P \&mN
= (X )&F >

=
4+ (2.7)

where mN
= (X ) denotes the signed measure

mN
= (X )=

1
N

:
N

i=1

=i $X i, N
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and [=1 ,..., eN ] are symmetric Bernoulli random variables, independent of
the X i, N 's. Conditionally on the X i, N 's, and by definition of the covering
numbers, we easily get by a standard argument that

P(&mN
= (X )&F >$ | X )

�N($�2, F, L1(mN(X ))) sup
f # F

P( |mN
= (X )( f )|>$�2 | X ) (2.8)

Indeed, let

[ fm ; 1�m�N($�2, F, L1(mN(X )))]

be a ($�2)-coverage of F for the L1(mN(X ))-norm. Then,

P(&mN
= (X )&F >$ | X )�P(sup

m
|mN

= (X )( fm)|>$�2 | X )

Therefore,

P(&mN
= (X )&F >$ | X )

�N($�2, F, L1(mN(X ))) sup
m

P( |mN
= (X )( fm)|>$�2 | X )

By Hoeffding's inequality [see for instance van der Vaart and Wellner, (38)

Lem. 2.2.7], for any f # F and $>0,

P( |mN
= (X )( f )|>$�2 | X )�2e&N$2�8

As a consequence, we see that the conditional probability

P \&mN
= (X )&F >

=
4

| X+
is bounded above by

2N(=�8, F, L1(mN(X ))) e&N=2�128�2N(=�8, F) e&N=2�128

From (2.7), it follows that

P(&mN(X )&P(N )&F >=)�8N(=�8, F) e&N=2�128

as soon as - N �4=&1 which is the result. The proof of Lemma 4 is com-
plete. g
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2.2. Donsker's Theorem

After the Glivenko�Cantelli theorem, Donsker's theorem is the second
most important result on the convergence of empirical processes. Theorem 2
that we will establish in this section, may be seen as a uniform version of
the central limit theorem presented by Del Moral and Guionnet.(14) More
precisely, it was shown there that the marginals of the F-indexed process
[W N

n ( f ); f # F] converge weakly to the marginal of a F-indexed centered
Gaussian process [Wn( f ); f # F]. Now, weak convergence in l �(F) can
be characterized as the convergence of the marginals together with the
asymptotic tightness of the process [W N

n ( f ); f # F]. In view of these
observations, the proof of Theorem 2 is naturally decomposed into two
steps. In the first step, we establish the asymptotic tightness using the
standard entropy condition

(H2) I(F)<�

We then make use of the results by Del Moral and Guionnet, (14) to identify
the limiting Gaussian process. To this task, and as in Ref. 15, we need to
impose some further conditions on the kernels Kn . We will namely assume
that

(H3) Kn is Feller for each n�1 and such that there exists, for any
time n�1, a reference probability measure *n # M1(E ) and a B(E )-measur-
able non-negative function .n such that

Kn(x, } )t*n

for every x # E with

} log
dKn(x, } )

d*n }�.n and | er.n d*n<� (2.9)

for every r�1.

Theorem 6. Assume that F is a countable class of functions such
that & f &�1 for any f # F and satisfying (H2) and (H3). Then, for any
n�0, [W N

n ( f ); f # F] converges weakly in l �(F) as N � � to a centered
Gaussian process [Wn( f ); f # F] with covariance function

E(Wn( f ) Wn(h))

= :
n

p=0
| \ gn | p

?p(gn | p)+
2

(Kn | p( f )&?n( f ))(Kn | p(h)&?n(h)) d?p
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Remark 1. If the transition probability kernels [Kn ; n�1] are trivial,
in the sense that, for every n,

Kn(x, dz)=+n(dz), +n # M1(E )

then one can readily check that

?n=+n and Kn | p(x, dz)=+n(dz), 0�p�n

In this particular situation [Wn( f ); f # L2(?n)] is the classical +n -Brownian
bridge. Namely, Wn is the centered Gaussian process with covariance

E(Wn( f ) Wn(h))=+n(( f&+n f )(h&+nh))

As announced, the proof of Theorem 6 will be a consequence of the
following two lemmas. Note that the entropy condition I(F)<� is only
used in the proof of the asymptotic tightness, while the regularity condition
(H3) is needed in. identifying the limiting Gaussian process. Again, n is
fixed throughout the proof of Theorem 6.

Lemma 5. If F is a countable collection of functions f such that
& f &�1 and (H2) holds then the F-indexed process [W N

n ( f ); f # F] is
asymptotically tight.

Lemma 6. Under (H3), the marginals of [WN
n ( f ); f # L2(?n)] con-

verge weakly to the marginals of a centered Gaussian process [Wn( f );
f # L2(?n)] with covariance function

E(Wn( f ) Wn(h))

= :
n

p=0
| \ gn | p

?p(gn | p)+
2

(Kn | p( f )&?n( f ))(Kn | p(h)&?n(h)) d?p

Since the collection of functions [gn | p ; 0�p�n] satisfies (2.2), using
the Cauchy�Schwarz inequality and Lemma 1, we have that

E( |Wn( f )&Wn(h)|2)�Cn & f&h&2
L2(?n)

for some constant Cn<� and all f, h # L2(?n). In particular, to prove the
asymptotic tightness in Lemma 5, it will be enough to establish the
asymptotic equicontinuity in probability of [W N

n ( f ); f # F] with respect to
the semi-norm on F given by

f # F � ?n(( f&?n( f ))2)1�2
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[see for instance van der Vaart and Wellner, (38) Chap. 1.5; Ex. 1.5.10,
p. 40].

Proof of Lemma 5. Under (H2), the class F is totally bounded in
L2(?n) for any n�0. According to the preceeding comment, it will be
enough to show that

lim
N � �

E(&W N
n &F(n)($N ))=0 (2.10)

for all sequences $N a 0 where, for any $>0 (possibly infinite),

F(n)($) =
def [ f&h; f, h # F : & f&h&L2(?n)<$]

To this task, we use the decompositions (2.4) and (2.3) to get that

&?N
n &?n &F(n)($)� :

n

p=0

a2
n | p[&?N

p &,p(?N
p&1)&Fn | p($)

+&?N
p &Fn | p($) |?N

p (g� n | p)&,p(?N
p&1)(g� n | p)|]

where

Fn | p($)=[g� n | pKn | p f ; f # F(n)($)]

g� n | p=(1�an | p) gn | p and an | p=>n
q= p+1 aq . Since for any 0�p�n,

E([?N
p (g� n | p)&,p(?N

p&1)(g� n | p)]2)�
1
N

to prove (2.10) it suffices to check that for any 0�p�n and $N a 0

(1) lim
N � �

E(- N &?N
p &,p(?N

p&1)&Fn | p($N ))=0

(2) lim
N � �

E(&?N
p &F

2
n | p($N ))=0

where

F2
n | p($)=[ f 2; f # Fn | p($)]

Let us prove (1). By the symmetrization inequalities, for any N,

E(&?N
p &,p(?N

p&1)&Fn | p($N ))�2E(&mN
= (!p)&Fn | p($N ))
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where, as in Section 2.1,

mN
= (!p)=

1
N

:
N

i=1

=i $!i
p

Fix !p=(!1
p ,..., !N

p ). By Hoeffding's inequality [cf. van der Vaart and
Wellner(38), Lem. 2.2.7], the process

f �
1

- N
:
N

i=1

f (! i
p) =i=- N mN

= (!p)( f )

is sub-Gaussian with respect to the norm & }&L2(?p
N ) . Namely, for any f, h #

Fn | p($N) and #>0,

P( |- N (mN
= (!p)( f )&mN

= (!p)(h))|># | !p)�2e&(1�2) #2�& f&h&2
L2(?p

N )

Using the maximal inequality for sub-Gaussian processes [cf. Ledoux and
Talagrand, (26) and van der Vaart and Wellner(38)], we get the quenched
inequality

E(&mN
= (!p)&Fn | p($N ) | !p)

�
C

- N |
%n | p(N )

0
- log N(=, Fn | p($N), M2(?N

p )) d= (2.11)

where

%n | p(N )=&?N
p &F

2
n | p($N )

On the other hand we clearly have that, for every =>0,

N(=, Fn | p , L2(?N
p ))�N(=, Fn | p(�), L2(?N

p ))�N2(=�2, Fn | p , L2(?N
p ))

where we recall that Fn | p= g� n | p } Kn | pF. Under our assumptions, it thus
follows from Lemma 3 that

N(=, Fn | p($), L2(?N
p ))�N2(=�2, F)

Using (2.11), one concludes that, for every N�1,

E(&mN
= (!p)&Fn | p($N ))�

- 2 C

- N
E \|

%n | p(N )

0
- log N(=�2, F) d=+
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and therefore

E(&?N
p &,p(?N

p&1)&Fn | p($N ))�
2 - 2 C

- N
E \|

%n | p(N )

0
- log N(=�2, F) d=+

By the dominated convergence theorem, to prove (1) it suffices to check
that

lim
N � �

%n | p(N )= lim
N � �

&?N
p &F

2
n | p($N )=0 P. a.s. (2.12)

We establish this property by proving that

(a) &?p&F
2
n | p($N )�$2

N

(b) lim
N � �

&?N
p &?p&F

2
n | p($N )=0 P. a.s.

Let f, h # F be chosen so that ?n(( f&h)2)<$2 (i.e., f&h # Fn)($)). Use
Cauchy�Schwartz to see that

?p([ g� n | pKn | p( f&h)]2)�?p(g� 2
n | pKn | p(( f&h)2)) (2.13)

Since 0�g� n | p=a&1
n | p gn | p�1, the right-hand side of (2.13) is bounded above

by

1
an | p

?p(gn | p Kn | p(( f&h)2))=
?p(gn | p)

an | p
?n(( f&h)2)

which is less that $2. This ends the proof of (a). To prove (b), first note that

&?N
p &?p&F

2
n | p($N )�&?N

p &?p&F
2
n | p(�)

Using Theorem 5 to prove (b) it certainly suffices to show that

sup
+

N(=, F2
n | p(�), L2(+))<�

for every =>0. Since all functions in F have norm less than or equal
to 1, for any f, h in Fn | p(�) and any + # M1(E ),

& f 2&h2&L2(+)�4 & f&h&L2(+)

It follows that, for every =>0,

N(=, F2
n | p(�), L2(+))�N(=�4, Fn | p(�), L2(+))
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Since

N(=, Fn | p(�), L2(+))�N2(=�2, Fn | p , L2(+))

one concludes, using Lemma 3 that

sup
+

N(=, F2
n | p(�), L2(+))�sup

+
N2(=�8, F, L2(+))

This ends the proof of (b) and (1). In the same way, by dominated con-
vergence, the proof of (2) is an immediate consequence of (2.12). This com-
pletes the proof of Lemma 5. g

We turn to the proof of Lemma 6. To this task, we need to recall some
results presented in Del Moral and Guionnet.(14) Under (H3), for any
n�1, set

\(x, z) # E 2, kn(x, z) =
def dKn(x, } )

d*n
(z)

From now on, the time parameter n�0 is fixed. For any x=(x0 ,..., xn) and
z=(z0 ,..., zn) # E n+1 set,

q[0, n](x, z)= :
n

m=1

qm(x, z)

with

qm(x, z)=
gm(zm&1) km(zm&1 , xm)

�E gm(u) km(u, xm) ?m&1(du)

a[0, n](x, z)=q[0, n](x, z)&|
7n

q[0, n](x$, z) ?[0, n](dx$)

?[0, n]=?0� } } } �?n

Observe now that from the exponential moment condition (2.9) of (H3),
q[0, n] # L2(?[0, n] �?[0, n]). It follows that a[0, n] # L2(?[0, n] �?[0, n]) and
therefore the integral operator An given by

An.(x)=| a[0, n](z, x) .(z) ?[0, n](dz), . # L2(?[0, n])
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is Hilbert�Schmidt on L2(?[0, n]). Under (H3), it is proved in Del Moral
and Guionnet(14) that the integral operator I&An is invertible and that the
random field

. # L2(?[0, n]) � W N
[0, n](.)=- N \ 1

N
:
N

i=1

.(! i
0 ,..., ! i

n)&?[0, n](.)+
converges as N � �, in the sense of convergence of finite dimensional dis-
tributions, to a centered Gaussian field [W[0, n](.); . # L2(?[0, n])] with
covariance

E(W[0, n](.1) W[0, n](.2))

=((I&An)&1 (.1&?[0, n](.1)), (I&An)&1 (.2&?[0, n](.2)))L2(?[0, n])

for .1 , .2 # L2(?[0, n]).
From these observation it follows that the process

f # L2(?n) � W N
n ( f )=- N (?N

n ( f )&?n( f ))

converges in the sense of convergences of finite dimensional distributions
and as N � � to a centered Gaussian field [Wn(.); f # L2(?n)] satisfying

E(Wn( f ) Wn(h))

=((I&An)&1 ( f&?n( f )) �1, (I&An)&1 (h&?n(h)) �1)L2(?n)

for any f, h # L2(?n), where, for all f # L2(?n),

f �1 =
def

1� } } } �1

(n&1) times

� f

In the next lemma, we identify the preceding covariance function and thus
establish in this way Lemma 6.

Lemma 7. For every f # L2(?n), and every z0 ,..., zn # E,

(I&An)&1 ( f&?n( f )) �1 (z0 ,..., zn)= :
n

p=0

f� n | p(zp)
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where the functions f� n | p , 0�p�n, are given by

f� n | p=
gn | p

?p(gn | p)
(Kn | p( f )&?n( f )), 0�p�n

with the convention gn | n=1 and Kn | n=Id.

Proof. Using Lemma 1, we first note that

f� n | p&1=
gp Kp(gn | p)

?p&1(gn | p&1) \
Kp(gn | pKn | p( f ))

Kp(gn | p)
&?n( f )+

=
gp

?p&1(gn | p&1)
(Kp(gn | pKn | p( f ))&Kp gn | p?n( f ))

and therefore

f� n | p&1=
gp ?p(gn | p)

?p&1(gn | p&1)
Kp \ gn | p

?p(gn | p)
(Kn | p( f )&?n( f ))+

= gp
?p(gn | p)

?p&1(gn | p&1)
Kp( f� n | p)

Then, using the fact that

?p(gn | p)=
?p&1(gp Kp(gn | p))

?p&1(gp)
=

?p&1(gn | p&1)
?p&1(gp)

one easily gets the backward recursion equations

f� n | p&1=
gp

?p&1(gp)
Kp( f� n | p), 1�p�n (2.14)

By definition of An , for any . # L2(?[0, n]), we have that

An.(z0 ,..., zn)= :
n

m=1
| .(x0 ,..., xn) am(xm , zm&1) ?[0, n](dx0 ,..., dxn)

where, for every 1�m�n,

am(xm , zm&1)=
gm(zm&1) km(zm&1 , xm)

?m&1(gmkm( } , xm))
&

gm(zm&1)
?m&1(gm)
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On the other hand, we observe that since

?m(dxm)=
?m&1(gm km( } , xm))

?m&1(gm)
*m(dxm)

and

Km(zm&1 , dxm)=km(zm&1 , xm) *m(dxm)

we have that

gm(zm&1) km(zm&1 , xm)
?m&1(gmkm( } , xm))

?m(dxm)=
gm(zm&1)
?m&1(gm)

Km(zm&1 , dxm)

Therefore

(I&An) .(z0 ,..., zn)

=.(z0 ,..., zn)+ :
n

m=1

gm(zm&1)
?m&1(gm) | .(x0 ,..., xn) ?~ m

[0, n](zm&1 ; dx0 ,..., dxn)

(2.15)

where

?~ m
[0, n](zm&1 ; dx0 ,..., dxn)

=?[0, m&1](dx0 ,..., dxm&1)(?m(dxm)&Km(zm&1 , dxm))

_?[m+1, n](dxm+1 ,..., dxn)

Choose now . given by

.(z0 ,..., zn)= :
n

p=0

f� n | p(zp), z0 ,..., zn # E

Then, we get

(I&An) .(z0 ,..., zn)=.(z0 ,..., zn)& :
n

m=1

gm(zm&1)
?m&1(gm)

Km( f� n | m)(zm&1)

Finally, using the backward equation (2.14), one concludes that

(I&An) .(z0 ,..., zn)=.(z0 ,..., zn)& :
n

m=1

f� n | m&1(zm&1)

= :
n

m=0

f� n | m(zm)& :
n&1

m=0

f� n | m(zm)
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so that the result follows from

(I&An) .(z0 ,..., zn)= fn | n(zn)= f (zn)&?n( f ) g

The nature of the limiting Gaussian field [Wn( f ); f # L2(?n)] is now
clearly determined. More precisely, for every f, h # L2(?n), we get from the
preceding that

E(Wn( f ) Wn(h))

= :
n

p=0
| \ gn | p

?p(gn | p)+
2

(Kn | p( f )&?n( f ))(Kn | p(h)&?n(h)) d?p

Lemma 6 is therefore established in this way. This completes the proof of
Donsker's theorem.

3. FURTHER UNIFORM RESULTS

3.1. Exponential Bounds

In Section 2, we have shown that, under rather general assumptions,
the Glivenko�Cantelli theorem hold for the genetic type interacting scheme
(1.1). The proof of Theorem 5 also gives an exponential rate of convergence
but this result is only valid for a number of particles larger than some value
depending on the time parameter. In this section, we refine this exponential
bound in the case of uniformly bounded classes F with polynomial covering
numbers. More precisely we will use the following assumption

(H4) N(=, F)�\C
= +

V

for every 0<=<C

for some constants C and V. Several examples of classes of functions
satisfying this condition are discussed [see van der Vaart and Wellner(38)].
For instance Vapnik�Cervonenkis classes F of index V(F) and envelope
function F=1 satisfy (H4) with V=2(V(F)&1) and a constant C that
only depends on V.

Theorem 7. Let F be a countable class of measurable functions
f : E � [0, 1] satisfying (H4) for some constants C and V. Then, for any
n�0, $>0 and N�1,

P(&W N
n &F>$_n)�(n+1) \ D$

- V +
V

e&2$2

where D is a constant that only depends on C and _n=2(n+1) >n
p=1 a2

p .
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Proof. We will use the decomposition (2.4). Using the same nota-
tions as in the beginning of Section 2 and in the proof of Theorem 5, we
have

P \&,n | p(?N
p )&,n | p&1(?N

p&1)&F>
=

n+1+�P(&?N
p &,p(?N

p&1)&Fn | p
>=n)

(2.16)

where =n==�_n and _n=2(n+1) a2
n | 0 . Now, under the polynomial assump-

tion (H4) on the covering numbers, it is convenient to note that the classes
Fn | p , 0�p�n, also satisfy the assumptions of the theorem. Indeed, the
class Fn | p is again a countable class of functions f : E � [0, 1] and using
Lemma 3 we also have, for every =>0,

N(=, Fn | p)�N(=, F)�\C
= +

V

We are now in position to apply the exponential bounds of Talagrand.(37)

More precisely, by recalling that ?N
p is the empirical measure associated to

N conditionally independent random variables with common law ,p(?N
p&1),

and using the exponential bounds of Talagrand(37) [see also van der Vaart
and Wellner(38)] we get

P(&?N
p &,p(?N

p&1)&Fn | p
>=n | ?N

p&1)�\D - N =n

- V +
V

e&2(- N =n)2

where D is a constant that only depends on C. The remainder of the proof
is exactly as in the proof of Theorem 5. Using (2.16), one gets finally the
exponential bound

P(&?N
n &?n&F>=)�(n+1) \D - N =n

- V +
V

e&2(- N =n)2

Hence, if we denote $=- N =�_n we obtain the desired inequality and the
theorem is thus established. g

3.2. A Uniform Convergence Result

Here we discuss the long time behavior of the particle scheme (1).
In a previous work, (16) it was shown that under some conditions on the
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mappings [,n ; n�1], there exists a convergence rate :>0 such that for
any bounded test function f

sup
n�0

E( |?N
n ( f )&?n( f )| )�

C
N:�2 & f & (2.17)

for some constant C that does not depend on the time parameter n�0.
The aim of this section is to turn this result into a statement uniform

in f varying in a suitable class of function F.
Before starting this discussion, let us present some comments on the

results of Ref. 16. The main idea in this work was to connect the
asymptotic stability of the limiting system (1.2) with the study of the long
time behavior of the corresponding particle scheme. One condition under
which the system (1.2) is asymptotically stable is the following

(H5) There exists a reference probability measure * # M1(E ) and
' # (0, 1] such that Kn(x, } )t* for any x # E and n�1 and

'�
dKn(x, } )

d*
�

1
'

More precisely, under (H5) one can show that for any n�0

&,n | 0(+)&,n | 0(+)&TV�(1&'2)n, \+, & # M1(E ) (2.18)

where & }&TV denotes the total variation norm on M1(E ).
It should be mentioned that (H5) is stronger than the condition (H3)

needed in the identification of the limiting Gaussian process in Donsker's
theorem. Moreover, under appropriate regularity conditions on the fitness
functions [gn ; n�1], the uniform estimate (2.17) holds for some conver-
gence exponent :>0 which depends on the parameter ' in (H5). Several
ways to relax (H5) are also presented [see Del Moral and Guionnet(16)].

With these preliminaries out of the way, we now state and prove the
following theorem.

Theorem 8. Let F be a countable collection of functions f such that
& f &�1 and satisfying (H5). Assume moreover that the limiting dynamical
system (1.2) is asymptotically stable in the sense that, for some #>0,

sup
p�0

|,p+T | p(+)( f )&,p+T | p(&)( f )|�e&#T (2.19)
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for all +, & # M1(E ), T�0 and f # F. When the fitness functions [gn ; n�1]
satisfy (1.3) with supn�1 an=a<�, then we have the following uniform
estimate with respect to time

sup
n�0

E(&?N
n &?n&F)�

Ce#$

N :�2 I(F) (2.20)

where C is a universal constant and : and #$ are given by

:=
#

#+#$
and #$=1+2 log a

Proof. We use again the decomposition (2.4). By the same line of
arguments as the ones given in the proof of Lemma 5, and recalling that ?N

p

is the empirical measure associated to N conditionally independent random
variables with common law ,p(?N

p&1) one can prove the error bound

E(&,n | p(?N
p )&,n | p(,p(?N

p&1))&F | ?N
p&1)�

C

- N
a2

n | pI(Fn | p)

where C>0 is a universal constant. Since an | p�an | 0�an, 0�p�n, by
Lemma 3, I(Fn | p)�I(F), and one concludes that

E(&,n | p(?N
p )&,n | p(,p(?N

p&1))&F)�
C

- N
a2nI(F)

Therefore, for any time T�0, any N�1 and any f # F,

sup
0�n�T

E(&?N
n &?n&F)�

C

- N
(T+1) a2TI(F) (2.21)

Similarly, for any n�T, we have

|?N
n ( f )&?n( f )|� :

n

p=n&T+1

|,n | p(?N
p )( f )&,n | p(,p(?N

p&1))( f )|

+|,n�n&T (?N
n&T)( f )&,n�n&T (?n&T)( f )|
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Under our assumptions, this implies that, for every n�T,

|?N
n ( f )&?n( f )|�e&#T+ :

n

p=n&T+1

|,n | p(?N
p )( f )&,n | p(,p(?N

p&1))( f )|

and using the same arguments as before one can prove that

sup
n�T

E(&?N
n &?n &F)�e&#T+

C

- N
(T+1) a2TI(F) (2.22)

Combining the right-hand sides of (2.21) and (2.22) leads to a uniform
L1 -error bound with respect to time in the form of the inequality

sup
n�0

E(&?N
n &?n&F)�e&#T+

C$

- N
e#$T I(F)

where #$=1+2 log a and C$>0 is a universal constant. Obviously, if we
choose

T=T (N ) =
def _1

2
log N
#+#$&+1

where [r] denotes the integer part of r # R, we get that

sup
n�0

E(&?N
n &?n&F)�

1
N :�2 (1+e#$C$I(F))

where :=#�(#+#$). This ends the proof of the theorem. g

4. APPLICATIONS

The interacting particle systems models presented earlier have many
applications in biology, genetic algorithms, nonlinear filtering and boot-
strap. In this short subsection, we briefly comment these examples of appli-
cations. The reader who wishes to know more about specific applications
of these particle algorithms is invited to consult the referenced papers.

Weighted bootstrap methods are based on re-sampling from given
weighted random measure. Roughly speaking, the key idea of bootstrap
methods is the following: if the weighted random measure is close to a
given nonrandom distribution, then the empirical measure associated to
this re-sampling scheme should imitate the role of the weighted one [the
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book(1) includes a useful survey on this subject]. In our framework, we
form at each time n, a weighted empirical measure

�n(?N
n )= :

N

i=1

gn(! i
n)

�N
j=1 gn(! j

n)
$!i

n

and the selection mechanism consists of re-sampling N independent par-
ticles [!� i

n ; 1�i�N ] with this law so that to obtain a new probability
measure with atoms of size integer multiples of 1�N. In contrast to the
classical bootstrap theory, one tries to approximate a measure valued
dynamical system (1.2) and the weights are dictated by the dynamics struc-
ture of the former dynamical system.

The basic model for the general nonlinear filtering problem consists
of a time inhomogeneous Markov process [Xn ; n�0] taking values in a
Polish space (E, B(E )) and, a nonlinear observation process [Yn ; n�0]
taking values in Rd for some d�1. The classical filtering problem can be
summarized as to find the conditional distributions

?n( f ) =
def E( f (Xn) | Y1 ,..., Yn), f # Cb(E ), n�0 (4.1)

It was proven in a rather general setting by Kunita(25) and Stettner (35) that,
given a series of observations Y= y, the distributions [?n ; n�0] are solu-
tion of a discrete time measure valued dynamical system of the form (1.2).
In this framework, the Markov kernels [Kn ; n�1] correspond to the
transition probability kernels of the signal process [Xn ; n�0] and the
fitness functions [gn ; n�1] are related to the observation noise source
and also depends on the observation data. In such a context, the resulting
interacting particle scheme can be viewed as a stochastic adaptative grid
approximation of the non-linear filtering equation [see for instance Del
Moral(11�13) and references therein]. Because of its importance in practical
situations, we devote the last subsection of this paper to this theme.

In biology, the former model is used to mimic the genetic process of
biological organisms and more generally natural evolution processes. Most
of the terminology we have used is drawn from this framework. For
instance, in gene analysis, each population represents a chromosome and
each individual particle is called a gene. In this setting the fitness function
is usually time-homogeneous and it represents the performance of the set
of genes in a chromosome.(22) These particle algorithms are also used in
population analysis to model changes in the structure of population in time
and in space.

The interacting particle system model (1.1) is not only designed to
solve the nonlinear filtering equation or to mimic natural evolution. Several
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practical problems have been solved using this approach, including numeri-
cal function optimization, image processing, combinatorial optimization
tasks and machine learning.

Among the huge literature on genetic algorithm we refer to the
papers.(3, 18�21, 28, 33, 39�43)

4.1. The Non-linear Filtering Problem

4.1.1. Introduction

The nonlinear filtering problem consists in recursively computing the
conditional distributions of a nonlinear signal given its noisy observations.
This problem has been extensively studied in the literature and, with the
notable exception of the linear-Gaussian situation or wider classes of
models (Be� nes filters(2)), optimal filters do not have finitely recursive solu-
tions (Chaleyat-Maurel and Michel(7)). Although Kalman filtering (23, 27) is
a popular tool in handling estimation problems, its optimality heavily
depends on linearity. When used for nonlinear filtering (Extended Kalman
Filter), its performance relies on and is limited by the linearization per-
formed on the model under investigation.

It has been recently emphasized that a more efficient way to solve
numerically the filtering problem is to use random particle systems. That
particle algorithms are gaining popularity is attested by the list of referenced
papers. Instead of hand-crafting algorithms often on the basis of adhoc
criteria, particle systems approaches provide powerful tools for solving a
large class of nonlinear filtering problems. Several practical problems which
have been solved using these methods are given in by Carvalho, (5) and
Carvalho and Del Moral;(6) including Radar�Sonar signal processing and
GPS�INS integrations. Other comparisons and examples where the
extended Kalman filter fails can be found in Bucy.(4) The present paper is
concerned with the genetic type interacting particle systems introduced by
Del Moral.(12) Not all the nonlinear filtering problems which arise in
applications can be represented by (1.2). Here we assumed that all pro-
cesses are time continuous and the observation noise source isle indepen-
dent of the signal process. A new interacting particle scheme for solving
continuous time filtering problems in which the noise source is correlated
to the signal is proposed by Del Moral et al.(17) Several variants of the
genetic-type interacting particle scheme studied in this paper have been
presented by Crisan and Lyons;(8) and Crisan et al.(9, 10) These variants are
less ``time consuming'' but as a result the size of the system is not fixed but
random. It is shown(16) that one cannot expect a uniform convergence
result with respect to time. Roughly speaking, the size of the system behaves
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as a martingale and, trivial cases apart, its increasing predictable quadratic
variation is usually not uniformly integrable with respect to time. On the
other hand, the central limit theorem for such variants with random
population size is still an open subject of investigation.

4.1.2. Description of the Models

Let (X, Y ) be a time-inhomogeneous and discrete time Markov pro-
cess taking values in a product space E_Rd, d�1, and defined by the
system

{X=(Xn)n�0

Yn=hn(Xn&1)+Vn , n�1
(4.2)

where E is a Polish space, hn : E � Rd, d�1, are bounded continuous func-
tions and Vn are independent random variables with continuous and
positive density gn with respect to Lebesgue measure. The signal process X
that we consider is assumed to be a noninhomogeneous and E-valued
Markov process with Feller transition probability kernel Kn , n�1, and
initial probability measure ?0 , on E. We will also assume the observation
noise V and X are independent.

The classical filtering problem is concerned with estimating the dis-
tribution of Xn conditionally to the observations up to time n. Namely,

?n( f ) =
def E( f (Xn) | Y1 ,..., Yn)

for all f # Cb(E ). For a detailed discussion of the filtering problem, the
reader is referred to the pioneering paper(36) and to the more rigorous
studies.(24, 34) Recent developments can be found in Ocone(29) and Pardoux.(30)

The dynamical structure of the conditional distribution [?n ; n�0] is
given by the following lemma.

Lemma 8. Given a fixed observation record Y= y, [?n ; n�0] is
solution of the M1(E )-valued dynamical system

?n=,n( yn , ?n&1), n�1 (4.3)

where yn # Rd is the current observation and ,n is the continuous function
given by

,n( yn , ')=�n( yn , ') Kn
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where for any f # Cb(E ), ? # M1(E ) and y # Rd,

�n( y, ?) f=
� f (x) gn( y&hn(x)) ?(dx)

� gn( y&hn(z)) ?(dz)

In view of (1.1), the transition probability kernels of the genetic scheme
associated (4.3) are now given by

Py(!n # dx | !n&1=z)= `
N

p=1

:
N

i=1

gn( yn&hn(zi))
�N

j=1 gn( yn&hn(z j))
Kn(zi, dx p) (4.4)

Thus, we see that the particles move according the following rules

1. Updating: When the observation Yn= yn is received, each particle
examines the system of particles !n&1=(!1

n&1 ,..., !N
n&1) and chooses

randomly a site ! i
n&1 with probability

gn( yn&hn(! i
n&1))

�N
j=1 gn( yn&hn(! j

n&1))

2. Prediction: After the updating mechanism, each particle evolves
according to the transition probability kernel of the signal process.

4.1.3. Applications

4.1.3.1. Quenched Results. In order to apply the results of the
preceding sections to this setting, rather than (1.3) we simply use the
following assumption

(F) For any time n�0, hn is bounded and continuous and gn is con-
tinuous with strictly positive values.

We note that if (F) holds then it is easily seen that there exists a family
of positive functions [an ; n�0], such that, for all ( y, x) # Rd_E and n�0,

an( y)&1�
gn( y&hn(x))

gn( yn)
�an( y)

In such a framework, the fitness functions depend on the observation
record. The assumption (F) is chosen so that the bounds (1.3) hold for
some constants depending on the observation parameters. We also note
that we can replace the fitness functions gn( y&hn( } )) by the ``normalized''
ones gn( y)&1 gn( y&hn( } )) without altering the dynamical structure of
Ocone(29) or Pardoux.(30) For any observation record Y= y, the results
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presented in Sections 2 and 3 hold although the constants [an ; n�1] and
the covariance function in Donsker's theorem will depend here on the
observation parameters [ yn ; n�1].

4.1.3.2. Averaged Results. One question that one may naturally ask is
whether the averaged version of Theorems 2 and 3 hold. In many practical
situations, the functions an : Rd � R+ , n�1, have a rather complicated form
and it is difficult to obtain an averaged version of Theorem 3. Nevertheless,
the averaged version of the L1 -error bounds presented in Theorem 4 does
hold for a large class of non-linear sensors. Instead of (F), we will use the
following stronger condition

(F)$ For any time n�1, there exists a positive function an : Rd �
[1, �) and a non-decreasing function %: R � R such that for all x # E and
y # Rd,

1
an( y)

�
gn( y&hn(x))

gn( y)
�an( y) (4.5)

and

|log an( y+u)&log an( y)|�%(&u&)

The main simplification due to (F)$ is that now

a2
n(Yn)�a2

n(Vn) exp(2%(&hn &))

In view of the proof of Theorem 4, one can check that (2.20) remains valid
if we replace the condition supn�1 an<� by

L =
def

sup
n�1

log E(a2(Vn))1�2<� and M =
def

sup
n�1

&hn&<�

In this case (2.20) holds with #$=1+2(L+%(M )).

4.1.4. Examples

Let us now illustrate examples of non-linear observation noise sources
for which (F)$ holds.

1. As a typical example of nonlinear filtering problem, assume the
functions hn : E � Rd, n�1, are bounded and continuous and the densities
gn given by

gn(v)=
1

((2?)d |Rn | )1�2 exp \&
1
2

v$R&1
n v+
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where Rn is a d_d symmetric positive matrix. This correspond to the situa-
tion where the observations are given by

Yn=hn(Xn&1)+Vn , n�1

where (Vn)n�1 is a sequence of Rd-valued and independent random
variables with Gaussian densities. After some easy manipulations one con-
cludes that (F)$ hold with with

log an( y)= 1
2 &R&1

n & &hn&2+&R&1
n & &hn & | y|

where &R&1
n & is the spectral radius of R&1

n . In addition we have that

|log an( y+u)&log an( y)|�Ln |u| with Ln=&R&1
n & &hn&

2. Our result is not restricted to Gaussian noise sources. For
instance, let us assume that d=1 and an is a bilateral exponential density

gn(v)=
:n

2
exp(&:n |v| ), :n>0

In this case (F)$ holds with

log an( y)=:n &hn&

which is independent of the observation parameter y. Another interesting
remark is that in this particular case the exponential bounds of Theorem 3
hold.
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