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SOBOLEV INEQUALITIES AND MYERS’S DIAMETER
THEOREM FOR AN ABSTRACT MARKOV GENERATOR

D. BAKRY AND M. LEDOUX

1. Introduction. The classical theorem of (Bonnet-) Myers on the diameter
[M] (see [C], [GHL]) states that if (M, g) is a complete, connected Riemannian
manifold of dimension n (>2) such that Ric > (n-1)g, then its diameter
D D(M) is less than or equal to r (and, in particular, M is compact). Equiv-
alently, after a change of scale, if Ric > R# with R > 0, and if Sn is the sphere of
dimension n and constant curvature R (n- 1)/r2 where r > 0 is the radius of
sn, then the diameter of M is less than or equal to the diameter of S, that is,

(1.1) D < rcr n
R

The aim of this work is to prove an analogue of Myers’s theorem for an
abstract Markov generator and to provide at the same time a new analytic proof
of this result based on Sobolev inequalities. In particular, we will show how to
get exact bounds on the diameter in terms of the Sobolev constant. As an intro-
duction, let us describe the framework, referring to [B2] for further details. On
some probability space (E, d*, #), let L be a Markov generator associated to some
semigroup (Pt)t >o continuous in L2(/). We will assume that L is invariant and
symmetric with respect to/, as well as ergodic. We assume furthermore that we
are given a nice algebra of bounded functions on E, containing the constants
and stable by L and Pt (though this last hypothesis is not really needed but is
used here for convenience) and by the action of C functions. We may then
introduce, following P.-A. Meyer, the so-called carr du champ operator F as the
symmetric bilinear operator on x defined by

2r(f, o) L(/0) -fL9 9Lf,

as well as the iterated carr6 du champ operator F2

2FE(f, g) LF(f, g) F(f, Lg) F(g, Lf), f,g e .
Finally, we assume that L is a diffusion: for every C function W on IRk, and every
finite family F (f1,..., fk) in ,

LV(F) VV(F). LF + VVV(F). F(F, F).
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254 BAKRY AND LEDOUX

This hypothesis essentially expresses that L is a second-order differential operator
with no constant term and that we have a chain rule formula for F.

Recall that, by invariance of L, the following integration by parts formula is
satisfied

f(-Lg) d# J F(f, g) d/,

We denote below by I1" lip, 1 < p < , the LP-norm with respect to #.
Given such a Markov generator L, we define its diameter D D(L) (relative

to ) as

(1.2) D D(L) suP{llfllLoO(.(R).); f e , IIF(f, f)lloo < 1}

where f(x, y) =f(x) -f(y), x, y E.
The basic operator we have in mind, is of course, the Laplace-Beltrami oper-

ator A on a compact, connected Riemannian manifold M. For ’ the class, say,
of Lipschitz or C functions on M, F(f, f) is simply the Riemannian length
(squared) IVfl2 of the gradient Vf of f , and the diameter D D(A) of (1.2)
coincides with the usual notion of diameter associated to the Riemannian dis-
tance on M. One may also mention that Bochner’s formula (cf. [C], [GHL])
indicates in this example that

(1.3) F2(f, f) Ric(Vf, Vf) + IIHess fl12,
where Ric is the Ricci tensor on M and IIHess fl12 is the Hilbert-Schmidt norm of
the tensor of the second derivatives of f.
The previous abstract framework includes a number of further examples of

interest (cf. [B2]). For example, one may consider L A + X where X is a
smooth vector field on M. We may also consider infinite-dimensional examples
such as the Ornstein-Uhlenbeck generator. Of basic inspiration for this work is
the class of ultraspheric generators on ]- 1, + 1[ given by

(1.4) Lnf(X) (1 x2)f"(x) nxf’(x)

for every f smooth enough, where n > O. In this example, F(f, f) (1-xZ)f’(x)2,
and the invariant measure is given by d/. c.(1 x2)(n/2)-ldx on ]- 1, +1[.
The analogue of Myers’s theorem requires geometric notions of curvature and

dimension on the abstract Markov generator L. We will say that L satisfies a
curvature-dimension inequality CD(R, n) of curvature R and dimension n > 1 if,
for all functions f in ,
CD(R, n)

1
FE(f, f) > R F(f, f) + (Lf)2
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According to Bochner’s formula (1.3), an n-dimensional compact Riemannian
manifold (M, #), or rather the Laplacian A on M, satisfies the inequality CD(R, n)
with R the infimum of the Ricci tensor over all unit tangent vectors. If L A / Vh
for a smooth function h, and if, as symmetric tensors,

Vh (R) Vh < (m n)[Ric VVh

with rn > n, then L satisfies CD(p, m) (cf. [B2], Proposition 6.2). The ultraspheric
generators Ln, which, for n an integer, may be obtained as projections of the
Laplacian of S[’ on a diameter, satisfy the same curvature-dimension inequalities
CD(n-1,n) (n > 1) as the spheres S[’ themselves, although n need not be an
integer anymore.
With these notations, Myers’s theorem states that if L is the Laplacian A on

a Riemannian manifold (M, g) of dimension n such that Ric > (n-1)#in
other words, if L A satisfies CD(n- 1, n)then D(M) D(A) < r. The geo-
metric proofs of this result (cf. [C], [GHL]) rely on minimizing geodesics and
Jacobi fields and cannot therefore be extended to the preceding abstract frame-
work. The main advantage of the method we will develop is that it relies only
on measure-theoretic arguments and makes no use of the distance function, the
diameter being defined only in terms of the F operator.
As in earlier attempts IBM], [B2], our approach in this work will be func-

tional analytic. We will namely translate the curvature-dimension inequality into
a functional Sobolev inequality and then bound the diameter only on the basis of
this inequality. Of course, that the diameter is bounded under a (local) Sobolev
inequality is a relatively easy fact. The point is that we are looking here for opti-
mal bounds. In particular, we will only deal with inequalities involving first-
order derivatives and not second-order derivatives such as in Bochner’s formula.
Actually, Bochner’s formula and the curvature-dimension inequality are only
used to establish the functional inequalities of Sobolev type with sharp constants.

In this direction, it was shown in [B2] that if L satisfies the following entropy-
energy, or logarithmic Sobolev, inequality

(1.5) I f2 log f2d#< (I F(f, f)d#)
for every f s with f du 1 where : [0, oe) [0, oe) is increasing, then

1 @(u2 du(1.6) D < -One therefore is led to ask for the optimal inequality (1.5) under CD(R, n). It was
shown in [B1], [B2] that if CD(n 1, n) holds, one may choose in (1.5)

(1.7) (u) = log 1 4-n(n- 1----
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yielding together with (1.6)

This partial result is fairly close to the optimal one and, strangely enough, is as
better as n increases to infinity.
The first proofs of (1.6) IBM], [B2] were based on delicate heat-kernel minor-

ations depending on (families of) logarithmic Sobolev inequalities. A recent
proof ILl, inspired by JAMS], consists in applying inequality (1.5) to the family
of functions e2f, 2 IR, where f ag, f f d# 0, and IIl"(f, f)lloo < 1. One then
obtains a simple differential inequality on which may easily be integrated to
yield (1.6). Now, and this was actually our starting point, exponential functions
are classically the extremal functions of the logarithmic Sobolev inequality for
the Ornstein-Uhlenbeck generator that corresponds formally in our abstract
framework precisely to n oo! On the other hand, it may be shown (cf. [B2])
that the function of (1.7) is not optimal on the sphere S’ and that, anyhow, the
knowledge of the best would not yield Myers’s theorem. Indeed, if this were
the case, the method of proof of [L] applied to the distance function d to a fixed
point would show that functions of the form exa are extremal for logarithmic
Sobolev inequalities of the type

I f2 log f2 d# < a(2) + b(2) I F(f, f)d#, J f2 d# 1,

which is clearly not the case on spheres. Notice also that the proof of [L]
actually shows that Ilflloo < (/2)v/n/(n- 1) for every f in a with f f d# 0
and IIr’(f, f)lloo < 1. We will not improve this result to rt/2 here, and we actually
do not know whether this could be true.
The preceding observations strongly suggest that logarithmic Sobolev in-

equalities are not well adapted to sharp estimates on the diameter. Now, while
the best entropy-energy inequality on spheres is still unknown, the best Sobolev
inequality as well as its extremal functions are known. Following Th. Aubin [A],
on S’, n > 2, with L A the conformal Laplacian and # the normalized Haar
measure, for every smooth function f,

(1.8) Ilfll 2
4

2n/n-2 Ilfll22 + n(n 2------ f(-Af) d#.

Furthermore, the functions fa (1 + 2 sin(d)) 1-(n/2), -1 < 2 < + 1, where d is the
distance to a fixed point, are solutions of the nonlinear equation

4fJn+2)l(n-2) fa n(n 2-------- kfa
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and satisfy the equality in inequality (1.8). One therefore is led to develop the pre-
ceding approach, but now on the basis of a Sobolev inequality and with these
extremal functions instead of exponentials. This is the method we will follow.
The first step in this program is to establish a Sobolev inequality (1.8) with

best constant for an abstract Markov generator L under curvature-dimension
hypotheses. The following theorem, which was presented in [B2], fully answers
this question. On a Riemannian manifold with L the Laplacian and # the nor-
malized Riemannian measure, the result goes back to S. Ilias [I].

THEOREM 1. Let L be a Markov generator satisfying CD(R, n)for some R > 0
and n > 2. Then, for every f ,

Ilfll@./.-2 Iif1122 + 4(n 1) f f(-Lf) d#.n(n- 2)R J
Note that if R n- 1, then

4(n- 1) 4
n(n- 2)R n(n- 2)"

The proof actually shows (cf. [B2]) that under CD(R, n) with R > 0 and n > 1
(with the convention that, when n 1, R/(n- 1) 21, the spectral gap of-L;
see below), then, for every 1 < p < 2n/n- 2 if n > 2 and every p > 1 if 1 < n < 2,

(1.9)
nR Ilfll2 IIf1122

n---" p 2 < f(-Lf) d#.

This result extends the case of spheres due to W. Beckner [Be]. In [F], a some-
what sharper bound than (1.9) is obtained involving 21, R, and n as a convex
combination. Denote by 21 the spectral gap of-L, that is, the largest s > 0 such
that for every f in ,
(1.10) s I If-If d#]

2

d#< J f(-Lf)d#= IF(f, f)d#.

Then

IlSllJ-IlSil f(1.11) c < f(-Lf)d#
p-2 J

with

nR
n- 1 + (1 cz)21
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where

(n- 1):(V- 1)
(p- 2) + (n+ 1)2"

Note that 0(p) 1 for the critical exponent p 2n/n- 2. In (1.11), it is assumed
more precisely that we already know that some Sobolev inequality (of dimension
n) holds for L (as, for example, on compact Riemannian manifolds). Inequality
(1.11) will be used below to bound above 21 in terms of n, R, and the diameter D.

It might be worthwhile noting that the proof of Theorem 1 relies on the study
of the nonlinear equation

c(fv-1 -f) -Lf

Lower bounds on c > 0 are then obtained by a comparison with the CD(R,n)
inequality following ideas introduced by O. S. Rothaus [R] in the context of log-
arithmic Sobolev inequalities (actually, (1.9) or (1.11) for p 2 have to be under-
stood in the limit as such logarithmic Sobolev inequalities). The method consists in
performing the change of variables f fr, r 0, (f > 0), in this nonlinear equa-
tion as well as another change f fs, s :/: O, into the CD(R, n) inequality. By the
diffusion property and integration by parts, the result may then be shown to follow
from optimal choices of the parameters r and s (see [B2] for the details).
We thus have optimal Sobolev inequalities for an abstract Markov generator

under a curvature-dimension condition. According to our preceding observa-
tions, we will now make use of the form of the extremal functions of this Sobolev
inequality on spheres to deduce some differential inequality. The miracle of the
approach is that this inequality may be integrated to exactly bound the diameter
of L by its Sobolev constant. To emphasize the fact that we will be working here
only with functional inequalities involving first-order derivatives, we state our
main result only in terms of the carr6 du champ operator. On (E, g, #), let 1 be
a subspace of L containing the constants and stable by composition with
smooth functions q with all derivatives bounded. We assume that we are given a
bilinear map

F:x -- L
such that r(f, f) > 0 and

q(f)r(L

for every f, O in and every q smooth. We will call F a carr6 du champ. We may
then define as before the "diameter" of such a carr6 du champ F as

D D(F) sup{l[fl[L(#(R)u); f e /, lit(f, f)[l < 1}
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where we recall that f(x, y) =f(x)-f(y), x, y E. Of course, D(F) is relative to
(and is as smaller as is small) and D(F) D(L) if F is the carr6 du champ of

the Markov generator L. The following theorem is the main result of this work.

THEOREM 2. Let F be a carr du champ satisfying the Sobolev inequality

(1 12) Ilfll 2
4 I F(f, f)d# f e ,w,- < Ilfll + n(n- 2"---

for some n > 2. Then

D D(F) < n.

If F is changed in aF for some a > 0, then D(aF) a-1/2D(’). Therefore, if F
satisfies the inequality’

(1.13) Ilfllp2

for some p > 2, then

(1.14) O D(F) < z
x/pA

Together with Theorem 1, Theorem 2 answers our initial question.

THV.OREM 3. Let L be a Markov 9enerator satisfyin9 the curvature-dimension
inequality CD(R, n)for some R > 0 and n > 2. Then

D D(L) < n
R

The case n 2, and by extension 1 < n < 2, is somewhat particular. Since
(1.9) holds for every p > 1 in this case, we get together with (1.14)

(n-1 2__.P )1/2

D<n-R p 2

for every p > 2. When p -- o,
(2(n- 1))1/2D<\

This is optimal however only for n 2.
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When (1.11) holds, we also see that

D2<2 2/9. 1
p- 2 (p)(nR/n- 1)+ (1 -(p))21

for every 2 < p < 2n/n 2. Optimizing over p, we can obtain upper bounds on ,,1.
For example, if R 0, we get

:2n2(n + 2)
D2

(the constant is not sharp). If R > K, K > 0, then

(n-1)K C(n)
4

for some C(n) > 0 only depending on n. We thus recover, with these functional
tools, geometric bounds first established in [Ch], [Che].

If (M, g) is a Riemannian manifold with dimension n and Ric > (n- 1)g, and
if the diameter of M is equal to 7r, S.-Y. Cheng [Che] showed that M is isometric
to S’, generalizing the Topogonov theorem IT] that was dealing with the sec-
tional curvature (cf. [C] for a modern geometric proof of the Topogonov-Cheng
result). Our next theorem is an analogue of this result. It is again formulated in
terms of the Sobolev constant and shows that if D(F) n, the constant in (1.12)
is reached on functions of the form f (1 + 2 sin(f))l-(n/2), 1 < 2 < + 1, for
some nonconstant function f with f sin(f)d/ 0. In particular, we include in
this way the example of the spheres themselves.

THEOREM 4. Let F be a carrY, du champ satisfying the Sobolev inequality
(1_.12) for some n > 2. If there is a function f in 1 such that IIF(f, f)ll < 1 and
Ilfllo t, then there exist nonconstant extremal functions of (1.12). More pre-
cisely, if we translate f such that sin(f) d# 0, for every -1 < 2 < + 1,

4 J r(fI1f1122/-2 IIfl12 / n(n- 2------
where f (1 + 2 sin(f))1-(n/2). Furthermore, if we set X sin(f), L agrees on
the functions ofX with the ultraspheric generator of dimension n; that is, for every
smooth function q9 on IR,

Lgo(X) (1 xE)tp"(X) nXqg’(X).

In particular, if L A is the Laplace-Beltrami operator on an n-dimensional com-
pact manifold (M, g) with Ric >/(n- 1)g and with diameter equal to , then M is
isometric to the sphere S’.
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Applying the Sobolev inequality (1.12) to f 1 + eq9 where f tpd# 0 and
using a Taylor expansion at e 0 shows that 21 > n (that is, the analogue of the
Lichnerowicz minoration, cf. [GHL]). In the same way, a Taylor expansion on
the functions fx at 2 0 in Theorem 4 shows that 21 n. Therefore, if L is the
Laplace-Beltrami operator on an n-dimensional Riemannian manifold (M, g)
with Ric > (n- 1)g and if D rr, then 21 n, and therefore, by Obata’s theorem
[O] (see [GHL]), M is isometric to the sphere S’, proving the last assertion
of Theorem 4. This functional approach thus provides a new proof of the
Topogonov-Cheng theorem.
The next sections of this paper are devoted to the proofs of the preceding

statements. In Section 2 we establish Theorem 2, and in Section 3, we prove
Theorem 4.

2. Myers’s diameter theorem. The scheme of the proof of Theorem 2 is the
following. Let f be a function in z such that IlF(f, f)llo < 1. We first apply
Sobolev’s inequality (1.12) to the family of functions f (1 + sin(f)) 1-(n/2),
-1 < 2 < + 1, to deduce a (nonlinear) differential inequality on

(2.1) F(2) I (1 + 2 sin(f))2-n d#, 1 < 2 < + 1.

The crucial argument of the proof then consists in showing that when
sin(f) d# > 0 (resp., < 0), then (essentially)

F(1) I (1 + sin(f))2-" d# < o

(resp., F(-1) < o@. Iterating the result on the basis again of (1.12), we actually
have that

I1(1 +_ sin(f))-lil < oc,

from which the conclusion then easily follows.
The first step of this program is summarized in the next proposition.

Throughout this proof, we thus fix f in with IIF(f, f)ll < 1 and define F by
(2.1). For every k > 0, let Dk be the differential operator on ]- 1, + 1[ defined by

Dk --- 2 + I.

Set also (n- 2)In (<1).

PROPOSITION 5. If G Dn-IF,

(2.2) (Dn_2O)t + X(1 ,2)Dn_2G < (1 + )O.
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Proof. Let f (1 + 2 sin(f)) 1-(n/2), 1 < 2 < + 1. By the chain-rule for-
mula for the operator F and the hypothesis Ilr’(f, f)lloo -< 1,

n ,,2 -nr(fa, f)d/ < 1 (1 + 2 sin(f)) (1 sinE(f))a/.

Hence, by (1.12) applied to f, for every 2,

(2.3) (1 + 2 sin(f ))-"d#

< I (1 + 2 sin(f))2-n d# + a22 I (1 + 2 sin(f ))-n(1 sin2(f))d#.

Now, observe that

F(2) J (1 + 2 sin(f))2-n d# J (1 + 2 sin(f))-hA(2)d#,

F’(2)
n- 2 (1 + 2 sin(f))-nB(2)d#,

I(n- 1)(n- 2) (1 + 2 sin(f))-nC(2)d#,

with A(2) 1 + 22 sin(f) + 22 sinE(f), B(2) =-sin(f) 2 sinE(f), C(2) C
sin2(f). Clearly,

A(2) + 22B(2) 1 22 sin2(f) 1 22C,

so that (2.3) reads as

1 + 2 sin(f ))-"d# + (1 22) (1 + 2 sin(f))-nd#

< 2 1 _1 F(2)+ 2F’(2)

(1 + )G(2).
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The conclusion follows since

2 22
(1 + 2 sin(f))-n d# F(2) + 2F’(2) + F"

n- 2 (n- 1)(n- 2) (2)

t2

In the second part of the proof, we will be interested in the solutions H of the
equation

(2.4) (Dn_2H) + o(1 2)2Dn_2H (1 + cz)H, 1 < 2 < + 1.

The proposed solutions are given by

1
H(2) Hc(&) 1 + o

= (1 2)U()2/1-0U(’)2t/1-t "- 1 +

where c e IR and

v(a)

Although we will not use these remarks later on, it might be useful to give a hint on
how this solution may be obtained. First, it should be clear that if

+1

(2) (1 + 2x)2-" dla,,(x),
-1

-1 <2 < +1,

where dl.tn(x --c,(1- X2) (n/2)-I dx is the invariant measure of the ultraspheric
generator L, of (1.4), then G Dn-IF is a particular solution of (2.4). Indeed, by
Aubin’s result (and since Ln is the projection on a diameter of the conformal Lap-

(n/2)lacian on S’), the functions (1 + 2x) are extremal functions of the Sobolev
inequality (1.12) for Ln. Since in this case F(f, f) 1 x2 when f(x) x, all the
inequalities of the proof of Proposition 5 are actually equalities for P (x playing the
role of sin(f)). It may_ be shown directly (see [Fo]) that Dn-2 (1- 2)-n/2,
--1 < 2 < + 1, SO that G H0. However, we will find again this observation in the
process of the proof of Theorem 4.
To describe the general solutions, let, for every t > 0 and -1 < 2 < / 1,

v v(t, 2) be the unique nonnegative solution of the equation

(2.5) v= + =(1 22)v (1 + )t.
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Note that v(1, 0) 0. If we set V(2) v(H(2), 2), (2.4) reads

(2.6) Dn_2H V, V’ + o(1 22) V (1 + )H.

Taking the derivative of the equation V + (1 22) V (1 + )H, we see that the
equation Dn-2H V amounts to

Letting W V-, it remarkably follows that this equation is actually independent
of a (that is, of n) and may be written

2W (1 + 22) W-1

W!
it (1 2) ..[. W_

One may then show that W U2-- U), c ff IR, are solutions of the latter
equation.
The next lemma compares the solutions G of the differential inequality (2.2) to

the solutions Hc, c IR, of (2.4).

LEMMA 6.
20<2< 1,

Assume that G(20)< He(20)for some ;to [0, 1). Then, for every

G(2) < He(2).

Proof We write H Hc. First note that since

Dn-2(G- H) < v(G, 2)- v(H, 2)

and since v(t, 2) is increasing in t, Dn-2(G H) < 0 on the set {G < H}. We know
that G(20) < H(20) for some 20 [0, 1) and aim to show that G < H on the whole
interval [20, 1). Suppose that this is not the case, and let

2 inf(2 > 2o; G(2) H(2)}.

Then 20 < 2 < 1 and G < H on [20,2], so that Dn-2(G- H) < 0 on this inter-
val. But this differential inequality may easily be integrated to yield that
2n-v(G- n)(2) is nonincreasing on [20, ] so that

2)-2(G- H)(2o) > .n-2(G- H)(.).

Since G(20)< H(20), this contradicts the fact that, by continuity, G(2)= H(2).
Lemma 6 is established. VI
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One may note that Hc(O) 1 and H’c(O 4c/1 tx2. Furthermore, a Taylor
expansion shows that, when c < 0, He(l) < o, while when c > 0, Hc(-1) < o.
Note also that G(0) 1 and that

n(nU(0) [ sin(f) d#.n-1 n-1 d

In particular, the sign of G’(O) is determined by the sign of sin(f)d#.
Now, if f sin(f)d# > 0, we may choose c < 0 so that G’(0) < H’c(O < O.

Since G(0) Hc(O) 1, G < H in a neighborhood of 0. Therefore, as a con-
sequence of Lemma 6, if sin(f)d# > 0, and as 2 -- 1,

G(1) (1 +sin(f)) 1-n 1 + sin(f) d#n-1

Replacing f by -f shows that if sin(f)d# < 0, then G(-1)< o. Observe
furthermore that since

I (n-2 1
(1 + 2 sin(f)) 1-n d G(2) + n-1 2 2) J(1 + 2 sin(f)) 1-n sin(f) d#,

we have that

f
(2.7) | (1 + sin(f)) 1-n d# < n

G(+I).
n-2d

Therefore,

(2.8) 1

_
sin(f))l-nd# < o

according as sin(f)d# > 0 or < O.
With the help of the next proposition, we now improve upon (2.8) and

prove, using again the Sobolev inequality (1.12), that actually (1 + sin(f)) -1 is
#-almost surely bounded in this setting.

PROPOSITION 7. Let f be such that IlF(f, f)}loo < 1. If (1 sin(f)) 1-n d# <
o, then

I1(1 sin(f))-llloo < o.

Proof It is enough to deal with the case (1 + sin( 1-nf)) d# < oz. Let us
apply inequality (1.12) to the family of functions (1 + sin(f)) -p/2, p > n-2.
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Letting fl 1/ n/(n 2) > 1, and/(p) f (1 + sin(f))-p d#, we have

(2.9) (flp)l/,O < ,(p) + Cp2,(p + 1)

where C 2/n(n- 2). Since tip > p + 1 when p > n- 2, it already follows by
iteration of (2.9) that P(p)< oo for every p > n-1. We aim to prove that
SUpp > n-1 (p)l/p < o0 (from which the conclusion follows). It may be assumed
that/(p) > 1 for some p large enough; otherwise, there is nothing to prove. But
then, by Jensen’s inequality,

/(flp)l// < (1 + Cp2)’(p + 1).

A simple iteration procedure then yields the result. The proof is complete. 1--]

It is worthwhile mentioning here that, in the preceding proposition, we only
used that IIr’(f, f)lloo < o, and did not use the explicit value of the Sobolev
constant.
We may now conclude the proof of Theorem 2. As a consequence of (2.8) and

Proposition 7, we thus obtained that

I1(1 + sin(f))-llloo <

according as [ sin(f)d/ > 0 or <0. Let us first recall (cf. the comments following
Theorem 4) that the Sobolev inequality (1.12) implies the spectral gap inequality

(2.10)

for every tp in ’ with [ tpd# 0. (Take f 1 + eq9 in (1.12) and use a Taylor
expansion at e 0.)

Recall that we fixed f in with IIF(f, f)lloo < 1. Applying (2.10) to both
o sin(f) and q cos(f) easily shows that sin(f) d# and [ cos(f) d# cannot
vanish at the same time. It is then easy to see that there exists 0 IR such that

sin(f + 0) d# 0 and cos(f + 0) d# > O.

Indeed, if f cos(f)d# 0, we may take either 0 r/2 or 0 3r/2. If

f cos(f)d#%0, let 01]-rr/2, zr/2[ be such that tan(01)=-f sin(f)d#/
f cos(f)d# so that sin(f + 01)d# O. Then take either 0 O1 or 0 O1 + .
We aim to show that for #-almost every x, y in E, If(x) -f(Y)l < re. Hence, taking
if necessary some translate of f, we may and do assume that

(2.11) J sin(f)d# 0 and I cos(f)d/ > 0.
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We thus fix f in with lit(f, f)lloo < 1 and (2.11). Let also 0 < e < n. Set
h f + e so that

sin(h)d# sin(e) I cos(f)dg > O.

Then, (2.8) and Proposition 7 applied to h indicate that

I[(1 + sin(h))-llloo II(1 + sin(f + e))-lll < .
Similarly,

I1(1 sin(f- ))-11oo < .
Let, for every k e Z, Xk (4k- 1)n/2, Yk (4k + 1)n/2. The preceding proves
that there exists 6 6(e) > 0 such that, for every k Z,

(2.12) #(f + e. (Xk 6, Xk + 6)) #(f- e. (Yk 6, Yk + 6)) O.

The conclusion will then follow from the next elementary lemma, which may
be considered as a kind of mean value theorem for functions in the domain of a
carr6 du champ operator F. We assume here that F is ergodic in the sense that if
F(f, f) 0, then f is constant #-almost everywhere. This is clearly the case if F
satisfies a spectral gap inequality.

LEMMA 8. Assume that F is ergodic, and let p be such that for some x E and
6 > O, #(o (x 6, x + 6)) O. Then, #(q > x + 6) 0 or 1.

Proof LetWbe C withW=0 on (-,x-6) andW=l on (x+6, oo).
Then F(W(cp),W(cp))= 0, and since F is ergodic, the conclusion immediately
follows. [--]

In summary, and according to this lemma and (2.10), (2.12), we have thus
obtained that for each > 0, there is 6 6(e) > 0 such that for every k ,

#(f+e > x + 6) and /(f- e > y + 6) 0 or 1.

Let k0 be the smallest k in such that/(f + e > Xk+l + 6) 0. Then

#-almost everywhere. Now, #(f- e > Y0 + 6) 0 or 1. If f- e > Y0 + 6, then,
#-almost everywhere,

(4ko + 1) +6+e < f< (4ko+ 3) +6-e,



268 BAKRY AND LEDOUX

that certainly implies If(x) -f(Y)l < r for #-almost all x, y in E but is unlikely to
happen since e is arbitrary in (0, r). If f- e < Y0 + 6, then, #-almost everywhere,

(4ko- 1) + 6-e < f< (4ko + 1) + + e,

so that If(x) -f(y)[ < n + 2e for #-almost all x, y in E. Since e > 0 is arbitrary,
the proof of Theorem 2 is complete.
Note for further purposes that our conclusion is actually that, up to some

translation, sin(f) d# 0 and -n/2 < f < r/2 #-almost everywhere.

3. The Topogonov-Cheng sphere theorem. In this last section, we estab-
lish Theorem 4, which implies, as we have seen, an abstract version of the
Topogonov-Cheng sphere theorem.
We assume therefore that the Sobolev inequality (1.12) holds and that there

exists a nonconstant function f in ’ such that IIF(f, f)ll < 1 and IIfll -.
As in the previous section, we may if necessary take a translate of f and assume,
as shown by the proof of Theorem 2, that sin(f)d# 0 and, for example,
f cos f d# > 0, and Ilflloo r/2.
The main argument of the proof is contained in the following lemma. Let f be

as before. With this function f, we define F as in (2.1) and set G Dn-IF, the
solution of the differential inequality (2.2) of Proposition 5. Recall also the solu-
tions Hc, c IR, of (2.4).

LEMMA 9. Iff is as before, G Ho.
Proofi Replacing f by -f, it is enough to work on [0, 1]. According to

Lemma 6, and since G’(0) 0 ( sin(f) d# 0), for every c > 0, G < H, so that
by continuity G < H0. Now assume that there is 0 > 0 such that G(20)<
H0(0). Then there exists c < 0 such that G(A0) < He(A0), and, again by Lemma 6,
we will have that G(A) < Hc() for every A > 2o. Letting A --. 1, G(1)I< . By
(2.7) and Proposition 7, we would then conclude that II(1 / sin(f))-II <
This, however, contradicts the fact that IIflloo /2. Lemma 9 is established.

We thus have obtained that (some translate of) f satisfies the equality in the
differential inequality (2.2). In particular, for every -1 < < + 1,

4
I r(f ,n(n- 2) J

where fx (1 + 2 sin(f))1-(n/2), and the first claim of Theorem 4 is proved.
It is worthwhile pointing out that if f is the function we just considered, and if

ha (/1 + a2 + a sin(f))I-(n/2), a IR, then



MYERS’S DIAMETER THEOREM 269

for every a e IR. Indeed, since G Ho (1 -/2)-t/1-t (1 22) 1-(n/2),

1 + 2 sin f)-n d# Dn-2G (1 ,2)-n/2

and this is equal to (1 + a2)n/2 if 2 a/x/’l + a2. As we have seen while studying
the solutions of (2.4), this is in particular the case for the extremal functions of
Sobolev’s inequalities on spheres or with respect to the ultraspheric generators.
We may also note to conclude that since ha is extremal in Sobolev’s inequality

(1.12),

h n+2)/(n-2) ha .(.- 2) Lha

After a change of variables, we get, with X sin(f),

2[ n aF(X,X)]-2 V/1 + a2 X a(1 + X2) (V/1 + a2 + aX)LX -When a 0, we recover that -LX nX, and if we then replace LX by -nX and
simplify by a, we see that F(X, X) 1 X2. These observations thus indicate that
on the functions of X, L coincide with the ultraspheric generator Ln of dimension n
(see (1.4)) and conclude therefore the proof of Theorem 4. In a Riemannian setting,
we can use Obata’s theorem to conclude that L is "isometric" to the Laplacian of a
sphere. In general, however, we do not know exactly what kind of rigidity can be
expected.
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