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Abstract. — Let M be a complete n-dimensional Riemanian man-
ifold with non-negative Ricci curvature in which one of the Sobolev
inequalities

(∫
|f |pdv

)1/p ≤ C
(∫
|∇f |qdv

)1/q, f ∈ C∞0 (M), 1 ≤ q < n,
1/p = 1/q − 1/n, is satisfied with C the optimal constant of this in-
equality in IRn. Then M is isometric to IRn.

Let M be a complete Riemannian manifold of dimension n ≥ 2. Denote by dv the
Riemannian volume element on M and by ∇ the gradient operator.

In this note, we are concerned with manifolds M in which a Sobolev inequality of
the type

(1)
(∫

|f |pdv

)1/p

≤ C

(∫
|∇f |qdv

)1/q

,

1 ≤ q < n, 1/p = 1/q − 1/n, holds for some constant C and all C∞ compactly
supported functions f on M . The best constants C = K(n, q) for which (1) holds in
IRn are known and were described by Th. Aubin [Au] and G. Talenti [Ta]. Namely,
K(n, 1) = n−1ω

−1/n
n where ωn is the volume of the Euclidean unit ball in IRn, while

K(n, q) =
1
n

(n(q − 1)
n− q

)(q−1)/q( Γ(n + 1)
nωnΓ(n/q)Γ(n + 1− n/q)

)1/n

if q > 1. Moreover, for q > 1, the equality in (1) is attained by the functions
(λ + |x|q/(q−1))1−(n/q), λ > 0, where |x| is the Euclidean length of the vector x in
IRn. We are actually interested here in the geometry of those manifolds M for which
one of the Sobolev inequalities (1) is satisfied with the best constant C = K(n, q) of
IRn. The result of this note is the following theorem.

Theorem. Let M be a complete n-dimensional Riemannian manifold with non-

negative Ricci curvature. If one of the Sobolev inequalities (1) is satisfied with

C = K(n, q), then M is isometric to IRn.



The particular case q = 1 (p = n/(n − 1)) is of course well-known. In this case
indeed, the Sobolev inequality is equivalent to the isoperimetric inequality(

voln(Ω)
)(n−1)/n ≤ K(n, 1)voln−1(∂Ω)

where ∂Ω is the boundary of a smooth bounded open set Ω in M . If we let V (x0, s) =
V (s) be the volume of the geodesic ball B(x0, s) = B(s) with center x0 and radius s

in M , we have
d

ds
voln

(
B(s)

)
= voln−1

(
∂B(s)

)
.

Hence, setting Ω = B(s) in the isoperimetric inequality, we get

V (s)(n−1)/n ≤ K(n, 1)V ′(s)

for all s. Integrating yields V (s) ≥ (nK(n, 1))−nsn, and since K(n, 1) = n−1ω
−1/n
n , for

every s,

(2) V (s) ≥ V0(s)

where V0(s) = ωnsn is the volume of the Euclidean ball of radius s in IRn. If M has non-
negative Ricci curvature, by Bishop’s comparison theorem (cf. e.g. [Ch]) V (s) ≤ V0(s)
for every s, and by (2) and the case of equality, M is isometric to IRn. The main interest
of the Theorem therefore lies in the case q > 1. As usual, the classical value q = 2 (and
p = 2n/(n − 2)) is of particular interest (see below). It should be noticed that known
results already imply that the scalar curvature of M is zero in this case (cf. [He], Prop.
4.10).

Proof of the Theorem. It is inspired by the technique developed in the recent
work [B-L] where a sharp bound on the diameter of a compact Riemannian manifold
satisfying a Sobolev inequality is obtained, extending the classical Myers theorem.

We thus assume that the Sobolev inequality (1) is satisfied with C = K(n, q) for
some q > 1. Recall first that the extremal functions of this inequality in IRn are the
functions (λ + |x|q′)1−(n/q), λ > 0, where q′ = q/(q − 1). Let now x0 be a fixed point
in M and let θ > 1. Set f = θ−1d(·, x0) where d is the distance function on M . The
idea is then to apply the Sobolev inequality (1), with C = K(n, q), to (λ + fq′)1−(n/q),
for every λ > 0 to deduce a differential inequality whose solutions may be compared
to the extremal Euclidean case. Set, for every λ > 0,

F (λ) =
1

n− 1

∫
1

(λ + fq′)n−1
dv.

Note first that F is well defined and continuously differentiable in λ. Indeed, by Fubini’s
theorem, for every λ > 0,

F (λ) = q′
∫ ∞

0

V (θs)
sq′−1

(λ + sq′)n
ds
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(where we recall that V (s) = V (x0, s) is the volume of the ball with center x0 and
radius s). By Bishop’s comparison theorem, V (s) ≤ V0(s) for every s. It follows that
0 ≤ F (λ) < ∞ and that F is differentiable.

Together with a simple approximation procedure, apply now the Sobolev inequality
(1) with C = K(n, q) to (λ + fq′)1−(n/q) for every λ > 0. Since |∇f | ≤ 1 and
1/p = 1/q − 1/n, we get(∫

1
(λ + fq′)n

dv

)1/p

≤ K(n, q)
(n− q

q − 1

)(∫
fq′

(λ + fq′)n
dv

)1/q

.

In other words, setting

α =
(
K(n, q)

(n− q

q − 1

))−q

,

for every λ > 0,

(3) α
(
−F ′(λ)

)q/p − λF ′(λ) ≤ (n− 1)F (λ).

We now compare the solutions of the differential inequality (3) to the solutions H of
the differential equality

(4) α
(
−H ′(λ)

)q/p − λH ′(λ) = (n− 1)H(λ), λ > 0.

It is plain that a particular solution H0 of (4) is given by the extremal functions of the
Sobolev inequality in IRn, namely

H0(λ) =
1

n− 1

∫
IRn

1
(λ + |x|q′)n−1

dx =
A

λ(n/q)−1

where

A = H0(1) =
1

n− 1

∫
IRn

1
(1 + |x|q′))n−1

dx =
q

n− q

(α(n− q)
n(q − 1)

)p/(p−q)

(as a solution of (4)).

We claim that if F (λ0) < H0(λ0) for some λ0 > 0, then F (λ) < H0(λ) for every
λ ≤ λ0. Indeed, if this is not the case, let λ1 be defined by

λ1 = sup
{
λ < λ0;F (λ) = H0(λ)

}
.

Now, for every λ > 0, ϕλ(X) = αXq/p + λX is strictly increasing in X ≥ 0 so that (3)
reads as

−F ′(λ) ≤ ϕ−1
λ

(
(n− 1)F (λ)

)
while, by (4),

−H ′
0(λ) = ϕ−1

λ

(
(n− 1)H0(λ)

)
.
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Therefore

(F −H0)′(λ) ≥ ϕ−1
λ

(
(n− 1)H0(λ)

)
− ϕ−1

λ

(
(n− 1)F (λ)

)
≥ 0

on the set {F ≤ H0}. Hence (F −H0)′ ≥ 0 on the interval [λ1, λ0] so that F −H0 is
non-decreasing on this interval. But then, in particular,

0 = (F −H0)(λ1) ≤ (F −H0)(λ0) < 0

which is a contradiction.

Recall now, λ > 0,

F (λ) =
1

n− 1

∫
1

(λ + fq′)n−1
dv = q′

∫ ∞

0

V (θs)
sq′−1

(λ + sq′)n
ds

while

H0(λ) =
1

n− 1

∫
IRn

1
(λ + |x|q′)n−1

dx = q′
∫ ∞

0

V0(s)
sq′−1

(λ + sq′)n
ds =

A

λ(n/q)−1
.

The local geometry indicates that

(5) lim inf
λ→0

F (λ)
H0(λ)

≥ θn > 1.

Indeed, write

F (λ) = q′θ(n−1)q′
∫ ∞

0

V (s)
sq′−1

(θq′λ + sq′)n
ds.

As V (s) ∼ V0(s) when s → 0, for every ε > 0, there is δ > 0 such that, for every λ > 0,∫ ∞

0

V (s)
sq′−1

(θq′λ + sq′)n
ds ≥ (1− ε)

∫ δ

0

V0(s)
sq′−1

(θq′λ + sq′)n
ds

≥ (1− ε)
θq′((n/q)−1)λ(n/q)−1

∫ δ/θλ1/q′

0

V0(s)
sq′−1

(1 + sq′)n
ds.

Hence, for every λ > 0,

F (λ)
H0(λ)

≥ θn
(1− ε)

∫ δ/θλ1/q′

0
V0(s) sq′−1

(1+sq′ )n ds∫∞
0

V0(s) sq′−1

(1+sq′ )n ds
,

from which (5) follows as λ → 0.

We can now conclude the proof of the Theorem. By the claim and (5), we have
that F (λ) ≥ H0(λ) for every λ > 0, that is∫ ∞

0

[
V (θs)− V0(s)

] sq′−1

(λ + sq′)n
ds ≥ 0.
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Letting θ → 1, ∫ ∞

0

[
V (s)− V0(s)

] sq′−1

(λ + sq′)n
ds ≥ 0

for every λ > 0. Since by Bishop’s theorem V (s) ≤ V0(s) for every s when M has
non-negative curvature, it must be that V (s) = V0(s) for almost every s, and thus
every s by continuity. By the case of equality in Bishop’s theorem, M is isometric to
IRn. The proof of the theorem is complete.

It is natural to conjecture that the Theorem may actually be turned into a volume
comparison statement as it is the case for q = 1. That is, in a manifold M satisfying
the Sobolev inequality (1) with the constant K(n, q) for some q > 1, and without any
curvature assumption, for every x0 and every s,

V (x0, s) ≥ V0(s).

This is well-known up to a constant (depending only on n and q) but the preceding
proof does not seem to be able to yield such a conclusion.

To conclude this note, we comment some related comparison theorem. The Sobolev
inequality (1) belongs to a general family of inequalities of the type(∫

|f |rdv

)1/r

≤ C

(∫
|f |sdv

)θ/s(∫
|∇f |qdv

)(1−θ)/q

, f ∈ C∞0 (M),

with
1
r

=
θ

s
+

1− θ

p

(cf. [B-C-L-SC]). Inequality (1) corresponds to θ = 0. When q = 2, the classical value,
and r = 2, other choices of interest are θ = 2/(n + 2) which corresponds to the Nash
inequality

(6)
(∫

|f |2dv

)1+(n/2)

≤ C

(∫
|f |dv

)4/n∫
|∇f |2dv, f ∈ C∞0 (M),

and the limiting value θ = 1 which corresponds to the logarithmic Sobolev or entropy-
energy inequality

(7)
∫

f2 log f2dv ≤ n

2
log

(
C

∫
|∇f |2dv

)
, f ∈ C∞0 (M),

∫
f2dv = 1

(cf. [Da]). As for the Sobolev inequality (1), the optimal constants for these two
inequalities (6) and (7) in IRn are known ([C-L] and [Ca] respectively), so that one
may ask for a statement analogous to the Theorem in case of these inequalities. As a
result, it was shown in [B-C-L] that this is indeed the case for the logarithmic Sobolev
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inequality (7), that is, a n-dimensional Riemannian manifold with non-negative Ricci
curvature satisfying (7) with the best constant of IRn is isometric to IRn. The proof there
relies on optimal heat kernel bounds in manifolds satisfying the logarithmic Sobolev
inequality (7) with the best constant of IRn. Namely, if pt(x, y) denotes the heat kernel
on M , then, for every t > 0,

sup
x,y∈M

pt(x, y) ≤ 1
(4πt)n/2

= sup
x,y∈IRn

p0
t (x, y)

where p0
t (x, y) is the heat kernel on IRn. One then concludes with the results of P. Li

[Li] relating an optimal large time heat kernel decay to the maximal volume growth
of balls in manifolds with non-negative Ricci curvature. The analogous results for the
Nash inequality (6) are so far open.
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