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Abstract. We establish, by simple semigroup arguments, a L�evy–Gromov
isoperimetric inequality for the invariant measure of an in�nite dimensional
di�usion generator of positive curvature with isoperimetric model the Gaussian
measure. This produces in particular a new proof of the Gaussian isoperimet-
ric inequality. This isoperimetric inequality strengthens the classical logarithmic
Sobolev inequality in this context. A local version for the heat kernel measures
is also proved, which may then be extended into an isoperimetric inequality
for the Wiener measure on the paths of a Riemannian manifold with bounded
Ricci curvature.

1. Introduction

L�evy–Gromov’s isoperimetric inequality [L�e], [Gr] (cf. e.g. [G-H-L]) indicates
that if M is a (compact) connected Riemannian manifold of dimension n (= 2)
and of Ricci curvature bounded below by R ¿ 0, then its isoperimetric function
is larger than or equal to the isoperimetric function of the sphere of dimension
n and constant curvature R. In other words, if we denote by �(r) the normalized
volume of a geodesic ball of radius r = 0 on the n-sphere with curvature R,
for every set A in M with smooth boundary @A,

�′ ◦ �−1(�(A))5 �s(@A) (1:1)

where � denotes the normalized Riemannian measure on M and �s(@A) stands
for the surface measure of the boundary @A of A (see below). This holds in
particular for � = � itself ([L�e], [Sc]).
By Poincar�e’s limit (cf. e.g. [MK]), spherical measures converge to Gaussian

distributions to yield a Gaussian isoperimetric inequality [Bor], [S-T]. Let 

denote the canonical Gaussian measure on Rk with density with respect
to Lebesgue measure (2�)−k=2 exp(−|x|2=2) (or, more generally, a centered
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Gaussian measure on some abstract Wiener space). Then, for every Borel set
A in Rk with smooth boundary,

’ ◦ �−1(
(A))5 
s(@A) (1:2)

where �(r) = (2�)−1=2
∫ r
−∞ e

−x2=2dx; r ∈ R, is the distribution function of
the canonical Gaussian measure in dimension one and ’ = �′. In particu-
lar, half-spaces satisfy the equality in (1.2) and are the extremal sets of the
Gaussian isoperimetric inequality. It is known also (cf. [Bo1], [B-H]) that the
in�nitesimal versions (1.1) or (1.2) of the isoperimetric statement may eas-
ily be integrated. It yields, in the Gaussian case for example, that if A is a
Borel set in Rk with 
(A)= �(a), then, for every r = 0; 
(Ar)= �(a+ r)
where Ar is the Euclidean (or Hilbertian in case of an abstract Wiener mea-
sure) neighborhood of order r of A. (This was actually established directly in
[F-L-M], [Bor], [S-T].)
The aim of this work is to establish a version of the L�evy–Gromov

isoperimetric inequality for “in�nite dimensional generators” with isoperimet-
ric model the Gaussian isoperimetric function U = ’ ◦ �−1. We will work
in the abstract framework of Markov di�usion generators on some proba-
bility space which allows us to freely speak of curvature and in�nite di-
mension. The proof of our isoperimetric inequalities only relies on elemen-
tary semigroup arguments and provides at the same time a new simple
proof of Gaussian isoperimetry. Isoperimetric inequalities on spheres or in
Gauss space are usually established through delicate symmetrization argu-
ments ([Sc], [F-L-M] – cf. e.g. [B-Z] and the references therein −, and [Eh]
for the Gaussian case). Recently, S. Bobkov [Bo2] (after prior contributions
by M. Talagrand [Ta]) gave a surprising proof of the Gaussian isoperimet-
ric inequality via a two-point inequality and the central limit theorem, very
close in spirit to Gross’ approach to logarithmic Sobolev inequalities [Gro].
His proof was inspired by the following functional form of the Gaussian
isoperimetric inequality that he studied in a previous work [Bo1] and that
strongly in
uenced this paper: for every smooth function f on Rk with values
on [0; 1],

U
(∫

fd

)− ∫ U(f)d
5 ∫ |3f|d
 (1:3)

where we recall that U = ’ ◦ �−1. Since U(0) = U(1) = 0, the func-
tional inequality (1.3) reduces in a simple way to the isoperimetric state-
ment (1.2) when f approximates the indicator function of some set A. Rather
than isoperimetry itself, we put in this work main emphasis on functional
inequalities and will namely establish an inequality such as (1.3) in an ab-
stract in�nite dimensional semigroup framework. Following S. Bobkov [Bo2],
we will actually prove a strengthened form of (1.3), which, in the Gaus-
sian case, is the form established in [Bo2] via a two-point argument, and
reads

U
( ∫

fd

)
5
∫ √

U2(f) + |3f|2d
 : (1:4)
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With respect to (1.3), this inequality, like logarithmic Sobolev inequalities, may
easily be tensorized.
Our main purpose in this work will thus be to establish (1.3) and (1.4)

for the invariant measure of a positively curved di�usion generator. In partic-
ular, it will follow that the distributions of Lipschitz functions for this gen-
erator are contractions of the canonical Gaussian measure. We will actually
deal more generally with heat kernel measures and prove a whole family of
functional inequalities of this type under a general lower bound on the cur-
vature. These inequalities may then be tensorized by the Markov property to
yield sharp functional inequalities of isoperimetric type for the Wiener mea-
sure on the (Brownian) paths of a Riemannian manifold with Ricci curvature
bounded above and below. It might be worthwhile pointing out that the inequal-
ities of isoperimetric type we will establish are potentially much stronger than
logarithmic Sobolev inequalities. This has been shown in case of Gaussian
measures in [Led1] and we will prove a general result in this respect (Theo-
rem 3.2).
The main results are presented in Sect. 2. In Sect. 3, we show the stability

by tensorization of the family of inequalities under study and prove that the
distributions of Lipschitz functions are contractions of Gaussian measures. In
the next section, we brie
y discuss several similar results and inequalities for
hypercontractive generators. We however observe that curvature assumptions
cannot in general be dispensed. In the last section, we extend our functional
isoperimetric inequalities to path spaces following the corresponding approach
by P.E. Hsu [Hs] for logarithmic Sobolev inequalities.
Before turning to our main conclusions, let us illustrate some of the ideas

of this work by a simple direct semigroup proof of (1.3). Recall the Ornstein–
Uhlenbeck semigroup (Pt)t=0 with integral representation

Ptf(x) =
∫
Rk

f(e−tx + (1− e−2t)1=2y)d
(y); x ∈ Rk ;

for every f say in L1(
). The operators Pt are contractions on all Lp(
)-spaces,
symmetric and invariant with respect to 
 and with in�nitesimal generator L
acting on smooth functions f on Rk by

Lf(x) = �f(x)− 〈x;3f(x)〉 :

Moreover, the integration by parts formula for L indicates that for f and g
smooth, ∫

f(−Lg)d
 = ∫ 〈3f;3g〉d
 :

Let f be a �xed smooth function on Rk with values in [0,1]. It might actually
be convenient to assume throughout the argument that 0 ¡ ” 5 f 5 1 − ”
and let then ” tend to zero. Recall U = ’ ◦ �−1 and observe the fundamental
di�erential equation

U′′ = − 1
U

: (1:5)
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As in the semigroup proofs of logarithmic Sobolev inequalities ([B-E], [D-S]),
we can write, by the semigroup properties and integration by parts,

U
(∫

fd

)− ∫ U(f)d
 = ∞∫

0

d
dt

(∫
U(Ptf)d


)
dt

=
∞∫
0

(∫
U′(Ptf) LPtfd


)
dt

=
∞∫
0

(∫ |3Ptf|2
U(Ptf)

d

)

dt (1:6)

where we used (1.5) in the last step. It is clear on the integral representation of
Pt that it satis�es the commutation property 3Ptf = e−tPt(3f). In particular,
|3Ptf|5 e−tPt(|3f|). The key argument is then to split |3Ptf|2 to get, for
every t = 0,

|3Ptf|2
U(Ptf)

5
|3Ptf|
U(Ptf)

e−tPt(|3f|) : (1:7)

Our aim is to obtain a pointwise upper-bound of the ratio

|3Ptf|
U(Ptf)

again by the commutation property. It is worthwhile mentioning that the pre-
ceding splitting and the bound we will obtain are optimal in case f is the
indicator function of a half-space. To this aim, �x t ¿ 0 and write that

[U(Ptf)]2 − [Pt(U(f))]2 = −
t∫
0

d
ds
[Ps(U(Pt−sf))]2ds :

By (1.5),

− d
ds
[Ps(U(Pt−sf))]2 = −2Ps(U(Pt−sf))Ps(U′′(Pt−sf)|3Pt−sf|2)

= 2Ps(U(Pt−sf))Ps

( |3Pt−sf|2
U(Pt−sf)

)
:

Since Ps is given by a kernel, it satis�es a Cauchy–Schwarz inequality, and
thus

Ps(Y )Ps

(
X 2

Y

)
= [Ps(X )]2; X; Y = 0 :

Hence, with X = |3Pt−sf| and Y = U(Pt−sf),

[U(Ptf)]2 − [Pt(U(f))]2 = 2
t∫
0
[Ps(|3Pt−sf|)]2ds :

Since Ps(|3g|)= es|3Psg|, with g = Pt−sf it follows that

[U(Ptf)]2 − [Pt(U(f))]2 = 2
t∫
0
e2sds|3Ptf|2 = (e2t − 1)|3Ptf|2 :
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In particular (and this is optimal on indicator functions), for every t ¿ 0,

|3Ptf|
U(Ptf)

5
1√
e2t − 1 :

Together with (1.6) and (1.7), we have therefore obtained that

U
(∫

fd

)− ∫ U(f)d
5 ∞∫

0

e−t
√
e2t − 1

(∫
Pt(|3f|)d
)dt

=
∞∫
0

e−t
√
e2t − 1dt

∫ |3f|d


=
∫ |3f|d


since, by invariance,
∫
Ptgd
 =

∫
gd
 for every t. Thus, (1.3) is established

in this way. Note that we basically only used the fundamental theorem of
calculus and the Cauchy–Schwarz inequality. The preceding argument may also
be developed on the basis of the Ornstein–Uhlenbeck semigroup on an abstract
Wiener space.
It might be worthwhile mentioning for further purposes that the function

U = ’◦�−1 de�ned on [0,1] is non-negative, concave, symmetric with respect
to the vertical line going through 1

2 with a maximum there equal to (2�)−1=2

and such that U(0) = U(1) = 0. Its behavior at 0, or at 1 by symmetry, is
given by the equivalence

lim
x→0

U(x)

x
√
2 log 1x

= 1 : (1:8)

This is easily seen by noting that the derivative of U(x) is −�−1(x) which is

of the order of
√
2 log 1x as x → 0. Recall �nally that U satis�es the di�erential

equation (1.5) UU′′ = −1.

2. In�nite dimensional L�evy–Gromov isoperimetric inequalities

To describe our main results, we �rst introduce the abstract Markov generator
setting we will deal with following [Ba3], [Ba4] (to which we refer for further
details). On some measure space (E;E; �), let L be a Markov generator asso-
ciated to some semigroup (Pt)t=0 continuous in L2(�). We will assume that L
and (Pt)t=0 are invariant with respect to �. We assume furthermore that we are
given a nice algebra A of (bounded) functions on E dense in the L2-domain
of L, stable by L and Pt and by the action of C∞ functions which are zero
at zero. The stability by Pt may not be satis�ed even in basic examples such
as non-degenerate second order di�erential operators with no constant term on
a smooth manifold. This assumption is however not strictly necessary and is
mostly only used for convenience (see below). When � is �nite, we always
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normalize it to a probability measure and assume that A contains the con-
stants and is stable by C∞ functions. We furthermore assume in this case that
Ptf → ∫

fd� as t →∞ for every f in A.
We may introduce, following P.-A. Meyer, the so-called “carr�e du champ”

operator � as the symmetric bilinear operator on A×A de�ned by

2�(f; g) = L(fg)− fLg− gLf; f; g ∈A :

Note that �(f;f) = 0. We will say that L is a di�usion if for every C∞

function 	 on Rk , and every �nite family F = (f1; : : : ; fk) in A,

L	(F) = 3	(F) · LF +33	(F) · �(F; F) : (2:1)

In particular, if 	 is C∞ on R, for every f in A,

L	(f) = 	′(f)Lf +	′′(f)�(f;f) :

This hypothesis essentially expresses that L is a second order di�erential op-
erator with no constant term and that we have a chain rule formula for
�; �(	(f); g) = 	′(f)�(f; g); f; g ∈ A. By the di�usion and invariance
properties, ∫

	(f)(−Lf)d� = ∫
	′(f)�(f;f)d�; f ∈A :

One basic operator is the Laplace–Beltrami operator � on a complete con-
nected Riemannian manifold M (with its Riemannian measure). For A the
class, say, of C∞c functions on M (that is however not stable by the heat
semigroup in the non-compact case), �(f;f) is simply the Riemannian length
(squared) |3f|2 of the gradient 3f of f ∈A. The previous abstract frame-
work includes a number of further examples of interest (cf. [Ba2]). For ex-
ample, one may consider L = � + X where X is a smooth vector �eld on
M , or more general second order di�erential operators with no constant term.
We may also consider in�nite dimensional examples such as the Ornstein–
Uhlenbeck generator on Rk

Lf(x) = �f(x)− 〈x;3f(x)〉
(or, more generally, on some abstract Wiener space for an appropriate algebra
A) with invariant measure the canonical Gaussian measure 
.
Curvature, and dimension, in this setting are introduced via the iterated

carr�e du champ operator �2 de�ned by

2�2(f; g) = L�(f; g)− �(f;Lg)− �(g;Lf); f; g ∈A :

For simplicity, we write below �(f) = �(f;f) and similarly for �2. In a
Riemannian setting, Bochner’s formula (cf. [Ch], [G-H-L]) indicates that

�2(f) = �2(f;f) = Ric(3f;3f) + ‖Hess f ‖22
where Ric is the Ricci tensor on M and ‖Hess f ‖2 is the Hilbert–Schmidt
norm of the tensor of the second derivatives of f. We will say that L satis�es
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a curvature-dimension inequality CD(R; n) of curvature R ∈ R and dimension
n= 1 if, for all functions f in A (�-almost everywhere),

�2(f)= R�(f) +
1
n
(Lf)2 : (2:2)

A n-dimensional complete Riemannian manifold (M; g) with Ricci curvature
bounded below, or rather the Laplacian � on M , satis�es the inequality
CD(R; n) with R the in�mum of the Ricci tensor over all unit tangent vec-
tors (recall that ‖Hess f ‖22 = 1

n (�f)2). If L = � +3h for a smooth function
h, and if (and only if), as symmetric tensors,

3h⊗3h5 (m− n)[Ric−33h− �g] (2:3)

with m= n, then L satis�es CD(�; m) (cf. [Ba3], Proposition 6.2).
We will say more simply that L is of curvature R ∈ R if, for all functions

f in A,
�2(f)= R�(f) (2:4)

(and write sometimes �2 = R�.) This de�nition thus corresponds to an in�-
nite dimensional generator. The Ornstein–Uhlenbeck generator, even on a �nite
dimensional state space, is of curvature 1, and of no �nite dimension. Actually,
the Ornstein–Uhlenbeck generator is of no �nite dimension for any curvature
R ∈ R. Indeed, in this example, for every smooth function f on Rk say,
�(f) = |3f|2, �2(f) = |3f|2 + ‖Hess f ‖22 and

‖Hess f ‖22 = (R− 1)|3f|2 + c(Lf)2

is impossible for some c ¿ 0, R ∈ R and every f as can be seen by choosing
for example f(x) = |x|2 and by letting x →∞. The Laplacian � on a manifold
(M; g) with Ricci curvature bounded below by R, R ∈ R, is of curvature R.
The operator L = �+3h on (M; g) is of curvature � as soon as (cf. (2.3))

Ric−33h= �g :

Conditions for more general di�erential operators of the form

Lf(x) =
k∑

i; j=1
aij(x)

@2f
@xi@xj

(x) +
k∑

i=1
bi(x)

@f
@xi
(x) ;

where A(x) = (aij(x))15i; j5k is symmetric positive de�nite at every point, to
be of some curvature may be given in the same spirit.
Let us mention that, in these examples, although the natural algebra A may

not be stable by Pt , it is clear that �(Ptf) and �2(Ptf) may be de�ned for large
classes of smooth functions (on Riemannian manifolds, cf. e.g. [El], [Ba2]).
This is basically only what is really needed in the proofs below concerning
A. We actually put emphasis in this work on the structure of the algebraic
methods we develop. In this regard, the stability by Pt removes all kinds of
analysis questions which are of a di�erent nature. The question of extending
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the results presented in this work to large classes of functions in the domain
of given generators is thus another issue not addressed here.
The curvature assumption (2.4) �2 = R� on the in�nitesimal generator L

may be translated equivalently on the semigroup (Pt)t=0. It is known indeed
and is easy to prove that L is of curvature R if and only if, for every f in A
and every t = 0,

�(Ptf)5 e−2RtPt(�(f)) : (2:5)

For the proof, let, for f ∈ A and t ¿ 0 �xed, F(s) = e−2RsPs(�(Pt−sf)),
05 s5 t. Now, by de�nition of �2,

F ′(s) = 2e−2Rs[−RPs(�(Pt−sf)) + Ps(�2(Pt−sf))] :

Hence, by (2.4) applied to Pt−sf for every s, F is non-decreasing and (2.5)
follows. The converse is similar.
Now, when L is a di�usion, it is also true that the curvature condition (2.4)

is equivalent to saying that, for every f in A and every t = 0,√
�(Ptf)5 e−RtPt

(√
�(f)

)
: (2:6)

Actually, the equivalent in�nitesimal version of (2.6) indicates that for every
f in A,

�(f)(�2(f)− R�(f))= 1
4�(�(f)) : (2:7)

This is well-known in a Riemannian setting (see e.g. [D-L], [El], [D-S],
[Ba4]...) but is less familiar in the preceding abstract framework and has been
established in [Ba1], p. 148–149, in the study of Riesz’ transforms. More pre-
cisely, it was shown there that (2.7) follows from the curvature assumption
�2 = R� by the di�usion property (cf. also [Ba4]). Parts of what will be
accomplished below may also be seen as extensions of the relation between
(2.6) and (2.4) (and (2.7)).
It is well-known [B-E] that a Markov di�usion generator L of curvature

R ¿ 0 with �nite (normalized) invariant measure � is hypercontractive, that
is, equivalently, satis�es the logarithmic Sobolev inequality∫

f2 logf2d� − ∫f2d� log ∫f2d�5 2
R

∫
f(−Lf)d� = 2

R

∫
�(f)d� (2:8)

(for every f in A). Observe that under the curvature-dimension hypothesis
CD(R; n), the constant may be improved to 2(n − 1)=nR [B-E]. Our purpose
here will actually be to prove that under the same curvature assumption we
also have an isoperimetric inequality for the measure � in the form of the func-
tional inequalities (1.3) and (1.4). We will deal more generally with heat kernel
measures and will establish the following rather general statement. Although it
may appear di�cult to grasp at a �rst reading, we decided to present in a syn-
thetic form the various inequalities we want to emphasize since they basically
all follow from the same scheme of proof. Recall the Gaussian isoperimetric
function U = ’ ◦ �−1.
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Theorem 2.1. Let L be a Markov di�usion generator such that, for some
R ∈ R, �2(f) = R�(f) for every f in A. Then, for every f in A with
values in [0; 1], every �= 0 and every t = 0,√

U2(Ptf) + ��(Ptf)5 Pt
(√
U2(f) + c�(t)�(f)

)
where

c�(t) =
1− e−2Rt

R
+ �e−2Rt ; t = 0 :

Notice that since cc�(s)(t) = c�(s + t), the inequalities of Theorem 2.1 are
stable by Pt . We will see in Section 3 that these inequalities are also stable by
tensorization.
Theorem 2.1 admits several corollaries according to the choice of �. If

� → ∞, we �rst recover (2.6). If R ¿ 0, we may let � = 1=R (c�(t) = 1=R
for every t = 0) to get, for every f and t = 0,√

RU2(Ptf) + �(Ptf)5 Pt
(√

RU2(f) + �(f)
)

:

When � is �nite (and normalized), we can let t → ∞ to get the following
announced corollary (that extends the Gaussian inequalities (1.4) and (1.3)).

Corollary 2.2. Let L be a Markov di�usion generator of curvature R ¿ 0
with invariant probability measure �. Then, for every f in A with values in
[0; 1], √

RU(
∫
fd�)5

∫√
RU2(f) + �(f)d� (2:9)

and √
R[U(

∫
fd�)− ∫U(f)d�]5 ∫√

�(f)d� : (2:10)

As another choice, we can take � = 0 so that

c0(t) =
1− e−2Rt

R
(= 2t if R = 0) :

Hence we may state the following.

Corollary 2.3. Let L be a Markov di�usion generator of some curvature
R ∈ R. Then for every f in A with values in [0; 1], and every t = 0,

U(Ptf)5 Pt
(√
U2(f) + c0(t)�(f)

)
:

Note that when R ¿ 0, � is �nite and t → ∞, the inequality of Corol-
lary 2.3 reads as (2.9).
Before turning to the proof of Theorem 2.1, let us comment the isoperi-

metric aspects of the preceding inequalities, especially (2.9) or (2.10) with say
R = 1 for simplicity. It namely gives rise to a L�evy–Gromov isoperimetric
inequality in this in�nite dimensional setting. On more concrete spaces, (2.9)
and (2.10) indeed really turn into a geometric inequality. We may de�ne a
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pseudo-metric d on E by setting

d(x; y) = ess sup|f(x)− f(y)|; x; y ∈ E ;

the supremum being running over all f’s in A with �(f)5 1 almost surely.
Assume actually for what follows that functions f in A are true functions
(rather than classes), and that d is a true metric and � a separable non-atomic
Borel probability measure on (E; d). Assume furthermore that

√
�(f) may be

identi�ed to a modulus of gradient as√
�(f)(x) = lim sup

d(x; y)→0

|f(x)− f(y)|
d(x; y)

; x ∈ E :

These requirements are in particular ful�lled in di�erentiable structures such as
Riemannian manifolds with Riemannian measures. Then, when f approximates
the indicator function of some closed set A in E,

∫√
�(f)d� approaches the

lower-outer Minkowski content of the boundary of A

�s(@A) = lim inf
r→0

1
r
[�(Ar)− �(A)] ;

where Ar = {x ∈ E ; d(x; A) ¡ r}. Since U(0) = U(1) = 0, (2.9) or (2.10)
(with thus R = 1) therefore read on sets as

U(�(A))5 �s(@A) : (2:11)

Hence, the isoperimetric function of � is larger than or equal to the Gaussian
isoperimetric function U, which is the analogue of L�evy–Gromov’s result.
This di�erential inequality may also be integrated to yield that whenever A

is a Borel set in (E; d) with �(A) = �(a) for some real number a, for every
r = 0,

�(Ar)= �(a+ r) : (2:12)

For example, if f is such that �(f) 5 1 and if �({f 5 m}) = 1
2 = �(0),

for every r = 0,

�({f 5 m+ r})= �(r)= 1− 1
2 e
−r2=2 : (2:13)

This property may also be seen as an in�nite dimensional analogue of the
Riemannian comparison theorems of volumes of balls (cf. [Ch]). We will come
back to it from another point of view in Theorem 3.2. We thus recover the
full strength of the Gaussian isoperimetric inequality with the half-spaces as
extremal sets [Bor], [S-T]. We refer to [Bo1] and [B-H] for a proof of the
equivalence between (2.11) and (2.12) (and (2.10) for the Gaussian measure
[Bo1]) and for further general comments and results on these geometric aspects
of the functional inequalities (2.9) and (2.10).
We now prove Theorem 2.1. The argument is very similar to the proof of

(2.6) (cf. [Ba1], [Ba4]) and makes basic use of the equation UU′′ = −1.
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Proof of Theorem 2.1. Let f ∈ A with values in [0; 1] and t = 0 be �xed.
(As in the introduction, we may assume preferably that 0 ¡ ” 5 f 5 1 − ”
and let then ” tend to zero.) For every 05 s5 t, set

F(s) = Ps
(√
U2(Pt−sf) + c�(s)�(Pt−sf)

)
:

Since c�(0) = �, it will be enough to show that F is non-decreasing. We state
and prove a general result in this regard.

Lemma 2.4. Let 	 be smooth on R3, f ∈A and t ¿ 0 be �xed. Then

d
ds

Ps(	(s; Pt−sf; �(Pt−sf))) = Ps(K)

with

K = @1	 + 2@3	�2(f) + @22	�(f) + 2@2@3	�(f;�(f)) + @23	�(�(f))

where we wrote on the right-hand side f for Pt−sf and 	 for 	(s; f; �(f)) =
	(s; Pt−sf; �(Pt−sf)).

Proof. We have

d
ds

Ps(	(s; Pt−sf; �(Pt−sf)))

= Ps

(
L	(s; Pt−sf; �(Pt−sf)) +

d
ds

	(s; Pt−sf; �(Pt−sf))
)

:

By the di�usion property (2.1), and with the notation of the statement,

L	(s; Pt−sf; �(Pt−sf)) +
d
ds

	(s; Pt−sf; �(Pt−sf))

= @2	Lf + @3	L�(f) + @22	�(f) + 2@2@3	�(f;�(f))

+ @23	�(�(f)) + @1	 − @2	Lf − 2@3	�(f;Lf)) :

Since 2�2(f) = L�(f)− 2�(f;Lf), the lemma follows.

We apply Lemma 2.4 with

	(s; x; y) =
√
U2(x) + c�(s)y :

It is immediate that

	@1	 =
c′�
2
y ;

	@2	 = UU′ ;

	@3	 =
c�
2

;
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and that
	3@22	 = −U2U′ 2 +	2(U′ 2 − 1) ;

	3@2@3	 = −c�
2
UU′ ;

	3@3	 = −c2�
4

:

Therefore, K of Lemma 2.4 satis�es

	3K = 	2 c
′
�(s)
2

�(f) +	2c�(s)�2(f)−U2(f)U′2(f)�(f)

+	2(U′2(f)− 1)�(f)− c�(s)U(f)U′(f)�(f;�(f))

− c�(s)2

4
�(�(f)) :

With the short notation of Lemma 4.2, 	 = 	(s; f; �(f)) =√
U2(f) + c�(s)�(f), so that

	3K = [U2(f) + c�(s)�(f)]
c′�(s)
2

�(f) + [U2(f) + c�(s)�(f)]c�(s)�2(f)

−U2(f)U′2(f)�(f) + [U2(f) + c�(s)�(f)](U′2(f)− 1)�(f)

− c�(s)U(f)U′(f)�(f;�(f))− c�(s)2

4
�(�(f)) :

Therefore, after some algebra,

	3K = c�(s)�(f)
[
c�(s)�2(f)−

(
1− c′�(s)

2

)
�(f)

]
− c�(s)2

4
�(�(f))

+U2(f)
[
c�(s)�2(f)−

(
1− c′�(s)

2

)
�(f)

]
− c�(s)U′(f)U(f)�(f;�(f)) + c�(s)U′2(f)�(f)2 :

By the very de�nition of c�(s),

1− c′�(s)
2

= Rc�(s)

for every s. Hence

	3K = c�(s)2
(
�(f)(�2(f)− R�(f))− 1

4�(�(f))
)

+ c�(s)
(
U2(f)(�2(f)− R�(f))−U′(f)U(f)�(f;�(f))

+U′2(f)�(f)2
)
:

Now, as a consequence of (2.7) applied twice,

	3K = c�(s)
(
U2(f)

�(�(f))
4�(f)

−U′(f)U(f)�(f;�(f)) +U′2(f)�(f)2
)

:
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The right-hand side of this inequality is a quadratic form in U(f) and U′(f)
that is non-negative since, as �(f;f)= 0 for every f,

�(f;�(f))5 �(f)2�(�(f)) :

Hence K = 0 and thus F ′(s) = Ps(K)= 0 for every 05 s5 t. The proof of
Theorem 2.1 is complete.

The preceding proof and statements may also be given with a function U
such that UU′′ = 1: This would correspond to an isoperimetric model with
density e x

2=2.
When � ¿ 0, the family of inequalities of Theorem 2.1 when t varies

(actually as t → 0) is equivalent to the curvature assumption �2 = R�. The
argument is very similar to the proof of the theorem. The function

H (t) = Pt
(√
U2(f) + c�(t)�(f)

)
−
√
U2(Ptf) + ��(Ptf); t = 0 ;

is non-negative and H (0) = 0. Therefore,

[U2(f) + ��(f)]3=2H ′(0)
= �2

(
�(f)(�2(f)− R�(f))− 1

4�(�(f))
)

+ �
(
U2(f)(�2(f)− R�(f))−U(f)U′(f)�(f;�(f)) +U′2(f)�(f)2

)
= 0 :

For some 0 ¡ a ¡ 1 and g bounded in A, apply the latter to f = a + ”g ∈
[0; 1] for every ” ¿ 0 small enough. Dividing by ”2 and letting ” go to zero
yields �2(g) − R�(g) = 0. This observation proves the sharpness of Theo-
rem 2.1. It is not clear however how to move between the various inequalities
of Theorem 2.1 besides going back to their in�nitesimal version expressed by
the curvature hypothesis �2 = R�.
To conclude this section, let us mention that we of course would like to

follow a similar procedure in case of the original L�evy–Gromov inequality
involving the dimension parameter n of the Markov generator. This however
turns out to be more involved since, at this point, there is no equivalent for-
mulation of the CD(R; n) hypothesis on the semigroup (Pt)t=0 similar to (2.5)
or (2.6).

3. Contractions of Gaussian measures and logarithmic Sobolev inequalities

In this paragraph, we �rst show, following [Bo2], that the functional
inequalities of the preceding section are stable by tensorization. For simplicity,
we assume that for two carr�e du champ operators �1 and �2 on two indepen-
dent spaces E1 and E2, we have the inequalities√

U2(Pif) + �i�i(Pif)5 Pi
(√
U2(f) + �i�i(f)

)
; i = 1; 2 ; (3:1)
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where �i; �i = 0 and where P1; P2 are Markov operators (which essentially
represent P1t1 ; P

2
t2
; t1; t2 = 0).

Proposition 3.1. If f : E1 × E2 → [0; 1] in the domain of �1 ⊗ �2 satis�es
(3:1); then √

U2(P1P2f) + �1�1(P1P2f) + �2�2(P1P2f)

5 P1P2
(√
U(f) + �1�1(f) + �2�2(f)

)
:

Proof. We concentrate on the convexity argument and skip several details on
the underlying tensorization of the generators and the carr�es du champ. It is
plain that these aspects are ful�lled in more concrete spaces such as Riemannian
manifolds. If we apply (3.1), i = 1, to P2f, we get√

U2(P1P2f) + �1�1(P1P2f) + �2�2(P1P2f)

5

√[
P1
(√
U2(P2f) + �1�1(P2f)

)]2
+ �2�2(P1P2f) :

Now, a carr�e du champ � is a non-negative symmetric bilinear operator so that
it satis�es the triangle inequality

√
�(f + g)5

√
�(f)+

√
�(g). By standard

approximations of integrals by sums,

�2(P1P2f)5
[
P1
(√

�2(P2f)
)]2

(3:2)

(assuming the proper domain considerations). Using Minkowski’s inequality√(∫
X
)2
+
( ∫

Y
)2
5
∫√

X 2 + Y 2; X; Y = 0 ; (3:3)

for the kernel P1 and X =
√
U2(P2f) + �1�1(P2f); Y =

√
�2�2(P2f), it

follows that √
U2(P1P2f) + �1�1(P1P2f) + �2�2(P1P2f)

5 P1
(√
U2(P2f) + �1�1(P2f) + �2�2(P2f)

)
:

Repeating the procedure with P2 and f easily concludes the argument. The
proof is complete.

The next statement clari�es some of the relationships between the inequali-
ties that we are studying and logarithmic Sobolev inequalities. It also describes
an important contraction property. In what follows, � is a probability mea-
sure. We will say that L, or rather the carr�e du champ operator �, satis�es a
logarithmic Sobolev inequality with constant �0 ¿ 0 if for all f in A,

�0E(f2) = �0[
∫
f2 logf2d� − ∫ f2d� log

∫
f2d�]

5 2
∫
f(−Lf)d� = 2

∫
�(f)d� :
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For f in A, denote by � its distribution on the real line with respect to the
underlying invariant probability measure �.

Theorem 3.2. Let � be a carr�e du champ satisfying the inequality

U(
∫
fd�)5

∫ √
U2(f) + �(f)d� (3:4)

for every f inA with values in [0; 1]. Then � satis�es the logarithmic Sobolev
inequality

E(f2)5 2
∫
�(f)d� (3:5)

for every f ∈A. Furthermore; if �(f)5 1 almost everywhere; the distribu-
tion � of f is a contraction of the canonical Gaussian measure 
 on R.

Proof. Let f in A. Assume �rst that � is absolutely continuous with respect to
Lebesgue’s measure on R with a strictly positive density. We set for simplicity
�(r) = �((−∞; r]) so that � has density �′. For r ∈ R, apply (3.4) to  (f)
where  (x) = 1 on (−∞; r];  (x) = 0 on [r + ”;∞) and linear elsewhere.
(We of course assume here the corresponding stability of A or of the domain
of �.) As ” → 0, by Lebesgue’s theorem, for almost every r,

U(�(r))5 �(r)�′(r) (3:6)

where � is a regular version of the conditional expectation of
√

�(f) with
respect to the sub-�-�eld of E generated by f. Set k = �−1 ◦ � and x =
�−1 ◦ �(r). Since U(�(x)) = ’(x), (3.6) indicates that, for almost every x,

’(x)5 � ◦ �−1 ◦ �(x)�′ ◦ �−1 ◦ �(x) :

In other words, almost everywhere,

k ′(x)5 � ◦ k(x) : (3:7)

By de�nition of k, the distribution of k under 
 is �. If we now apply the
classical logarithmic Sobolev inequality for 
 [Gro] to k, we get that

E(k2)5 2
∫
k ′2d
5 2

∫
(� ◦ k)2d
 ;

that is ∫
x2 log x2d�(x)− ∫ x2d�(x) log

∫
x2d�(x)5 2

∫
�2(x)d�(x) :

By de�nition of � and �, this is slightly better than the logarithmic Sobolev
inequality E(f2)5 2

∫
�(f)d�.

In general, we need simply tensorize � with the canonical Gaussian measure

 on R (that satis�es (3.4)), and work with the function

f̃(x; u) = (1− ”2)1=2f(x) + ”u; (x; u) ∈ E ×R;

whose carr�e du champ on the product space is (1− ”2)�(f) + ”2. The distri-
bution � of f̃ on E×R is smooth and the preceding applies to yield the result
as ” → 0. The second part of Theorem 3.2 is an immediate consequence, in
the regular case, of (3.6) and (3.7) in which � 5 1, with k the contraction
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we are looking for. The general case follows from the previous regularization
procedure together with a simple weak-compactness argument. The proof of
Theorem 3.2 is complete.

The last part of Theorem 3.2 expresses equivalently that if � is a measure
on R such that for every smooth function  

U
( ∫

 d�
)
5
∫ √

U2( ) +  ′2d� ; (3:8)

then � is the image by a contraction of the canonical Gaussian measure 
. (Of
course, if � is a contraction of 
 on R or Rk , it will clearly satisfy (3.8), as
well as the corresponding logarithmic Sobolev inequality.) We refer to [B-H]
for an analogous result on the exponential distribution. Note furthermore that
Theorem 3.2 also holds under the inequality

U(
∫
fd�)− ∫ U(f)d�5 ∫ √

�(f)d� :

In the proof of Theorem 3.2, we used the logarithmic Sobolev inequality
for the Gaussian measure 
. This might not be completely satisfactory. As an
alternate approach to this proof, one may follow the Gaussian case [Led1]
and use the tensorization Proposition 3.1 to conclude. Note that Theorem 3.2
provides another proof of the distributional inequalities (2.13).
Finally, we may observe that Corollary 2.2 together with Theorem 3.2 yield

a proof of the logarithmic Sobolev inequality (2.8). As for the L�evy–Gromov
theorem (cf. the end of Sect. 2), we would not know however how to improve
the inequalities of Corollary 2.2 in order to reach the better (and optimal) con-
stant 2(n−1)=nR in (2.8) under the CD(R; n) hypothesis (2.2) for some �nite n.

4. Some isoperimetric statements for hypercontractive generators

In this section, the invariant measure � is assumed to be �nite and normal-
ized into a probability measure. In Corollary 2.2 and the subsequent comments,
we have seen how a positively curved di�usion generator satis�es an in�nite
dimensional L�evy–Gromov isoperimetric inequality. On the other hand, we also
know that these generators satisfy a logarithmic Sobolev inequality (2.8) (and
we have seen also in Theorem 3.2 how logarithmic Sobolev inequalities follow
from the family of inequalities of Sect. 2). One may therefore ask what kind of
isoperimetric result still holds for hypercontractive generators. In this last para-
graph, we brie
y show, following [Led2], [Led3], that if L is hypercontractive
and of some curvature R (not necessarily strictly positive), then there is still a
form of isoperimetry, with a constant depending on R and on the hypercontrac-
tivity constant. Finally, we prove that one cannot hope under hypercontractivity
only for an inequality cU(�(A))5 �s(@A) for some 0¡ c5 1 to hold, even
for sets A of the form A = {f 5 r} where �(f) 5 1 �-almost everywhere
which correspond formally to balls. In particular, the isoperimetric inequality
(3.4) is in general strictly stronger than the corresponding logarithmic Sobolev
inequality (3.5).
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Let us �rst recall some de�nitions about hypercontractivity. Recall from
Sect. 3 that L satis�es a logarithmic Sobolev inequality with constant �0 ¿ 0
if for all f in A,

�0E(f2) = �0[
∫
f2 logf2d� − ∫ f2d� log

∫
f2d�]

5 2
∫
f(−Lf)d� = 2 ∫ �(f)d� :

Equivalently [Gro], (Pt)t=0 is hypercontractive of constant �0 in the sense that
whenever 1¡ p ¡ q ¡ ∞ and e2�ot = [(q− 1)=(p− 1)], for every f in A,

‖Ptf‖q 5 ‖f‖p
where the norms are understood with respect to the measure �. According to
(2.8), a generator L of curvature R ¿ 0 is hypercontractive with constant
�0 = R.

Theorem 4.1. Let L be a Markov di�usion generator with hypercontractivity
constant �0 ¿ 0 and curvature R (∈ R). Then; for every f in A with values
in [0; 1] and every 05 t 5 1;

‖f‖22 − ‖f‖2p(t) 5 C
√
t
∫ √

�(f)d� (4:1)

where C ¿ 0 only depends on R and p(t) = 1 + e−�0t .

To describe the isoperimetric content of this statement, assume we are in a
setting allowing the operations described next to Corollary 2.3. Then, for every
Borel set A with 0¡ �(A)5 1

2 , if f approximates the indicator function of A,
(4.1) yields

�(A)[1− �(A)(2=p(t))−1]5 C
√
t�s(@A); 05 t 5 1 :

Now, when 05 t 5 1,
2

p(t)
− 1= 1

2
�0e−�o t :

Hence,

�(A)
[
1− exp

(
−1
2
�0e−�0 t log

1
�(A)

)]
5 C

√
t�s(@A) :

Choose then t = (2 log(1=�(A)))−1 (5 1 since 0¡ �(A)5 1
2 ) to get

�(A)

√
log

1
�(A)

5 C′�s(@A)

for some C′ ¿ 0 only depending on R and �0. Due to the equivalence (1.8),
and by symmetry of U, this amounts to

cU(�(A))5 �s(@A)

for some 0¡ c ¡ 1, that is, a weak form of (2.11).
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The following lemma, in the spirit of the methods developed in Sect. 2
(and the introduction), will be needed in the proof of Theorem 4.1.

Lemma 4.2. Let L with curvature R ∈ R. Then; for every f in A and every
t = 0; almost everywhere;

Pt(f2)− (Ptf)2 = e2Rt − 1
R

�(Ptf) :

For the proof, write

Pt(f2)− (Ptf)2 = 2
t∫
0
Ps(�(Pt−sf))ds

and, by (2.5),

Pt(f2)− (Ptf)2 = 2
t∫
0
e2Rsds �(Ptf) =

e2R t − 1
R

�(Ptf) :

Lemma 4.2 is actually close in spirit to some aspects of the Li–Yau inequality
[L-Y]. It namely implies that for every f and t ¿ 0,

�(Ptf)5
R

e2R t − 1‖f‖
2
∞ : (4:2)

Proof of Theorem 4.1. Fix f in A with values in [0, 1]. For every t = 0,
write ∫

f(f − Ptf)d� = −∫f( t∫
0
LPsfds)d�

= −
t∫
0
(
∫
fLPsfd�)ds

=
t∫
0
(
∫
�(f; Psf)d�)ds

5
t∫
0
(
∫ √

�(Psf)d�)ds
∫ √

�(f)d� :

Now, if 05 s5 1, by (4.2),√
�(Psf)5

C√
s
‖f‖∞ 5

C√
s

where C ¿ 0 only depends on R. Therefore, if 05 t 5 1,∫
f(f − Ptf)d�5 2C

√
t
∫ √

�(f)d� : (4:3)

Now, by symmetry of Pt ,∫
f(f − Ptf)d� =

∫
f2d� − ∫fPtfd� = ‖f‖22 − ‖Pt=2f‖22 :

By the hypercontractivity property,

‖Pt=2f‖22 5 ‖f‖2p(t)
from which the conclusion follows together with (4.3). The proof is complete.
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We complete this section with an example showing that one cannot hope
for much under hypercontractivity only and that the curvature assumption is
essential in the previous statement. We will actually show that, for any c ¿ 0,
there exist generators L with hypercontractivity constant �0 = 1 such that

cU(�(A))5 �s(@A) (4:4)

may fail even for sets of the form A = {f 5 m} where f is such that �(f)
5 1. In particular, the distribution of f (under �) is not a contraction of
the canonical one-dimensional Gaussian measure. These sets correspond for-
mally to balls in this in�nite dimensional setting (half-spaces are the ex-
tremal sets of the Gaussian isoperimetric inequality). The example we will
exhibit thus indicates that one cannot hope, for hypercontractive generators,
for comparison theorems similar to the Riemannian comparisons of volumes
of balls (cf. e.g. [Ch]). We simply use the ultraspheric generators for the
small values of n ¿ 0. The class of ultraspheric generators on ] − 1;+1[ is
given by

Lnf(x) = (1− x2)f′′(x)− nxf′(x)

for every f smooth enough, where n ¿ 0. When n is an integer, Ln may
be obtained as the projection of the Laplacian on the unit sphere Sn. In
this example, �(f) = (1 − x2)f′(x)2 and the invariant measure is given
by d�n(x) = cn(1 − x2)(n=2)−1dx on ]− 1;+1[. The generators Ln satisfy
CD(n − 1; n) (n = 1), as the spheres Sn themselves actually when n is an
integer.
It is known since [M-W] that, for every n ¿ 0, Ln is hypercontractive with

constant �0 = 1=n, that is we have the logarithmic Sobolev inequality for �n

on ]− 1;+1[
E(f2)5

2
n

+1∫
−1
(1− x2)f′(x)2d�n(x) (4:5)

where E(f2) is the entropy of f2 with respect to �n. We change the vari-
ables in (4.5) and set x = sin(u=

√
n); u ∈] −√

n�=2; +
√
n�=2[, and d�n(u) =

cnn−1=2 cos(
√
nu)n−1du. We also set as usual �n(u) = �n(]−

√
n�=2; u]). Then,

�n satis�es a logarithmic Sobolev inequality with constant 1, that is

E(f2)5 2
+
√

n�=2∫
−√n�=2

f′(u)2d�n(u)

where now E(f2) is understood with respect to �n. Assume that (4.4) holds for
some c ¿ 0 independent of n. Then, setting kn = �−1n ◦�, the proof of Theorem
3.2, applied to f(x) = x, yields ck ′n 5 1. At x = 0; �(0) = �n(0) = 1

2 , so that
this inequality reads

c�(0) =
c√
2�
5 �′n(0) : (4:6)

Now �′n(0) = cnn−1=2 and a simple asymptotic as n → 0 shows that �′n(0) is
actually of the order of

√
n=2. Therefore (4.6) and (4.4) cannot hold for the
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small values of n. With respect to Theorem 4.1, this is due to the fact that,
after the change of variables, L̃n on ]−

√
n�=2; +

√
n�=2[ associated to �n and

to the Dirichlet form
∫

f′(u)2d�n(u) with Neumann boundary conditions can
be written

L̃nf(u) = f′′(u)− n− 1√
n
tan

(
u√
n

)
f′(u) :

The condition �2 = R� reads in this case[
n− 1√

n
tan

(
u√
n

)]′
= R :

In another words,
n− 1
n

[
1 + tan2

(
u√
n

)]
= R

which, when 0¡ n ¡ 1, is impossible as u approaches −√n�=2 or +
√
n�=2.

Actually (cf. [B-E]), the ultraspheric generators Ln for 0 ¡ n ¡ 1 satis�es a
reverse CD(R; n)) inequality in the form

�2(f)5 (n− 1)�(f) + 1
n
(Lf)2 :

This inequality is known to imply a logarithmic Sobolev inequality [Be]. It
might be that small dimension is the explanation of the failure of (4.4) in
general.

5. Inequalities on path spaces

In this last section, we turn to path spaces and extend the family of inequalities
of Sect. 2 to the Wiener measure on the paths of Brownian motion with values
in a Riemannian manifold with bounded Ricci curvature. This type of extension
on logarithmic Sobolev inequalities has been studied in [A-E] and [Hs]. We
simply follow here P.E. Hsu’s approach [Hs] on the basis of the tensorization
argument of Proposition 3.1. (One may wonder whether the alternate approach
by S. Aida and K.D. Elworthy [A-E], that however only deals with manifolds
embedded in an Euclidean space, may also be followed.) We however only
present these results as an illustration of our basic inequalities for heat kernel
measures. In particular, we do not enter the various questions related to gradient
and parallel transport on path spaces. We use the notation of [Hs] and refer to
this paper for further details. Let thus M be a complete connected Riemannian
manifold with Riemannian measure dx. We say M has Ricci curvature bounded
above and below if sup |Ric(v; v)| ¡ ∞ where the supremum is running over
all unit tangent vectors v. Let x0 be a �xed point on M and let

Wx0(M) = {w : [0; 1]→ M; continuous; w(0) = x0}
be the space of continuous paths starting at x0. Denote by � the Wiener measure
on Wx0(M). If f : Wx0(M)→ R is in the domain of the gradient operator D,
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denote by |Df| its norm as an operator from L2(�) into L2(�)⊗H, where H
is the Cameron–Martin Hilbert space (cf. [Hs]).

Theorem 5.1. Let M be a Riemannian manifold with Ricci curvature bounded
above and below and let � be Wiener measure on Wx0(M). Then; for every
f with values in [0; 1] in the domain of the gradient operator D on Wx0(M),

U(
∫
fd�)5

∫ √
U2(f) + C|Df|2 d� (5:1)

where C ¿ 0 only depends on the bound on the Ricci curvature.

According to the comments following Corollaries2.2 and 2.3, (5.1) may be
interpreted into an isoperimetric inequality on the path space Wx0(M) that ex-
tends the classical isoperimetric inequality on abstract (
at) Wiener spaces (cf.
[Bor]). Due to Theorem 3.2, Theorem 5.1 also improves the recent logarithmic
Sobolev inequalities in this context [A-E], [Hs].

Proof. As in [Hs], we perform a Markovian tensorization of the �nite
dimensional inequalities of Sect. 2, similar to the proof of Proposition 3.1.
A noticeable di�erence however with the independent case is that the iteration
procedure involves derivatives of the heat kernel. We bound the various gradi-
ent terms by |Df|2 according to the coupling Proposition 2.2 and Lemmas 4.1
and 4.3 of [Hs]. To sketch the argument, let g be smooth on M × M and
consider f on Wx0(M) de�ned by f(w) = g(w(s); w(t)) where 05 s ¡ t 5 1
are �xed. Denote by pt(x; y) the heat kernel on M so that, by the Markov
property,

U(
∫
fd�) = U(

∫ ∫
g(x; y)ps(x0; x)pt−s(x; y)dx dy)

= U(
∫
G(x)ps(x0; x)dx)

where
G(x) =

∫
g(x; y)pt−s(x; y) dy :

Since Ricci curvature is bounded below, by Corollary 2.3 at time s,

U(
∫
fd�) = U

(∫
G(x)ps(x0; x)dx

)
5
∫ √

U2(G(x)) + c0(s)|3xG(x)|2ps(x0; x)dx :

Similarly at t − s; for every x,

U(G(x))5
∫ √

U2(g(x; y)) + c0(t − s)|3y g(x; y)|2pt−s(x; y) dy :

Note that c0(u)5 Cu for every 05 u5 1 for some C ¿ 0 only depending on
the lower bound on the Ricci curvature. The gradient term 3xG(x) involves
parallel transport along the Brownian paths. Actually, summarizing some of
the main conclusions of [Hs] (cf. his Proposition 2.2 and the proof of his
Lemma 4.3),

|3xG(x)|2 5
∫
Z(x; y)2pt−s(x; y) dy
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and Z is such that

sZ2 + (t − s)|3y g|2 5 C′|Df|2 :
This is the second use of the curvature assumption and note that, according
to Lemma 4.3 in [Hs], the constant C′ depends here on both a lower and an
upper bound on the Ricci curvature. Hence, by Minkowski’s inequality (3.3)
applied to the integral with respect to the kernel pt−s(x; y) dy,

U (
∫
fd�)

5
∫ ∫√

U2(g(x; y))+C(t−s)|3yg(x; y)|2+CsZ(x; y)2pt−s(x; y)ps(x0; x)dydx

5
∫ √

U2(f) + CC′|Df|2d� :

This proof is easily extended to all smooth cylindrical functions on the path
space (with constants C and C′ independent of the number of coordinates). The
dependence of the constants C and C′ upon the bound on the Ricci curvature
may actually easily be described (cf. again [Hs]). The result then follows by
well-known density arguments. The proof of Theorem 5.1 is �nished.
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