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From Concentration to Isoperimetry: Semigroup Proofs

Michel Ledoux

Abstract. In a remarkable series of works, E. Milman recently showed how to
reverse the usual hierarchy, and deduce from measure concentration inequali-
ties, dimension free isoperimetric type inequalities in spaces with non-negative
(Ricci) curvature. The results cover two basic instances, linear isoperimetry
under arbitrarily slow concentration, and logarithmic strengthenings above the

linear case under exponential concentration. The proofs are developed in a Rie-
mannian (with density) context making use of isoperimetric minimizers and
refined tools from geometric measure theory. In this note, we present simple
semigroup arguments to cover the super-linear case, of potential usefulness in
more general settings. A particular emphasis is put on functional inequalities
for heat kernel measures.

1. Introduction

In the terminology of [G2], a metric measure space (X, d, μ) is a (separable)
metric space (X, d) equipped with a Borel measure μ which, throughout this work,
will be finite and normalized to be a probability measure. The isoperimetric profile
of a metric measure space (X, d, μ) is the function Iμ(v), v ∈ [0, 1], defined as the
infimum of μ+(A) over all Borel measurable sets A in X with μ(A) = v. Here,
μ+(A) is the (exterior) Minkowski boundary measure of the Borel set A defined by

μ+(A) = lim inf
ε→0

1

ε

[
μ(Aε)− μ(A)

]
where Aε denotes the open neighborhood of order ε > 0 of A. A typical ex-
ample is the case of the standard Gaussian measure γ on R

n equipped with its
Euclidean structure for which the isoperimetric inequality of [Bo], [S-T] indicates

that Iγ = ϕ ◦ Φ−1 where ϕ(x) = (2π)−1/2 e−x2/2, x ∈ R, and Φ(t) =
∫ t

−∞ ϕ(x)dx,
t ∈ R. Another example is the case of the two-sided exponential distribution
dμ(x) = 1

2 e
−|x|dx on the line for which Iμ(v) = min(v, 1 − v), v ∈ [0, 1] [T] (see

also [B-H2]). An isoperimetric type inequality is a lower bound Iμ(v) ≥ i(v) on the
isoperimetric profile by some suitable function i. In the standard examples, a set A
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and its complement will have the same boundary measure, so that the description
of Iμ or i may be restricted by symmetry to [0, 1

2 ].
Another concept in metric measure spaces is measure concentration ([Mi-Sc],

[G2], [Le5]. . . ). The concentration function of a metric measure space (X, d, μ) is
defined as

αμ(r) = sup
{
1− μ(Ar);A ⊂ X,μ(A) ≥ 1

2

}
, r > 0.

It is classical (cf. e.g. [Le5]) that αμ is characterized equivalently in terms of Lips-
chitz functions on (X, d) in the sense that whenever F : X → R is 1-Lipschitz and
μ(F ≥ m) ≤ 1

2 , then

μ
(
F ≥ m+ r) ≤ αμ(r), r > 0.

A concentration inequality describes the decay of the concentration function αμ as

r → ∞. Typical examples are Gaussian concentration αμ(r) ≤ C e−r2/C , r > 0,
for some constant C > 0 (satisfied by the standard Gaussian measure γ in R

n with
constants independent of n) or exponential concentration αμ(r) ≤ C e−r/C , r > 0
(satisfied by the exponential distribution and its products [B-H1]).

Measure concentration bounds are typically drawn from isoperimetric type in-
equalities. The first such example is concentration on the sphere [Mi-Sc]. In the
general framework of a metric measure space (X, d, μ), it is part of the folklore
that an isoperimetric type inequality Iμ ≥ i controls the decay of the concentration
function αμ by an easy integration along the isoperimetric differential inequal-
ity μ+(A) ≥ i(μ(A)). For example, as shown in [Mi-So] (see also [B-H2]), if
Iμ(v) ≥ v β(log 1

v ), v ∈ [0, 1
2 ], for some non-negative continuous function β, then

αμ(r) ≤ exp(−δ(r)) where δ is the inverse function of
∫ r

log 2
dx
β(x) , r > 0. In the

example of the standard Gaussian measure γ on R
n, one may choose β(x) ∼ √

x,
x ≥ 0 (since Iγ(v) ∼ v(2 log 1

v )
1/2 as v → 0), so that we indeed recover Gaussian

concentration αγ(r) ≤ C e−r2/C , r > 0.
The definitive difference between isoperimetric profile and concentration func-

tion is that the first one concerns small enlargements Aε while the second one
controls Ar for r > 0 reasonably large. That measure concentration conversely
controls the isoperimetric profile cannot be true in general as can be seen from in-
stances where μ has small mass between two sets of big measure (cf. [Mi1, Mi3]).
A remarkable recent achievement by E. Milman [Mi1, Mi3] is that this hierarchy
reverse actually holds under curvature (convexity) assumptions. These curvature
assumptions may be suitably defined and discussed within (weighted) Riemannian
manifolds. Let thus (X, g) be a complete Riemannian manifold with Riemann-
ian volume element dx. Equip X with a finite, normalized, probability measure
dμ = e−V dx where V is a smooth potential on X. Endowed with the Riemannian
metric d of X, the triple (X, d, μ) is an example of metric measure space. The
two main conclusions of the works of E. Milman are the following. Assume the
non-negative (generalized) Ricci curvature or convexity assumption

(1) Ricg +HessgV ≥ 0

as tensor fields on X. This setting covers in particular bounded convex domains in
R

n with the uniform measure, and log-concave probability measures on X = R
n.

Theorem 1 ([Mi1]). Under the curvature condition (1), if αμ(r) → 0 as
r → ∞, then linear isoperimetry holds in the sense that

Iμ(v) ≥ cmin(v, 1− v), v ∈ [0, 1],
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where c > 0 only depends on αμ.

Theorem 2 ([Mi3]). Under the curvature condition (1), if αμ(r) → 0 as
r → ∞ and r(v) > 0 denotes the smallest r > 0 such that αμ(r) < v, then

Iμ(v) ≥
c

r(v)
v log

1

v
, v ∈ [0, 1

2 ],

where c > 0 only depends on αμ.

The linear isoperimetric inequality of Theorem 1 may be translated equivalently
as a Cheeger type inequality

∫
|f |dμ ≤ C

∫
|∇f |dμ for all smooth functions f with

zero mean (cf. e.g. [B-H2]). Theorem 2 is of course only of interest when the
concentration function αμ decays faster than exponential so that r(v) < C log 1

v
(but, as we will see, there is a fundamental difference in the treatment of both

statements). As an illustration, if μ has Gaussian concentration αμ(r) ≤ C e−r2/C ,

r > 0, then r(v) ∼ (log 1
v )

1/2 so that by Theorem 2, Iμ(v) ≥ cv(log 1
v )

1/2, v ∈ [0, 12 ].

If μ has exponential concentration αμ(r) ≤ C e−r/C , r > 0, then r(v) ∼ log 1
v and

from Theorem 2, Iμ(v) ≥ cv, v ∈ [0, 12 ], which is however not any better than
Theorem 1 as already mentioned.

One striking feature of these theorems is their independence with respect to
the dimension of the underlying manifold. In both theorems, the dependence of
the constant c on the concentration function αμ can be expressed through a given
small enough numerical value v0 > 0 and r0 > 0 such that αμ(r0) < v0. In the
terminology of M. Gromov [G2] (see also [Le5]), 1/c may be interpreted as the
observable diameter of the metric measure space (X, d, μ). In some instances, the
dependence of the constant c in terms of the observable diameter of the metric mea-
sure space (X, d, μ) may reflect a dimensional feature. For example, the observable
diameter of the standard sphere in R

n is of the order of 1√
n
, so that Theorems 1

and 2 describe quantitatively the known optimal bounds (cf. [Le4]).
The results in [Mi3] are actually more general, allowing for some negative

curvature bounds and some freedom on the concentration function. They cover
moreover suitable limits of probability densities on a given Riemannian manifold.
The arguments developed by E. Milman in the proofs of Theorems 1 and 2 rely on
tools from geometric measure theory inspired by M. Gromov’s proof of P. Lévy’s
isoperimetric inequality [G1]. In particular, the proofs make use of the existence
and regularity of minimizing sets for the isoperimetric profile, variation of area
formulas, and a version of the Heintze-Karcher theorem in manifolds with density
involving total curvature due to F. Morgan [Mo]. While the first set of conclusions
by E. Milman [Mi1] used at some point tools from semigroup theory (initiated in
[Le1] and to which we will come back below), the latest developments only rely on
geometric measure theory. One important step in the proof of linear isoperimetry
under arbitrary decay of the concentration function (Theorem 1) is the fact from
Riemannian geometry that, under the preceding convexity assumption, the isoperi-
metric profile Iμ is concave, or at least that Iμ(v)/v is non-increasing. We refer to
[Mi1, Mi3] for detailed discussion and background on this basic property.

The dimension free feature of E. Milman’s results suggests the possibility of
a framework and a methodology of proof not directly relying on a finite dimen-
sional state space and on geometric tools. In this note, we propose a new proof
of the second quantitative part of E. Milman’s results (Theorem 2) only based
on semigroup tools, the first approach initiated in [Mi1]. We will namely show
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how families of functional inequalities for heat kernel measures are rather simply
and nicely suited to control the isoperimetric profile by means of the concentration
function. In particular, inequalities for heat kernel measures produce in a natural
way families of Lipschitz functions which are thus controlled by the concentration
function. This new abstract semigroup approach is of potential use in more general
settings (briefly discussed at the end of this paper). The proof of Theorem 1 in the
case of arbitrarily slow decay of the concentration function relies, in its first step,
on the same approach but requires apparently to be completed by an additional
ingredient, such as concavity or non-increasing property of the isoperimetric profile.
It is not clear whether the latter property can hold outside a Riemannian setting,
or whether it can be avoided in the proof of Theorem 1. On the other hand, the
proof of Theorem 2 presented in this note does not require any particular property
of the isoperimetric profile.

We do not discuss in this note the most general results and assumptions, and
only concentrate on the methodology of proof. We refer to the papers [Mi1]–[Mi3]
by E. Milman for a careful and detailed exposition of the history of these results,
a precise description of the setting and hypotheses, applications and complete ref-
erences and acknowledgements. Section 2 below reviews the basic (Poincaré and
logarithmic Sobolev) heat kernel inequalities under the curvature lower bound (1)

in terms of the so-called Γ2 criterion of D. Bakry and M. Émery [B-E], [Ba1, Ba2].
In the subsequent section, we address Theorem 1 under quadratic inequalities, while
in Section 4 we prove Theorem 2 using entropic inequalities. Improvements under
some negative (optimal) curvature bounds as in [Mi3] may also be achieved fol-
lowing the semigroup proof although we omit the details here. The final section
indicates possible extensions and generalizations of the abstract semigroup argu-
ments in various settings.

2. Heat kernel inequalities

On the complete Riemannian manifold (X, g), denote by (Pt)t≥0 the semigroup

with infinitesimal generator L = Δ−∇V ·∇. The semigroup (Pt)t≥0 and generator

L are invariant and symmetric with respect to the measure dμ = e−V dx. Set, for
smooth functions u, v on X,

Γ(u, v) = 1
2

[
L(uv)− uLv − vLu

]
= ∇u · ∇v

for which the integration by parts formula∫
u(−Lv)dμ =

∫
Γ(u, v)dμ

holds. Set further

Γ2(u, u) =
1
2 L

(
Γ(u, u)

)
− Γ(u,Lu) =

(
Ricg +HessgV

)
(∇u,∇u).

Below, we write for simplicity Γ(u) = Γ(u, u) and Γ2(u) = Γ2(u, u). The generalized
Ricci curvature assumption (1) on the manifold with weight (X, g, μ) where dμ =
e−V dx may be thus expressed as Γ2 ≥ 0 (meaning Γ2(u) ≥ 0 for every smooth
function u). More general lower bounds are described by Γ2 ≥ −κ, κ ∈ R. We refer
to [Ba1] for a general account.

In the more general abstract framework of diffusion operators, the preceding Γ2

criterion has been put forward by D. Bakry and M. Émery in the study of functional
inequalities such as logarithmic Sobolev inequalities [B-E], [Ba1, Ba2]. Their basic
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argument has in turn proved useful to study functional inequalities with respect to
the heat kernel measures Ptf(x), t ≥ 0, x ∈ X. (Dependence on x ∈ X, arbitrary,
will be omitted below.) In particular, the following families have been put forward
through a simple Γ2 calculus (cf. [Ba2], [S-Z], [Le4]). Natural classes of functions
f for which the subsequent inequalities may be established include, for example,
compactly supported C∞ functions (or compactly supported C∞ plus a constant)

in order to deal with the basic commutation property
√
Γ(Psf) ≤ Ps(

√
Γ(f)).

Proposition 3 (Poincaré and reverse Poincaré inequalities). Under the cur-
vature condition Γ2 ≥ 0, for every suitable function f , and every t ≥ 0,

2tΓ(Ptf) ≤ Pt(f
2)− (Ptf)

2 ≤ 2t Pt

(
Γ(f)

)
.

Proposition 4 (Logarithmic Sobolev and reverse logarithmic Sobolev inequal-
ities). Under the curvature condition Γ2 ≥ 0, for every suitable function f > 0, and
every t ≥ 0,

t
Γ(Ptf)

Ptf
≤ Pt(f log f)− Ptf logPtf ≤ t Pt

(Γ(f)
f

)
.

It is classical that the logarithmic Sobolev inequalities improve upon the Poincaré
inequalities. To briefly recall the argument leading to Propositions 1 and 2, write
(at any point x thus),

Pt(f
2)− (Ptf)

2 = −2

∫ t

0

d

ds
Ps

[(
Pt−sf

)2]
ds = 2

∫ t

0

Ps

(
Γ(Pt−sf)

)
ds.

Now, the condition Γ2 ≥ 0 expresses equivalently that Γ(Psu) ≤ Ps(Γ(u)) (since
similarly Ps(Γ(u))− Γ(Psu) = 2

∫ s

0
Pr(Γ2(Ps−ru))dr). Therefore,

Pt(f
2)− (Ptf)

2 ≤ 2

∫ t

0

PsPt−s

(
Γ(f)

)
ds = 2t Pt

(
Γ(f)

)
.

The reverse Poincaré inequality is proved similarly. The proof of the logarithmic
Sobolev inequalities is entirely similar on the basis however of the stronger commu-
tation

√
Γ(Psu) ≤ Ps(

√
Γ(u)) still equivalent to Γ2 ≥ 0 [Ba1, Ba2]. Propositions

1 and 2 admit simple variations when Γ2 ≥ −κ for some real κ.
An interesting byproduct of the reverse Poincaré and logarithmic Sobolev in-

equalities is that Ptf for t > 0 satisfies some Lipschitz properties in terms of the
Γ operator. Namely, whenever 0 ≤ f ≤ 1, it follows from the reverse Poincaré
inequality of Proposition 1 that

(2) Γ(Ptf) ≤
1

2t
.

Similarly, the reverse logarithmic Sobolev inequality of Proposition 2 ensures that
whenever 0 < f ≤ 1,

(3) Γ(Ptf) ≤
1

t
(Ptf)

2 log
1

Ptf
≤ 1

t
log

1

Ptf
.

In particular, from (3), it was observed by M. Hino in [H] that the function ϕ =(
log 1

Ptf

)1/2
is (1/2

√
t)-Lipschitz in the sense that Γ(ϕ) ≤ 1/4t.

In this sense, the curvature hypothesis Γ2 ≥ 0 may be nicely combined with
concentration properties of the Lipschitz functions Ptf and (log 1

Ptf
)1/2 for t > 0.

(Note that when Γ(u) ≤ C, then u is Lipschitz with respect to the Riemannian
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metric d.) Namely, from the first Lipschitz property (2) and by definition of the
concentration function αμ, if 0 ≤ f ≤ 1, for every t > 0 and r > 0,

(4) μ
(
Ptf ≥ m+

r√
2t

)
≤ αμ(r)

where m is such that μ(Ptf ≥ m) ≤ 1
2 . In particular, one may choose m = 2

∫
fdμ.

Similarly, from the Lipschitz property of the function ϕ = (log 1
Ptf

)1/2 above, if

μ(ϕ ≥ m) ≥ 1
2 , for every r > 0 and t > 0,

μ
(
ϕ ≤ m− r

2
√
t

)
≤ αμ(r).

Choosing for example m =
(
log 1

2
∫
fdμ

)1/2
provided 2

∫
fdμ ≤ 1, we get that when

0 ≤ f ≤ 1, for every r > 0 and t > 0,

(5) μ
(
Ptf ≥

(
2
∫
fdμ

)1/2
er

2/4t
)
≤ αμ(r).

It is worthwhile mentioning that the latter inequality (5) may also be deduced from
Wang’s Harnack inequality under Γ2 lower bounds ([W1, W2]). Actually, Hino’s
observation leads to an alternate proof of (a version of) Wang’s Harnack inequality.
F.-Y. Wang [W1] used his Harnack inequality to establish a variant of Theorem 2
(under Gaussian concentration), however with dimensional dependence (see [Mi3]
for a discussion).

3. Quadratic bounds: linear isoperimetry

In this section, we address the conclusion of Theorem 1 with the quadratic heat
kernel inequalities from Proposition 1. For a given smooth function f on X, and
every t ≥ 0,

(6)

∫
f2dμ−

∫
(Ptf)

2dμ = −
∫ t

0

d

ds

(∫
(Psf)

2dμ

)
ds = 2

∫ t

0

∫
Γ(Psf)dμ ds.

As a consequence of (2), whenever 0 ≤ f ≤ 1, for every s > 0,∫
Γ(Psf)dμ ≤ 1√

2s

∫ √
Γ(Psf) du ≤ 1√

2s

∫ √
Γ(f) du

where the last inequality follows from the fact that (under Γ2 ≥ 0),
√
Γ(Psf) ≤

Ps

(√
Γ(f)

)
. Therefore, for every t ≥ 0 and every (smooth) function f such that

0 ≤ f ≤ 1,

(7)

∫
f2dμ−

∫
(Ptf)

2dμ ≤ 2
√
2t

∫ √
Γ(f) dμ.

As such, the inequality extends to all locally Lipschitz functions in L2(μ).
This inequality (first emphasized in [Le1] in a slightly different form and ex-

ploited in [Mi1]) is the starting point of the analysis. Apply it namely to f = 1A

for some measurable set A ⊂ X (actually use first some smooth approximation of
the type (1− 1

ε d(·, A))+), ε > 0. For this choice of f , (7) yields, for every t ≥ 0,

2
√
2t μ+(A) ≥ μ(A)−

∫
(Pt1A)

2dμ.
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Now, from the concentration inequality (4) with m = 2
∫
Pt1Adμ = 2μ(A),∫

(Pt1A)
2dμ ≤

(
2μ(A) +

r√
2t

)2

+ αμ(r),

so that

2
√
2t μ+(A) ≥ μ(A)−

(
2μ(A) +

r√
2t

)2

− αμ(r).

It remains to suitably optimize in t > 0 and r > 0. Using that αμ(r) → 0 as r → ∞,
one then basically gets that whenever μ(A) ≤ a, μ+(A) ≥ i(μ(A)) for some small
enough a > 0 and some function i > 0 tending to 0 at 0. Hence Iμ(v) ≥ i(v), v ≤ a.

But to reach linear isoperimetry in Theorem 1, that is Iμ(v) ≥ c min(v, 1− v),
seems to require a further argument, such as that the isoperimetric function Iμ is
concave, or at least that Iμ(v)/v is decreasing. These properties hold in a Riemann-
ian setting and are extensively discussed in [Mi1, Mi3], relying on isoperimetric
minimizers and tools from geometric measure theory, leading thus to the conclu-
sion. In view of the preceding semigroup argument, such an additional ingredient
seems indeed unavoidable to conclude to the full statement of Theorem 1.

Taken the concavity of the profile as granted, it of course suffices that Iμ(v0) > 0
for some v0 > 0. As was shown by E. Milman [Mi3], the minimal hypothesis on the
concentration function αμ in order to reach the latter, and thus linear isoperimetry,
is that αμ(r0) <

1
2 for some r0 > 0. This may also be recovered from the preceding

semigroup argument, analyzing
∫
fpdμ −

∫
(Ptf)

pdμ for some large enough p ≥ 2.
We omit the details.

4. Entropic bounds: super-linear isoperimetry

In this section, we investigate Theorem 2. With respect to the linear case, the
bounds need to be strengthened with a logarithmic factor which will be achieved
through the entropic inequalities of Proposition 2. We follow exactly the same steps
as in the quadratic case above. For every smooth positive function f , and every
t ≥ 0, ∫

f log fdμ−
∫

Ptf logPtfdμ = −
∫ t

0

d

ds

(∫
Psf logPsfdμ

)
ds

=

∫ t

0

∫
Γ(Psf)

Psf
dμ ds.

As a consequence of (3), when η ≤ f ≤ 1, 0 < η < 1, for every s > 0,

√
Γ(Psf) ≤

(1
s
log

1

η

)1/2

Psf.

Hence, for every s > 0 and 0 < η < 1,∫
Γ(Psf)

Psf
dμ ≤

(1
s
log

1

η

)1/2
∫ √

Γ(Psf) dμ ≤
(1
s
log

1

η

)1/2
∫ √

Γ(f) dμ

where the last inequality follows from the fact that (under Γ2 ≥ 0),
√
Γ(Psf) ≤

Ps

(√
Γ(f)

)
. It thus follows from the preceding inequalities that for every t > 0 and

0 < η < 1, and every (smooth) function f such that η ≤ f ≤ 1,

(8)

∫
f log fdμ−

∫
Ptf logPtfdμ ≤ 2

(
t log

1

η

)1/2
∫ √

Γ(f) dμ.
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This inequality may be considered as the entropic analogue of the quadratic in-
equality (7).

For a measurable set A ⊂ X, apply now the preceding to f = max(1A, η),
0 < η < 1 (actually first some smooth approximation). For this choice of f , (8)
implies that

2
(
t log

1

η

)1/2

μ+(A) ≥ η log η −
∫

Ptf logPtfdμ.

From the concentration inequality (5) with β =
[
2(η + (1 − η)μ(A))

]1/2
er

2/4t as-
sumed to be less than 1,∫

Ptf log
1

Ptf
dμ ≥ log

1

β

∫
{Ptf≤β}

Ptfdμ

≥ log
1

β

[ ∫
fdμ−

∫
{Ptf>β}

Ptfdμ

]

≥ log
1

β

[
η + (1− η)μ(A)− αμ(r)

]
.

Therefore,

2
(
t log

1

η

)1/2

μ+(A) ≥ − η log
1

η
+

[
(1− η)μ(A)− αμ(r)

]
log

1

β
.

It remains to suitably optimize the various parameters. Make the simple choices
of (for example) η = μ(A)2 and t log 1

η = 2 r2 to see that, whenever μ(A) < 1
16 , for

every r > 0,

2
√
2 rμ+(A) ≥ −2μ(A)2 log

1

μ(A)
+

1

4

[μ(A)

2
− αμ(r)

]
log

1

16μ(A)
.

As a consequence, there exist numerical a > 0 sufficiently small and K > 0 large

enough such that if rμ(A),αμ
denotes the smallest r > 0 such that αμ(r) ≤ μ(A)

4 ,
then for every set A with 0 < μ(A) ≤ a,

rμ(A),αμ
μ+(A) ≥ 1

K
μ(A) log

1

μ(A)
.

The preceding amounts to the conclusion of Theorem 2, however only for sets
A such that 0 < μ(A) ≤ a for some small enough (numerical) a > 0. To conclude,
we briefly indicate how to cover the situation when a ≤ μ(A) ≤ 1

2 . To this task, it
is enough to work at the quadratic level. Recall first the following easy observation
from measure concentration [Le5]: whenever B is a set such that μ(B) ≥ ρ for
some ρ > 0, then for all r > 0,

1− μ(Br+r0) ≤ αμ(r)

where r0 > 0 is such that αμ(r0) < ρ.
Let then A be a measurable set with a ≤ μ(A) ≤ 1

2 . Given τ > 0 to be specified
below, set B = {Pt1A ≤ (1 + τ )μ(A)} so that μ(B) ≥ τ/(1 + τ ) = ρ > 0. By the
preceding, the concentration inequality (4) thus takes the form

μ
(
Pt1A ≥ (1 + τ )μ(A) +

r + r0√
2t

)
≤ αμ(r).

Repeating the argument at the end of Section 3 yields

2
√
2t μ+(A) ≥ μ(A)−

(
(1 + τ )μ(A) +

r + r0√
2t

)2

− αμ(r).
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Choose then for example τ = 1
10 from which r0 is determined. Let then r > 0 be

large enough so that αμ(r) ≤ a
8 . Finally choose t > 0 such that r+r0√

2t
≤ a

10 . It

follows that

2
√
2t μ+(A) ≥ μ(A)− 144

100
μ(A)2 − αμ(r) ≥

μ(A)

4
− αμ(r) ≥

μ(A)

8
.

The claim is thus established and thereby Theorem 2.
As announced above, the proof of Theorem 2 does not require any specific

property of the isoperimetric profile under non-negative curvature as opposed to the
proof of Theorem 1. In particular, the borderline case of exponential concentration
and isoperimetry is covered by Theorem 2. While this case only concerns Cheeger
or Poincaré type inequalities, the above proof had however to jump to entropic
inequalities.

It is easy to modify the preceding argument to include E. Milman’s extension
[Mi3] to the case of some possible negative curvature Ricg +HessgV ≥ −κ, κ > 0,

whenever αμ(r) ≤ C e−δκr2 , r > 0, for some δ > 1
2 . This is reached through the

slight improvement of (5) into

μ
(
Ptf ≥

(
2
∫
fdμ

)(λ−1)/λ
e(λ−1)r2/4ρ(t)

)
≤ αμ(r)

where ρ(t) = (1− e−2κt)/2κ and λ > 1. The condition δ > 1
2 is then achieved for t

large enough and λ close to one. This condition is optimal as shown in [C-W].

5. Extensions and consequences

The preceding proofs are presented in a standard Riemannian framework but
only rely on specific abstract semigroup tools. As such, they are of potential use
in more general settings. This however only concerns Theorem 2 since the proof of
Theorem 1 uses a special property of the isoperimetric profile only known so far on
manifolds or manifolds with densities.

A first instance of illustration is precisely the framework in which the semigroup
ideas and techniques were developed, namely the case of diffusion operators in the
sense of D. Bakry and M. Émery [B-E], [Ba1, Ba2], dealing with second order
Markov diffusions L on some state space X with invariant probability distribution
μ. The metric in this case is defined by the Γ operator associated to L as

d(x, y) = sup
{
f(x)− f(y); Γ(f) ≤ 1 μ-almost everywhere

}
, x, y ∈ X.

These operators nicely include the examples of the Laplacian on a Riemannian
manifold and of Laplacian plus drift on a manifold with density. We refer to [Ba1]
for the basic properties of these operators, and various examples and applications.

Another observation is that the relevant property throughout the argument is
the commutation inequality√

Γ(Ptf) ≤ K Pt

(√
Γ(f)

)
for some constant K ≥ 1. This property for K = 1 is actually equivalent to the
curvature condition Γ2 ≥ 0 ([Ba1, Ba2], [Le4]), but its validity for K > 1 may be
established and used in non elliptic contexts where there is actually no lower bound
on the Ricci curvature, such as on the Heisenberg group [Li]. We refer to the recent
[B-B-B-C] for a discussion of functional inequalities for heat kernel measures of
hypoelliptic models, and examples of illustrations where the results of this note
may be applied.
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In settings where the main results of E. Milman are satisfied, several conse-
quences, in particular to functional inequalities, may be developed and expanded.
The recent paper [Mi4], as well as the former ones [Mi1]–[Mi2], give a full ac-
count on these various consequences and applications and we refer to them for
further developments. The idea is that concentration inequalities are typically de-
rived from suitable functional inequalities (such as Poincaré or logarithmic Sobolev
inequalities) while isoperimetric type inequalities ensure the validity of functional
inequalities. Theorems 1 and 2 may thus be formulated (and probably are more
useful) as equivalences between concentration and functional inequalities under cur-
vature conditions. To illustrate this principle, and to conclude this paper, we briefly
present, following [Mi4], one such application to logarithmic Sobolev inequalities.
For simplicity in the notation, we keep the Riemannian framework although the
conclusions are similar in the more general settings alluded to above.

A Borel probability measure μ on (X, g) is said to satisfy a logarithmic Sobolev
inequality if there is a constant a > 0 such that for all smooth enough functions f
on X such that

∫
f2dμ = 1,

(9)

∫
f2 log f2dμ ≤ a

∫
|∇f |2dμ.

It is said further to satisfy a defective logarithmic Sobolev inequality if there are
constants a, b > 0 such that for all such f ’s,

(10)

∫
f2 log f2dμ ≤ a

∫
|∇f |2dμ+ b.

It is a classical result, going back to I. Herbst (cf. [Le3, Le5]), that under
a logarithmic Sobolev inequality (9), the measure μ has Gaussian concentration

αμ(r) ≤ C e−r2/C , r > 0, where C only depends on a. Now, provided the convexity
assumption (1) holds (with dμ = e−V dx), Theorem 2 ensures that the measure μ
satisfies a Gaussian isoperimetric type inequality. Following [Le1], the latter then
implies a defective logarithmic Sobolev inequality (10), with constants a, b only de-
pending on C (in particular independent of the dimension of the underlying state
space). Actually, since we also have then linear isoperimetry, and thus a Cheeger
and in turn a Poincaré inequality, the defective logarithmic Sobolev inequality may
be tightened into a full logarithmic Sobolev inequality (cf. e.g. [Ba1]). We summa-
rize the conclusion into the following statement (due to E. Milman [Mi4]).

Proposition 5. If a probability measure dμ = e−V dx on (X, g) satisfies the
logarithmic Sobolev inequality (9) for some constant a > 0, then μ has Gaussian

concentration αμ(r) ≤ C e−r2/C , r > 0, where C > 0 only depends on a. Con-

versely, if μ has Gaussian concentration αμ(r) ≤ C e−r2/C , r > 0, and if the
convexity assumption (1) holds, then μ satisfies the logarithmic Sobolev inequality
(9) with a > 0 only depending on C.

Parts of the result actually extend to defective logarithmic Sobolev inequalities.
Namely, under a defective logarithmic Sobolev inequality (10), μ satisfies Gaussian
concentration in the sense that, for some (large) constant C > 0 only depending on

a, b, μ(Ar) ≥ 1−C e−r2/C , r > 0, at least for every set A in X with μ(A) ≥ 1− 1
C

(cf. [Le2]). Under the convexity assumption (1), the proof of Theorem 2 then
similarly shows that a Gaussian isoperimetric type inequality holds, at least for
every set A with a small measure. This property implies back a defective logarithmic
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Sobolev inequality (with constants independent of the dimension). In a manifold
context, where the isoperimetric profile is concave under non-negative curvature,
the Gaussian isoperimetry type inequality then holds for all sets, and not only small
ones. In this case therefore, a defective logarithmic Sobolev inequality implies a
true logarithmic Sobolev inequality.

Acknowledgement. I would like to thank E. Milman for his interest in this work.
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