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ABSTRACT. The goal of this paper is to show that some convolution type
inequalities from Harmonic Analysis and Information Theory, such as Young’s
convolution inequality (with sharp constant), Nelson’s hypercontractivity of
the Hermite semi-group or Shannon’s inequality, can be reduced to a simple
geometric study of frames of R2. We shall derive directly entropic inequalities,
which were recently proved to be dual to the Brascamp-Lieb convolution type
inequalities.

1. INTRODUCTION

The topic of Brascamp-Lieb and convolution type inequalities was recently re-
newed by Carlen, Lieb and Loss [11I], who proposed a semi-group or heat flow
approach to these inequalities. (Soon after, Bennett, Carbery, Christ and Tao [§]
independently gave a semi-group approach to multidimensional Brascamp-Lieb in-
equalities.) Carlen, Lieb and Loss also obtained new inequalities on the sphere, and
in particular a subadditivity of the entropy inequality. It was noted in [3] that this
inequality can be proved using geometric properties of the Fisher information of the
marginal distributions. Pushing forward these investigations, Carlen and Cordero-
Erausquin [10] derived a similar geometric treatment for general subadditivity of
the entropy inequalities on Euclidean space and proved that these inequalities are
dual to the Brascamp-Lieb inequalities. The semi-group approach was recently
carried out in the unifying framework of abstract Markov semi-groups in [4].

The abstract geometric argument in R™ is particularly simple and for self-
consistency, we describe it in detail in this introduction.

In the sequel, p will stand either for the Lebesgue measure on R or for the
standard Gaussian probability measure v on R (with density (27r)*1/26"t‘2/2).
Consequently, g, = p®" will stand for the Lebesgue measure or the standard
Gaussian measure 7y, on R™. It is convenient to treat these two cases in parallel,
although it is possible to derive formally one from another.

We say that f is a probability density with respect to (w.r.t.) p, if f: R?® — R
is such that [fdu, = 1. Given a random vector X € R"™ with f as probability
density w.r.t. p, (a relation written below as X ~ fdu,), its entropy w.r.t p, is
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2756 DARIO CORDERO-ERAUSQUIN AND MICHEL LEDOUX

defined (whenever it makes sense) by

S (X) = Sy, (1) = [ f1og .

In the case that p, is the Lebesgue measure we shall use the notation S(X) =
S(f) = [ flog f. Throughout the paper, it will be implicitly assumed in all state-
ments that we consider only densities and random vectors with well defined and
finite p,-entropy.

If f is probability density w.r.t. p, on R” and a € R" is a fixed non-zero vector,
denote by f(,) the marginal probability density w.r.t. u = py on R;ie. fq) du is
the image of fdu, under the map x — = -a. Thus, f,) is characterized by the
requirement that

(1) oz - a) [ (2) dpin(z) = / O(8) fray (1) dpis (1)
R» R

for every bounded measurable ¢ : R — R. Equivalently, if X ~ fdpuy,, then f,)du
is the density of X - a, that is, X - a ~ fi)du. Thus, S,(X -a) = S,.(fa)) =
Jz fa)(t)10g fay(t) du(t). The classical subadditivity of entropy (usually stated

with the Lebesgue measure) indicates that for an orthonormal basis (uq, ..., u,) of
R"™ and a random vector X,
(2) D Su(X i) < 8y, (X).

i=1
The relation between subadditivity inequalities and Brascamp-Lieb inequalities is
summarized in the following proposition.

Proposition 1 ([I0]). For non-zero vectors ay,...,am € R", ¢1,...,¢yn > 0 and
D e R, the following assertions are equivalent:

(1) F0T€U€Tyf1,...,fm:R—)R+’
| Lt o) < e TT( [ 5ian)
"i=1 im1 R

m
(2) For every random vector X € R™, Zci Su(X -a;) < S,,(X) + D.
i=1
We also have a complete equivalence between the equality cases. This result is
easy to prove (actually it holds in much more general settings): it formally relies

on the fact that the Legendre transform of the entropy functional is the functional
V —log [ €V dun,, that is,

log / eV, =sup { / 1V dpn Sun<f>}

Sy (f) =sgp{/deun—log/eV dun},

and on how this combines with ([Il). The dual of the subadditivity inequality () is
nothing else but Fubini’s theorem.

It is possible to consider more general geometric situations than the one of an
orthonormal basis (). Of particular interest is the case of a decomposition of the
identity, as put forward by Ball in the context of Brascamp-Lieb inequalities (see

and
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GEOMETRY OF EUCLIDEAN CONVOLUTION INEQUALITIES 2757

e.g. [1]). Given unit vectors uy, ..., Uy, in the Euclidean space R™ and real numbers
C1y-..,¢m > 0, we say that they decompose the identity if

m
(3) Z c; u; @ u; = Idgn,

i=1
where u; ® u; stands for the orthogonal projection in the direction u;. Note that
necessarily ¢; < 1 and

It is easy to derive sharp subadditivity entropy inequalities using (B)) because
such decompositions combine nicely with the Fisher information, as noted in [3].
The point is that the Fisher information has an L? structure which allows for
geometric operations such as projections (or equivalently, conditional expectations).
A random vector X € R™ with f as probability density w.r.t. u, is said to have
finite p,-Fisher information if the following quantity is well defined and finite:

2
Lo (X) = I (f) = / 'VTﬂ

It follows from the Cauchy-Schwarz inequality (see [9) [10]) that for a unit vector

u € R"”,

with equality if and only if X -u and X — (X - u)u are independent. If we are given
a decomposition of the identity, then, rewriting (B]) in the form

diby, -
dfin,

(6) Yv € R", Z ci (v-ug)? = |v)?,
i=1

we immediately get from (B) that for any random vector X with finite Fisher
information,

(7) Zc L(X -u) <1, (X).

In order to get an inequality for entropy, we integrate along the suitable semi-
group. Let L stand for the differential operator Lf = Af (Laplacian) when p, is
the Lebesgue measure, and Lf = Af — - Vf in the case u, = 7,. Let P = '
be the corresponding heat semi-group and Ornstein-Uhlenbeck semi-group, which
admit as invariant measure the Lebesgue and the Gaussian measure respectively.
If X is a random vector with density f with respect to u, and finite u,-entropy,
then e'” f is a smooth probability density with respect to p,, with finite p,,-Fisher
information, and

d
7 S (€)= =L, (1),

Moreover, L (and thus e*’) has the property that it preserves the algebra of func-
tions of the form f(x) = g(x - u), a property also used in the proof of (). This
ensures the following crucial property; namely, for every ¢ > 0,

(8) "N =" (f)) onR,
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2758 DARIO CORDERO-ERAUSQUIN AND MICHEL LEDOUX

where we used the same notation for the one-dimensional and n-dimensional semi-
groups. The heat and Ornstein-Uhlenbeck semi-groups are the two most important
diffusion semi-groups sharing property (8), and this explains the particular role
played here by the Lebesgue and Gaussian measures.

Now, integration of (7)) along the semi-group el leads to the inequality
Yo Su(X -u;) <5y, (X). From the cases of equality in (G]) we get that equality
holds if and only if for each i« < m, X - u; and X — (X - u;)u; are independent
(a property which is preserved along the semi-group). Under mild conditions on
the vectors u;, it is easily seen that this can happen only when X is a Gaussian
vector (see [I0] for details). The previous discussion is summarized in the next
proposition, established in [10].

Proposition 2. Consider a decomposition of the identity @) in R™. Then, for all
random vectors X € R”,

(9) ch (X -u;) < S, (X).

Furthermore, under the conditions that no two of the unit vectors {u;} are linearly
dependent and that if any one vector u; is removed from {uy, ..., um}, the remaining
vectors still span R™, equality holds in (@) if and only if X is a Gaussian random
variable whose covariance is a multiple of the identity.

In view of the duality given by Proposition [Il we recover from the previous
inequality Ball’s form of the Brascamp-Lieb inequality: for every fi,..., fm : R —
R,

(10) /R Hfzx ) dp (2) < H</fldu>

n
=1

Moreover (under the same hypothesis on the u;’s as in the previous proposition),
equality holds if and only if the measures f; du are Gaussian with the same co-
variance: f;(t) du(t) = Aie @ (t=va)® gt with A; > 0, @ € R* and v € R" (v=0
if we restrict to centered functions). Note that by using (6] it is also possible to
pass from inequalities for the Lebesgue measure to inequalities for the standard
Gaussian measure (and vice versa) by the correspondence f; <— f;(¢) e~ 1t?/2,

The goal of this paper is to prove the efficiency of the theoretical aforemen-
tioned approach in some meaningful situations. More precisely, we try to under-
stand convolution and information-theoretic inequalities, such as the sharp Young
convolution inequality, Nelson’s hypercontractivity of the Hermite semi-group, or
Shannon’s inequality, as functional forms of some particular decompositions of the
identity of R2. To do so, we will study in §2 the decompositions of the identity of R?
by three vectors. We give a complete description of the relation between the coeffi-
cients ¢; and the vectors u; in this case. As a consequence, we obtain the following
general inequality which can be viewed as the functional form of Proposition
below.

Theorem 3. Let py,p2,ps > 1 be such that
1 1 1

— 4+ —+—=2,
b1 P2 D3
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GEOMETRY OF EUCLIDEAN CONVOLUTION INEQUALITIES 2759

and 0,05 € |0, 7 be defined by

(cos(bz), sin(fz)) = ( (p1 —D(p2 — 1), \/@)

P13 (P2 — 1))
D2

and

(cos(f3), sin(bs)) = ( -V (p1—1)(ps—1),

Then, for all random variables X, Y € R,

(11)

1 1 1

o S,.(X) +p_ S, (cos(62) X +sin(62)Y) +p_ S, (cos(f3) X +sin(63)Y) < S, (X,Y)
1 2 3

with equality if and only if X andY are independent identically distributed Gaussian
variables.

Equivalently, for every function g € LP2(u) and h € LP3(u), setting p) = 22

p1—1’

02) | [ atcos(o)a + sin(0n)) beos(oa)a + sin(0u)) dut)

L1 (dpu(x))
< N gllzes () 1Pl Les (1)

with equality if and only if [ and g are of constant sign with |g(t)[P2du(t) =
Ko e 2t=2)° qt qnd |h(t)[P2du(t) = K e M=) 4t for ar,as € R and Ky, K3, A >
0.

We apply this result in §3 to the determination of the sharp constant in the
Young convolution inequality. For this, we will work directly with the entropy and
exploit the following simple but useful invariance of the entropy (in the case of
Lebesgue measure) under linear transformations: for a random vector X € R™ and
an invertible linear operator A on R",

(13) S(AX) = S(X) — log(| det(A)]).

In §4 we derive the Shannon inequality from a limit of decompositions of the identity.
The hope is to shed in this way new light on the connection between subadditivity
of entropy and Shannon’s inequality. We study similarly Gaussian inequalities in
§5 and derive in particular hypercontractivity of the Hermite semi-group (and the
associated logarithmic Sobolev inequality). For simplicity, we consider here only
one-dimensional inequalities. In the last section, §6, we briefly explain how to
extend word by word the approach to multidimensional situations.

2. DECOMPOSITION OF THE IDENTITY OF R2

As announced, we investigate here decompositions of the identity of R2. A
decomposition of the identity with only two vectors u; and ug holds if and only
if these two vectors form an orthonormal basis and ¢; = ¢o = 1. In order to get
something of interest, consider the case of three distinct unit vectors in R?: g, us
and uz. Note that u; ® u; = (—u;) ® (—u;), so here and in the sequel, ‘distinct’
really means that the directions Ru; are distinct. The first question we address
is the following: if the directions are given, can we find positive numbers ¢y, ca, c3
such that the decomposition of the identity

(14) ClUuL @ Uy + CoU2 Qug + 63U3®U3 = IdRz
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2760 DARIO CORDERO-ERAUSQUIN AND MICHEL LEDOUX

holds? The answer is yes provided the vectors are ‘well enough’ distributed in space.

Proposition 4. Let Ru;, Rus and Rug be three distinct directions of R2. There
exist three positive numbers c1,co and c3 such that the decomposition of the iden-
tity (@) holds if and only if the three geometric angles given by the siz angular
sectors defined by these directions are all strictly smaller than 5. The c;’s are then
given by

cos(60; — 6)
sin(Hj - 01) sin(@k - 01)

for (i,4,k) a permutation of (1,2,3) and u; = (cos(@i),sin(é)i)) fori=1,23.

(15) ¢ = =1—cot(f; — 0;) cot(6r — 6;)

Proof. If two of the vectors are orthogonal, say u; - us = 0, and if (I4)) holds, then
0=wuy-us =040+cs (ug-uy) (us-usz); and therefore, if ¢3 > 0, then ug-u; =0 or
ug - ug = 0. But this implies u3 = tus or ug = +wuy, which is excluded. A genuine
three vector situation cannot contain a two vector situation (which is equivalent to
an orthonormal basis).

By the assumption, the projections u; ® ui, us ® ugy and uz @ ug span Sa, the
3-dimensional space of symmetric operators on R?. Therefore the linear operator

(c1,c2,¢3) — c1u1 @ Ui + coa ® U + c3u3 ® U3

is an isomorphism from R3 onto Sp. Write u; = (cos(@i) , sin(@i)) for i = 1,2,3,
where all coordinate computations are done in the canonical orthonormal basis of
R?; note that 6; — 0; # 0[5]. Using that

o — cos(6;)? cos(0;) sin(6;)
Ui @ Ui ( cos(6;) sin(6;) sin(6;)? ) '

it is readily checked that the unique solution in R? of (I4]) is given by

_ cos(02—03) _ cos(03—061) _ cos(01—02)
cl - Sin(02—01)sin(93—91) ) 62 - sin(03—02)sin(91—92) ) 63 - sin(01—03)sin(92—93) :

It remains to identify when this gives a solution to our problem, i.e. when ¢y, co, c3 >
0.

All the quantities in the previous equation remain unchanged if we replace some
0; by 0; + m, which is consistent with the fact that we have been working with
directions only, and of course, they also remain unchanged by rotations, i.e. by
0; = 0;+afori=1,23and a € R. Therefore, up to a relabeling of the directions,
we can assume that 0 = 6; < 03 < 03 < 7. Then the ¢;’s are positive if and only if

93—92<7T/2, 93—0>7T/2, 92—0<7T/2.

Rewriting the second condition as m — 03 < 7/2, we get the announced condition
on the three angular sectors 6o, 035 — 05, ™ — 63. ([

We now investigate the converse procedure. Given three numbers ci,ca,c3 €
(0,1) such that
(16) c1+co+c3 =2,

we would like to know whether it is possible to find directions u; = (cos(6;), sin(6;))
for which the decomposition of the identity (I4]) holds. The answer is yes, and the
construction is unique up to an isometry of R? (which clearly preserves decompo-
sitions of the identity).
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GEOMETRY OF EUCLIDEAN CONVOLUTION INEQUALITIES 2761

Proposition 5. For given c1,co,c3 € (0,1) satisfying [I8), there ewxists a triple
of directions Ruy, Rus and Rus unique up to isometries such that the decompo-
sition of the identity (Id]) holds (the solutions u; = (cos(6;),sin(6;)) are given by
equation ([I8) below). More explicitly, all solutions are obtained by performing an

isometry on
[(1— 1— /11—
C1 C2 C1C2
_ [(A=ci)(1-c3) [1-c2
Us=|\| — s .
C1C3 C1C3

Proof. Inverting formally (1) we get

cot(fa — ) = & %7 cot(fs — ;) = ¢ (1—c133(612—c1) ’
(18) cot(fy —03) = ¢ —(1_0112(02_62)

and € = +1. This uniquely determines the directions Ru; up to isometries. To
check this, first perform a rotation ensuring that 6, = 0 and 69, 03 € (0, 7). We still
have an invariance by symmetry with respect to the coordinate axis x = 0, which
corresponds to the sign of €. Thus, without loss of generality, we can impose

(19) 0:01<92<03<7T.

The last two equalities in ([IJ)) give that cot(f2) and cot(3) are of opposite sign,
and thus, by [[3), e = -1, 62 € (0,7/2) and 65 € (7/2,7), these angles being
uniquely determined by

(20) cot(f2) = \/—(1_0112(613_62) and  cot(f3) = —/ 7(1_0131(@12_01) :

Note that the first equality of (I8)) ensures that #3—605 € (0, 7/2), which is consistent
with the condition in the previous theorem. So long to unicity. It remains now to
check that we indeed get a solution. Equivalently, back to the situation (I9)-(20),
we need to check that once the last two equalities from (8] are used to uniquely
determine the angles 65 and 63, the first equality of (8] is then automatically
verified. This is indeed the case since

1—cy o 1—cy cot(02) cot(03)+1 _ c
\ Te)(1—ca) X cot(f3 — b2) = \V 0—e)(1—ca) X cot(gg)—cots(eg) = e t0=c)

Therefore the compatibility condition (I6]) yields the desired equation. Finally,
the solution ([9)-(20) can be rewritten as (7)) in coordinates, and the proof is
complete. ([l

We can now derive the main theorem stated in the introduction.
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2762 DARIO CORDERO-ERAUSQUIN AND MICHEL LEDOUX

Proof of Theorem Bl Introducing, for ¢ = 1,2,3, ¢; = ﬁ, the unit vectors u; =
(cos(6;),sin(6;)) of the previous proposition can be rewritten as u; = (1,0),

/ -1)
u2—< (p1—1 2_1 Plpz b3 >

us—( (1 —1)(ps — 1), ZM)

D2

Then the result for entropy follows from Proposition[2l Next note that it is enough
to prove ([I2) in the case of non-negative functions, and therefore the integral in-
equality to be proven is

// f(x) g(cos(B2)x + sin(f2)y) h(cos(fs)x + sin(03)y) du(x)du(y)
<A flzer wy Ngllzea oy (1Rl zes ()

for f,g,h : R — RT. But this inequality holds as the dual of inequality (] by
virtue of Proposition[Il The cases of equality follow from the general considerations
given in the introduction. O

3. SHARP YOUNG’S CONVOLUTION INEQUALITY

Here we work with the Lebesgue measure. Let p, g, > 1 be such that

1 1 1
(21) -+ -=1+ -,

p q r
which can be rewritten as

1 1 1

SR )

T op g

Then apply Theorem [ with p; = 7/, po = p, p3 = ¢. The angles 05,63, or
equivalently the unit vectors u; = (cos(6;),sin(6;)), i = 1,2, 3, given by Theorem [3]
are

(22)

=(1,0), ug= (x/(w - -1, ,/7;—,p> , Uz = (—\/(r’ -1(g—-1), \/7;;:61> :

Therefore, for any random vector (W, Z) € R? (with finite entropy),
1 1 1
(23) ps S(W)—F}—) S( cos(ﬁg)W+sin(92)Z)+a S(cos(f3)W+sin(63)Z) < S(W, Z).

We would like to have as random variables in the left-hand side multiples of W,
W — Z and Z, respectively. To this task, first perform a linear transformation
leaving W invariant so that the last variable is a multiple of Z, and then a diagonal
linear operator so that the second one is a multiple of W — Z. Readily, perform the
linear transformation (X,Y) = A(W, Z) with

A= ( COt(GZ())tﬁggc)’t(‘)z’) (1) )

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



GEOMETRY OF EUCLIDEAN CONVOLUTION INEQUALITIES 2763

Then, by using ([I3)), it follows that (23] is equivalent to the following subadditivity
inequality: for all random variables X and Y,

1 1
r S(cot(Gg) — cot(f2)
< S(X,Y) + log | cot(f3) — cot(f)].

Y) + % S(sin(f2)(X —Y)) + % S(sin(f3)X)

This inequality is also equivalent, using again the scaling of entropy (in dimension
1) to
1 1 1
(24) SS(X)+ 2 S(X =Y) 4 S(V) £ S(X.Y) +D
with
1 1 . 1 .
D = (1 — F) log | cot(f3) — cot(fa)] + > log sin(f2) + glogsm(03).

i

Using that ﬁ + % = L, it follows that cot(f2) — cot(f3) = &4/ZL and

1 1 1 1 1 1
D:—;log\/f“—i—plog\/F—i—p?log\/_—plog\/y—i—alog\/_—?log\/a.

1/t
t1/th

For ¢t > 1, set Cy :=
derived the following classical result.

where as before ' is the conjugate of t. We have thus

Theorem 6 (Sharp Young’s convolution inequality). Let p,q,r > 1 satisfy (21]).
For all random variables X,Y € R,

%3@0 +%S(X—Y) + %S(Y) < S(X,Y) +log <_Cpccq> .

Furthermore, the inequality is sharp: equality holds if and only if (X,Y) € R? is a
Gaussian vector whose covariance matriz is a multiple of A*A.
Equivalently, for every f € LP(R) and g € L1(R),

C,C
(25) If * gl pc 1 Hf”LP(R) ||g||L‘1(R)-

L) <

For the equality cases in the entropic inequality, note that in view of Propo-
sition 2] equality holds in (23) if and only if (W, Z) is a Gaussian vector with
covariance a multiple of Idge, and (X,Y) = A(W, Z). Next, note that Young’s in-
equality (28]) reduces to the case of non-negative functions, which is then equivalent
to the following dual form of the entropic inequality:

c,C
@) [[ 1@t - wht) dedy < LI e ol lolloece

for all non-negative functions f,g,h : R — RT. It is possible to deduce the equal-
ity cases in this inequality (and therefore in Young’s convolution inequality) from
the ones in the entropic inequality, as described in [I0] (we get some well-chosen
Gaussian functions). Actually, it is also possible to use that inequality (26) may be
obtained by rescaling the functions (after the change of variables (z,y) = A(w, 2))
in the Brascamp-Lieb inequality dual to ([23]), where equality holds if and only the
functions are Gaussian with the same covariance.

The sharp Young convolution inequality (25]) was obtained independently by
Beckner [5] and Brascamp and Lieb [7]. Their proofs rely on rearrangements of
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2764 DARIO CORDERO-ERAUSQUIN AND MICHEL LEDOUX

functions and tensorization arguments. Barthe [2] gave a new (simpler) proof using
a mass transportation argument. A heat semi-group proof was recently given by
Bennett and Bez [6]. The geometric approach based on entropy proposed here
might prove useful for the study of Young’s inequalities in other contexts.

4. SHANNON’S INEQUALITY

We continue to work with the Lebesgue measure. We now try to reproduce the
following classical result in Information Theory (see [12] for details).

Theorem 7 (Shannon’s inequality). Let X and Y be two independent random

variables. Then
S(X)+S(Y)

()

It is well known in the case that Y (say) is symmetric, Y ~ =Y, that Shannon’s
inequality follows from the classical subadditivity of the entropy (2]) since

25 (X—JEY> =S (X—\;%Y> +S (X—\;;/) < S(X,Y)=S(X)+S(Y),

where the last equality expresses the independence of X and Y. However this
situation is misleading since in the general case Shannon’s inequality seems to
be different in nature than an inequality of subadditivity of entropy. One of the
obstacles is that we would like to use a decomposition of the identity with the basis
vectors e; and ey together with % But this is not possible. We shall instead

IN

approximate such a situation.

Recall that if G stands for a standard Gaussian variable independent of all the
variables considered here, then if X has finite entropy, S(X +&G) — S(X) when
€ — 0. Therefore we can restrict our study to the case where X and Y have smooth
densities (with sub-Gaussian tails). For such regular variables, it is well known and
easy to see that when ¢ — 0,

(28) S(X +eY)=S(X)+0(?).
Using the notation u(f) = (cos(f),sin(f)), introduce for fixed s € (—%,0) (s will
later tend to 07) the unit vectors

up = u(s), uz=u(y), uz=u(j—s).

These vectors define three directions satisfying the assumption of Propositiondl Let
c1, ¢, c3 € (0,1) be the associated coefficients for which there is a decomposition of
the identity so that, by Proposition 2]

(29) ¢1 S(cos(s)X +sin(s)Y) + ¢z S(X—\}%Y) 4¢3 .S(sin(s)X +cos(s)Y) < S(X,Y)

for all random variables X and Y with finite entropy. By Propositiond as s — 07,
cos(s)

=1+2
sin(§ — s)sin(§ — 2s) 254 0(s),

C1 =

cos(Z — 2s
€y = ——— (2. ) — = —4s5+0(s),
sin(§ — s)sin(s — 7)

cg = cos( —3) =1+ 25+ o(s).

sin(2s — 5 ) sin(s)
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Note also that when X and Y are (regular enough) random variables and s — 0™,
we have, in view of (I3) and (28)), that

sin(s)
os(s)

and similarly S(sin(s)X + cos(s)Y) = S(Y) + o(s). Therefore, making a Taylor
expansion in ([29) when X and Y are independent and s — 0™, we obtain that

S(cos(s)X +sin(s)Y) = S(X + Y) —logcos(s) = S(X) + o(s)

S(X)+S(Y)—s [45(X—jg) —25(X) — QS(Y)] +o(s) < S(X,Y) = 8(X) + S(Y).
The first order in s < 0 gives the desired Shannon inequality.

Remark 8. In view of the duality between entropy and Brascamp-Lieb inequalities,
one could wonder if the Shannon inequality admits a dual form. However, if we start
with the Brascamp-Lieb inequality, in the same situation as above, and perform the
Taylor expansion there, then we end up again with the Shannon inequality. We are
in a situation where the entropic and Brascamp-Lieb inequalities coincide at the
first order.

It should be noted that one can prove along the same lines the Blachmann-Stam
inequality (cf. [12]):

(30)

; <X\;—§Y) _ 1) ;I(Y)

for independent random variables, X and Y with finite Fisher information. Indeed,
the decomposition of the identity obtained above and Proposition [ and () give
the result once it has been noted that for regular enough random variables, as
for entropy, I(X +¢Y) = I(X) + O(g?) as ¢ — 0. Moreover, for independent
random variables, I(X,Y) = I(X)+I(Y). Note that by the scaling of information,
inequality (B0) is commonly rewritten as I (X +Y) < I(X) + I(Y).

Finally, we would like to mention that we could as well have started from The-
orem Bl A first order Taylor expansion when py = p3 — 2 (and therefore p; — 1)
in ({1 gives again the Shannon inequality. Having derived the sharp Young in-
equality from (III), this procedure is reminiscent of Dembo’s proof of Shannon’s
inequality, which consisted in a Taylor expansion in (28]) around p = ¢ = 2 (see [12]).

5. HYPERCONTRACTIVITY AND LOGARITHMIC SOBOLEV INEQUALITY

In this section, the measure p = v will be the Gaussian measure and p,, = v,.
Assume we are given p, q with
(31) l<p<yg
and set 6 € [0, ) such that
-1
(32) cos(0) = ZTI .
Write as before ¢ = t/(t — 1) for ¢ > 1. Since ¢ > p, let r € [1,q) be such that

% = % + L, or equivalently
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Then, introducing § € (F,7) such that
r—1
33 =, — =
(33) cos(€) =~/ 21
the angles 6, £ are exactly the ones associated to the triple
p=dq, p2=p, p3=r
in Theorem Bl (; = 6, 05 = £). Consequently, for all random variables X,Y,

(34) %S’A,(X) + %SW ( cos(0) X +Sin(6‘)Y) + %SW ( cos(§)X—|—sin(§)Y) <8, (X,Y).

We emphasize in the next proposition the corresponding convolution inequality (I2])
of independent interest (as a stronger statement than the classical hypercontrac-
tivity).

Proposition 9 (Hypercontractivity). Let p,r > 1. If % +1=1 —|—% and [32)-33)
hold, then for every function f € LP(y) and g € L"(v),

H/f@wwm+ammwg@m@m+amawdww

La(dy(x))
with equality if and only if f and g are of constant sign with |f(z)|Pdy(x) =
K e~ ANz=a1l® g and lg()|"dy(z) = Ko 67)“””7“2‘2d3:, Ki,K5,A>0, a,as € R.

This result contains the hypercontractivity inequality for the Hermite semi-group
Ho(1)(w) 1= [ £(cos(6)a + sin(®)y) dr ().

(One may work as well with the Ornstein-Uhlenbeck semi-group P;f := e'l'f =
Hrecos(e—t) f-) Indeed, Proposition [ applied with g = 1 indicates that under (BI)-

)

(35) Vf e LP(v), I1Ho fllLayy < N fllze ey

Equality holds iff f is exponential, f(z) = Ke ** (A = 1/2, since g = 1 in the
proposition). The hypercontractivity of the Hermite semi-group goes back to the
seminal works of Nelson [I4] and Gross [13]. The cases of equality were treated by
Carlen in [9].

If instead we work at the level of entropic inequalities, first note that for every
random variable Z, S, (Z) > 0, with equality if Z is a standard Gaussian variable.
Therefore, inequality (34) implies that, for all random variables X, Y,

(36) &S’A,(X) + %S,Y(COS(H)X +sin(0)Y) < 5., (X,Y),

which is dual to the following Brascamp-Lieb inequality, equivalent to [B5]): for all
functions g, f : R — R,

[ ot) 1(cos(®)a + sin(o)s) dr(@)ar(v) < lls gl

Remark 10 (Particularity of the Gaussian case). It is worth noting that in the
Gaussian case, inequalities ([@) and (I0) hold under the weaker condition

(37) > ciu @u; < Idgn.
i=1
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(So here we can simply use that %el ®el—|—%u(9)®u(9) < Idge, instead of ‘forgetting’
terms, as we did above.) The argument goes back to [3] and relies on the fact that we
are working on a probability space. From the explanations given in the introduction,
it is clear that ([B7) is always sufficient to get (7). When integrating along the heat
semi-group, it is necessary to rescale in order to obtain asymptotically a standard
Gaussian. So condition (@) is crucial there (see [10]). But in the Gaussian case, there
is no need to rescale when integrating along the Ornstein-Uhlenbeck semi-group,
and so we can indeed derive inequalities @) and ([I0) from @7). Alternatively,
starting from (1), we can complete the self-adjoint operator on the RHS in order
to get a decomposition of the identity by adding some unit vectors u; and coeflicients
c;». We then simply apply (@) and ([I0) in the case of this decomposition, but with
X, = G (standard Gaussian independent of the rest) and f; = 1, respectively, for
the added indices.

It is well known that the Gaussian logarithmic Sobolev inequality is equivalent
to the hypercontractivity inequality (B3] [I3]. To derive the logarithmic Sobolev
inequality, one can differentiate (B3] at § = 0. Let us explain how it is even easier to
see this implication when working with the dual entropic form. Recall that for every
random variable Z, S,(Z) > 0 with equality if Z is a standard Gaussian variable.
Let X be a random variable and G be a standard Gaussian variable independent
of X. For § € [0, §), set

HpX := cos(0)X + sin(0)G.

Then, inequality (36) gives that, under (3I)-(32),

551 (X) + 28, (HyX) < 5,,(X,6) = 5,(X),

q/

which can be rewritten as S, (HpX) < SSW(X). Therefore, for any 6 € [0, §) and

g > 1, by picking the appropriate p satisfying ([36)), S, (HsX) < 1+(q+)Cosrz(e)S’,Y(X).
Letting ¢ — +o0,
5, (HoX) < cos?(6)S,(X),

which is the well-known integrated form of the logarithmic Sobolev inequality. In-
deed, since there is equality at § = 0, the 62 order term gives the logarithmic
Sobolev inequality

d2

< -4
S"/ (X) — I’Y (X) d92 10=0

S, (HpX).

N~

6. HIGHER-DIMENSIONAL INEQUALITIES

We have studied convolution inequalities for functions on R and for random
variables. But the strategy applies word by word to convolution inequalities for
functions on R™ and random vectors. Let us briefly explain why.

All subspaces of R™ are equipped with the Euclidean structure inherited from
the standard Euclidean structure on R™. Accordingly, for a subspace E C R™,
the measure pp will stand for the Lebesgue measure or the standard Gaussian
measure on FE. Denote by Pg the orthogonal projection in R™ onto F, and if f is
a probability density w.r.t. pu,, denote by f(g) the probability density w.r.t. pg
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which is the image of fdu,, under the map Pg. For every random vector X € R"”,
we have that X ~ fdu, = PpX ~ fg)dug and

/ o)y (v) Ay () = / 9(Po) () dyan ().
; .

The following analogue of (Bl immediately holds: for f a (smooth) probability
density w.r.t. u, (or any random vector with X ~ fdu,),

PpVf|?
(38) s (i) = s (PeX) < [ P g,
Assume we are given a collection of subspaces Fy, ..., E,, C R™ and positive num-
bers c1, ..., ¢y, > 0 such that
m
(39) > i Pp, =1dgn.

i=1
Then, by @B3)-B9), > i", ¢ Iy, (P, X) < I,,,(X). After integration along appro-
priate semi-groups P; (noting again that (P, f)g,) = P:(f(g,))), we get the analogue
of Proposition

m

> i S, (P, X) < 8y, (X),

i=1
and by duality, for f; : E; — R* i = 1,...,m, the classical (multidimensional)
geometric Brascamp-Lieb inequality

/nf[lfCi(PEiI) dpn < f[l </E fz‘dﬂEi)q :

The convolution inequalities on R™ are obtained by using appropriate projections
onto three n-dimensional subspaces of R?". Given an angle § € [0, 7], denote by P
the projection in R?" obtained by tensoring the projection on the direction u(6) in
R2:

Py =UjUp, with U= (cos(f)Idg sin(6)Idg~) : R*" — R".
Identifying R?" with R™ x R™, Py(x,y) = Uy (cos(#)z + sin(0)y) for z,y € R™. The
projection onto the first R™ is Py: Py(z,y) = x. Note that the image subspace
Ey :=Im(Fy) is normally parametrized by R™ as Ey = {Ujz | z € R"}. Therefore,
for a random vector (X,Y) € R?",

Sis, (Py(X,Y)) = S, (cos(0)X +sin(9)Y).

Assume then we are given p1,po, p3 > 1 with p% + p% + p% = 2, and let 65,03 be
the angles given by Theorem [Bl These angles came from the decomposition of the
identity of Proposition B, which extends to a decomposition of the identity of R2":

1 1 1
— Py + —P92 + —Pgs = Idg2n.
p1 P2 b3
By the previous considerations, Theorem [l immediately extends to random vectors

on R™ and functions on R": for all random vectors X,Y € R",
1 1 1
— 8, (X) + — 5y, (cos(2) X +sin(62)Y) + — S, (cos(63)X + sin(63)Y)
P P2 b3
< S, (XY).
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Similarly, for all functions f, g : R™ — R with g € LP2(u,,) and h € LP3(p,,),

H/g(cos(ﬁg)x + sin(f2)y) h(cos(03)x + sin(03)y) dpn(y)

LPL (dpin (2))
< gl ez () 17Nl 295 (1) -

The cases of equality are also the same. Then, the multidimensional forms of
Young’s convolution inequality, Shannon’s inequality, hypercontractivity and the
logarithmic Sobolev inequality are obtained by the same computations we have
performed previously.

Of course, it is also possible to derive these inequalities from the one-dimensional
ones by standard tensorization techniques. But as pointed out earlier, the geometric
approach used here might prove useful in some other contexts.
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