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PANEITZ-TYPE OPERATORS AND APPLICATIONS

ZINDINE DJADLI, EMMANUEL HEBEY, anp MICHEL LEDOUX

To the memory of André Lichnerowicz

Given (M, g) a smooth 4-dimensional Riemannian manifold,detbe the scalar
curvature ofg, and letRg, be the Ricci curvature of. The Paneitz operator, discov-
ered in [21], is the fourth-order operator defined by

(2
Piu= A2u—div, <§Sgg—2R%) du,

whereAgu = —div, Vu is the Laplacian ofi with respect tog. When(M, g) is the
4-dimensional standard unit sphes#, #), we get that

P}fu = A,%u +2Ahu.

The Paneitz operator is conformally invariant in the sense thgt=f ¢%g is a
conformal metric tq, then for allu € C*° (M),

4. 4y ph
Pg u=e Pg (u).

The 2-dimensional analogue of this relation is
Agu = e_z‘pAgu.

When the dimension is 2, it is well known that the scalar curvaturesarid g are
related by the equation

1 1.,
Ag(/)—"ESg = ESge w.
When the dimension is 4, we get that
Pio+ Q% = 05",

where

1
04 = é(AgSg+S§—3| Rg [2).
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130 DJADLI, HEBEY, AND LEDOUX

With respect to the Euler-Poincaré characteristic, in dimension 2, we have that

1
X (M) = E/M Sedvg,

while in dimension 4,

1 1w 2. of
X(M)=@/M Z|Wg| + 0, ) dvg,

whereW, stands for the Weyl tensor gf Beautiful works onPg4 have been developed
recently by Beckner [2], Branson-Chang-Yang [4], Chang-Yang [7], Chang-Gursky-
Yang [6], and Gursky [12]. Also see the survey Chang [5]. The Paneitz operator was
generalized to higher dimensions by Branson [3]. Giy&h g) a smooth compact
Riemanniam-manifold,n > 5, let P; be the operator defined by

) n—4
Plu = ASu—divg(a,Seg+ba RG) du+ —5— Qs

where
1 n3—4n?+16n—16 2
Qe = o 2% T BT 2 —2)? ¢ (22 %!
and
(n—2)244
[ e e e——
2n—1)(n—2)
b 4

n—2"
If § =% Y is a conformal metric tg, then for allu € C>®° (M),

P; (lfl(ﬂ) — g0(?1-‘1—4)/(71—4) Pg{lu

In particular,

n—=4 (444

—— Qi :

These two relations have well-known analogues when dealing with the conformal
LaplacianL, the second order operator whose expression is given by

Py =

n—2

Lgu = Agu+ msgu.

If § =¢%®"2gis a conformal metric t, for all u € C*°(M), we get that

Lg (up) = (p(n+2)/(n—2)Lg ().
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In particular,

T an—1)"¢
On the standard unit sphe¢§”, 1), n > 5, the expression aP}’ is

n n—2 S (n+2)/(n—2)‘

P,’fu:A%u—i—anhu—i—dnu, (0.2)

where

cn = 1-(n2—2n—4),
2 (0.2)

-4
" n(n2—4),

dy =
16

thatis,c, = n(n—1ay +(n— Dby, d, = (n—4) Q" /2. Note thatP}' = (L})2—2L.
Given (M, g) a smoothn-dimensional compact Riemannian manifoldz> 5, and
a > 0O real, we letP, be the fourth-order operator defined by

PguzAéZ,u—i-ocAgu. (0.3)

Keeping in mind the expression GT;' on the standard sphere, we referRp as a
Paneitz-type operator. Results and remarks often shift between operatapg, lied
Paneitz-Branson-type operators like

ﬁgu = Agu +aAgu+Bu,

wherea and g are real numbers. Here we should reg&das the essential part of

13g, like the Laplacian is the essential part of the conformal Laplacian, and note that
the Paneitz-Branson operatsf reduces toﬁg wheng is Einstein. A natural space
when studyingp, is the Sobolev spacsz(M) defined as the completion 6f>° (M)

with respect to the norm

2 2,112 2 2
]l = [IVZullz+ 1 Vallz +[lull2.

Following standard notationg, ||, in the above expression stands for th&-norm
(with respect to the Riemannian measdrg). As is well known and easy to see, for
allu e C®(M),

(Agu)® < n|V2ul?.

Conversely, by the Bochner-Lichnerowicz-Weitzenbdck formula we get that
[ |V2u|?dv, =/ |Agu|2dvg—/ RG, (Vu, Vi) dvg
M M M

5/ |Agu|2dvg+k/ |Vul?du,,
M M
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wherek is such thaR¢, > —k. Hence,| - “sz defined by

||u||§12=/ (Pgu)udvg—f-/ uzdvg
2 M M

is a norm onsz(M) that is equivalent to the above more classical prie Here and
in what follows,

/(Pgu)udvg=/ (Agu)zdvg+a/ IVul?dvg.
M M M

By the Sobolev embedding theorem (see, e.g., [14] and recalk thel), we get an
embedding of#2(M) in L% (M), where

2n
2= .
n—4

This embedding is critical. It is also continuous, so that there existR andB € R
such that for alk € H2(M),

||u||§j < Af (Peu)udvg + Bllull3. (S1)
M
Another possible inequality is that for adle HZZ(M),
<4 [ (Paudv,+Blul,. (52)
M 1
where||- || ;2 is the usual norm off2(M) given by
lull?,2 = Va3 + llul3.
1

Giveni =1,2, we defineAg)

pt(M) as the best constadtin (Si). Formally,

o

opt(M) =inf {A € R s.t. 3B € R with the property thatsSi) is valid},

where by (Si) is valid”, we mean tha{Si) holds withA and B for all u HZZ(M).
Similarly, we defineBé’p)t(M) as the best constaltin (Si), that is,
Bé’gt(M) =inf { B € R s.t. 34 € R with the property thatSi) is valid}.

Section 1 of this paper is devoted to the study of these best constants. We determine
their exact values and investigate the corresponding optimal inequalities. Applications
to a fourth-order partial differential equation of critical growth are presented in Sec-
tion 2, with special attention devoted to the standard sphere and the Paneitz-Branson
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operatorP;’ given by (0.1). The results we formulate do involve at some point con-
ditions on the parameter > 0 in the definition(0.3) of P,. It appears that plays a
central role. Results may be expressed equivalently in terms of conditiossand
B for the operator

Pou = Agu +alAgu+Bu

(and we do so for the operat#}’ on the sphere). For the sake of comparison with the
classical Sobolev inequalities, and in order to preserve the enerfyras)udv,,
we deal with definition(0.3) for Paneitz-type operators.

1. Optimal inequalities. As a starting point, let us consider the Euclidean in-
equalityVu € @(R"), n > 5,

f
2t 2/ 2
|u| dx <K | (Au)“dx,
n [Rn

where A stands for the Laplacian with respect to the Euclidean metric. The best
constantk in this inequality was studied by Edmunds, Fortunato, and Janelli [10],
Lieb [18], and Lions [19]. IfK¢ stands for this best constant, it was shown that

n

Kg'=n2n(n—4)(n?— 4T (2)4/" ()~ 4",

The sharp Euclidean Sobolev inequality is then

) 2/2%
(/ |u|2‘dx> 51{0/ (Au)?dx. (1.1)
n |Rn

Its extremal functions are

—(n—4)/2
e xg(x) = (Ix —xo2+€2) "2,

and we have that

i
A2uy o =n(n—4)n®—dui .

Givena > 0 real, in what follows, we let? be as in(0.3), with g = § being the
Euclidean metric. In other words,

Pu = A%y +aAu.

The first result we prove is the following.
LEmma 1.1 Forall u € 3(R"), n > 5,

» 2/2t
|u|“ dx < Ko (Puw)udx, (1.2)
n [Rn

and Ky is the best constant in this inequality.
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Proof. Suppose thatt > 0 is such that for all € @(R"),

([ora) =
lu| dx <A [ (Puudx. (1.3)
n R~

Let % be the unit ball inR”. Then for allu € %(%),

. 2/2%
(/ Ju|? dx) SA/(Pu)udx.
B B

HE ,(%) = completion off(%) w.r.t. | - 12+

Also let

HE (%) = completion of® (%) w.rt. |- 2+

where, as above,
||M||22=/(PM)de+/ u?dx.
2 B PB

The embedding of§ (%) in HZ (%) is compact, while the embedding & ; ()
in L2(®) is continuous. It easily follows that for ary> 0, there exists3. > 0 such
that for allu € I(B),

2 2 2
e < ellulp + Bellul3.

In particular,
€

B.—1+¢
vyl < Aull2+ e 2
[Vull5 < 1 | Aull5 1ae lluell5

— €

and we get that for any > 0, there exist3. > 0 such that for alli € %(%),

2/2¢
(/ |u|2ﬁdx> S(A—i-e)/(Au)zdx—l—Be/ u?dx.
B B B

Let %5 be the ball of center 0 and radids> 0. For any$ < 1, anye > 0, and all
u € D(Rs),

2/2¢
( Iulzﬁdx> <(A+e) (Au)zdx—i-Be/ uldx.
Bs Bs Bs

By Holder’s inequality,

. . 2/2¢
f uldx < |Bs|t2/? (/ |u|? dx) :
RBs B
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where|%;| stands for the Euclidean volume @f;. Choosings small, we are led to
the following: for anye > 0, there exist$ > 0 such that for all € %(%;),

i 2/2¢
(/ lu|% dx) <(A+2¢) | (Au)?dx.
Bs

Bs
Givenu € @(R") andx > 0, letu; (x) = u(Ax). Fora large,u; € 9(%;s). In addition,

. 2/2¢ : 2/2¢
(/ |uz |2 dx) =4 (/ |u|? dx> ,
RBs By

(Aus)?dx = 24" | (Au)?dx.
Bs Bs

As a consequence, for alle &(R"),

2t 2z 2
|u|“ dx < (A+2¢) o (Au)“dx,

so that ifA is as in(1.3), thenA 4+ 2¢ > K. Sincee is arbitrary,A > Ky. Indepen-
dently, we clearly get frongl.1) that for allu € &(R"),

8
o 2/2
[u|” dx <Ko (Pu)udx,
n Rn

so thatA = K in (1.3) is an admissible value. Lemma 1.1 is established. O

while

The following lemma easily follows from Lemma 1.1.

LemMMAa 1.2 Let (M, g) be a smooth, compaci-dimensional Riemannian man-
ifold, n > 5. Any constantd in (S1) or (§2), whatever the constam®, has to be
greater than or equal tKp.

Proof. Givenxg € M, we consider a geodesic, normal coordinates systerp. at
We let B, () be the ball on which this coordinates system is defined. GiverD,
choosings sufficiently small, and by local comparison of the Riemannian metric with
the Euclidean metric in the above coordinates system, we easily get(fbrand
(S2) that for allu € 9(%s),

3, < (A+e)/[R (Pu)udx + Bllull3, (1.4)
lull3, < (A+e)/ (Pu)udx+ B|u|?,. (1.5)
R? Hl

where the norms ané in the above expressions are understood with respect to the
Euclidean metric. Passing in the coordinates system, we indeed have that

(Agu)? < (Au)?4-E(8)|V2u|? +£(8)|Vu|?,
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whereé(8) — 0 ass — 0, while by the Bochner-Lichnerowicz-Weitzenbéck formula,

/ |V2u|2dx=[ (Au)?dx.
n Rn

As in the proof of Lemma 1.1, it is enough to deal with4). Applying Hoélder’s
inequality to theL2-norm of«, with (1.4) as in the proof of Lemma 1.1, we get that
for all ¢ > 0, there exist$ > 0, such that for all: € %(%s),

lull3, < (A+2e)/ (Puyudx.
[Rn

For homogeneity reasons, see once more the proof of Lemma 1.1; such an inequality,
if valid for functions with small support, has to be valid for all functions with compact
support. By Lemma 1.1, this implies that2¢ > Ko. Sincee is arbitrary, this proves

the result. O

The answer to the first question we asked, dealing with the exact vakJ&),gnM ),
now follows from Lemma 1.2.

THEOREM 1.1 Let(M, g) be a smooth, compact;dimensional Riemannian man-
ifold, n > 5, and letP, be as in (0.3), that is,
Pou = Aé%u +alAgu.

For anye > 0, there existB, € R such that for allu € H22(M),
lul3: < (1+€)Ko / (Pgu)udvg + Be|lu|3, (1.6)
M

July = W+ eKo [ (Paudv + Belul?, (17)
M

In particular, Af)lp)t(M) = Agzp)t(M) = Ko. Moreover, we can choosB. depending

only onn, €, a, a bound for the Ricci curvature Rof g, and a positive lower bound
for the injectivity radius, of g.

Proof. It suffices to prove the result f@d.6), since
luall3 < Nl -

Let A > O be suchthatRg | < A, and leti > 0 be such that, > i. By a well-known
result of Anderson [1], th€>Y/2-harmonic radius of is bounded from below by a
positive constant depending mainly @nA, andi. More precisely, give@d > 0, there
existsry =rg(n, 8, A, i), depending only on these constants, such that the following
holds: for anyx € M, there exists a harmonic chaston the ballB, (rg) with the
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property that

1 .
1—+83ij < gij < (1+98)é;; as bilinear forms

anr sup|dkg (x)|+Xn:r3/2sup\3kgij(y)—3kgij(z)| -
H k8ij H =
k=1 % k=1 Y7z dg(y.2)%2

8’

whered, is the distance with respect g and theg;;'s stand for the components
of g in the harmonic coordinates system. Without loss of generality, we may assume
thatry < 1/2. Lete > 0 be given. The expression of the Laplacian in harmonic
coordinates is

Agu = —g" d;;u.
As we easily check, ifs = §(¢) is small enough, for alk € M, and allu €
D (B (rg)), then

/[R" (P(“O‘Pil))(uoﬁﬂfl)dx <(1+¢) /M(Pgu)udvg.

Similarly, for all x € M, and allu € %(By(rg)),

7
/ u|? dv, 5(1+e)/ |wop™b[* dx.
M R~

It follows from these relations and Lemma 1.1 that for any 0, there exist$ > 0
such that for alkt € @(B, (rg)),

2/2°
(/M|u|zﬂdvg) §<1+§>K0/M(Pgu)udvg. (Sioc)

Since M is compact, it can be covered by a finite number of b&lSry/2), i =
1,...,N. As is by now classical, we may choose these balls such that any point in
M has a neighborhood that intersects at nfpsof the B,, (rg)’s, where the integer

So = So(n, €, A,i) depends only om, €, A, andi. Leto; € D(B,, (rg)) be such that
0<wo; <lande; =1in By, (rg/2). We set

s

i
ok 0‘13

Clearly, (1;) is a partition of unity subordinated to the coveri(®y, (rz)) such that
the ./n;’s are smooth. As we easily check, we may assume that

|V/ni| < Ha,
|Ag\/m| = Ha,
VA /ni| < Ha,

ni =
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whereH,, H», andH3 only depend om, ¢, A, andi. Givenu € C*>° (M), we write that
el = 1Pz 2 = Y e = D | /it
i i
With (Sioc), it follows that for allu € C*° (M),
" 2/2* ¢ X
(/M|u| dvg) = (1+3) KOXi:/M(Ag(ﬁu)) dv,
€ 2
+a <1+ 5) KOZ/M |V (/niu) | dv,.
Hence,
2/28
ot € . 2
(/M lu| dvg> < (1+ é) KOXi:/M ni (A gi)2dvg
€ 2
+(1+ E) KoXi:/M(Ag\/E) uzdvg
€ 2
+4(1+§>KOZ/M(V\/E, Vu): dvg
1
Ko [ Vs (8ey)do
Ko /M Vi (Bg)(V /i, Vu) dvg - (1.8)

)
)
—4(1+§)K02/M (Ae/T0)ulV 7. V), dvg
)
)

+2a <1+g> KOXi:/MMJE(V\/E, Vu)gdvg.

Sincery < 1/2, and ifs is sufficiently small, we get that for everye M, ¢(B+(rg))
C B, where? stands for the unit ball ifR” with center 0. As in the proof of Lemma
1.1, giveneg > 0, there exist€"1, depending only omg, such that for alk € 9(%),

/ \VulPdx < 9/(Au)2dx+C1/ u2dx.
B 2 Jg ®
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As before, this implies that for al € M, and allu € 9(B, (rg)),
/ |Vu|?dvg 560/ (Agu)zdvg—i-Cz/ u?dvg,
M M M
whereC2 depends only omg. Let us now deal with the various terms(8). As a
starting point,
Z/ ni (Agu)?du, =/ (Agu)?du,
; M M

and
2
2/ (Ag /M) u?dvg < SOHZZ/ u? dvy.
f M M
To ease the notations, sBt = B,, (ry). Then, as is easily checked,
2 2
Z/M(vﬁ, Vu: dvg < Z/MWﬁ] \Vu2dv,
i i
< HfZ/% |Vul?dv,
i i
< erOZ/% (Agu)zdvg+ch72/973 u?dv,
i i i

i

< Soneo/ (Agu)zdvg—i—SoleCz/ u? dvg.
M M

Similarly,

Xi:fMﬁu(Agu)(Agﬁ)dvg = ;/MW«/E, Vu) u (A g /i) dvg
+ZfMﬁ|Vu|2(Agﬁ)2dUg
+;/Mﬁu<V“’V(Agﬁ))gd”g '

Hence,
Xi:fM ST (Agi) (Ag /) dvg

§(H1H2+H3)Z/B |u||Vu|dvg+H222A& |Vul?dv,
i Hof i P

1 1
< E(H1H2+H3)Z/ uzdvg+<§(H1H2+H3)+H22>Z/ |Vul?dvg.
i %,‘ i %i
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As above, this leads to

ZfM (A gu) (Mg /7)) dvg

S
< <?0(H1H2+H3)+SOH22> €0 f (Agu)’duy
M
So So 2 2
+ E(H1H2+H3)+ E(H1H2+H3)+50H2 Co u-dvg.
M
On the other hand,

1
Z/M Vi (A u)(V/ni, w)g dvg = > Z/M(Agu)(Vm, Vu)gdvg =0,

while

S [ (el i, v, do
i
sHleZ/ ul[Vuldvg
i
H{H> 2 H1H> 2
== Zéu dvg+— Xi:f%iwm dv,.

Here again, it follows that

'Z/M (Ag/mi)u(V /i, Vu)gdvg

H1H>

HiH
< Soeo/ (Agu)2duvg + —=22
2 M

So(1+ Cz)/ u?dv,.
M

Moreover,

Z/ ni|Vul?dvg < Z/ |Vul?>dv, < Soeof (Agu)zdvg+50C2f u?dvy,
i M i Bi M M

while

Z/ }Vﬁ|2u2dvg§SoH22/ u? dvg
—Jm M
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and

Z/Mua/m(va/ﬁi,Vu)gdvg
i
Hp 2 Hy 2
<Hp / lu||Vuldvy < — / udvg+ — / |Vul|dv

< —=S80€0 | (Agu)dvg+—So(1+C2) | u“duv,.
2 M 2 M

Summarizing our various estimates, we get that fonalC* (M),

. 2/2¢ ¢
(/ u)? dvg> < ((1+§) K0+C360)/ (Agu)zdvg+C4f W2 dv,,
M M M

where the constartts, explicitly known, depends only an ¢, o, A, andi, and where
the constanty, explicitly known, depends only om, €, «, €g, A, andi. Choosingeg
such that .

C3e0 = EKO

proves the theorem. 0

By Theorem 1.1ASK(M) = A%\(M) = Ko. It is natural to ask whether these
constants are attained {i§1) and (5§2), a question to which we now turn. We do
believe that the answer should be positive for what concgi®s and a partial result
in that direction is given by Theorem 1.2. The answer(f&) might be more delicate
as shown by Proposition 1.2. As a starting point, we state the following elementary
lemma that is used in the proof of Theorem 1.2.

LemMA 1.3 GivenM a smooth, compact-dimensional manifold; > 5, andgi,
g2 =¥ =Yg, two conformal metrics o,

/(szu)“dvgzz_/ (Poy () (ug) dvg, +R
M M

for all u € C*(M), whereP, and P,, are as in (0.3) withg = g1, g2, and wherexr,
explicitly known, is made of lower-order terms in the sense that far=alll, 2, and
all u e C®(M),

|R| sAi/ |Vu|2dvg,.+B,-/ u?dvy,,
M M
the constantsi; and B; being independent of.

Proof. The proof is simple. We may see the result as an easy consequence of the
relation

P (u) = o~ "D/ =D PR (ug).

We may also proceed by direct computation. O
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We now prove the following theorem, which yields a partial answer to the question
we raised above. As already mentioned, the case wiiéreg) is not conformally flat
remains open.

THEOREM 1.2 Let(M, g) be a smooth, compact;dimensional Riemannian man-
ifold, n > 5. If g is conformally flat, themf)%)t(M) = Ky is attained in(S2). In other

words, there exist8 € R such that
2 2
2, < Ko/ (Pyuyudvy + Bllull?,
M 1

for all u € HZ2(M).

Proof. Since(M, g) is compact and conformally flat, it can be covered by a finite
number of open subsef;, i =1,..., N, such that
(1) for anyi, there existg; € C*(M), ¢; > 0, with the property that the metric
gi = <pf/("74)g is flat on<;;
(2) for anyi, and if g; is as above($;, g;) is isometric to an open subset &f
equipped with the Euclidean metric.
Let (n;) be a partition of unity subordinated to the cover{gy). Without loss of gen-

erality, we may assume that for any,/n; € C°(M). Givenu € C* (M), write that

) 2/2t ” 2/28
() <22 o)

4/(n—4)

1

For anyi, lety; = ¢; ' so thatg = ¢ gi. Then for allu € C® (M),

it f
| Wil v = [ |l du,.
M M

It follows from Lemma 1.1 that

([ 1w )™ = Ko [ () (s s,

By Lemma 1.3, for any, and for allu € C*°(M),

(/M|ﬁu|2ndvg>2/2ﬁ < KO/M Py (/itiu) (/iiu) dv,

+Ai/ |Vu|2dvg+Bi/ u?dv,.
M M
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Hence, for allu € C* (M),

(/M lu|2ﬁdvg>2/2n : KOXi:/M P (/miu) (Vniu) dvg

+ <Xi:A,~> fM Vul2dv, + (Z Bi) /Muzdvg‘

Now, as in the proof of Theorem 1.1,
> [ P () dv,
=3 [ (el avera Y [ [9(m) Pav,
<y fM ni(Agu)2dvg+y /M(Agﬁ)zuzdvg
i i
+4Z/M(vﬁ, w)idvg+ZZ/Mﬁu(Agu)(Agﬁ)dvg
i i
_4Z/M Vi (B gV /i, Vu) dvg
i
_4Z/M (Ag/mi)ulV /i, V), dvg
i
+aZ/ n,-|Vu|2dvg+ozZ/ |Vﬁ|2u2dvg
i M ; M
+2a2/ uﬁ(Vﬁ,Vu)gdvg.
—Ju
We again analyze the various terms in this expression. First,
Zf m(Agu)Zdvng (Agu)?duy,
—Ju M
while 5
Z/ (Agﬁ)zuzdvg§N<maxmax|Agﬁ\) / u? dv,.
M i M M

i

Similarly,

2
Z/M(Vﬁ, vu)zdvg < N(miameax|V\/ﬁ|) /M|Vu|2dvg.

i
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On the other hand,

3, Va0 (de ) dvg =3 [ 9375l (/) vy
+Z/M ﬁ|vu|2(Agﬁ)2dvg

X [ (o () i

so that

[ V(i
i

N

< E(ml_axmA?xWA/ni|)(miaxmﬁ?x|Ag4/n,-|) /M u?dv,
N
+E(miaxmA?x|V4/n,-})(miaxmﬂ?x}Aw/77,-|) /M \Vu|?dv,
+N(maxmax|A «/_n-|)2/ \Vul?dv
i VR A I 8

+ maxmax|VAgﬁ|)/ u? dvg
i M M

N(
2
N 2
+—(maxmax|VAga/n,-|) |Vul®dv,.
2\ i M M
Furthermore,

1
Z/M Vi (Ag)(V /15, Vi) dvg = 5 Z/M(Agu)(Vm, Vu)gdvg =0,

while

5 [ (e Y

N
< E(miaxmﬁx]Ag\/ﬁD (miameax|Vﬁ|) /Muza’vg

N
+5 (miameax|Agﬁ|) (miaxmﬂ?x|vﬁ|) fM \Vu|?dvg.

For the next terms, note that

Z/ 77,-|Vu|2dvg=/ |Vul?dv,
i M M
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and

Z/ {Vﬁ|2u2dv8§N(m_axmax|Vﬁ|)Z/ u?dvg.
—JM iM M

Finally,

Z fM u /i {V /i, V), dvg

N
< E(miaxmﬁx|vﬁ})/Mu2dvg

N
+—<maxmax]V4/n,- ])/ |Vul?du,.
2 i M M

As a conclusion, for alk € C* (M),

) 2/
(f |u|2‘dvg) 51(0/ (Agu)zdvg—i-A/ |Vu|2dvg+Bf u?dvy,
M M M M

where A and B are constants that do not depend anin particular, and for all
ueC®M),

)2, < Ko/ (P dvg +Cllul,.
M 1
whereC does not depend an Theorem 1.2 is thus proved. O

When dealing with conformally flat manifolds, Theorem 1.2 indicatesAlézé[(M)
= Ky is attained in(S2). The situation forS1) is more complicated. In particular,
in the definition(0.3) of P, has to play a role. This is what we prove in Proposition
1.2 below. As a first result, we establish the following.

ProposITION 1.1 Let(S", h) be the standard unit sphere Bf'+1, n > 5, and let
P;! be the Paneitz-Branson operator given by (0.1), that is,

(TS A}zlu +cp Apu+dyu.
Then

2 (Plu)ud
ot s (PR U (1.9)
ueC>(S")\{0} (fs" |u|2ﬁdvh)2/2 Ko

with the additional property that for ang > 1, and anyxg € S”, if

(/32_ 1)(n—4)/4
~ (B—cos)n=4/2’

ug
wherer is the distance 08" to xg, then
Pjlug = dnulzg:_l,

andug realizes the infimum in the left-hand side of (1.9).
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Proof. We first prove(1.9). For that purpose, letgp be some point ors”, and
let d : §$"\{xo} — R" be the stereographic projection of paig If § stands for the
Euclidean metric oR", then

(CD_l)*h — (p4/(}’l—4)8’

4 (n—4)/4
#n) = (W) |

By conformal invariance of the Paneitz-Branson operat@r we get that for all
u € 2(R"),

where

Jon (D)2 4| Vul?+dui®) dvp— [ra(Alug))?dx

= , (1.10)
2/2¢ 2/t
(Jpo 101 dvg)” (Jao lu 1% dx)”
wherei = (®~1)*h. Suppose now that
o Jo (AP +enl VulP+du?) v 1 (1.11)
ueC>®(SM\{0} (fon |u|2:dvh)2/2ﬁ Ko’ '

and letug € C*°(S"), ug # 0, be such that

Jon ((Anu0)?+ca|Vuo? +dyug) dvy, Ut
(fy luol? duy)* Ko

We let (ny), s > 0 small, be a family of smooth functions ¥ having the property
that 0<ny; < 1,7, =00nBp(s), ny =1 0onS"\Bp(2s), and

C1
|V77s| f ]

K

Co
|Ahns| =< S_’

whereCj, C» are positive constants that do not dependsoin order to get such
a family, we might fix somey,, as above, for instance, radially symmetric, and set
then, fors < sq, ns = 14, (r/s). As we easily check,

im /Sn((Ahus)z+cn|ws|2+§1nu§)dvh _ fsn((Ahuo)2+cn|Vuo|2+§1nu3)dvh
=0 (fyn s 1% dvy)?"? (fr luol? dvy)*/*

whereu, = nyug. Just note here that

E)

1
‘!@oﬁvh (Bp(25)\Bp(s)) =0,
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where V;,(2) stands for the volume dR with respect ta:. Choosings sufficiently
small, it follows from(1.10) and(1.11) that there existg, € @(R") of the form

Us = (us © q>—l)¢)’

such that

S (M) dx 1
(f[Rn |ﬁs|2: d)C)Z/Zn KO

This contradicts(1.1) so that(1.9) follows. Now letug be as in the statement of
the proposition. As is well known, see, for instance, [15], there exists a conformal
diffeomorphismgg of (S”, k) such that

oph=ug" Vn.
By conformal invariance of the Paneitz-Branson oper&frthis implies that
281
Pjlug = dnuﬁ )
On the other hand, it is easily seen that
di’l KO = a);4/n7

wherew, stands for the volume o with respect ta:. This follows from the relations

420, 1 = _2hm
a)n—lr(n/z)z
and "
"= n/2
wp—1I" <2> 27" e,
Noting that
/ u,zgj dvy = wy,
we get that
1 o 2/2%
P dvy = — d .
/Sn( ug)up dvn = 4 </n“ﬁ ”h)
This ends the proof of the proposition. O

As an ending result in the study of the best first constant, we now prove the
following. Since(S", k) is conformally flat, this result has to be compared to Theorem
1.2. Due to the lack of concentration, the approach we use does not allow us to
conclude whem = 5.
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ProPosITION 1.2 Let (5", h) be the standard unit sphere Bf**1, n > 6, and let
Py, be as in (0.3) withg = &, that is,

Pru = A%u +aApu.

There exist3 € R such that for allu HZZ(S”),

lull3; < Ko/ (Pyu)udvy,+ Bllull3
Sﬂ

if and only ife > ¢,, wherec, is as in (0.2).

Proof. If @ > ¢,, the result follows from(1.9), and we may takeB = Kod,,.
Suppose, on the contrary, that< ¢,. For 8 > 1 real, and- the distance oi$” to a
given point, we letg be as in Proposition 1.1, that is,

e (132_1)(}174)/4
P (B—cosr) =972

Then, for anyg > 1,
Jsn (Pjug)ugdvy _ 1

(fs,, u}%:dvh>

2/2 Ko’
Let B be given. Writing that

Phu+ Bu = Pju+ (o —cp) Apu+ (B —dy)u,
and since
2:1
ug dvy, = wy,

it follows that for anyg > 1,

S (Paug)ugdvy+ Bllugll3
2
llupll:

—i+i((a—c )/ |Vu yzdvh—F(B—d)/ Mzdvh)
Ko 2% e st

Performing the changes of variables= tan(r/2) andy = /(B+1)/(B—1)x, it is
easily seen that

(1.12)

yn—i-ldy
1+((B—D/B+1)y?) A+y2)n-2

2 oo
Vug[2dvy = C1(B.m)(B—1D) /
sn 0 (
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and that

fs ugdvy=Co(Bm)(B—1)

X\/‘+OO yn—ldy
0 (l+((/3—1)/(ﬁ+l))y2)3(1/(ﬁ—l)+(1/(ﬂ+1))y2)(1+yz)”*“’
where X
_2'(n—MHwy1 2wy
C1(B,n) = TG Ca(B,n) = GiD?
By the dominated convergence theorem; if 6,

lim /m " dy =0
p>1Jo (L4H(B-D/B+D2) (VB -D+ @/ B+D)y)A+yDr=t
while

400 yn+1dy 400 yn+1dy
lim / 7 = / T
p=1Jo (4B -D/B+D)?) A+yHn2 Joo 49

The latter integral is a finite positive constant. It follows that ik ¢, andn > 6,
then forg > 1 sufficiently close to 1,

(ot—c,,)/ |Vuﬂ|2dvh+(B—d,,)/ u%dvh <0.
sn sn

We then get with(1.12) that for 8 > 1 sufficiently close to 1,

1
f (Phug)updvy+ Bllugls < —lugll.
sn KO

This proves the proposition when> 6. If n = 6, we decompose our integrals into
three pieces by writing thafy ™ = f01+f11/”3_1+j173°ﬂ. Easy computations
then give us that

1 1
A1(B—=DIn (ﬁ—_l) < /SG |Vug|?dvy, < A2(B—1)In (ﬂ__1>
for some positive constants; < A, independent o8, while

u2dv
i s
p—~1+ (B—1)In(1/(B—1))
As above, this gives that if < cg, then forg > 1 sufficiently close to 1,

(a—ce)/ |vuﬂ{2dvh+(3—d6)/ u2 dvy <O0.
56 56

The proposition is proved. O
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Parallel with the study of the best first constant, we can ask similar questions on the
best second constant. We state our results on this parallel program without any proofs.
Details on these proofs can be found in Djadli-Hebey-Ledoux [9]. As a starting point,
it is easily seen that whatevéd, g) smooth and compact of dimensiarn= 5 is,

1 2 —4
B(()p)t(M) = B(()p)t(M) =V, /n,
whereV, is the volume of(M, g). Moreover, we can prove that these constants are
attained in the sense that there always exstsR such that for alk € H22(M),

—4
lull3, §A/M(Pgu)udvg+Vg w3, (1.13)

and such that for alt € HZ2(M),

-4
lull3, SA/M(Pgu)udvg—f—Vg /n||u||§,12.

ThereA can be chosen such that it depends only: om, a lower bound on the Ricci
curvature ofg, a lower bound on the volume af with respect tog, and an upper
bound on the diameter @ff with respect tgz. Looking for more precise information
on the remaining constant, an easy statement is thatin (1.13) has to be such that

282 V74/n

A> — 1.14
~MOata) (1.14)

wherely is the first nonzero eigenvalue of,. In the specific case of the standard
unit spherg S”, k), as proved by Beckner [2], the Sobolev inequality
P—2 2/p-1 2/p—-1
el < =—=on/ "I Vul 3w "3
holds for allp € [2, 2*]. By the variational characterization of the first nonzero eigen-
valuexq of Ay, and the Bochner-Lichnerowicz-Weitzenbéck formula, it follows that
for everyu € HZ(S"),

P—2 2/p_1 2/p—1
= P (Pawyudvy + 0 P u3.

2
u <
lully < n(n+a) g

It is natural to question whether or not this Beckner’s type inequality extends to real
numbersp such thatp > 2*. Assuming that this is the case, and, in particular, that
the inequality holds for alp € [2, 2¢], we would get that

8 —4/n —4/n

||M||§; = mwn o (Pru)udvp +wy ||M||%- (1.15)
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Observe that the first constant in this inequality is the constant give. b when
the manifold considered is the standard spherec}.dte as in(0.2). We can prove
(see [9] for details) that if < ¢,, then for allu H22(S"),

8 —4/n —4/n

2 2
lull% < . n (Pru)udvp+aoy " ullz,
S}’l

s e—— )
n—4Hn+a)
and the two constants in this inequality cannot be lowered. In a similar way, we can

prove that ife > c,, then for allu € H2(S"),

16 _ _
2 (Payudoy +on ¥ 3,

2 - -
lullz: =< = mmz—a®

and again the two constants in this inequality cannot be lowered. In parti¢ulEs)

is true ifa < ¢,, but false ifa > ¢,. It follows that Beckner's inequality does not
extend top = 2. As an ending remark, coming back to an arbitrary, smooth, compact,
Riemannian manifold of dimension> 5, we mention that it is possible to prove that

if g is such thatRc, > n— 1, then for allu € H2(M),

-4 —4
lull2, < AV, /”/M(Pgu)udvg+vg " Null3, (1.16)

whereA = A(n, «), explicitly known, depends only om anda. Let A(n,a) be the
constant involved in the above inequalities on the sphere

8 .
—  fa<cy,
A nn—4Hn+a)
A(n,a) = 16
if o >c,.

nn—4)n2—4)

With respect to what was proved by llias [16] when dealing with the Sobolev space
le, an open question we are left with is whether or (1016) holds withA = A(n, )
wheng is such thaRc, > n—1.

2. On a fourth-order partial differential equation. Let (M, g) be a smooth,
compact,n-dimensional Riemannian manifold,> 5, and letx, a be two positive
real numbers. Lef be a smooth real-valued function af. We are here concerned
with the fourth-order partial differential equation

Pou+au = fuzn_l, (E)

where, as in0.3),
Pou = Agu +alAgu.
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When referring to a solution ofE), we assume that the solution is positive and
smooth. Multiplying(E) by u, and integrating oveM, a necessary condition fQE)
to have a solution is that is positive somewhere oM. Foru in HZZ(M), we let

Ig(u)z/ (Pgu)udvg-i-a/ u? dv,.
M M

We also let
9 = {u c HZZ(M)// flulZ dvg = 1}.
M
Ouir first result here is the following theorem.

THEOREM 2.1 Let(M, g) be a smooth, compact;dimensional Riemannian man-
ifold, » > 5, let P, be the operator given by (0.3), letbe some positive real number,
and let f be a smooth positive function ad. Then the inequality

IR P p——— 2.1)

inf
ueit s ~ (maxy f)¥% Ko

always holds, with the additional property that if the inequality in (2.1) is strict, and
if a < «?/4, then the infimum in the left-hand side of (2.1) is attained by a smooth
positive function. In particular, if the inequality in (2.1) is strict and< «?/4, then

(E) possesses a smooth positive solution.

Proof. We start by proving2.1). Suppose on the contrary that

1
inf I,(u) > ———.
ueity 5@ (maxy )%% Ko

Then there exists > 0 such that for all € H22(M),

1

2/2%
2t 2
(maxy /)2/% (f, i a) ™ < oa=0) [ (Eapuan+

where, for instanceB = aKjp. If xg is a point wheref is maximum, forr > 0
sufficiently small, and alk € By, (r),

2472
fo = feo) (1-5) 7
Leté =¢/(2—¢) andB = B(1—(¢/2))~L. Then for allu € B(B,y(r)),

lull3; < Ko(1—&) / (Pgu)udvg+ Blul3.
M
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The same arguments as the ones used in the proof of Lemma 1.2 then lead to a
contradiction. It follows that2.1) holds. Let us now prove the second part of the
theorem. Ley € (2, 2%). Set

g = inf Io(u),

q
ue%f

where
9 = {u c HZZ(M)//MfW dvg = 1}.

Since the embedding dYZZ(M) in LY(M) is compact, we know from classical vari-
ational arguments that, is attained. In other words, there exisise %/ such that
I4(uy) = pg. In particular,u, is a weak solution of

-2
Poug+aug = g flugl? “uy.

By classical bootstraps, € L*(M) for all s. It easily follows that, is in fact cs.
Mimicking what is done in Van der Vorst [23], lét, be the solution of

.o a
Agug+ Euq = ‘Aguq + Euq ) .
Clearly, ii, is C?, and

Ay litg 1g) + 5 (itg 1) = 0.

It follows from the maximum principle that, > |u,|, and thati, > 0. Noting that

Lo \2 a 2
/ (Aguq-l-zuq) dvg=/ (Aguq+5uq> dvg,
M M

it follows from the assumption < «?/4 that
N L a2 o? -2
Ig(uq)=/ (Aguq—i-iuq) dvg—i-(a—Z)/ uqa’vg
M M
a? ~2 2
=,uq+<a—z) </Muqdvg—/Muqdvg> < Ug-

On the other hand,

/fﬁZdvgz/ flugl? dv,.
M M
Hence,

R 1

Ug =

N—lﬁq
(fM f“Z dvg) i
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realisesu, . Here againg, is a solution of

~ A ~q—1
Pgitg +aitg = pq fig

By classical regularityii, is in fact C*°. The family (i,) is obviously bounded in
HZZ(M). Up to the extraction of a subsequence, andjfes 2%, it converges weakly
to some nonnegativein H22(M). The embeddingizz(M) - HlZ(M) being compact,
we may also assume that it converges strongiyitDle(M). It follows from classical
arguments that is a weak solution of

Pou+au = u,fuz:*l,
whereu is given by

w =limsupu, .
q—2¢

By Lemma 2.1 belowy € L*(M) for all 5. It easily follows thatu is C*. From the
maximum principle, and noting that

an2
A, + —) u>0,
(85+3) u=
we get that; is either positive or the zero function. In both cases, it is actu#ify Let
= inf I .
Mo uedt g(u)

It is easily seen that < 10. Coming back to the familyi, ), we have that

2/q
1=(/ fﬁgdvg)
M
2/q g
§(mﬂ?xf) (/;Wuqdvg>
2/28

2/q _ 1/t
S(maxf) y2a 1/2)(/ ﬁsjdvg) ,
M M

whereV, stands for the volume o/ with respect tog. Under the assumption that
inequality (2.1) is strict, there exists > 0 such that

2/q

1—€
(maxy )2/%

We fix such are. It follows from Theorem 1.1 that there exists a constBntnde-
pendent ofy, such that

no(Ko+e) <

lig 3 < (Ko—i—e)/ (Pyiiy )ity dvg + Bllig|l5.
M
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Therefore,
2/ 21)q-1/2° -
15(mn?xf) vEMITYZ) (Ko 4€) (11g + Cllitg 13),

whereC is independent of. As ¢ — 2%, and sinceu < u, we get that
€ < Cllull3.

In particular,u # 0. It thus follows that: is a smooth positive solution @f). We
are left with the proof that.g is attained. As we easily check,

/M fu% dvg <1.
Besides,

/ (Pgu)udvg—i-a/ uzdvg =/,L/ fuzndvg,
M M M
while according to the definition qig,

) 2/2%
/ (Pgu)udvg—i—a/ uzdvg > 1o </ fuz'dvg> .
M M M

It follows that
. 1-2/24
M(/ f”z dvg) = HO-
M

/M fuzﬁdvg =1

In particular,u achieves the infimum of the definition pf. This ends the proof of
the theorem. O

Hence,u = uo and

The following lemma, based on ideas developed in Van der Vorst [23], has been
used in the proof of Theorem 2.1.

LemMMa 2.1 Let (M, g) be a smooth, compact;dimensional Riemannian man-
ifold, let « be a positive real number, Iétbe a real-valued function defined ad,
and letu € HZZ(M) be a weak solution of

2
A2 +aA u—i—a—u—bu
P ¢ g ="bu

If b e L"*(M), thenu € LS (M) for all s > 1.

Proof. We proceed as in Van der Vorst [23]. As a starting point, we claim that for
anye > 0, there existg, € L"/*(M), f. € L®(M), and a constark, > 0 such that

bu = qeu+ fe, ||QG||n/4<€a | felloo < Ke.
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Here we may assume thiatz 0, and we let
Q= {x e M/|b| <k},
Q= {x e M/|u| < l},
where ifé is such tha(2¢)¥" = ¢/2, k and! are chosen such that

10 Ly <€ and blipaang) < €

QN #0 and b#£0 onNQ.

Given p > 1 an integer that we fix below, let

1 .
—b In Ny,
ge=\ P
b in (M\)U(M\L)),

and
fe= (b_CIe)M-
Clearly, fe = 0 on M\ (2 N 2;). On the other hand,

4
lgell)3 = Ige "4 dvg + lge"/* dv,
/
QN M\ (2N€2)

< / ge M4 dvg + / e dvg + f lge "4 dv,
QiN<Y M\ M\

1 }’l/4
< <—> / |b|"/* dvg +2¢
p QN2

1 1
||C]e||n/4 < ;||b||n/4+—6.

so that

2
Choosingp such thatp > 2||b]l,,/4/€, we get that

llge ||n/4 < €.

Now, sincef, =0 on M\ (2, N ),

1
Il felloo = ‘1——‘/(1,
p

and this proves the above claim. The equation

al
Agu +aAgu+ Zu= bu
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may now be written as
Liu = qeu+ fe,
where

o
Lou= Agu—l—EM.

For anys > 1 and anyf € L*(M), there exists one and only omes H, (M) such
thatL2u = f. We let¥. be the operator

Heu = (Lg) "2(gen).
The preceding equation becomes
u—Heu = (Lg) (fo).
Letv e LS(M), lets > 2%, and letu, be such that
Lgu6 = (V.

Set§ = ns/(n+4s). Clearly,gcv € L¥ (M), and it follows from elliptic-type argu-
ments that

luells < Cligevlls.
By Holder’s inequality,
llgevlls < ligelln/allvlls

so that

luells < Cellvlls.

In other words, for alk > 2%, %, acts fromL*(M) into LS (M), and its norm is less
than or equal tae. Lets > 2 be given. Fok > 0 sufficiently small,

1
1Hellps s < >

and the operator
(I—%):L* (M) — L*(M)

has an inverse. Since
(I—9)u = (L) "%(fo)

and sinceu € Lzﬁ(M) and fe € L>®(M), we get thatu € L*(M). The lemma is
proved. O
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On what concerns Theorem 2.1, the equality2il) holds when(M, g) is the
standard unit spheres”, ), P, +a = P;', and f is a positive constant. This is just
equation(1.9) of Proposition 1.1:

nf e (Prwudv 1 2.2)
ueC>®(5")\{0} (fs |u|2”dvh)2/2: Ko

—1/28
ug = (/M fdvg) .

aVy
(fM fdvg)Z/Z:

We then get the following result from Theorem 2.1.

Independently, let

Clearly,up € 97, and
Ig(uO) =

CoroLLARY 2.1 Let (M, g) be a smooth, compact-dimensional Riemannian
manifold,n > 5, let P, be the operator given by (0.3), let> 0 be real, and letf be
a smooth, positive function defined sh If < «?/4 and if

fM fdvg
Ve maxy f

whereV, stands for the volume aff with respect tg, then(E) possesses a smooth
positive solution.

> (aKg)?2vE L (2.3)

Here again, the standard unit sphere plays a particular role in this result. As already
mentioned in the proof of Proposition 1.1,

duKo= ", (2.4)
wherew, is the volume ofS” with respect tar. It follows that if (M, g) = (S", h)
andP; +a = P}, then the right-hand side i2.3) is 1. On the contrary, the left-hand
side is always less than or equal to 1. The strict inequ@litg) is therefore never
satisfied when(M, g) = (5", h) and P +a = P;'. On the other hand, the condition
a < «?/4 does hold forP}*, and we indeed do have thdt < c2/4. As we easily
check, the difficulty mentioned above disapears when considering quotieSts of
The volume there becomes smaller, and the following result holds. In the particular
casen < 7, see also Theorem 2.2.

COROLLARY 2.2 Let (8", h) be the standardi-dimensional unit sphere; > 5.
For anye € (0, 1), there exists an integdt with the following property: iff smooth
on §” is invariant under the action of a subgroup of O (n +1) acting freely onS”
and of orderk > k., and if f is such that| f — 1| -0 < €, then the equation

A%u +cpApu+dyu = fuzj_l
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possesses a smooth, positiGeinvariant solution. In particular, there exists a metric
g in the conformal class df for which 0y=1, where

3 2
"= ———A,S Se— Rc, |4,

Q= 2= M T B 2m—22 ¢ (=22 "%

and for whichG c Isom, (5"), wherelsom, (5") stands for the isometry group 6f

with respect tqg.

Proof. Let M be the quotient manifold” /G, and letgg be its standard metric
induced byh. We still denote byf the quotient off on M. The Paneitz-Branson
operator onM is given by

Pgnou = Agou +cnAgou+dyu,
and as already mentioned), < c2/4. If f is such thai| f —1|| o < €, then

Sy f dvg . l—¢
Veomaxy f~ 14e

Now,
(duK0) 212V 327t = kzn/lzfl ((diKo0)? %0 271,
Then set u
ke = {(ifi)w 72) (dnKo)zz/(zj‘z)wn} +1,

where[x] stands for the largest integer not exceedindf £ > k., then
fdv tp 2821
fM 80 (dnKo)2 /2Vgo/ )

Voo MaXy f

Noticing that the existence of a solution to the equationvbgives the existence of
a G-invariant solution of the equation a$t, the result follows from Theorem 2.1.
O

We now concentrate on the study @) when (M, g) is the standard sphere and
P, +a = P;!. The following result, together with Theorem 2.3, shows thain the
definition of P;' is critical. In the study of(E) on the standard sphere, we do get
obstructions by Theorem 2.3 when= ¢, anda = d,,. These obstructions disappear
according to Corollary 2.3 ik < ¢,,. When studying E) on the standard sphere, both
the medium term = ¢, and the nonlinear growtp = 2* — 1 are critical. For more
details on such assertions, we refer to the remark after the proof of Theorem 2.3.
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CoROLLARY 2.3 Let(S”, k) be the standard-dimensional unit sphere, > 6, let
a anda be two positive real numbers, and Igtbe a smooth, positive function on
St Ifa< a2/4, o < ¢y, and if

AnfGo)  Ba(n—1)
=0 T i—dmrr) Y

for at least onexg where f is maximum, then the equation

A}Zlu +aApu+au = fuzt_l

possesses a smooth, positive solution.

Proof. Let xg be a point wheref is maximum, and be the distance of" to xg.
For g > 1, we letug be the function

e (’32_1)(}174)/4
P~ (B—cosr)m=9/2"

As already mentioned in the proof of Proposition ]hhndu;/("*“)h are isometric.
It follows that
21
Ppug =dyug ",

whereP;! is the Paneitz-Branson operator on the sphere, as defit@djnAccording
to the developments made in the proof of Proposition 1.2,

/(Phuﬁ)u,sdvh+a/ ug dvy
s s

=d5a)6+A(Ot—Ce)(,3—l)|n(ﬂ%_)—l—o((ﬂ—l)m(ﬂ%l)) ifn=6

= dywn +2"3(n— B —c))(B—Dwy-1l +o(B—1) if n>86,
whereA is some positive constant and
I /-+oo yn+1dy
o (A+yHr?

We now write R
f=f&o)+@A—cos)f.

It is easily seen that

i fan fd" _
lim o® =_2 L Anf (x0),
1—0% Vi (0B, (1)) n
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whereV, (3 By, (1)) stands for the area @fB,, () with respect to the metric induced

by i. By the changes of variablas= tan(r/2), and theny = /(8+1)/(8 —1)x, we
get that

(ﬂ—l)_l (l—COSr)u’zg:dvh
Byt

2n+la)n_l /«/(ﬁ-i-l)/(ﬁ—l)T yl’l+ldy
B+l S (1+(B=D/(B+1)y?)(A+y?)"
forall t € (0, ), whereT = tan(z/2). It easily follows that

2"w,—1

lim (,3—1)/ (1—cosr) fu? dvy = — T A f (x0),
B—1t sn

where

J:/Jroo yn+ldy
0o (A4y?)n

As a consequence,
" Ap f (xo0)

Wp—1
—-DJ
nwy, #-D f(xo0)

/ fuf dvy, = f(xo)o, (1— +o(B— 1)) .
Sil

Sinced,, Kg = w;4/

", and sincexq is a point wheref is maximum, we get that
fSn(Phuﬂ)uﬂ dvy, +afs,, ulzgdvh

(fsn fu,zgjdl)h)Z/zn

N W(1+B(“—06)8ﬁ +o(ep)) ifn=6

= oman iz HCE=DFo(B=D) ifn>6

whereeg = (B —1)In(1/(8 —1)), B > 0 does not depend o, and

_ 2w J<Ahf(xo) 2nl (a_cn))_

€= 2nwy, f(x0) My

As we easily check, see, for instance, Demengel-Hebey [8],

_ 1T ((n+2)/2)I'((n—6)/2) and ] — 1M((n+2)/2T((n—-2)/2)
2 I'(n—2) 2 I'(n) ‘

1

Hence,
2nl 8n(n—1)

n2—4)J] n—-6n—-Hn+2)
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Under our assumption§ < 0, so that for8 > 1 sulfficiently close to 1,

fs,,(Phuﬁ)uﬁdvh—l—afS,,u%dvh 1
< .
(fo fu[%ndvh)z/zj Ko(maxy f)%/%
The result now follows from Theorem 2.1. O

The equation involved in the study of the prescribed scalar curvature problem on
the sphere, also referred to as the Kazdan-Warner problem or the Nirenberg problem,

is the equation
nn—2)

Apu+ u =fu2*71,

where 2 = 2n/(n — 2). In the study of this equation, a celebrated result of Escobar
and Schoen [11] states that/if= 3 and if f is invariant under the action of a
nontrivial subgrougs of O (4) acting freely ons3, then the above equation possesses
a smooth, positive&; -invariant solution. In particular, under these assumptighis,
the scalar curvature of &-invariant conformal metric t&. The same result was
proved by Moser [20] when = 2 and f is assumed to be invariant under the action
of the antipodal grougs = {Id, —1d}, the only group acting freely of” when the
dimension is even. A natural question is whether such types of results do hold for
the equation

Pjlu= fuzufl.

This is the subject of the following theorem. As a first remark, note that by Edmunds-
Fortunato-Janelli [10] and Pucci-Serrin [22], low dimensions for the Euclidean bihar-
monic operator are = 5, 6, 7. As another remark, we mention that there should be an
analogue of our result whe@ acts without fixed points (i.e., for any, the G-orbit

of x has at least two elements). Concerning the above mentioned scalar curvature
problem on the sphere, this was proved by Hebey [13].

THEOREM 2.2 Let(S", h) be the standara-dimensional unit sphere,= 5, 6, or
7, and letf be a smooth positive function ¢¥i. We assume that is invariant under
the action of a nontrivial subgrou@ of O(n + 1) acting freely onS”, and ifn = 6
or 7, we assume that;, f (x) = 0 for at least onex where f is maximum. Then the
equation

Plu= fuzn_l

possesses a smooth, positivénvariant solution. In particular, there exists a metric
g in the conformal class of for which 0= 1, where

0" — 1 AS+n3—4n2+16n—162 2 Re, P
$ T 2= ¢ T B D2m—22 ¢ (n—22 "®"

and for whichG cC Isom, (S5"), wherelsom, (S") stands for the isometry group 6f
with respect tqg.
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Proof. Let M be the quotient manifold” /G, and letgg be its standard metric
induced byh. Also letu € HZZ(M), u # 0, and letz be the function ors” induced
by u. As we easily check,

fS” (P}?ﬁ)ﬂdvh _ kl,z/zﬁ fM (Pg?oﬁ)iidvgo
2 " it
(for f11Z dvg)?? (Jyr F1i11Z dvgo)?/?

wherek is the number of elements i, and f in the right-hand side of this relation
stands for the quotient of on M. The existence of a solution to the equationin
leads to the existence ofGrinvariant solution to the equation &f. Therefore, as a
consequence of Theorem 2.1, it suffices to show that

o Jsn (PRu)udvy K2z

= el (2.5)
" 2/2 . £)2/2
<4 (fon f|”|2ndvh) / (maxs» )2/ Ko

whereA stands for the subset HZZ(S") consisting of nonzer@-invariant functions.
Now let x1 be a point whergf is maximum, and denote by

Og(x1) = {x1, ..., xx}

the G-orbit of x;. If r; stands for the distance o$" to x;, letu; g, 8 > 1 be the
functions onS” defined by

b (ﬁZ_l)(n74)/4
P (B —cos) A2

As already mentioned; andui/ﬂ("_‘l)h are isometric. In particular,
H_
P}:lui,ﬁ = d”uiz,ﬂ 1
and
f
/ ufﬁdvh = wy.
Then let

k

ug = Z“ivﬁ‘

i=1

On the one handyg is G-invariant. On the other hand,

k
/ (P,;’uﬂ)uﬂdvh =kd,wy, +kdnf Mijgl (Zumg) dvy.
sn st i



164 DJADLI, HEBEY, AND LEDOUX

Set

+00 n—ld
_ 21+3n/4 y Y
A =2 “’"‘1/0 (A4y2) 072"

We claim that for alk in (0, 7),

lim (B — 1)1*"/4/ u%nﬂ_ldvh = A(n).
p—17 By

Indeed, by the change of variables= tan(r1/2) andy = /(8+1)/(B—Dx, we
get that

/ uingldvh
By @)
= C1(n, B)(B—1)"/41
/v(ﬂ+l)/(ﬂ—1)T y”_ldy
X 9,
0 1+ ((B—D/(B+1)y2) " P2+ y2) 0972
where

Ci(n, B) =2"(B+ D" w,_1

andT = tan(¢/2). The above claim then easily follows. With easier arguments, for
all h e c°(s™), and allz in (0, ),

k
. — t_1
lim (6 —1)2-"/2 / hui? P
B—1t S"™\By, (1) L ; v

It follows from these two relations that for d@le €%(s"), all 7 in (0, ), and all open
subsef2 of $” that containscy,

k k
Jim (6~ 1)z /2 /Q ¥ 5t (Zui,ﬂ> dvy = A(n) (Z fu,l(xl)) h(x1). (2.6)
i=2 i=2

whereii; 1 = (1—cosr;)*"/2. Then leto > 0 be such thaB,, (10) N By, (o) = ¥ for
i # j.Since

(a+b)% > a% +20a%1p,
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we may write that

k
/ fu%ﬁdvh > Z/ fu%ﬁdvh
NG i=1 Bxl-(to)

k k
i ft_
D) NENTTUREDW O NNt
i=1Y By (o

i=1 j#i By, (10)

k
i %1
:k/ fu? ,dvy, +2ﬁk/ fu? uip | dop.
By, (t0) o’ By, (t0) o’ Z

i=2

It follows that

f f
/S fufy dvy > kf (xp)en —kf (x) uf gduy

S™\ By, (10)
: k
fuiﬁ_l (Z umg) dvy,.
i=2

+k/ (f—f(xl))uinﬁdvh +2ﬁk/
By, (t0) B

X1 (o)

It is easily seen that
lim (8— 1)2—"/2/ uinﬂdvh =0. (2.7)
p—1F S"\By, (o)
On the other hand, for any$n <7,
lim (8— 1)2—"/2/ (f - f(xl))ufﬂ dvy, = 0. (2.8)
p—1t By, (t0) ’

Indeed, suppose that= 5. Sincex; is a critical point forf, there exists a constant
C > 0 such that for alk € By, (10),

| f(x) = f(x1)] < C(1—cosr).

With the change of variables=tan(r1/2) andy = /(8+1)/(B8 — 1)x, we get that

(1212 / (oS pdvy = O((B-1*"7),
B"l o

from which (2.8) follows. Suppose then that = 6 or 7 and thatx; is such that
Ap f(x1) = 0. We may write that there exists a constaht- 0 such that for all
x € By, (10),

| f ()= fxp)| < C(A-cosr)?
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As above, we get that
(B— 1)2_”/2/ 1- cosm)zufﬁ dv, = O((B— 1)4—n/2),
B.\’l(tO)

from which (2.8) also follows. Now, by(2.4), (2.6), (2.7), and(2.8),

o (Pluglugdvy  k-2F 14 (B—1"224(n)+o((B— 1"/2?)

(g fuZ du)?Z  FO0ZZKe 1428 =122 A +o((B =12 2)’

whereAg (n) > 0 is given by

k

A
Ax(n) = 65") 3 diax).

=2

Hence, for eveng > 1 sufficiently close to 1,

o (Plug)ugduy K2z
sn\Lpup)ip - '
(Jor fuZ dvp)?®  fEDZ Ko

In particular, since:g is G-invariant, andf (x1) = maxs: f,

inf Jn (Pyu)uduy K1-2/2
< .
WEA ([, Flul? du)®F (M )2/Z Ko

This is exactly inequality2.5). The theorem is thus proved. O

A celebrated result of Kazdan and Warner [17] states that the scalar curvature equa-
tion on the spherés”, h) possesses obstructions. We prove here that such obstructions
hold similarly for the equation

i
Pjlu= fu2 1

In the statement of Theorem 2.8y f Vg) stands for the pointwise scalar product
with respect td: of V f andV.

THEOREM 2.3 Let (S", h) be the standard-dimensional unit sphere, > 5, and
let /' be a smooth function o$i*, positive somewhere &ff. If u is a smooth positive
solution of the equation

Pjlu = fuzt_l, (2.9)

where P}’ is as in (0.1), then for any eigenfunctignof A, associated to the first
nonzero eigenvalug; = n,

(V V@) dvy = 0.
Sl'l
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In particular, for anye > 0 and any eigenfunctiop # 0 of A, associated to the first
nonzero eigenvalug; = n, (2.9) with f = 1+¢¢ does not possess a smooth, positive
solution.

Proof. The proof mainly follows what was done in Kazdan and Warner [17]. Let
¢ be an eigenfunction of\;, associated to the first nonzero eigenvalye= n, and
let u be a smooth function of". As it is easy to see,

(AGu)(VuVe) = (Aju) (VAR V) — (n—2)(Apu) (VuVe) — 2(Agu)?e,

where the sign%" means that the relation holds modulo terms in divergence form.
Clearly,

1
(M) (VARuV @) =~ §n¢(Ahu)2

so that 4
(Apu)*(VuVe) =~ %(Ahu)zw —(n—=2)(Apu)(VuVe).

Suppose now that is a solution 0f(2.9). Then

it
(Api)?p = 2(Apu) (VuVe) —nue(Apu) + fou? —dyulo —cup(Apu)

so that
—4
(en—=2)(Ayn) (V¥ p) = == (n+c)ugp (B +dyu (VY p)
_ _4
+ 227 5 P e a— 5 dntt®p = FuZ Y (Vuvy).
Since
n—-2/1 2
(Apu)(VuVe) ~ — Enu o —up(Apu)
and
-2 =""2nten
2 Cn = 2 n-r+=~cy),

the termsug(Anu) disappear. We then get that

n—

2 —4 _4
(e =Dy +dyu(Vu V) + an(puzj . annuz(p ~ FuZ Y (Vuve).

Now it is easily seen that
u(VuVe) >~ %uztp

and that 1
0 i n i
Fu®? Y (Vuve) ~ —guz (VfVe)+ ﬁfuz ?.
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Therefore,

-2 1

<2d,, - ”(”4 ) (en— 2)> W+ gu”(v 1Vg) ~0.
Since 9
24, =22 ¢, ~2),
we find that .
u% (V fVg) ~0.

This ends the proof of the theorem. O

To conclude, we collect a few remarks on Corollary 2.3 and Theorem 2.3. First, let
¢ be an eigenfunction of\;, associated to the first nonzero eigenvalye= n, and,
fore > 0, setf, = 1+¢e¢. Givena > 0, consider the equation

A}Zlu +oaApu+dyu = fguzj_l. (E%)

According to Corollary 2.3, if > 6 anda € [2./d,,c,), then there exists, > 0
such that ife < g4, (EZ) possesses a smooth positive solution. On the contrary, by
Theorem 2.3, for alh > 5 and alle > 0, (E¢ ) does not possess any smooth positive
solution. This is one of the possible illustrations of the criticality,pfve mentioned
before stating Corollary 2.3. As another remark, note that Theorem 2.3, together with
Theorem 2.1, gives another proof(@9). Indeed, suppose by contradiction tiihB)
is false. In other words, assume that

Sgn (Plu)udvy, 1

inf — < —
ueC>(5m)\{0} (fsn |u|2”dvh)2/2' Ko

Then for anyf sufficiently close to 1 in the€%-topology,

WECXSNOL ([ 12 guy)?Z (maxs £)2Z Ko

It follows from Theorem 2.1 that for such gfy the equation
Plu= fuzn_l

has a smooth, positive solution. This is in contradiction to the last part of Theorem
2.3 and thus provedl.9).
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