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Abstract. — Let M be a complete n-dimensional Riemanian man-
ifold with non-negative Ricci curvature in which one of the Sobolev
inequalities ([ \f]pdv)l/p <C(f \Vf\qdv)l/q, feCE(M),1<qg<n,
1/p = 1/q — 1/n, is satisfied with C' the optimal constant of this in-
equality in R™. Then M is isometric to IR".

Let M be a complete Riemannian manifold of dimension n > 2. Denote by dv the
Riemannian volume element on M and by V the gradient operator.

In this note, we are concerned with manifolds M in which a Sobolev inequality of
the type

1) (/ If\pdv)l/p <o(/ IVf!qdv)l/q,

1 <qg<mn 1/p =1/qg— 1/n, holds for some constant C' and all C*° compactly
supported functions f on M. The best constants C' = K(n,q) for which (1) holds in
IR™ are known and were described by Th. Aubin [Au] and G. Talenti [Ta]. Namely,

K(n,1) =n"tw, 1/n Shere w, is the volume of the Euclidean unit ball in IR™, while

n(qg — (q—=1)/q n 1/n
K(n,q) = % (H) <munl“(n/l;)(F(Z }r) 1- n/q)>

if ¢ > 1. Moreover, for ¢ > 1, the equality in (1) is attained by the functions
(A 4 |z|9/la=)1=(n/9) =\ > 0, where |z| is the Euclidean length of the vector z in
IR"™. We are actually interested here in the geometry of those manifolds M for which
one of the Sobolev inequalities (1) is satisfied with the best constant C' = K(n,q) of
IR™. The result of this note is the following theorem.

Theorem. Let M be a complete n-dimensional Riemannian manifold with non-
negative Ricci curvature. If one of the Sobolev inequalities (1) is satisfied with
C = K(n,q), then M is isometric to IR".



The particular case ¢ = 1 (p = n/(n — 1)) is of course well-known. In this case
indeed, the Sobolev inequality is equivalent to the isoperimetric inequality

(vol, ()" " < K(n, 1)vol,_1(09)

where 0f) is the boundary of a smooth bounded open set Q2 in M. If we let V(zg,s) =
V(s) be the volume of the geodesic ball B(zg,s) = B(s) with center zy and radius s
in M, we have

%Voln (B(s)) = vol,—1(dB(s)).

Hence, setting (2 = B(s) in the isoperimetric inequality, we get
V(s) =D/ < K(n, 1)V (s)

for all s. Integrating yields V(s) > (nK(n,1))""s", and since K(n,1) = n=twy " for
every s,

(2) V(s) > Vo(s)

where Vj(s) = wy,s™ is the volume of the Euclidean ball of radius s in IR". If M has non-
negative Ricci curvature, by Bishop’s comparison theorem (cf. e.g. [Ch]) V(s) < Vj(s)
for every s, and by (2) and the case of equality, M is isometric to IR". The main interest
of the Theorem therefore lies in the case ¢ > 1. As usual, the classical value ¢ = 2 (and
p = 2n/(n —2)) is of particular interest (see below). It should be noticed that known
results already imply that the scalar curvature of M is zero in this case (cf. [He], Prop.
4.10).

Proof of the Theorem. 1t is inspired by the technique developed in the recent
work [B-L] where a sharp bound on the diameter of a compact Riemannian manifold
satisfying a Sobolev inequality is obtained, extending the classical Myers theorem.

We thus assume that the Sobolev inequality (1) is satisfied with C' = K(n,q) for
some g > 1. Recall first that the extremal functions of this inequality in IR" are the
functions (X + |z]¢)2= (/9 X > 0, where ¢’ = ¢/(q — 1). Let now z( be a fixed point
in M and let § > 1. Set f = 07 'd(-,z9) where d is the distance function on M. The
idea is then to apply the Sobolev inequality (1), with C' = K(n, q), to (A+ fq/)l_(”/q),
for every A > 0 to deduce a differential inequality whose solutions may be compared
to the extremal Euclidean case. Set, for every A > 0,

1 1
F(\) = n—l/()\—f—fq')"—l dv.

Note first that F'is well defined and continuously differentiable in A. Indeed, by Fubini’s
theorem, for every A > 0,




(where we recall that V(s) = V(xo,s) is the volume of the ball with center xy and
radius s). By Bishop’s comparison theorem, V' (s) < V(s) for every s. It follows that
0 < F(A) < oo and that F' is differentiable.

Together with a simple approximation procedure, apply now the Sobolev inequality
(1) with C = K(n,q) to (A + f9)1=(/9 for every A > 0. Since |Vf| < 1 and
1/p=1/q—1/n, we get

([ tr) " <moa G2 cle)”

In other words, setting

for every A > 0,
(3) a(=F' W) = AF'(\) < (n— 1)F(N).

We now compare the solutions of the differential inequality (3) to the solutions H of
the differential equality

(4) a(—H'W)"? = XH'(\) = (n — 1)H()), A> 0.

It is plain that a particular solution Hy of (4) is given by the extremal functions of the
Sobolev inequality in IR", namely

1 1 A
H = — —d = —

where

1 1 q (a(n—q)\r/(r-a)
o(1) n—1 / n (14 |z]9))n—1 R q( )

(as a solution of (4)).

We claim that if F'(\g) < Hop(Ao) for some Ao > 0, then F'(\) < Hy(\) for every
A < Xg. Indeed, if this is not the case, let A1 be defined by

Al = sup{)\ < /\0,F()\) = Ho()\)}

Now, for every A > 0, ox(X) = aX /P + \X is strictly increasing in X > 0 so that (3)
reads as
—F'(0N) < g3 ((n - DF (V)
while, by (4),
—Hg(\) = o3 ((n = 1)Ho(N).
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Therefore
(F — Ho)'(A) > o5 ' ((n = 1)Ho(N)) — 3 ' ((n = 1)F(X)) >0

on the set {F < Hy}. Hence (F' — Hp)' > 0 on the interval [\, \g] so that F' — Hj is
non-decreasing on this interval. But then, in particular,

0= (F—Hy)(M) < (F—Hp)(A) <0

which is a contradiction.

Recall now, A > 0,

) = [ g = 0 e = s
= — xr = S S = .
0 n—1 Jgn O+ [2]7) 1 ) O sy NCOOE

The local geometry indicates that

e FQA)
> 6" .
(5) hg\n_}glf o)) = 0" > 1
Indeed, write
o0 q/—l
F(\) = '9(”_1)(1// V(s) o ds.
M =q V6 G

As V(s) ~ Vy(s) when s — 0, for every € > 0, there is 6 > 0 such that, for every A > 0,

’
g7 1

o0 Sq/—l )
— > (1— -
/o V(s) @72 57) ds > ( 6)/0 Vo(s) 677 T 57) ds

1/q’
(1 . 6) /0 54 1
Z eq’((n/q)—l))\(n/q)—l . VO(S)—(l n Sq,)n ds.

Hence, for every A > 0,

5/0XM sa' 1
PO o o L9 " Vo) iy ds
Ho(N) ~ 122 Vo(s) (ljf's;,l)n ds ,

from which (5) follows as A — 0.

We can now conclude the proof of the Theorem. By the claim and (5), we have
that F(\) > Hy(A) for every A > 0, that is

/000 [V(0s) — Vo(s)] ———~ds > 0.
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Letting 6 — 1,

for every A > 0. Since by Bishop’s theorem V(s) < Vj(s) for every s when M has
non-negative curvature, it must be that V(s) = Vy(s) for almost every s, and thus
every s by continuity. By the case of equality in Bishop’s theorem, M is isometric to
IR™. The proof of the theorem is complete. O

It is natural to conjecture that the Theorem may actually be turned into a volume
comparison statement as it is the case for ¢ = 1. That is, in a manifold M satisfying
the Sobolev inequality (1) with the constant K (n,q) for some ¢ > 1, and without any
curvature assumption, for every zy and every s,

V(xog,s) > Vo(s).

This is well-known up to a constant (depending only on n and ¢) but the preceding
proof does not seem to be able to yield such a conclusion.

To conclude this note, we comment some related comparison theorem. The Sobolev
inequality (1) belongs to a general family of inequalities of the type

1/r 0/s (1-0)/q
(/\fl’"dv> §O</|f|sdv) (/IVf|"dv) . Fecrn,

with

(cf. [B-C-L-SC]). Inequality (1) corresponds to § = 0. When ¢ = 2, the classical value,
and r = 2, other choices of interest are § = 2/(n + 2) which corresponds to the Nash
inequality

1+(n/2) 4/n
(6) ( / !f|2dv) < c( / |f|dv> / VfPds, feC5(M),

and the limiting value = 1 which corresponds to the logarithmic Sobolev or entropy-
energy inequality

o leogﬂdvsglog(c/ er|2dv), feceon, [ =

(cf. [Da]). As for the Sobolev inequality (1), the optimal constants for these two
inequalities (6) and (7) in IR™ are known ([C-L] and [Ca] respectively), so that one
may ask for a statement analogous to the Theorem in case of these inequalities. As a
result, it was shown in [B-C-L] that this is indeed the case for the logarithmic Sobolev
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inequality (7), that is, a n-dimensional Riemannian manifold with non-negative Ricci
curvature satisfying (7) with the best constant of IR™ is isometric to IR"™. The proof there
relies on optimal heat kernel bounds in manifolds satisfying the logarithmic Sobolev
inequality (7) with the best constant of IR". Namely, if p;(x, y) denotes the heat kernel
on M, then, for every t > 0,

(09) € —— 0(e,y)
sup pi\r,y) > = Sup p\x,y
sweM (Amt)"/2 o yeme

where p?(z,y) is the heat kernel on IR". One then concludes with the results of P. Li
[Li] relating an optimal large time heat kernel decay to the maximal volume growth
of balls in manifolds with non-negative Ricci curvature. The analogous results for the
Nash inequality (6) are so far open.
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