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PANEITZ-TYPE OPERATORS AND APPLICATIONS

ZINDINE DJADLI, EMMANUEL HEBEY, and MICHEL LEDOUX

To the memory of André Lichnerowicz

Given (M,g) a smooth 4-dimensional Riemannian manifold, letSg be the scalar
curvature ofg, and letRcg be the Ricci curvature ofg. The Paneitz operator, discov-
ered in [21], is the fourth-order operator defined by

P 4
g u=	2

gu−divg
(
2

3
Sgg−2Rcg

)
du,

where	gu=−divg∇u is the Laplacian ofu with respect tog. When(M,g) is the
4-dimensional standard unit sphere(S4,h), we get that

P 4
h u=	2

hu+2	hu.

The Paneitz operator is conformally invariant in the sense that ifg̃ = e2ϕg is a
conformal metric tog, then for allu ∈ C∞(M),

P 4
g̃ u= e−4ϕP 4

g (u).

The 2-dimensional analogue of this relation is

	g̃u= e−2ϕ	gu.

When the dimension is 2, it is well known that the scalar curvatures ofg and g̃ are
related by the equation

	gϕ+ 1

2
Sg = 1

2
Sg̃e

2ϕ.

When the dimension is 4, we get that

P 4
g ϕ+Q4

g =Q4
g̃e
4ϕ,

where

Q4
g =

1

6

(
	gSg+S2g−3|Rcg |2

)
.
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With respect to the Euler-Poincaré characteristic, in dimension 2, we have that

χ(M)= 1

4π

∫
M

Sg dvg,

while in dimension 4,

χ(M)= 1

8π2

∫
M

(
1

4
|Wg|2+Q4

g

)
dvg,

whereWg stands for theWeyl tensor ofg. Beautiful works onP 4
g have been developed

recently by Beckner [2], Branson-Chang-Yang [4], Chang-Yang [7], Chang-Gursky-
Yang [6], and Gursky [12]. Also see the survey Chang [5]. The Paneitz operator was
generalized to higher dimensions by Branson [3]. Given(M,g) a smooth compact
Riemanniann-manifold,n≥ 5, letPn

g be the operator defined by

Pn
g u=	2

gu−divg
(
anSgg+bnRcg

)
du+ n−4

2
Qn

gu,

where

Qn
g =

1

2(n−1)	gSg+ n3−4n2+16n−16
8(n−1)2(n−2)2 S2g−

2

(n−2)2 |Rcg |
2

and 

an = (n−2)2+4

2(n−1)(n−2) ,
bn =− 4

n−2.

If g̃ = ϕ4/(n−4)g is a conformal metric tog, then for allu ∈ C∞(M),

Pn
g (uϕ)= ϕ(n+4)/(n−4)P n

g̃ u.

In particular,

Pn
g ϕ =

n−4
2

Qn
g̃ϕ

(n+4)/(n−4).

These two relations have well-known analogues when dealing with the conformal
LaplacianLn

g, the second order operator whose expression is given by

Ln
gu=	gu+ n−2

4(n−1)Sgu.

If g̃ = ϕ4/(n−2)g is a conformal metric tog, for all u ∈ C∞(M), we get that

Ln
g(uϕ)= ϕ(n+2)/(n−2)Ln

g̃(u).
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In particular,

Ln
gϕ =

n−2
4(n−1)Sg̃ϕ

(n+2)/(n−2).

On the standard unit sphere(Sn,h), n≥ 5, the expression ofPn
h is

Pn
h u=	2

hu+cn	hu+dnu, (0.1)

where 

cn = 1

2
(n2−2n−4),

dn = n−4
16

n(n2−4),
(0.2)

that is,cn = n(n−1)an+(n−1)bn, dn = (n−4)Qn
h/2. Note thatP

n
h = (Ln

h)
2−2Ln

h.
Given (M,g) a smoothn-dimensional compact Riemannian manifold,n ≥ 5, and
α > 0 real, we letPg be the fourth-order operator defined by

Pgu=	2
gu+α	gu. (0.3)

Keeping in mind the expression ofP 4
g on the standard sphere, we refer toPg as a

Paneitz-type operator. Results and remarks often shift between operators likePg, and
Paneitz-Branson-type operators like

P̃gu=	2
gu+α	gu+βu,

whereα andβ are real numbers. Here we should regardPg as the essential part of
P̃g, like the Laplacian is the essential part of the conformal Laplacian, and note that
the Paneitz-Branson operatorPn

g reduces toP̃g wheng is Einstein. A natural space

when studyingPg is the Sobolev spaceH 2
2 (M) defined as the completion ofC∞(M)

with respect to the norm

‖u‖2= ‖∇2u‖22+‖∇u‖22+‖u‖22.
Following standard notations,‖ ·‖p in the above expression stands for theLp-norm
(with respect to the Riemannian measuredvg). As is well known and easy to see, for
all u ∈ C∞(M),

(	gu)
2 ≤ n|∇2u|2.

Conversely, by the Bochner-Lichnerowicz-Weitzenböck formula we get that∫
M

|∇2u|2dvg =
∫
M

|	gu|2dvg−
∫
M

Rcg(∇u,∇u)dvg

≤
∫
M

|	gu|2dvg+k

∫
M

|∇u|2dvg,
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wherek is such thatRcg ≥−k. Hence,‖·‖H2
2
defined by

‖u‖2
H2
2
=
∫
M

(Pgu)udvg+
∫
M

u2dvg

is a norm onH 2
2 (M) that is equivalent to the above more classical one‖·‖. Here and

in what follows,∫
M

(Pgu)udvg =
∫
M

(	gu)
2dvg+α

∫
M

|∇u|2dvg.

By the Sobolev embedding theorem (see, e.g., [14] and recall thatn ≥ 5), we get an
embedding ofH 2

2 (M) in L2
!
(M), where

2! = 2n

n−4.

This embedding is critical. It is also continuous, so that there existA ∈R andB ∈R
such that for allu ∈H 2

2 (M),

‖u‖22! ≤ A

∫
M

(Pgu)udvg+B‖u‖22. (S1)

Another possible inequality is that for allu ∈H 2
2 (M),

‖u‖22! ≤ A

∫
M

(Pgu)udvg+B‖u‖2
H2
1
, (S2)

where‖·‖H2
1
is the usual norm ofH 2

1 (M) given by

‖u‖2
H2
1
= ‖∇u‖22+‖u‖22.

Given i = 1,2, we defineA(i)
opt(M) as the best constantA in (Si). Formally,

A
(i)
opt(M)= inf

{
A ∈R s.t.∃B ∈R with the property that(Si) is valid

}
,

where by “(Si) is valid”, we mean that(Si) holds withA andB for all u ∈H 2
2 (M).

Similarly, we defineB(i)
opt(M) as the best constantB in (Si), that is,

B
(i)
opt(M)= inf

{
B ∈R s.t.∃A ∈R with the property that(Si) is valid

}
.

Section 1 of this paper is devoted to the study of these best constants. We determine
their exact values and investigate the corresponding optimal inequalities. Applications
to a fourth-order partial differential equation of critical growth are presented in Sec-
tion 2, with special attention devoted to the standard sphere and the Paneitz-Branson
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operatorPn
h given by(0.1). The results we formulate do involve at some point con-

ditions on the parameterα > 0 in the definition(0.3) of Pg. It appears thatα plays a
central role. Results may be expressed equivalently in terms of conditions onα and
β for the operator

P̃gu=	2
gu+α	gu+βu

(and we do so for the operatorPn
h on the sphere). For the sake of comparison with the

classical Sobolev inequalities, and in order to preserve the energy as
∫
(Pgu)udvg,

we deal with definition(0.3) for Paneitz-type operators.

1. Optimal inequalities. As a starting point, let us consider the Euclidean in-
equality∀u ∈ �(Rn), n≥ 5,

(∫
Rn

|u|2! dx
)2/2!

≤K

∫
Rn

(	u)2dx,

where	 stands for the Laplacian with respect to the Euclidean metric. The best
constantK in this inequality was studied by Edmunds, Fortunato, and Janelli [10],
Lieb [18], and Lions [19]. IfK0 stands for this best constant, it was shown that

K−1
0 = π2n(n−4)(n2−4)'

(n
2

)4/n
'(n)−4/n.

The sharp Euclidean Sobolev inequality is then

(∫
Rn

|u|2! dx
)2/2!

≤K0

∫
Rn

(	u)2dx. (1.1)

Its extremal functions are

uε,x0(x)=
(|x−x0|2+ε2

)−(n−4)/2
,

and we have that
	2u1,x0 = n(n−4)(n2−4)u2!−11,x0

.

Given α > 0 real, in what follows, we letP be as in(0.3), with g = δ being the
Euclidean metric. In other words,

Pu=	2u+α	u.

The first result we prove is the following.

Lemma 1.1. For all u ∈ �(Rn), n≥ 5,
(∫
Rn

|u|2! dx
)2/2!

≤K0

∫
Rn

(Pu)udx, (1.2)

andK0 is the best constant in this inequality.
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Proof. Suppose thatA> 0 is such that for allu ∈ �(Rn),

(∫
Rn

|u|2! dx
)2/2!

≤ A

∫
Rn

(Pu)udx. (1.3)

Let� be the unit ball inRn. Then for allu ∈ �(�),

(∫
�
|u|2! dx

)2/2!
≤ A

∫
�
(Pu)udx.

Also let

H 2
0,2(�)= completion of�(�) w.r.t. ‖·‖H2

2
,

H 2
0,1(�)= completion of�(�) w.r.t. ‖·‖H2

1
,

where, as above,

‖u‖2
H2
2
=
∫

�
(Pu)udx+

∫
�
u2dx.

The embedding ofH 2
0,2(�) in H 2

0,1(�) is compact, while the embedding ofH 2
0,1(�)

in L2(�) is continuous. It easily follows that for anyε > 0, there existsBε > 0 such
that for allu ∈ �(�),

‖u‖2
H2
1
≤ ε‖u‖2

H2
2
+Bε‖u‖22.

In particular,

‖∇u‖22 ≤
ε

1−αε
‖	u‖22+

Bε−1+ε

1−αε
‖u‖22,

and we get that for anyε > 0, there existsBε > 0 such that for allu ∈ �(�),

(∫
�
|u|2! dx

)2/2!
≤ (A+ε)

∫
�
(	u)2dx+Bε

∫
�
u2dx.

Let �δ be the ball of center 0 and radiusδ > 0. For anyδ < 1, anyε > 0, and all
u ∈ �(�δ),

(∫
�δ

|u|2! dx
)2/2!

≤ (A+ε)

∫
�δ

(	u)2dx+Bε

∫
�δ

u2dx.

By Hölder’s inequality,

∫
�δ

u2dx ≤ |�δ|1−2/2!
(∫

�δ

|u|2! dx
)2/2!

,
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where|�δ| stands for the Euclidean volume of�δ. Choosingδ small, we are led to
the following: for anyε > 0, there existsδ > 0 such that for allu ∈ �(�δ),(∫

�δ

|u|2! dx
)2/2!

≤ (A+2ε)
∫

�δ

(	u)2dx.

Givenu ∈ �(Rn) andλ > 0, letuλ(x)= u(λx). Forλ large,uλ ∈ �(�δ). In addition,(∫
�δ

|uλ|2! dx
)2/2!

= λ4−n

(∫
�δ

|u|2! dx
)2/2!

,

while ∫
�δ

(	uλ)
2dx = λ4−n

∫
�δ

(	u)2dx.

As a consequence, for allu ∈ �(Rn),(∫
Rn

|u|2! dx
)2/2!

≤ (A+2ε)
∫
Rn

(	u)2dx,

so that ifA is as in(1.3), thenA+2ε ≥ K0. Sinceε is arbitrary,A ≥ K0. Indepen-
dently, we clearly get from(1.1) that for allu ∈ �(Rn),(∫

Rn

|u|2! dx
)2/2!

≤K0

∫
Rn

(Pu)udx,

so thatA=K0 in (1.3) is an admissible value. Lemma 1.1 is established.

The following lemma easily follows from Lemma 1.1.

Lemma 1.2. Let (M,g) be a smooth, compact,n-dimensional Riemannian man-
ifold, n ≥ 5. Any constantA in (S1) or (S2), whatever the constantB, has to be
greater than or equal toK0.

Proof. Givenx0 ∈M, we consider a geodesic, normal coordinates system atx0.
We letBx0(δ) be the ball on which this coordinates system is defined. Givenε > 0,
choosingδ sufficiently small, and by local comparison of the Riemannian metric with
the Euclidean metric in the above coordinates system, we easily get from(S1) and
(S2) that for allu ∈ �(�δ),

‖u‖22! ≤ (A+ε)

∫
Rn

(Pu)udx+ B̃‖u‖22, (1.4)

‖u‖22! ≤ (A+ε)

∫
Rn

(Pu)udx+ B̃‖u‖2
H2
1
, (1.5)

where the norms andP in the above expressions are understood with respect to the
Euclidean metric. Passing in the coordinates system, we indeed have that

(	gu)
2 ≤ (	u)2+ ε̂(δ)|∇2u|2+ ε̂(δ)|∇u|2,
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whereε̂(δ)→ 0 asδ→ 0, while by the Bochner-Lichnerowicz-Weitzenböck formula,∫
Rn

|∇2u|2dx =
∫
Rn

(	u)2dx.

As in the proof of Lemma 1.1, it is enough to deal with(1.4). Applying Hölder’s
inequality to theL2-norm ofu, with (1.4) as in the proof of Lemma 1.1, we get that
for all ε > 0, there existsδ > 0, such that for allu ∈ �(�δ),

‖u‖22! ≤ (A+2ε)
∫
Rn

(Pu)udx.

For homogeneity reasons, see once more the proof of Lemma 1.1; such an inequality,
if valid for functions with small support, has to be valid for all functions with compact
support. By Lemma 1.1, this implies thatA+2ε ≥K0. Sinceε is arbitrary, this proves
the result.

The answer to the first question we asked, dealing with the exact value ofA
(i)
opt(M),

now follows from Lemma 1.2.

Theorem 1.1. Let(M,g) be a smooth, compact,n-dimensional Riemannian man-
ifold, n≥ 5, and letPg be as in (0.3), that is,

Pgu=	2
gu+α	gu.

For anyε > 0, there existsBε ∈R such that for allu ∈H 2
2 (M),

‖u‖22! ≤ (1+ε)K0

∫
M

(Pgu)udvg+Bε‖u‖22, (1.6)

‖u‖22! ≤ (1+ε)K0

∫
M

(Pgu)udvg+Bε‖u‖2H2
1
. (1.7)

In particular, A(1)
opt(M) = A

(2)
opt(M) = K0. Moreover, we can chooseBε depending

only onn, ε, α, a bound for the Ricci curvature Rcg of g, and a positive lower bound
for the injectivity radiusig of g.

Proof. It suffices to prove the result for(1.6), since

‖u‖22 ≤ ‖u‖2H2
1
.

Let,> 0 be such that|Rcg | ≤,, and leti > 0 be such thatig ≥ i. By a well-known
result of Anderson [1], theC1,1/2-harmonic radius ofg is bounded from below by a
positive constant depending mainly onn,,, andi. More precisely, givenδ > 0, there
existsrH = rH (n,δ,,,i), depending only on these constants, such that the following
holds: for anyx ∈ M, there exists a harmonic chartϕ on the ballBx(rH ) with the
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property that

1

1+δ
δij ≤ gij ≤ (1+δ)δij as bilinear forms,

n∑
k=1

rH sup
x

∣∣∂kgij (x)∣∣+ n∑
k=1

r
3/2
H sup

y �=z

∣∣∂kgij (y)−∂kgij (z)
∣∣

dg(y,z)1/2
≤ δ,

wheredg is the distance with respect tog, and thegij ’s stand for the components
of g in the harmonic coordinates system. Without loss of generality, we may assume
that rH ≤ 1/2. Let ε > 0 be given. The expression of the Laplacian in harmonic
coordinates is

	gu=−gij ∂ij u.

As we easily check, ifδ = δ(ε) is small enough, for allx ∈ M, and all u ∈
�(Bx(rH )), then∫

Rn

(
P(u◦ϕ−1))(u◦ϕ−1)dx ≤ (1+ε)

∫
M

(Pgu)udvg.

Similarly, for all x ∈M, and allu ∈ �(Bx(rH )),∫
M

|u|2! dvg ≤ (1+ε)

∫
Rn

∣∣(u◦ϕ−1)∣∣2! dx.
It follows from these relations and Lemma 1.1 that for anyε > 0, there existsδ > 0
such that for allu ∈ �(Bx(rH )),

(∫
M

|u|2! dvg
)2/2!

≤
(
1+ ε

2

)
K0

∫
M

(Pgu)udvg. (Sloc)

SinceM is compact, it can be covered by a finite number of ballsBxi (rH /2), i =
1, . . . ,N . As is by now classical, we may choose these balls such that any point in
M has a neighborhood that intersects at mostS0 of theBxi (rH )’s, where the integer
S0 = S0(n,ε,,,i) depends only onn,ε,,, andi. Let αi ∈ �(Bxi (rH )) be such that
0≤ αi ≤ 1 andαi = 1 in Bxi (rH /2). We set

ηi = α2i∑
k α

2
k

.

Clearly,(ηi) is a partition of unity subordinated to the covering(Bxi (rH )) such that
the

√
ηi ’s are smooth. As we easily check, we may assume that



∣∣∇√ηi
∣∣≤H1,∣∣	g

√
ηi
∣∣≤H2,∣∣∇	g

√
ηi
∣∣≤H3,
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whereH1,H2, andH3 only depend onn,ε,,, andi. Givenu ∈ C∞(M), we write that

‖u‖22! = ‖u2‖2!/2 ≤
∑
i

∥∥ηiu2∥∥2!/2=∑
i

∥∥√ηiu
∥∥2
2! .

With (Sloc), it follows that for allu ∈ C∞(M),

(∫
M

|u|2! dvg
)2/2!

≤
(
1+ ε

2

)
K0

∑
i

∫
M

(
	g

(√
ηiu

))2
dvg

+α
(
1+ ε

2

)
K0

∑
i

∫
M

∣∣∇(√ηiu
)∣∣2dvg.

Hence,(∫
M

|u|2! dvg
)2/2!

≤
(
1+ ε

2

)
K0

∑
i

∫
M

ηi(	gu)
2dvg

+
(
1+ ε

2

)
K0

∑
i

∫
M

(
	g
√
ηi
)2
u2dvg

+4
(
1+ ε

2

)
K0

∑
i

∫
M

〈∇√ηi,∇u
〉2
g
dvg

+2
(
1+ ε

2

)
K0

∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

−4
(
1+ ε

2

)
K0

∑
i

∫
M

√
ηi(	gu)

〈∇√ηi,∇u
〉
g
dvg

−4
(
1+ ε

2

)
K0

∑
i

∫
M

(
	g
√
ηi
)
u
〈∇√ηi,∇u

〉
g
dvg

+α
(
1+ ε

2

)
K0

∑
i

∫
M

ηi |∇u|2dvg

+α
(
1+ ε

2

)
K0

∑
i

∫
M

∣∣∇√ηi
∣∣2u2dvg

+2α
(
1+ ε

2

)
K0

∑
i

∫
M

u
√
ηi
〈∇√ηi,∇u

〉
g
dvg.

(1.8)

SincerH ≤ 1/2, and ifδ is sufficiently small, we get that for everyx ∈M, ϕ(Bx(rH ))

⊂�, where� stands for the unit ball inRn with center 0. As in the proof of Lemma
1.1, givenε0> 0, there existsC1, depending only onε0, such that for allu ∈ �(�),∫

�
|∇u|2dx ≤ ε0

2

∫
�
(	u)2dx+C1

∫
�
u2dx.
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As before, this implies that for allx ∈M, and allu ∈ �(Bx(rH )),∫
M

|∇u|2dvg ≤ ε0

∫
M

(	gu)
2dvg+C2

∫
M

u2dvg,

whereC2 depends only onε0. Let us now deal with the various terms in(1.8). As a
starting point, ∑

i

∫
M

ηi(	gu)
2dvg =

∫
M

(	gu)
2dvg

and ∑
i

∫
M

(
	g
√
ηi
)2
u2dvg ≤ S0H

2
2

∫
M

u2dvg.

To ease the notations, set�i = Bxi (rH ). Then, as is easily checked,∑
i

∫
M

〈∇√ηi,∇u
〉2
g
dvg ≤

∑
i

∫
M

∣∣∇√ηi
∣∣2|∇u|2dvg

≤H 2
1

∑
i

∫
�i

|∇u|2dvg

≤H 2
1 ε0

∑
i

∫
�i

(	gu)
2dvg+H 2

1C2

∫
�i

u2dvg

≤ S0H
2
1 ε0

∫
M

(	gu)
2dvg+S0H

2
1C2

∫
M

u2dvg.

Similarly,∣∣∣∣∣
∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

∣∣∣∣∣=
∣∣∣∣∣
∑
i

∫
M

〈∇√ηi,∇u
〉
g
u
(
	g
√
ηi
)
dvg

+
∑
i

∫
M

√
ηi |∇u|2(	g

√
ηi
)2

dvg

+
∑
i

∫
M

√
ηiu

〈∇u,∇(	g
√
ηi
)〉
g
dvg

∣∣∣∣∣ .
Hence,∣∣∣∣∣
∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

∣∣∣∣∣
≤ (H1H2+H3)

∑
i

∫
�i

|u||∇u|dvg+H 2
2

∑
i

∫
�i

|∇u|2dvg

≤ 1

2
(H1H2+H3)

∑
i

∫
�i

u2dvg+
(
1

2
(H1H2+H3)+H 2

2

)∑
i

∫
�i

|∇u|2dvg.
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As above, this leads to∣∣∣∣∣
∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

∣∣∣∣∣
≤
(
S0

2
(H1H2+H3)+S0H

2
2

)
ε0

∫
M

(	gu)
2dvg

+
(
S0

2
(H1H2+H3)+

(
S0

2
(H1H2+H3)+S0H

2
2

)
C2

)∫
M

u2dvg.

On the other hand,

∑
i

∫
M

√
ηi(	gu)

〈∇√ηi,∇u
〉
g
dvg = 1

2

∑
i

∫
M

(	gu)〈∇ηi,∇u〉g dvg = 0,

while ∣∣∣∣∣
∑
i

∫
M

(
	g
√
ηi
)
u
〈∇√ηi,∇u

〉
g
dvg

∣∣∣∣∣
≤H1H2

∑
i

∫
�i

|u||∇u|dvg

≤ H1H2

2

∑
i

∫
�i

u2dvg+H1H2

2

∑
i

∫
�i

|∇u|2dvg.

Here again, it follows that

∣∣∣∣∣
∑
i

∫
M

(
	g
√
ηi
)
u
〈∇√ηi,∇u

〉
g
dvg

∣∣∣∣∣
≤ H1H2

2
S0ε0

∫
M

(	gu)
2dvg+H1H2

2
S0(1+C2)

∫
M

u2dvg.

Moreover,

∑
i

∫
M

ηi |∇u|2dvg ≤
∑
i

∫
�i

|∇u|2dvg ≤ S0ε0

∫
M

(	gu)
2dvg+S0C2

∫
M

u2dvg,

while ∑
i

∫
M

∣∣∇√ηi
∣∣2u2dvg ≤ S0H

2
2

∫
M

u2dvg
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and ∣∣∣∣∣
∑
i

∫
M

u
√
ηi
〈∇√ηi,∇u

〉
g
dvg

∣∣∣∣∣
≤H2

∑
i

∫
�i

|u||∇u|dvg ≤ H2

2

∑
i

∫
�i

u2dvg+H2

2

∑
i

∫
�i

|∇u|2dvg

≤ H2

2
S0ε0

∫
M

(	gu)
2dvg+H2

2
S0(1+C2)

∫
M

u2dvg.

Summarizing our various estimates, we get that for allu ∈ C∞(M),

(∫
M

|u|2! dvg
)2/2!

≤
((
1+ ε

2

)
K0+C3ε0

)∫
M

(	gu)
2dvg+C4

∫
M

u2dvg,

where the constantC3, explicitly known, depends only onn,ε,α,,, andi, and where
the constantC4, explicitly known, depends only onn,ε,α,ε0,,, andi. Choosingε0
such that

C3ε0= ε

2
K0

proves the theorem.

By Theorem 1.1,A(1)
opt(M) = A

(2)
opt(M) = K0. It is natural to ask whether these

constants are attained in(S1) and (S2), a question to which we now turn. We do
believe that the answer should be positive for what concerns(S2), and a partial result
in that direction is given by Theorem 1.2. The answer for(S1)might be more delicate
as shown by Proposition 1.2. As a starting point, we state the following elementary
lemma that is used in the proof of Theorem 1.2.

Lemma 1.3. GivenM a smooth, compact,n-dimensional manifold,n≥ 5, andg1,
g2= ϕ4/(n−4)g1 two conformal metrics onM,∫

M

(
Pg2u

)
udvg2 =

∫
M

(
Pg1(uϕ)

)
(uϕ)dvg1+�

for all u ∈ C∞(M), wherePg1 andPg2 are as in (0.3) withg = g1,g2, and where�,
explicitly known, is made of lower-order terms in the sense that for alli = 1,2, and
all u ∈ C∞(M),

|�| ≤ Ai

∫
M

|∇u|2dvgi +Bi

∫
M

u2dvgi ,

the constantsAi andBi being independent ofu.

Proof. The proof is simple. We may see the result as an easy consequence of the
relation

Pn
g2
(u)= ϕ−(n+4)/(n−4)P n

g1
(uϕ).

We may also proceed by direct computation.
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We now prove the following theorem, which yields a partial answer to the question
we raised above. As already mentioned, the case where(M,g) is not conformally flat
remains open.

Theorem 1.2. Let(M,g) be a smooth, compact,n-dimensional Riemannianman-
ifold, n≥ 5. If g is conformally flat, thenA(2)

opt(M)=K0 is attained in(S2). In other
words, there existsB ∈R such that

‖u‖22! ≤K0

∫
M

(Pgu)udvg+B‖u‖2
H2
1

for all u ∈H 2
2 (M).

Proof. Since(M,g) is compact and conformally flat, it can be covered by a finite
number of open subsets4i , i = 1, . . . ,N , such that
(1) for anyi, there existsϕi ∈ C∞(M), ϕi > 0, with the property that the metric

gi = ϕ
4/(n−4)
i g is flat on4i ;

(2) for anyi, and if gi is as above,(4i,gi) is isometric to an open subset ofRn

equipped with the Euclidean metric.
Let (ηi) be a partition of unity subordinated to the covering(4i). Without loss of gen-
erality, we may assume that for anyi,

√
ηi ∈ C∞(M). Givenu ∈ C∞(M), write that

(∫
M

|u|2! dvg
)2/2!

≤
∑
i

(∫
M

∣∣√ηiu
∣∣2! dvg

)2/2!
.

For anyi, letψi = ϕ−1i so thatg = ψ
4/(n−4)
i gi . Then for allu ∈ C∞(M),

∫
M

∣∣√ηiu
∣∣2! dvg =

∫
M

∣∣√ηiuψi

∣∣2! dvgi .
It follows from Lemma 1.1 that

(∫
M

∣∣√ηiuψi

∣∣2! dvgi
)2/2!

≤K0

∫
M

(
Pgi

(√
ηiuψi

))(√
ηiuψi

)
dvgi .

By Lemma 1.3, for anyi, and for allu ∈ C∞(M),

(∫
M

∣∣√ηiu
∣∣2! dvg

)2/2!
≤K0

∫
M

Pg

(√
ηiu

)(√
ηiu

)
dvg

+Ai

∫
M

|∇u|2dvg+Bi

∫
M

u2dvg.



PANEITZ-TYPE OPERATORS AND APPLICATIONS 143

Hence, for allu ∈ C∞(M),

(∫
M

|u|2! dvg
)2/2!

≤K0

∑
i

∫
M

Pg

(√
ηiu

)(√
ηiu

)
dvg

+
(∑

i

Ai

)∫
M

|∇u|2dvg+
(∑

i

Bi

)∫
M

u2dvg.

Now, as in the proof of Theorem 1.1,

∑
i

∫
M

Pg

(√
ηiu

)(√
ηiu

)
dvg

≤
∑
i

∫
M

(
	g

(√
ηiu

))2
dvg+α

∑
i

∫
M

∣∣∇(√ηiu
)∣∣2dvg

≤
∑
i

∫
M

ηi(	gu)
2dvg+

∑
i

∫
M

(
	g
√
ηi
)2
u2dvg

+4
∑
i

∫
M

〈∇√ηi,∇u
〉2
g
dvg+2

∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

−4
∑
i

∫
M

√
ηi(	gu)

〈∇√ηi,∇u
〉
g
dvg

−4
∑
i

∫
M

(
	g
√
ηi
)
u
〈∇√ηi,∇u

〉
g
dvg

+α
∑
i

∫
M

ηi |∇u|2dvg+α
∑
i

∫
M

∣∣∇√ηi
∣∣2u2dvg

+2α
∑
i

∫
M

u
√
ηi
〈∇√ηi,∇u

〉
g
dvg.

We again analyze the various terms in this expression. First,

∑
i

∫
M

ηi(	gu)
2dvg =

∫
M

(	gu)
2dvg,

while ∑
i

∫
M

(
	g
√
ηi
)2
u2dvg ≤N

(
max

i
max
M

∣∣	g
√
ηi
∣∣)2∫

M

u2dvg.

Similarly,

∑
i

∫
M

〈∇√ηi,∇u
〉2
g
dvg ≤N

(
max

i
max
M

∣∣∇√ηi
∣∣)2∫

M

|∇u|2dvg.
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On the other hand,∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg =

∑
i

∫
M

〈∇√ηi,∇u
〉
g
u
(
	g
√
ηi
)
dvg

+
∑
i

∫
M

√
ηi |∇u|2(	g

√
ηi
)2

dvg

+
∑
i

∫
M

√
ηiu

〈∇u,∇(	g
√
ηi
)〉
g
dvg,

so that ∣∣∣∣∣
∑
i

∫
M

√
ηiu(	gu)

(
	g
√
ηi
)
dvg

∣∣∣∣∣
≤ N

2

(
max

i
max
M

∣∣∇√ηi
∣∣)(max

i
max
M

∣∣	g
√
ηi
∣∣)∫

M

u2dvg

+ N

2

(
max

i
max
M

∣∣∇√ηi
∣∣)(max

i
max
M

∣∣	g
√
ηi
∣∣)∫

M

|∇u|2dvg

+N
(
max

i
max
M

∣∣	g
√
ηi
∣∣)2∫

M

|∇u|2dvg

+ N

2

(
max

i
max
M

∣∣∇	g
√
ηi
∣∣)∫

M

u2dvg

+ N

2

(
max

i
max
M

∣∣∇	g
√
ηi
∣∣)∫

M

|∇u|2dvg.

Furthermore,∑
i

∫
M

√
ηi(	gu)

〈∇√ηi,∇u
〉
g
dvg = 1

2

∑
i

∫
M

(	gu)〈∇ηi,∇u〉g dvg = 0,

while ∣∣∣∣∣
∑
i

∫
M

(
	g
√
ηi
)
u
〈∇√ηi,∇u

〉
g
dvg

∣∣∣∣∣
≤ N

2

(
max

i
max
M

∣∣	g
√
ηi
∣∣)(max

i
max
M

∣∣∇√ηi
∣∣)∫

M

u2dvg

+ N

2

(
max

i
max
M

∣∣	g
√
ηi
∣∣)(max

i
max
M

∣∣∇√ηi
∣∣)∫

M

|∇u|2dvg.

For the next terms, note that∑
i

∫
M

ηi |∇u|2dvg =
∫
M

|∇u|2dvg
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and ∑
i

∫
M

∣∣∇√ηi
∣∣2u2dvg ≤N

(
max

i
max
M

∣∣∇√ηi
∣∣)2∫

M

u2dvg.

Finally,∣∣∣∣∣
∑
i

∫
M

u
√
ηi
〈∇√ηi,∇u

〉
g
dvg

∣∣∣∣∣≤ N

2

(
max

i
max
M

∣∣∇√ηi
∣∣)∫

M

u2dvg

+ N

2

(
max

i
max
M

∣∣∇√ηi
∣∣)∫

M

|∇u|2dvg.

As a conclusion, for allu ∈ C∞(M),(∫
M

|u|2! dvg
)2/2!

≤K0

∫
M

(	gu)
2dvg+A

∫
M

|∇u|2dvg+B

∫
M

u2dvg,

whereA andB are constants that do not depend onu. In particular, and for all
u ∈ C∞(M),

‖u‖22! ≤K0

∫
M

(Pgu)udvg+C‖u‖2
H2
1
,

whereC does not depend onu. Theorem 1.2 is thus proved.

When dealing with conformally flat manifolds, Theorem 1.2 indicates thatA
(2)
opt(M)

=K0 is attained in(S2). The situation for(S1) is more complicated. In particular,α
in the definition(0.3) of Pg has to play a role. This is what we prove in Proposition
1.2 below. As a first result, we establish the following.

Proposition 1.1. Let (Sn,h) be the standard unit sphere ofRn+1, n≥ 5, and let
Pn
h be the Paneitz-Branson operator given by (0.1), that is,

Pn
h u=	2

hu+cn	hu+dnu.

Then

inf
u∈C∞(Sn)\{0}

∫
Sn

(
Pn
h u
)
udvh(∫

Sn |u|2! dvh
)2/2! = 1

K0
(1.9)

with the additional property that for anyβ > 1, and anyx0 ∈ Sn, if

uβ = (β2−1)(n−4)/4
(β−cosr)(n−4)/2 ,

wherer is the distance onSn to x0, then

Pn
h uβ = dnu

2!−1
β ,

anduβ realizes the infimum in the left-hand side of (1.9).
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Proof. We first prove(1.9). For that purpose, letx0 be some point onSn, and
let 6 : Sn\{x0} → Rn be the stereographic projection of polex0. If δ stands for the
Euclidean metric ofRn, then

(6−1)7h= ϕ4/(n−4)δ,

where

ϕ(x)=
(

4

(1+|x|2)2
)(n−4)/4

.

By conformal invariance of the Paneitz-Branson operatorPn
g , we get that for all

u ∈ �(Rn), ∫
Rn

(
(	

h̃
u)2+cn|∇u|2+dnu

2
)
dv

h̃(∫
Rn |u|2! dvh̃

)2/2! =
∫
Rn(	(uϕ))2dx(∫
Rn |uϕ|2! dx

)2/2! , (1.10)

whereh̃= (6−1)7h. Suppose now that

inf
u∈C∞(Sn)\{0}

∫
Sn

(
(	hu)

2+cn|∇u|2+dnu
2
)
dvh(∫

Sn |u|2! dvh
)2/2! <

1

K0
, (1.11)

and letu0 ∈ C∞(Sn), u0 �≡ 0, be such that∫
Sn

(
(	hu0)

2+cn|∇u0|2+dnu
2
0

)
dvh(∫

Sn |u0|2! dvh
)2/2! <

1

K0
.

We let (ηs), s > 0 small, be a family of smooth functions onSn having the property
that 0≤ ηs ≤ 1, ηs = 0 onBP (s), ηs = 1 onSn\BP (2s), and


|∇ηs | ≤ C1

s
,

|	hηs | ≤ C2

s2
,

whereC1, C2 are positive constants that do not depend ons. In order to get such
a family, we might fix someηs0 as above, for instance, radially symmetric, and set
then, fors ≤ s0, ηs = ηs0(r/s). As we easily check,

lim
s→0

∫
Sn

(
(	hus)

2+cn|∇us |2+dnu
2
s

)
dvh(∫

Sn |us |2! dvh
)2/2! =

∫
Sn

(
(	hu0)

2+cn|∇u0|2+dnu
2
0

)
dvh(∫

Sn |u0|2! dvh
)2/2! ,

whereus = ηsu0. Just note here that

lim
s→0

1

s2
Vh

(
BP (2s)\BP (s)

)= 0,
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whereVh(4) stands for the volume of4 with respect toh. Choosings sufficiently
small, it follows from(1.10) and(1.11) that there exists̃us ∈ �(Rn) of the form

ũs =
(
us ◦6−1)ϕ,

such that ∫
Rn

(
	ũs

)2
dx(∫

Rn |ũs |2! dx
)2/2! <

1

K0
.

This contradicts(1.1) so that(1.9) follows. Now let uβ be as in the statement of
the proposition. As is well known, see, for instance, [15], there exists a conformal
diffeomorphismϕβ of (Sn,h) such that

ϕ7
βh= u

4/(n−4)
β h.

By conformal invariance of the Paneitz-Branson operatorPn
g , this implies that

Pn
h uβ = dnu

2!−1
β .

On the other hand, it is easily seen that

dnK0= ω
−4/n
n ,

whereωn stands for the volume ofSn with respect toh. This follows from the relations

4n/2ωn−1= 2'(n)

ωn−1'(n/2)2

and
ωn−1'

(n
2

)
= 2πn/2.

Noting that ∫
Sn

u2
!

β dvh = ωn,

we get that ∫
Sn

(
Pn
h uβ

)
uβ dvh = 1

K0

(∫
Sn

u2
!

β dvh

)2/2!
.

This ends the proof of the proposition.

As an ending result in the study of the best first constant, we now prove the
following. Since(Sn,h) is conformally flat, this result has to be compared to Theorem
1.2. Due to the lack of concentration, the approach we use does not allow us to
conclude whenn= 5.
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Proposition 1.2. Let (Sn,h) be the standard unit sphere ofRn+1, n≥ 6, and let
Ph be as in (0.3) withg = h, that is,

Phu=	2
hu+α	hu.

There existsB ∈R such that for allu ∈H 2
2 (S

n),

‖u‖22! ≤K0

∫
Sn

(Phu)udvh+B‖u‖22

if and only ifα ≥ cn, wherecn is as in (0.2).

Proof. If α ≥ cn, the result follows from(1.9), and we may takeB = K0dn.
Suppose, on the contrary, thatα < cn. Forβ > 1 real, andr the distance onSn to a
given point, we letuβ be as in Proposition 1.1, that is,

uβ = (β2−1)(n−4)/4
(β−cosr)(n−4)/2 .

Then, for anyβ > 1, ∫
Sn

(
Pn
h uβ

)
uβ dvh(∫

Sn u
2!
β dvh

)2/2! = 1

K0
.

Let B be given. Writing that

Phu+Bu= Pn
h u+(α−cn)	hu+(B−dn)u,

and since ∫
Sn

u2
!

β dvh = ωn,

it follows that for anyβ > 1,∫
Sn

(
Phuβ

)
uβ dvh+B‖uβ‖22
‖uβ‖22!

= 1

K0
+ 1

ω
2/2!
n

(
(α−cn)

∫
Sn

∣∣∇uβ
∣∣2dvh+(B−dn)

∫
Sn

u2β dvh

)
.

(1.12)

Performing the changes of variablesx = tan(r/2) andy = √
(β+1)/(β−1)x, it is

easily seen that

∫
Sn

∣∣∇uβ
∣∣2dvh = C1(β,n)(β−1)

∫ +∞

0

yn+1dy(
1+((β−1)/(β+1))y2)4(1+y2)n−2

,
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and that∫
Sn

u2β dvh = C2(β,n)(β−1)

×
∫ +∞

0

yn−1dy(
1+((β−1)/(β+1))y2)3(1/(β−1)+(1/(β+1))y2)(1+y2)n−4

,

where

C1(β,n)= 2n(n−4)2ωn−1
(β+1)3 , C2(β,n)= 2nωn−1

(β+1)2 .
By the dominated convergence theorem, ifn > 6,

lim
β→1+

∫ +∞

0

yn−1dy(
1+((β−1)/(β+1))y2)3(1/(β−1)+(1/(β+1))y2)(1+y2)n−4

= 0,

while

lim
β→1+

∫ +∞

0

yn+1dy(
1+((β−1)/(β+1))y2)4(1+y2)n−2

=
∫ +∞

0

yn+1dy
(1+y2)n−2

.

The latter integral is a finite positive constant. It follows that ifα < cn andn > 6,
then forβ > 1 sufficiently close to 1,

(α−cn)

∫
Sn

∣∣∇uβ
∣∣2dvh+(B−dn)

∫
Sn

u2β dvh < 0.

We then get with(1.12) that forβ > 1 sufficiently close to 1,∫
Sn

(Phuβ)uβ dvh+B‖uβ‖22<
1

K0
‖uβ‖22! .

This proves the proposition whenn > 6. If n = 6, we decompose our integrals into

three pieces by writing that
∫ +∞
0 = ∫ 1

0 +
∫ 1/√β−1
1 +∫ +∞1/

√
β−1. Easy computations

then give us that

A1(β−1) ln
(

1

β−1
)
≤
∫
S6
|∇uβ |2dvh ≤ A2(β−1) ln

(
1

β−1
)

for some positive constantsA1<A2 independent ofβ, while

lim
β→1+

∫
S6

u2β dvh

(β−1) ln(1/(β−1)) = 0.

As above, this gives that ifα < c6, then forβ > 1 sufficiently close to 1,

(α−c6)

∫
S6

∣∣∇uβ
∣∣2dvh+(B−d6)

∫
S6

u2β dvh < 0.

The proposition is proved.
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Parallel with the study of the best first constant, we can ask similar questions on the
best second constant. We state our results on this parallel program without any proofs.
Details on these proofs can be found in Djadli-Hebey-Ledoux [9]. As a starting point,
it is easily seen that whatever(M,g) smooth and compact of dimensionn≥ 5 is,

B
(1)
opt(M)= B

(2)
opt(M)= V

−4/n
g ,

whereVg is the volume of(M,g). Moreover, we can prove that these constants are
attained in the sense that there always existsA ∈R such that for allu ∈H 2

2 (M),

‖u‖22! ≤ A

∫
M

(Pgu)udvg+V
−4/n
g ‖u‖22, (1.13)

and such that for allu ∈H 2
2 (M),

‖u‖22! ≤ A

∫
M

(Pgu)udvg+V
−4/n
g ‖u‖2

H2
1
.

ThereA can be chosen such that it depends only onn,α, a lower bound on the Ricci
curvature ofg, a lower bound on the volume ofM with respect tog, and an upper
bound on the diameter ofM with respect tog. Looking for more precise information
on the remaining constantA, an easy statement is thatA in (1.13) has to be such that

A≥ 2!−2
λ1(λ1+α)

V
−4/n
g , (1.14)

whereλ1 is the first nonzero eigenvalue of	g. In the specific case of the standard
unit sphere(Sn,h), as proved by Beckner [2], the Sobolev inequality

‖u‖2p ≤
p−2
n

ω
2/p−1
n ‖∇u‖22+ω

2/p−1
n ‖u‖22

holds for allp ∈ [2,27]. By the variational characterization of the first nonzero eigen-
valueλ1 of 	h, and the Bochner-Lichnerowicz-Weitzenböck formula, it follows that
for everyu ∈H 2

2 (S
n),

‖u‖2p ≤
p−2

n(n+α)
ω
2/p−1
n

∫
Sn

(Phu)udvh+ω
2/p−1
n ‖u‖22.

It is natural to question whether or not this Beckner’s type inequality extends to real
numbersp such thatp > 27. Assuming that this is the case, and, in particular, that
the inequality holds for allp ∈ [2,2!], we would get that

‖u‖22! ≤
8

n(n−4)(n+α)
ω
−4/n
n

∫
Sn

(Phu)udvh+ω
−4/n
n ‖u‖22. (1.15)
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Observe that the first constant in this inequality is the constant given by(1.14) when
the manifold considered is the standard sphere. Letcn be as in(0.2). We can prove
(see [9] for details) that ifα ≤ cn, then for allu ∈H 2

2 (S
n),

‖u‖22! ≤
8

n(n−4)(n+α)
ω
−4/n
n

∫
Sn

(Phu)udvh+ω
−4/n
n ‖u‖22,

and the two constants in this inequality cannot be lowered. In a similar way, we can
prove that ifα > cn, then for allu ∈H 2

2 (S
n),

‖u‖22! ≤
16

n(n−4)(n2−4)ω
−4/n
n

∫
Sn

(Phu)udvh+ω
−4/n
n ‖u‖22,

and again the two constants in this inequality cannot be lowered. In particular,(1.15)
is true if α ≤ cn, but false ifα > cn. It follows that Beckner’s inequality does not
extend top = 2!. As an ending remark, coming back to an arbitrary, smooth, compact,
Riemannian manifold of dimensionn≥ 5, we mention that it is possible to prove that
if g is such thatRcg ≥ n−1, then for allu ∈H 2

2 (M),

‖u‖22! ≤ AV
−4/n
g

∫
M

(Pgu)udvg+V
−4/n
g ‖u‖22, (1.16)

whereA = A(n,α), explicitly known, depends only onn andα. Let Â(n,α) be the
constant involved in the above inequalities on the sphere

Â(n,α)=




8

n(n−4)(n+α)
if α ≤ cn,

16

n(n−4)(n2−4) if α > cn.

With respect to what was proved by Ilias [16] when dealing with the Sobolev space
H 2
1 , an open question we are left with is whether or not(1.16) holds withA= Â(n,α)

wheng is such thatRcg ≥ n−1.

2. On a fourth-order partial differential equation. Let (M,g) be a smooth,
compact,n-dimensional Riemannian manifold,n ≥ 5, and letα,a be two positive
real numbers. Letf be a smooth real-valued function onM. We are here concerned
with the fourth-order partial differential equation

Pgu+au= f u2
!−1, (E)

where, as in(0.3),

Pgu=	2
gu+α	gu.
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When referring to a solution of(E), we assume that the solution is positive and
smooth. Multiplying(E) by u, and integrating overM, a necessary condition for(E)

to have a solution is thatf is positive somewhere onM. Foru in H 2
2 (M), we let

Ig(u)=
∫
M

(Pgu)udvg+a

∫
M

u2dvg.

We also let

�f =
{
u ∈H 2

2 (M)
/∫

M

f |u|2! dvg = 1

}
.

Our first result here is the following theorem.

Theorem 2.1. Let(M,g) be a smooth, compact,n-dimensional Riemannian man-
ifold, n≥ 5, letPg be the operator given by (0.3), leta be some positive real number,
and letf be a smooth positive function onM. Then the inequality

inf
u∈�f

Ig(u)≤ 1

(maxM f )2/2
!
K0

(2.1)

always holds, with the additional property that if the inequality in (2.1) is strict, and
if a ≤ α2/4, then the infimum in the left-hand side of (2.1) is attained by a smooth
positive function. In particular, if the inequality in (2.1) is strict anda ≤ α2/4, then
(E) possesses a smooth positive solution.

Proof. We start by proving(2.1). Suppose on the contrary that

inf
u∈�f

Ig(u) >
1

(maxM f )2/2
!
K0

.

Then there existsε > 0 such that for allu ∈H 2
2 (M),

1

(maxM f )2/2
!

(∫
M

f |u|2! dvg
)2/2!

≤K0(1−ε)

∫
M

(Pgu)udvg+B‖u‖22,

where, for instance,B = aK0. If x0 is a point wheref is maximum, forr > 0
sufficiently small, and allx ∈ Bx0(r),

f (x)≥ f (x0)
(
1− ε

2

)2!/2
.

Let ε̂ = ε/(2−ε) andB̂ = B(1−(ε/2))−1. Then for allu ∈ �(Bx0(r)),

‖u‖22! ≤K0(1− ε̂)

∫
M

(Pgu)udvg+ B̂‖u‖22.
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The same arguments as the ones used in the proof of Lemma 1.2 then lead to a
contradiction. It follows that(2.1) holds. Let us now prove the second part of the
theorem. Letq ∈ (2,2!). Set

µq = inf
u∈�

q
f

Ig(u),

where

�
q
f =

{
u ∈H 2

2 (M)
/∫

M

f |u|q dvg = 1

}
.

Since the embedding ofH 2
2 (M) in Lq(M) is compact, we know from classical vari-

ational arguments thatµq is attained. In other words, there existsuq ∈ �
q
f such that

Ig(uq)= µq . In particular,uq is a weak solution of

Pguq+auq = µqf |uq |q−2uq.
By classical bootstrap,uq ∈ Ls(M) for all s. It easily follows thatuq is in factC3.
Mimicking what is done in Van der Vorst [23], let̃uq be the solution of

	gũq+ α

2
ũq =

∣∣∣	guq+ α

2
uq

∣∣∣ .
Clearly,ũq is C2, and

	g

(
ũq±uq

)+ α

2

(
ũq±uq

)≥ 0.
It follows from the maximum principle that̃uq ≥ |uq |, and thatũq > 0. Noting that∫

M

(
	gũq+ α

2
ũq

)2
dvg =

∫
M

(
	guq+ α

2
uq

)2
dvg,

it follows from the assumptiona ≤ α2/4 that

Ig(ũq)=
∫
M

(
	gũq+ α

2
ũq

)2
dvg+

(
a− α2

4

)∫
M

ũ2q dvg

= µq+
(
a− α2

4

)(∫
M

ũ2q dvg−
∫
M

u2q dvg

)
≤ µq.

On the other hand, ∫
M

f ũ
q
q dvg ≥

∫
M

f |uq |q dvg.
Hence,

ûq = 1(∫
M
f ũ

q
q dvg

)1/q ũq
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realisesµq . Here again,̂uq is a solution of

Pgûq+aûq = µqf û
q−1
q .

By classical regularity,̂uq is in factC∞. The family (ûq) is obviously bounded in
H 2
2 (M). Up to the extraction of a subsequence, and forq → 2!, it converges weakly

to some nonnegativeu in H 2
2 (M). The embeddingH 2

2 (M)⊂H 2
1 (M) being compact,

wemay also assume that it converges strongly tou inH 2
1 (M). It follows from classical

arguments thatu is a weak solution of

Pgu+au= µfu2
!−1,

whereµ is given by
µ= limsup

q→2!
µq.

By Lemma 2.1 below,u ∈ Ls(M) for all s. It easily follows thatu is C4. From the
maximum principle, and noting that(

	g+ α

2

)2
u≥ 0,

we get thatu is either positive or the zero function. In both cases, it is actuallyC∞. Let

µ0= inf
u∈�f

Ig(u).

It is easily seen thatµ≤ µ0. Coming back to the family(ûq), we have that

1=
(∫

M

f û
q
q dvg

)2/q

≤
(
max
M

f
)2/q (∫

M

û
q
q dvg

)2/q

≤
(
max
M

f
)2/q

V
2(1/q−1/2!)
g

(∫
M

û2
!

q dvg

)2/2!
,

whereVg stands for the volume ofM with respect tog. Under the assumption that
inequality(2.1) is strict, there existsε > 0 such that

µ0(K0+ε)≤ 1−ε

(maxM f )2/2
!
.

We fix such anε. It follows from Theorem 1.1 that there exists a constantB, inde-
pendent ofq, such that

‖ûq‖22! ≤ (K0+ε)

∫
M

(
Pgûq

)
ûq dvg+B‖ûq‖22.
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Therefore,

1≤
(
max
M

f
)2/q

V
2(1/q−1/2!)
g (K0+ε)

(
µq+C‖ûq‖22

)
,

whereC is independent ofq. As q → 2!, and sinceµ≤ µ0, we get that

ε ≤ C‖u‖22.
In particular,u �≡ 0. It thus follows thatu is a smooth positive solution of(E). We
are left with the proof thatµ0 is attained. As we easily check,∫

M

fu2
!

dvg ≤ 1.

Besides, ∫
M

(Pgu)udvg+a

∫
M

u2dvg = µ

∫
M

fu2
!

dvg,

while according to the definition ofµ0,∫
M

(Pgu)udvg+a

∫
M

u2dvg ≥ µ0

(∫
M

fu2
!

dvg

)2/2!
.

It follows that

µ

(∫
M

fu2
!

dvg

)1−2/2!
≥ µ0.

Hence,µ= µ0 and ∫
M

fu2
!

dvg = 1.

In particular,u achieves the infimum of the definition ofµ0. This ends the proof of
the theorem.

The following lemma, based on ideas developed in Van der Vorst [23], has been
used in the proof of Theorem 2.1.

Lemma 2.1. Let (M,g) be a smooth, compact,n-dimensional Riemannian man-
ifold, let α be a positive real number, letb be a real-valued function defined onM,
and letu ∈H 2

2 (M) be a weak solution of

	2
gu+α	gu+ α2

4
u= bu.

If b ∈ Ln/4(M), thenu ∈ Ls(M) for all s ≥ 1.
Proof. We proceed as in Van der Vorst [23]. As a starting point, we claim that for

anyε > 0, there existsqε ∈ Ln/4(M), fε ∈ L∞(M), and a constantKε > 0 such that

bu= qεu+fε, ‖qε‖n/4< ε, ‖fε‖∞ ≤Kε.
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Here we may assume thatb �≡ 0, and we let

4k =
{
x ∈M/|b|< k

}
,

4l =
{
x ∈M/|u|< l

}
,

where if ε̂ is such that(2ε̂)4/n = ε/2, k andl are chosen such that

‖b‖Ln/4(M\4k)
< ε̂ and ‖b‖Ln/4(M\4l)

< ε̂,

4k∩4l �= ∅ and b �≡ 0 on4k∩4l.

Givenp ≥ 1 an integer that we fix below, let

qε =


1

p
b in 4k∩4l,

b in (M\4k)∪(M\4l),

and
fε =

(
b−qε

)
u.

Clearly,fε = 0 onM\(4k∩4l). On the other hand,

‖qε‖n/4n/4=
∫
4k∩4l

|qε |n/4dvg+
∫
M\(4k∩4l)

|qε |n/4dvg

≤
∫
4k∩4l

|qε |n/4dvg+
∫
M\4k

|qε |n/4dvg+
∫
M\4l

|qε |n/4dvg

≤
(
1

p

)n/4∫
4k∩4l

|b|n/4dvg+2ε̂

so that

‖qε‖n/4 ≤ 1

p
‖b‖n/4+ 1

2
ε.

Choosingp such thatp > 2‖b‖n/4/ε, we get that
‖qε‖n/4< ε.

Now, sincefε = 0 onM\(4k∩4l),

‖fε‖∞ ≤
∣∣∣∣1− 1

p

∣∣∣∣kl,
and this proves the above claim. The equation

	2
gu+α	gu+ α2

4
u= bu
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may now be written as

L2gu= qεu+fε,

where

Lgu=	gu+ α

2
u.

For anys > 1 and anyf ∈ Ls(M), there exists one and only oneu ∈ Hs
4(M) such

thatL2gu= f . We let�ε be the operator

�εu= (Lg)
−2(qεu).

The preceding equation becomes

u−�εu= (Lg)
−2(fε).

Let v ∈ Ls(M), let s ≥ 2!, and letuε be such that

L2guε = qεv.

Set ŝ = ns/(n+4s). Clearly,qεv ∈ Lŝ(M), and it follows from elliptic-type argu-
ments that

‖uε‖s ≤ C‖qεv‖ŝ .
By Hölder’s inequality,

‖qεv‖ŝ ≤ ‖qε‖n/4‖v‖s
so that

‖uε‖s ≤ Cε‖v‖s .
In other words, for alls ≥ 2!, �ε acts fromLs(M) into Ls(M), and its norm is less
than or equal toCε. Let s ≥ 2! be given. Forε > 0 sufficiently small,

‖�ε‖Ls→Ls <
1

2
,

and the operator (
I−�ε

) : Ls(M)−→ Ls(M)

has an inverse. Since (
I−�ε

)
u= (Lg)

−2(fε)

and sinceu ∈ L2
!
(M) and fε ∈ L∞(M), we get thatu ∈ Ls(M). The lemma is

proved.
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On what concerns Theorem 2.1, the equality in(2.1) holds when(M,g) is the
standard unit sphere(Sn,h), Pg+a = Pn

h , andf is a positive constant. This is just
equation(1.9) of Proposition 1.1:

inf
u∈C∞(Sn)\{0}

∫
Sn

(
Pn
h u
)
udvh(∫

Sn |u|2! dvh
)2/2! = 1

K0
. (2.2)

Independently, let

u0≡
(∫

M

f dvg

)−1/2!
.

Clearly,u0 ∈�f , and

Ig(u0)= aVg(∫
M
f dvg

)2/2! .
We then get the following result from Theorem 2.1.

Corollary 2.1. Let (M,g) be a smooth, compact,n-dimensional Riemannian
manifold,n≥ 5, letPg be the operator given by (0.3), leta > 0 be real, and letf be
a smooth, positive function defined onM. If a ≤ α2/4 and if∫

M
f dvg

VgmaxM f
> (aK0)

2!/2V
2!/2−1
g , (2.3)

whereVg stands for the volume ofM with respect tog, then(E) possesses a smooth
positive solution.

Here again, the standard unit sphere plays a particular role in this result. As already
mentioned in the proof of Proposition 1.1,

dnK0= ω
−4/n
n , (2.4)

whereωn is the volume ofSn with respect toh. It follows that if (M,g) = (Sn,h)

andPg+a = Pn
h , then the right-hand side in(2.3) is 1. On the contrary, the left-hand

side is always less than or equal to 1. The strict inequality(2.3) is therefore never
satisfied when(M,g) = (Sn,h) andPg+a = Pn

h . On the other hand, the condition
a ≤ α2/4 does hold forPn

h , and we indeed do have thatdn ≤ c2n/4. As we easily
check, the difficulty mentioned above disapears when considering quotients ofSn.
The volume there becomes smaller, and the following result holds. In the particular
casen≤ 7, see also Theorem 2.2.

Corollary 2.2. Let (Sn,h) be the standardn-dimensional unit sphere,n ≥ 5.
For anyε ∈ (0,1), there exists an integerkε with the following property: iff smooth
on Sn is invariant under the action of a subgroupG ofO(n+1) acting freely onSn

and of orderk ≥ kε , and iff is such that‖f −1‖C0 < ε, then the equation

	2
hu+cn	hu+dnu= f u2

!−1



PANEITZ-TYPE OPERATORS AND APPLICATIONS 159

possesses a smooth, positive,G-invariant solution. In particular, there exists a metric
g in the conformal class ofh for whichQn

g = f , where

Qn
g =

1

2(n−1)	gSg+ n3−4n2+16n−16
8(n−1)2(n−2)2 S2g−

2

(n−2)2 |Rcg |
2,

and for whichG⊂ Isomg(S
n), whereIsomg(S

n) stands for the isometry group ofSn

with respect tog.

Proof. Let M be the quotient manifoldSn/G, and letg0 be its standard metric
induced byh. We still denote byf the quotient off onM. The Paneitz-Branson
operator onM is given by

Pn
g0
u=	2

g0
u+cn	g0u+dnu,

and as already mentioned,dn ≤ c2n/4. If f is such that‖f −1‖C0 < ε, then

∫
M
f dvg0

Vg0 maxM f
>
1−ε

1+ε
.

Now,

(dnK0)
2!/2V

2!/2−1
g0 = 1

k2
!/2−1

(
(dnK0)

2!/2ω
2!/2−1
n

)
.

Then set

kε =
[(

1+ε

1−ε

)2/(2!−2)
(dnK0)

2!/(2!−2)ωn

]
+1,

where[x] stands for the largest integer not exceedingx. If k ≥ kε , then∫
M
f dvg0

Vg0 maxM f
> (dnK0)

2!/2V
2!/2−1
g0 .

Noticing that the existence of a solution to the equation onM gives the existence of
aG-invariant solution of the equation onSn, the result follows from Theorem 2.1.

We now concentrate on the study of(E) when(M,g) is the standard sphere and
Pg+a = Pn

h . The following result, together with Theorem 2.3, shows thatcn in the
definition of Pn

h is critical. In the study of(E) on the standard sphere, we do get
obstructions by Theorem 2.3 whenα = cn anda = dn. These obstructions disappear
according to Corollary 2.3 ifα < cn. When studying(E) on the standard sphere, both
the medium termα = cn and the nonlinear growthp = 2!−1 are critical. For more
details on such assertions, we refer to the remark after the proof of Theorem 2.3.
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Corollary 2.3. Let (Sn,h) be the standardn-dimensional unit sphere,n≥ 6, let
α and a be two positive real numbers, and letf be a smooth, positive function on
Sn. If a ≤ α2/4, α < cn, and if

(n−6)	hf (x0)

f (x0)
<

8n(n−1)
(n−4)(n+2) (cn−α)

for at least onex0 wheref is maximum, then the equation

	2
hu+α	hu+au= f u2

!−1

possesses a smooth, positive solution.

Proof. Let x0 be a point wheref is maximum, andr be the distance onSn to x0.
Forβ > 1, we letuβ be the function

uβ = (β2−1)(n−4)/4
(β−cosr)(n−4)/2 .

As already mentioned in the proof of Proposition 1.1,h andu4/(n−4)β h are isometric.
It follows that

Pn
h uβ = dnu

2!−1
β ,

wherePn
h is the Paneitz-Branson operator on the sphere, as defined in(0.1). According

to the developments made in the proof of Proposition 1.2,∫
Sn

(Phuβ)uβ dvh+a

∫
Sn

u2β dvh

= d6ω6+A(α−c6)(β−1) ln
(

1

β−1
)
+o

(
(β−1) ln

(
1

β−1
))

if n= 6

= dnωn+2n−3(n−4)2(α−cn)(β−1)ωn−1I+o(β−1) if n > 6,

whereA is some positive constant and

I =
∫ +∞

0

yn+1dy
(1+y2)n−2

.

We now write
f = f (x0)+(1−cosr)f̂ .

It is easily seen that

lim
t→0+

∫
∂Bx0(t)

f̂ dσ

Vh

(
∂Bx0(t)

) =−ωn−1
n

	hf (x0),
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whereVh(∂Bx0(t)) stands for the area of∂Bx0(t) with respect to the metric induced
by h. By the changes of variablesx = tan(r/2), and theny =√

(β+1)/(β−1)x, we
get that

(β−1)−1
∫
Bx0(t)

(1−cosr)u2!β dvh

= 2n+1ωn−1
β+1

∫ √
(β+1)/(β−1)T

0

yn+1dy(
1+((β−1)/(β+1))y2)(1+y2)n

for all t ∈ (0,π), whereT = tan(t/2). It easily follows that

lim
β→1+

(β−1)
∫
Sn

(1−cosr)f̂ u2
!

β dvh =−2
nωn−1
n

J	hf (x0),

where

J =
∫ +∞

0

yn+1dy
(1+y2)n

.

As a consequence,∫
Sn

f u2
!

β dvh = f (x0)ωn

(
1− 2nωn−1

nωn

(β−1)J 	hf (x0)

f (x0)
+o(β−1)

)
.

SincednK0= ω
−4/n
n , and sincex0 is a point wheref is maximum, we get that∫

Sn(Phuβ)uβ dvh+a
∫
Sn u

2
β dvh(∫

Sn f u2
!

β dvh
)2/2!

= 1

K0(maxM f )2/2
!

(
1+B (α−c6)εβ+o(εβ)

)
if n= 6

= 1

K0(maxM f )2/2
!

(
1+C(β−1)+o(β−1)) if n > 6,

whereεβ = (β−1) ln (1/(β−1)), B > 0 does not depend onβ, and

C = 2n+1ωn−1
2!nωn

J

(
	hf (x0)

f (x0)
+ 2nI

(n2−4)J (α−cn)

)
.

As we easily check, see, for instance, Demengel-Hebey [8],

I = 1

2

'((n+2)/2)'((n−6)/2)
'(n−2) and J = 1

2

'((n+2)/2)'((n−2)/2)
'(n)

.

Hence,
2nI

(n2−4)J = 8n(n−1)
(n−6)(n−4)(n+2) .
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Under our assumptionsC < 0, so that forβ > 1 sufficiently close to 1,∫
Sn(Phuβ)uβ dvh+a

∫
Sn u

2
β dvh(∫

Sn f u2
!

β dvh
)2/2! <

1

K0(maxM f )2/2
!
.

The result now follows from Theorem 2.1.

The equation involved in the study of the prescribed scalar curvature problem on
the sphere, also referred to as the Kazdan-Warner problem or the Nirenberg problem,
is the equation

	hu+ n(n−2)
4

u= f u2
7−1,

where 27 = 2n/(n−2). In the study of this equation, a celebrated result of Escobar
and Schoen [11] states that ifn = 3 and if f is invariant under the action of a
nontrivial subgroupG ofO(4) acting freely onS3, then the above equation possesses
a smooth, positiveG-invariant solution. In particular, under these assumptions,f is
the scalar curvature of aG-invariant conformal metric toh. The same result was
proved by Moser [20] whenn= 2 andf is assumed to be invariant under the action
of the antipodal groupG = {Id,−Id}, the only group acting freely onSn when the
dimensionn is even. A natural question is whether such types of results do hold for
the equation

Pn
h u= f u2

!−1.
This is the subject of the following theorem. As a first remark, note that by Edmunds-
Fortunato-Janelli [10] and Pucci-Serrin [22], low dimensions for the Euclidean bihar-
monic operator aren= 5,6,7. As another remark, we mention that there should be an
analogue of our result whenG acts without fixed points (i.e., for anyx, theG-orbit
of x has at least two elements). Concerning the above mentioned scalar curvature
problem on the sphere, this was proved by Hebey [13].

Theorem 2.2. Let (Sn,h) be the standardn-dimensional unit sphere,n= 5,6, or
7, and letf be a smooth positive function onSn. We assume thatf is invariant under
the action of a nontrivial subgroupG of O(n+1) acting freely onSn, and if n = 6
or 7, we assume that	hf (x) = 0 for at least onex wheref is maximum. Then the
equation

Pn
h u= f u2

!−1

possesses a smooth, positiveG-invariant solution. In particular, there exists a metric
g in the conformal class ofh for whichQn

g = f , where

Qn
g =

1

2(n−1)	gSg+ n3−4n2+16n−16
8(n−1)2(n−2)2 S2g−

2

(n−2)2 |Rcg |
2,

and for whichG⊂ Isomg(S
n), whereIsomg(S

n) stands for the isometry group ofSn

with respect tog.
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Proof. Let M be the quotient manifoldSn/G, and letg0 be its standard metric
induced byh. Also let u ∈ H 2

2 (M), u �≡ 0, and letũ be the function onSn induced
by u. As we easily check,∫

Sn

(
Pn
h ũ
)
ũdvh(∫

Sn f |ũ|2! dvh
)2/2! = k1−2/2!

∫
M

(
Pn
g0
ũ
)
ũdvg0(∫

M
f |ũ|2!dvg0

)2/2! ,
wherek is the number of elements inG, andf in the right-hand side of this relation
stands for the quotient off onM. The existence of a solution to the equation onM

leads to the existence of aG-invariant solution to the equation onSn. Therefore, as a
consequence of Theorem 2.1, it suffices to show that

inf
u∈,

∫
Sn

(
Pn
h u
)
udvh(∫

Sn f |u|2! dvh
)2/2! <

k1−2/2!

(maxSn f )2/2
!
K0

, (2.5)

where, stands for the subset ofH 2
2 (S

n) consisting of nonzeroG-invariant functions.
Now let x1 be a point wheref is maximum, and denote by

OG(x1)= {x1, . . . ,xk}
theG-orbit of x1. If ri stands for the distance onSn to xi , let ui,β , β > 1 be the
functions onSn defined by

ui,β = (β2−1)(n−4)/4
(β−cosri)(n−4)/2 .

As already mentioned,h andu4/(n−4)i,β h are isometric. In particular,

Pn
h ui,β = dnu

2!−1
i,β

and ∫
Sn

u2
!

i,β dvh = ωn.

Then let

uβ =
k∑

i=1
ui,β .

On the one hand,uβ isG-invariant. On the other hand,

∫
Sn

(
Pn
h uβ

)
uβ dvh = kdnωn+kdn

∫
Sn

u2
!−1
1,β

(
k∑

i=2
ui,β

)
dvh.
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Set

A(n)= 21+3n/4ωn−1
∫ +∞

0

yn−1dy
(1+y2)(n+4)/2

.

We claim that for allt in (0,π),

lim
β→1+

(β−1)1−n/4
∫
Bx1(t)

u2
!−1
1,β dvh = A(n).

Indeed, by the change of variablesx = tan(r1/2) andy = √
(β+1)/(β−1)x, we

get that

∫
Bx1(t)

u2
!−1
1,β dvh

= C1(n,β)(β−1)n/4−1

×
∫ √

(β+1)/(β−1)T

0

yn−1dy(
1+((β−1)/(β+1))y2)(n−4)/2(1+y2)(n+4)/2

,

where

C1(n,β)= 2n(β+1)1−n/4ωn−1

andT = tan(t/2). The above claim then easily follows. With easier arguments, for
all h ∈ C0(Sn), and allt in (0,π),

lim
β→1+

(β−1)2−n/2
∫
Sn\Bx1(t)

hu2
!−1
1,β

(
k∑

i=2
ui,β

)
dvh = 0.

It follows from these two relations that for allh ∈ C0(Sn), all t in (0,π), and all open
subset4 of Sn that containsx1,

lim
β→1+

(β−1)2−n/2
∫
4

hu2
!−1
1,β

(
k∑

i=2
ui,β

)
dvh = A(n)

(
k∑

i=2
ũi,1(x1)

)
h(x1), (2.6)

whereũi,1 = (1−cosri)2−n/2. Then lett0 > 0 be such thatBxi (t0)∩Bxj (t0)= ∅ for
i �= j . Since

(a+b)2
! ≥ a2

!+2!a2!−1b,



PANEITZ-TYPE OPERATORS AND APPLICATIONS 165

we may write that

∫
Sn

f u2
!

β dvh ≥
k∑

i=1

∫
Bxi

(t0)

f u2
!

β dvh

≥
k∑

i=1

∫
Bxi

(t0)

f u2
!

i,β dvh+2!
k∑

i=1

∑
j �=i

∫
Bxi

(t0)

f u2
!−1

i,β uj,β dvh

= k

∫
Bx1(t0)

f u2
!

1,β dvh+2!k
∫
Bx1(t0)

f u2
!−1
1,β

(
k∑

i=2
ui,β

)
dvh.

It follows that∫
Sn

f u2
!

β dvh ≥ kf (x1)ωn−kf (x1)

∫
Sn\Bx1(t0)

u2
!

1,β dvh

+k

∫
Bx1(t0)

(
f −f (x1)

)
u2

!

1,β dvh+2!k
∫
Bx1(t0)

f u2
!−1
1,β

(
k∑

i=2
ui,β

)
dvh.

It is easily seen that

lim
β→1+

(β−1)2−n/2
∫
Sn\Bx1(t0)

u2
!

1,β dvh = 0. (2.7)

On the other hand, for any 5≤ n≤ 7,

lim
β→1+

(β−1)2−n/2
∫
Bx1(t0)

(
f −f (x1)

)
u2

!

1,β dvh = 0. (2.8)

Indeed, suppose thatn = 5. Sincex1 is a critical point forf , there exists a constant
C > 0 such that for allx ∈ Bx1(t0),∣∣f (x)−f (x1)

∣∣≤ C(1−cosr1).

With the change of variablesx = tan(r1/2) andy =√
(β+1)/(β−1)x, we get that

(β−1)2−n/2
∫
Bx1(t0)

(1−cosr1)u2!1,β dvh =O
(
(β−1)3−n/2),

from which (2.8) follows. Suppose then thatn = 6 or 7 and thatx1 is such that
	hf (x1) = 0. We may write that there exists a constantC > 0 such that for all
x ∈ Bx1(t0), ∣∣f (x)−f (x1)

∣∣≤ C(1−cosr1)2.
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As above, we get that

(β−1)2−n/2
∫
Bx1(t0)

(1−cosr1)2u2!1,β dvh =O
(
(β−1)4−n/2),

from which(2.8) also follows. Now, by(2.4), (2.6), (2.7), and(2.8),∫
Sn

(
Pn
h uβ

)
uβ dvh(∫

Sn f u2
!

β dvh
)2/2! = k1−2/2!

f (x1)2/2
!
K0

× 1+(β−1)n/2−2Ak(n)+o
(
(β−1)n/2−2)

1+2(β−1)n/2−2Ak(n)+o
(
(β−1)n/2−2) ,

whereAk(n) > 0 is given by

Ak(n)= A(n)

ωn

k∑
i=2

ũi,1(x1).

Hence, for everyβ > 1 sufficiently close to 1,∫
Sn

(
Pn
h uβ

)
uβ dvh(∫

Sn f u2
!

β dvh
)2/2! <

k1−2/2!

f (x1)2/2
!
K0

.

In particular, sinceuβ isG-invariant, andf (x1)=maxSn f ,

inf
u∈,

∫
Sn

(
Pn
h u
)
udvh(∫

Sn f |u|2! dvh
)2/2! <

k1−2/2!

(maxSn f )2/2
!
K0

.

This is exactly inequality(2.5). The theorem is thus proved.

A celebrated result of Kazdan andWarner [17] states that the scalar curvature equa-
tion on the sphere(Sn,h) possesses obstructions.We prove here that such obstructions
hold similarly for the equation

Pn
h u= f u2

!−1.

In the statement of Theorem 2.3,(∇f∇ϕ) stands for the pointwise scalar product
with respect toh of ∇f and∇ϕ.

Theorem 2.3. Let (Sn,h) be the standardn-dimensional unit sphere,n ≥ 5, and
let f be a smooth function onSn, positive somewhere onSn. If u is a smooth positive
solution of the equation

Pn
h u= f u2

!−1, (2.9)

wherePn
h is as in (0.1), then for any eigenfunctionϕ of 	h associated to the first

nonzero eigenvalueλ1= n, ∫
Sn

(∇f∇ϕ)u2
!

dvh = 0.
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In particular, for anyε > 0 and any eigenfunctionϕ �≡ 0 of	h associated to the first
nonzero eigenvalueλ1= n, (2.9) withf = 1+εϕ does not possess a smooth, positive
solution.

Proof. The proof mainly follows what was done in Kazdan and Warner [17]. Let
ϕ be an eigenfunction of	h associated to the first nonzero eigenvalueλ1 = n, and
let u be a smooth function onSn. As it is easy to see,(

	2
hu
)
(∇u∇ϕ)# (	hu)(∇	hu∇ϕ)−(n−2)(	hu)(∇u∇ϕ)−2(	hu)

2ϕ,

where the sign “#” means that the relation holds modulo terms in divergence form.
Clearly,

(	hu)(∇	hu∇ϕ)# 1

2
nϕ(	hu)

2

so that

(	hu)
2(∇u∇ϕ)# n−4

2
(	hu)

2ϕ−(n−2)(	hu)(∇u∇ϕ).

Suppose now thatu is a solution of(2.9). Then

(	hu)
2ϕ # 2(	hu)(∇u∇ϕ)−nuϕ(	hu)+f ϕu2

!−dnu
2ϕ−cnuϕ(	hu)

so that

(cn−2)(	hu)(∇u∇ϕ)− n−4
2

(n+cn)uϕ(	hu)+dnu(∇u∇ϕ)

+ n−4
2

f ϕu2
!− n−4

2
dnu

2ϕ # f u2
!−1(∇u∇ϕ).

Since

(	hu)(∇u∇ϕ)#−n−2
2

(
1

2
nu2ϕ−uϕ(	hu)

)
and

n−2
2

(cn−2)= n−4
2

(n+cn),

the termsuϕ(	hu) disappear. We then get that

−n−2
4

(cn−2)nu2ϕ+dnu(∇u∇ϕ)+ n−4
2

f ϕu2
!− n−4

2
dnu

2ϕ # f u2
!−1(∇u∇ϕ).

Now it is easily seen that

u(∇u∇ϕ)# n

2
u2ϕ

and that

f u2
!−1(∇u∇ϕ)#− 1

2!
u2

!

(∇f∇ϕ)+ n

2!
f u2

!

ϕ.
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Therefore, (
2dn− n(n−2)

4
(cn−2)

)
u2ϕ+ 1

2!
u2

!

(∇f∇ϕ)# 0.

Since

2dn = n(n−2)
4

(cn−2),
we find that

u2
!

(∇f∇ϕ)# 0.

This ends the proof of the theorem.

To conclude, we collect a few remarks on Corollary 2.3 and Theorem 2.3. First, let
ϕ be an eigenfunction of	h associated to the first nonzero eigenvalueλ1 = n, and,
for ε > 0, setfε = 1+εϕ. Givenα > 0, consider the equation

	2
hu+α	hu+dnu= fεu

2!−1. (Eε
α)

According to Corollary 2.3, ifn > 6 andα ∈ [2√dn,cn), then there existsεα > 0
such that ifε ≤ εα, (Eε

α) possesses a smooth positive solution. On the contrary, by
Theorem 2.3, for alln≥ 5 and allε > 0, (Eε

cn
) does not possess any smooth positive

solution. This is one of the possible illustrations of the criticality ofcn we mentioned
before stating Corollary 2.3. As another remark, note that Theorem 2.3, together with
Theorem 2.1, gives another proof of(1.9). Indeed, suppose by contradiction that(1.9)
is false. In other words, assume that

inf
u∈C∞(Sn)\{0}

∫
Sn

(
Pn
h u
)
udvh(∫

Sn |u|2! dvh
)2/2! <

1

K0
.

Then for anyf sufficiently close to 1 in theC0-topology,

inf
u∈C∞(Sn)\{0}

∫
Sn

(
Pn
h u
)
udvh(∫

Sn f |u|2! dvh
)2/2! <

1

(maxSn f )2/2
!
K0

.

It follows from Theorem 2.1 that for such anf , the equation

Pn
h u= f u2

!−1

has a smooth, positive solution. This is in contradiction to the last part of Theorem
2.3 and thus proves(1.9).
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