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Abstract

In this work, we study concentration properties for vector valued maps.
In particular, we describe inequalities which capture the exact dimensional
behavior of Lipschitz maps with values in Rk. To this task, we study in par-
ticular a domination principle for projections which might be of independent
interest. We further compare our conclusions to earlier results by Pinelis in
the Gaussian case, and discuss extensions to the infinite dimensional setting.
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Notation: In what follows, whenever we deal with Rk, we endow it with the
standard Euclidean structure with scalar product · and norm ‖ · ‖. By γn, we
denote the standard N (0, Idn) Gaussian measure on Rn with density dγn/dx =
(2π)−n/2e−‖x‖

2/2. Let g, g1, g2 . . . be independent real N (0, 1) random variables, so
that Gn = (g1, . . . , gn) is an Rn-valued normal random vector with distribution γn.
For t ∈ R, let T (t) = γ1([t,∞)) = P(g ≥ t). Obviously, T (t) = 1 − Φ(t), where Φ
is the standard normal distribution function but using the function T will be more
convenient in our computations. Let θ be a random vector uniformly distributed on
the unit sphere Sk−1 ⊆ Rk, independent of g, g1, g2 . . .. For the sake of brevity, we
denote throughout this work by C, C1, C2 . . . different positive universal constants
(i.e. numerical constants which do not depend on n, k or any other parameter). With
little effort some more explicit numerical bounds can be deduced from the proofs.

1 Introduction

In the recent work [5], Gromov considers and analyses the question of isoperimetry
of waists and measure concentration of maps. As a typical result, he shows that
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whenever f : Rn → Rk is a continuous map, there exists z ∈ Rk such that for every
h > 0,

(1) γn

((
f−1(z)

)
h

)
≥ γk

(
B(0, h)

)
where B(x, h) is the ball with center x and radius h > 0 in Rk. When k = 1, this
result follows from the Gaussian isoperimetric inequality with z = mf a median of f
for γn. Similar conclusions hold for more general strictly log-concave measures and
on the sphere [5].

Although this result is perhaps more of topological nature, it also has conse-
quences to measure concentration. Namely, whenever f : Rn → Rk is 1-Lipschitz,(

f−1(z)
)

h
⊂ f−1

(
B(z, h)

)
.

In particular, inequality (1) provides an upper bound on the measure of the set
{‖f − z‖ ≥ h}, namely

(2) γn

(
‖f − z‖ ≥ h

)
≤ γk

(
x; ‖x‖ ≥ h

)
.

When k = 1, this amounts to the classical Gaussian control of the measure of the
set {|f −mf | ≥ h}. In particular, (2) may be seen as part of the concentration of
measure phenomenon. The aim of this note is actually to apply the general theory of
measure concentration (for functions) to concentration of vector valued maps in the
spirit of (2). We will deal with quantitative estimates up to numerical constants, as
is usual for measure concentration. As in the scalar case, z will always be identified
to a median or mean value of the Lipschitz function.

As a result, we first observe that whenever (X, d, µ) is a metric measure space
with a Gaussian decay of the concentration function, then for any 1-Lipschitz func-
tion f : X → Rk with mean zero,

µ
(
‖f‖ ≥ r

)
≤ C1 γk

(
x; ‖x‖ ≥ r/C2

)
for any r ≥ 0 where C1, C2 > 0 are independent of k. The spirit of these con-
centration results is that they capture the exact dimensional behavior of Lipschitz
maps with values in Rk (the various bounds are clearly sharp on linear maps). The
approach relies on simple moment comparisons. We next try to reach sharper in-
equalities, in particular with C2 = 1, and develop to this task a general domination
principle to transfer concentration inequalities for (one-dimensional) projections to
vector valued maps. We then compare our conclusions with earlier work by Pinelis
[10] in the Gaussian case. We also discuss, following [10], comparison inequalities
for maps with values in finite and infinite dimensional normed spaces based on an
inequality put forward by Pisier [11], and describe general concentration results for
maps on a Gaussian space. We conclude this investigation with several open ques-
tions and conjectures.
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2 A general statement

We first recall some basic notions of measure concentration (cf. [8]). Let (X, d, µ) be
a metric measure space in the sense of [4]. That is, (X, d) is a metric space and µ a
probability measure on the Borel sets of X. The concentration function of (X, d, µ)
is defined as

α(r) = α(X,d,µ)(r) = sup
{

1− µ(Ar);A ⊂ X,µ(A) ≥ 1
2

}
, r > 0,

where Ar = {x ∈ X, d(x,A) < r}. The concentration function implies the following
property of Lipschitz functions: whenever f : X → R is 1-Lipschitz, and mf is a
median of f for µ, then, for every r > 0,

µ
(
|f −mf | ≥ r

)
≤ 2α(r).

Recall also that (X, d, µ) has Gaussian concentration whenever there are con-
stants κ ≥ 1 and σ > 0 such that

(3) α(r) ≤ κ e−r2/2σ2

, r > 0.

Typical examples that share Gaussian concentration are the standard Gaussian mea-
sures γn on Rn (with κ = σ = 1, independent of the dimension). While σ2 may be
interpreted as the observable diameter of (X, d, µ) (cf. [4], [8]), the constant κ is
assumed for simplicity to be larger than or equal to 1.

A first general concentration result for vector valued maps is the following simple
statement that relies on moment comparison.

Theorem 1. Let (X, d, µ) be a metric measure space with Gaussian concentration
(3). Then, for every 1-Lipschitz function f : X → Rk with mean zero with respect
to µ, and every r ≥ 0,

µ
(
‖f‖ ≥ r

)
≤ C κγk

(
x; ‖x‖ ≥ r/Cσ

)
where C > 0 is numerical.

Proof. Under the Gaussian concentration hypothesis, whenever ϕ : X → R is
1-Lipschitz with

∫
ϕdµ = 0, then

µ
(
|ϕ| ≥ r

)
≤ C1 κ e

−r2/2σ2C1 , r ≥ 0,

for some universal C1 > 0 (cf. [8], Proposition 1.8). Hence, for every p ≥ 1,∫
|ϕ|pdµ =

∫ ∞

0

µ
(
|ϕ| ≥ r

)
d(rp) ≤ C1 κ

∫ ∞

0

e−r2/2σ2C1d(rp)
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so that ∫
|ϕ|pdµ ≤ 2κ pC

p
2
+1

1 σpMp−1

where Mq =
∫

R |x|
qdγ1(x) = 2q/2π−1/2Γ( q+1

2
), q ≥ 0.

Now, let f : X → Rk be 1-Lipschitz with mean zero. Then, for every y ∈ Rk,
y · f : X → R is ‖y‖-Lipschitz with mean zero. Hence, by the preceding,∫

|y · f |pdµ ≤ 2κ pC
p
2
+1

1 σpMp−1‖y‖p.

Therefore, for any p ≥ 1,∫
‖f‖pdµ = M−1

p

∫ ∫
|y · f(x)|pdµ(x)dγk(y)

≤ 2κ pC
p
2
+1

1 σpMp−1M
−1
p

∫
‖y‖pdγk(y).

Easy calculation yields∫ ∥∥∥ f

2σ
√
C1

∥∥∥p

dµ ≤ C2κ

∫
‖y‖pdγk(y)

where C2 > 1 is some numerical constant. We are now left with the following lemma
that we learned from Pinelis and which we formulate with probabilistic notation.

Lemma 1. Let U ≥ 0 be a random variable such that for any p ≥ 1,

E(Up) ≤ B E
(
‖Gk‖p

)
where B ≥ 1. Then, for any r ≥ 0,

P(U ≥ r) ≤ CB P
(
‖Gk‖ ≥ r/C

)
for some numerical C > 0.

Proof. We may and do assume that k ≥ 2. Let a ∈ (0, 1/2) denote a universal

constant, to be specified later. When r ≤ 1
a

√
k
2
, then

P
(
‖Gk‖ ≥ ar

)
≥ P

(
‖Gk‖2 ≥ k

2

)
→ 1

as k → ∞ by the Law of Large Numbers. Hence the lemma holds in this case
provided C > 0 is large enough.
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Let now r ≥ 1
a

√
k
2
. From the hypothesis, for any p ≥ 1,

P(U ≥ r) ≤ Br−2p E
(
‖Gk‖2p

)
= B

( 2

r2

)p Γ(p+ k
2
)

Γ(k
2
)

.

Choose then p ≥ 1 such that p+ k
2

= r2

2
. It follows that, for some numerical constant

C3 > 0,

P(U ≥ r) ≤ B Γ
(

k
2

)−1
(C3r)

k−1e−r2/2 ≤ C3BΓ
(

k
2

)−1
(C3r)

k−2e−r2/4,

where we have used Stirling’s formula. Now, integrating by parts (see the proof of
Theorem 2 below), for every k ≥ 2 and r ≥ 0,

P
(
‖Gk‖ ≥ ar

)
≥ Γ

(
k
2

)−1
(ar

2

)k−2

e−a2r2/2 ≥ Γ
(

k
2

)−1
(ar

2

)k−2

e−r2/8.

Choose a ∈ (0, 1/2) small enough to have exp( 1
16a2 ) ≥ 2C3

a
≥ 1. Then

er2/4e−r2/8 = er2/8 ≥ exp
( k

16a2

)
≥

(2C3

a

)k

≥
(2C3

a

)k−2

and therefore P(U ≥ r) ≤ C3BP
(
‖Gk‖ ≥ ar

)
. It is then easily seen that the lemma

holds for some well chosen C. �

3 A domination principle

In this section, we develop a domination principle that will prove more precise than
the general statement of the preceding section. Starting from a sharp Gaussian
concentration inequality along linear functionals, the tail of vector valued maps
in Rk will be controlled by the norm of the Gaussian vector in Rk, with only a
dimensional factor in front of the probability. We will need several lemmas. All of
them are quite standard but we present their proofs for the sake of completeness.

Lemma 2. For every s > 0, T (s) ≤ (2π)−1/2s−1e−s2/2. Moreover,

(4) lim
s→∞

sT (s)es2/2 = (2π)−1/2.

Proof. Indeed,

(2π)1/2sT (s) =

∫ ∞

s

se−x2/2 dx ≤
∫ ∞

s

xe−x2/2 dx = e−s2/2.

The de l’Hospital rule easily yields that lims→∞
T (s)

s−1e−s2/2
= (2π)−1/2. �
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Lemma 3. There exists a constant C1 > 0 such that for every k ≥ 2 and all
α ∈ (0, 1),

P(θ1 ≥ α) ≥ C1k
−1/2(1− α2)

k−1
2

and, for all α ∈ (k−1/2, 2−1/2),

P(θ1 ≥ α) ≥ C1k
−1/2α−1(1− α2)

k−1
2

where θ1 denotes the first coordinate of an Rk-valued random vector θ which is uni-
formly distributed on Sk−1.

Proof. Recall that the surface measure of the unit sphere Sk−1 ⊂ Rk is given by
the formula ωk−1 = 2πk/2/Γ(k/2). Therefore

P(θ1 ≥ α) = ω−1
k−1

∫ √
1−α2

0

ωk−2 t
k−2(1− t2)−1/2 dt

=
Γ(k/2)

Γ(k−1
2

)
√
π

∫ √
1−α2

0

tk−2(1− t2)−1/2 dt.

Obviously, for all α ∈ (0, 1),∫ √
1−α2

0

tk−2(1− t2)−1/2 dt ≥
∫ √

1−α2

0

tk−2 dt =
1

k − 1
(1− α2)

k−1
2 .

We also have, for every α ∈ (k−1/2, 2−1/2),∫ √
1−α2

0

tk−2(1− t2)−1/2 dt ≥ 1√
2α

∫ √
1−α2

√
1−2α2

tk−2 dt

=
1√

2α(k − 1)

(
(1− α2)

k−1
2 − (1− 2α2)

k−1
2

)
≥ (1− e−1/4)(1− α2)

k−1
2

√
2α(k − 1)

since

(1− 2α2)
k−1
2 (1− α2)−

k−1
2 ≤ (1− α2)

k−1
2 ≤

(
1− 1

k

) k−1
2 ≤ e−

k−1
2k ≤ e−1/4.

To finish the proof observe that

inf
k≥2

Γ(k/2)

Γ(k−1
2

)
√
k
> 0

by Stirling’s formula. �
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Lemma 4. Let ξ be an Rk-valued random vector. Then for any r > s > 0,

P
(
‖ξ‖ ≥ r

)
≤ sup

v∈Sk−1

P(|ξ · v| ≥ s)

P(|θ1| ≥ s/r)
.

Proof. Without loss of generality we can assume that a random vector θ uniformly
distributed on Sk−1 is independent of ξ. By the rotation invariance of θ, for any
x ∈ Rk and s ≥ 0, P(|x · θ| ≥ s) = P(‖x‖ |θ1| ≥ s). Hence

sup
v∈Sk−1

P(|ξ · v| ≥ s) ≥ P(|ξ · θ| ≥ s)

= EξPθ(|ξ · θ| ≥ s)

= EξPθ(‖ξ‖ |θ1| ≥ s)

≥ P(|θ1| ≥ s/r, ‖ξ‖ ≥ r)

= P(|θ1| ≥ s/r) P(‖ξ‖ ≥ r)

which is the conclusion. �

The next theorem describes the domination principle that allows us to deduce
sharp concentration inequalities for vector valued maps from the corresponding
bounds on one-dimensional projections with a good care in the constants depending
upon the dimension.

Theorem 2. Let κ ≥ 1/
√
k. Assume that ξ is an Rk-valued random vector such

that for every v ∈ Sk−1 and s ≥ 0, P(|ξ · v| ≥ s) ≤ κT (s). Then, for every r ≥ 0,

P
(
‖ξ‖ ≥ r

)
≤ C

√
k κP

(
‖Gk‖ ≥ r

)
where C > 0 is some numerical constant.

The result readily applies to probability measures µ on a metric space (X, d) and
1-Lipschitz mean zero maps f : X → Rk such that, for any v ∈ Sk−1 and all s ≥ 0,

µ
(
|v · f | ≥ s

)
≤ κT (s)

(if ζ has distribution µ, take ξ = f(ζ)). We then have, for all r ≥ 0,

µ
(
‖f‖ ≥ r

)
≤ C

√
k κ γk

(
x; ‖x‖ ≥ r

)
.

The result applies in particular to the standard Gaussian measure γn on X = Rn,
although in this case the factor

√
k is not necessary as we will see in the next section.

As discussed in the remark below, it is however necessary in general.
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Proof. For k = 1 the assertion is trivial, so assume k ≥ 2. For 0 ≤ r ≤
√
k,

P(‖Gk‖ ≥ r) ≥ inf
j≥2

P(‖Gj‖ ≥
√
j) = inf

j≥2
P
(g2

1 + g2
2 + · · ·+ g2

j − j
√
j

≥ 0
)

and the last expression is a positive universal constant by the Central Limit Theorem
(for another argument, giving more explicit estimate, see for example [7], Lemma
2). Hence it suffices to prove that for every r >

√
k,

P(‖ξ‖ ≥ r) ≤ C
√
k κP(‖Gk‖ ≥ r)

where C > 0 is some universal constant.
Assume r >

√
k and put s = (r2−(k−1))1/2 so that r2−s2 = k−1. Observe that

α = s/r ∈ (k−1/2, 1). If r ∈ (
√
k,
√

2k − 2), then we also have α < 2−1/2. Therefore
Lemmas 4, 3 and 2 yield, for all r ∈ (

√
k,
√

2k − 2),

P(‖ξ‖ ≥ r) ≤ κT (s)

P(|θ1| ≥ s/r)

≤ (2π)−1/2κs−1e−s2/2

2C1k−1/2α−1(1− α2)
k−1
2

=

√
k κ rk−2e−r2/2e(r

2−s2)/2

C1

√
8π (r2 − s2)

k−1
2

= C2

√
k

( e

k − 1

) k−1
2
κ rk−2e−r2/2

and, for all r ≥
√

2k − 2,

P(‖ξ‖ ≥ r) ≤ κT (s)

P(|θ1| ≥ s/r)

≤ (2π)−1/2κs−1e−s2/2

2C1k−1/2(1− α2)
k−1
2

=

√
k κα−1rk−2e−r2/2e(r

2−s2)/2

C1

√
8π (r2 − s2)

k−1
2

≤ C3

√
k

( e

k − 1

) k−1
2
κ rk−2e−r2/2
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for some universal C2, C3 > 0. On the other hand

P(‖Gk‖ ≥ r) = (2π)−k/2

∫ ∞

r

ωk−1t
k−1e−t2/2 dt

≥ (2π)−k/2ωk−1r
k−2

∫ ∞

r

te−t2/2 dt

= (2π)−k/22πk/2 Γ(k/2)−1rk−2e−r2/2

= 2−
k−2
2 Γ(k/2)−1rk−2e−r2/2

≥ C4

( e

k − 1

) k−1
2
rk−2e−r2/2

for some universal C4 > 0, by Stirling’s formula. This ends the proof of the theorem.
�

Remark 1. In general the factor
√
k in Theorem 2 is necessary.

Proof. Fix k ≥ 2. Choose r >
√
k such that pk(r) = k(e/k)k/2rk−2e−r2/2 satisfies

pk(r) < 1 and pk(r) ≤ T (r/2). Some large enough r will do because of (4). We will
prove that for any s ∈ (0, r),

(5) pk(r) P(θ1 ≥ s/r) ≤ C5 T (s),

where C5 > 0 is numerical. Indeed, for s ∈ (0, r/2] the inequality trivially fol-
lows from the fact that T (s) ≥ T (r/2) and from the way in which we chose r. If
s ∈ (r/2, r), then α = s/r ∈ (1/2, 1) so that

P(θ1 ≥ s/r) =
Γ(k/2)

Γ(k−1
2

)
√
π

∫ √
1−α2

0

tk−2(1− t2)−1/2 dt

≤ C6

√
k α−1

∫ √
1−α2

0

tk−2 dt

≤ C7 k
−1/2(1− α2)

k−1
2
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and therefore, by Lemma 2,

T (s)

P(θ1 ≥ s/r)
≥ C8

s−1e−s2/2

k−1/2(1− α2)
k−1
2

≥ C8

√
k rk−2e−r2/2 · e(r

2−s2)/2

(r2 − s2)
k−1
2

≥ C8

√
k rk−2e−r2/2 · inf

u>0
u−

k−1
2 eu/2

= C8

√
k rk−2e−r2/2

( e

k − 1

) k−1
2

≥ C9 pk(r)

where C6, C7, C8, C9 are some universal positive constants.
Let θ be, as before, uniformly distributed on Sk−1 and let η be a random variable

independent of θ with P(η = r) = pk(r), P(η = 0) = 1− pk(r). Let ξ = ηθ. We have
proved (5), which means that for s > 0 and all v ∈ Sk−1,

P(|ξ · v| ≥ s) ≤ 2C5 T (s).

On the other hand P(‖ξ‖ ≥ r) ≥ pk(r), whereas P(‖Gk‖ ≥ r) ≤ C10 k
−1/2pk(r)

where C10 > 0 is numerical (to see it, modify the end of the proof of Theorem 2).
Hence the factor

√
k in Theorem 2 cannot be avoided in general. �

4 Gaussian concentration results of Pinelis

In this section, we compare and discuss earlier results by Pinelis [10] based on
moment comparison which provide improved constants in a Gaussian setting. Pinelis’
investigation covers the case of Lipschitz maps with values in both Euclidean space
Rk and arbitrary (finite or infinite dimensional) normed spaces.

A first optimal result in Euclidean space is the following statement from [10].
With respect to Theorem 2, it shows that the dimensional factor

√
k is not necessary

for Gaussian measures. Recall the standard Gaussian measure γn on Rn.

Theorem 3. Let f : Rn → Rk be a 1-Lipschitz function such that
∫
fdγn = 0.

Then, for any convex function Ψ : R → R,∫
Ψ

(
‖f‖

)
dγn ≤

∫
Ψ

(
‖x‖

)
dγk(x).

In particular, for any r ≥ 0,

γn

(
‖f‖ ≥ r

)
≤ e γk

(
x; ‖x‖ ≥ r

)
.
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For the reader’s convenience we extract from the Pinelis’ paper a direct argument
showing that the convex domination implies the tail inequality with factor e (Pinelis
traces this argument back to Kemperman and cites the book by Shorack and Wellner
[12], pages 797-799). It is well known and quite easy to prove that the random
variable ‖Gk‖ has logarithmically concave tails, i.e. γk

(
x; ‖x‖ ≥ t

)
= e−w(t) for some

convex, increasing function w : [0,∞) → [0,∞). Given r > 0 one can find an affine
function t 7→ a+ bt, with a ∈ R and b > 0, supporting the function w at point t = r,
so that P(‖Gk‖ ≥ r) = e−a−br and P(‖Gk‖ ≥ t) ≤ e−a−bt for t ≥ 0. In particular, by
setting t = 0 we deduce that a ≤ 0. Let c = r − 1/b. If c ≤ 0 then br ≤ 1, so that
also a+ br ≤ 1 and therefore

e γk

(
x; ‖x‖ ≥ r

)
= eP(‖Gk‖ ≥ r) = e1−a−br ≥ 1 ≥ γn

(
‖f‖ ≥ r

)
.

If c > 0 then consider a nondecreasing, convex function Ψ(t) = (t− c)+ and observe
that

γn(‖f‖ ≥ r) = b(r − c)+γn(‖f‖ ≥ r) = bΨ(r)γn(‖f‖ ≥ r).

Therefore,

γn(‖f‖ ≥ r) ≤ b

∫
Ψ

(
‖f‖

)
dγn

≤ b

∫
Ψ

(
‖x‖

)
dγk(x) = bE(‖Gk‖ − c)+.

Now,

bE(‖Gk‖ − c)+ = b

∫ ∞

0

P
(

(‖Gk‖ − c)+ ≥ t
)
dt

= b

∫ ∞

c

P(‖Gk‖ ≥ t) dt

≤ b

∫ ∞

c

e−a−bt dt = e−a−bc

and the conclusion follows since e1−a−br = e γk(x; ‖x‖ ≥ r).

Let dµ = e−V dx on Rn with V ′′ ≥ c Id, c > 0. By a theorem of Caffarelli [3],
the Brenier map [2] S : Rn → Rn that transports γn to µ is Lipschitz with norm
c−1/2. Theorem 3 thus readily extends to this family of log-concave measures. In
particular, if f : Rn → R is 1-Lipschitz and

∫
fdµ = 0, for any p ≥ 1,∫

‖f‖2pdµ ≤ c−p

∫
‖x‖2pdγk(x).
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It is worthwhile mentioning that a slight improvement of this moment comparison
may be obtained by an alternate semigroup proof which we briefly discuss now. For
a probability measure µ on Rn, denote by λ1 its Poincaré constant defined as the
largest λ such that for all smooth enough functions f : Rn → R with

∫
fdµ = 0,

λ

∫
f 2dµ ≤

∫
‖∇f‖2dµ.

Proposition 1. Let dµ = e−V dx on Rn with V ′′ ≥ c Id, c > 0. Then, for any
1-Lipschitz function f : Rn → Rk such that

∫
fdµ = 0 and any integer p ≥ 1,∫

‖f‖2pdµ ≤ p!

p−1∏
i=0

1

c i+ λ1

∫
‖x‖2pdγk(x).

It is classical (cf. [8]) that under the assumptions of the theorem, λ1 ≥ c (with
equality in the Gaussian case). In particular thus,∫

‖f‖2pdµ ≤ c−p

∫
‖x‖2pdγk(x).

Proposition 1 provides a somewhat sharper result than the conjunction of Caffarelli’s
theorem together with the Gaussian case in Theorem 3 since the inequality λ1 ≥ c
can be strict.

Proof. Let (Pt)t≥0 be semigroup generated by the second order differential operator
∆ − ∇ · ∇V . Since V ′′ ≥ c Id, it is known (cf. e.g. [8]) that for all smooth enough
functions ϕ : Rn → R and all t ≥ 0,

‖∇Ptϕ‖2 ≤ e−2ctPt

(
‖∇ϕ‖2

)
.

In particular, if ϕ is 1-Lipschitz, ‖∇Ptϕ‖2 ≤ e−2ct.
Given now ϕ : Rn → R 1-Lipschitz smooth and such that

∫
ϕdµ = 0, write, for

every t ≥ 0, ∫
(Ptϕ)2pdµ = −

∫ ∞

t

d

ds

( ∫ ∫
(Psϕ)2pdµ

)
ds

≤ 2p(2p− 1)

∫ ∞

t

e−2cs

( ∫ ∫
(Psϕ)2p−2dµ

)
ds.

Iterating, ∫
ϕ2pdµ ≤ 2p(2p− 1)(2p− 2) · · · 3

∫ ∞

0

e−2ct1 · · ·

· · ·
∫ ∞

tp−2

e−2ctp−1

∫
(Ptp−1ϕ)2dµdt1 · · · dtp−1.
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Now, the Poincaré inequality provides an exponential decay in L2(µ) along the
semigroup Pt in the form (cf. e.g. [8])∫

(Ptp−1ϕ)2dµ ≤ e−2λ1tp−1

∫
ϕ2dµ ≤ 1

λ1

e−2λ1tp−1 .

Therefore, ∫
ϕ2pdµ ≤ (2p)!

2p

p−1∏
i=0

1

c i+ λ1

.

This is the result in the one-dimensional case.
Let now f = (ϕ1, . . . , ϕk) : Rn → Rk. Write∫

‖f‖2pdµ = M−1
2p

∫ ∫ ∣∣∣∣ k∑
i=1

yiϕi(x)

∣∣∣∣2p

dµ(x)dγk(y)

where we recall that M2p =
∫

R x
2pdγ1. For every fixed y = (y1, . . . , yk) ∈ Rk, the

map x 7→
∑k

i=1 yiϕi(x) is Lipschitz with Lipschitz coefficient less than or equal to

‖y‖. The conclusion then follows from the preceding since M2p = (2p)!
2pp!

. �

We next turn to Lipschitz functions on Gaussian spaces with values in arbitrary
vector spaces, and point out several extensions and generalizations. As developed
in [10], comparison results are obtained here from a Poincaré type inequality put
forward by Pisier [11]. In the following, F denotes a normed vector space.

Theorem 4. For every convex function Ψ : F → R and every (smooth, suffi-
ciently integrable) function f : Rn → F with

∫
fdγn = 0,∫

Ψ(f)dγn ≤
∫ ∫

Ψ
(π

2
y · ∇f(x)

)
dγn(x)dγn(y).

The example of F = `1 shows that the factor π
2

in this inequality cannot be
improved (cf. [11]). It might be worthwhile briefly recalling the simple proof of
Theorem 4. Let G be a random vector with distribution γn and G′ an independent
copy of G. For any θ ∈ R, set Gθ = G sin θ + G′ cos θ and G′

θ = G cos θ − G′ sin θ.
Then, for a smooth enough function f : Rn → F such that

∫
fdγn = 0,

f(G)− f(G′) =

∫ π/2

0

d

dθ
f(Gθ)dθ =

∫ π/2

0

G′
θ · ∇f(Gθ)dθ.
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Apply then Ψ and take expectation. On the one hand, by Jensen’s inequality (in
G′), E(Ψ(f(G) − f(G′)) ≥ EΨ(f(G)) since f has mean zero, and on the other, by
Jensen’s inequality again but in dθ,

EΨ
(
f(G)

)
≤

∫ π/2

0

E
(

Ψ
(π

2
G′

θ · ∇f(Gθ)
))

dθ

π/2
.

The conclusion follows since for each θ, the couple (Gθ, G
′
θ) has the same distribution

as (G,G′).
Although the extension below is not strictly necessary for the purposes of mea-

sure concentration, it might be worthwhile mentioning that Caffarelli’s contraction
theorem extends Theorem 4 to all strictly log-concave measures on Rn. We leave the
details to the reader.

Corollary 1. Let dµ = e−V dx on Rn with V ′′ ≥ c Id, c > 0. Then, for every
convex function Ψ : F → R and every (smooth, sufficiently integrable) vector valued
function f : Rn → F with

∫
fdµ = 0,∫

Ψ(f)dµ ≤
∫ ∫

Ψ
( π

2
√
c
y · ∇f(x)

)
dµ(x)dγn(y).

Theorem 4 allows us to derive concentration inequalities for functions on Gaus-
sian spaces with values in arbitrary vector spaces that are Lipschitz in an appropriate
sense.

The first result concerns maps f : Rn → F that are Lipschitz in the usual sense.
If Ψ(x) = ψ(‖x‖), x ∈ F , where ψ : R+ → R is convex and non-decreasing, for any
1-Lipschitz map f : Rn → F (with respect to the norm on F ) with

∫
fdγn = 0,∫

ψ
(
‖f‖

)
dγn ≤

∫
ψ

(π
2
‖y‖

)
dγn(y).

By the comparison theorems of [10] (see the comment following Theorem 3), it
follows that

γn

(
‖f‖ ≥ r

)
≤ e γn

(
x; ‖x‖ ≥ 2r/π

)
for every r ≥ 0.

Let now ν be a centered Gaussian measure on a real separable Banach space
F . A map f : Rn → F is then said to be 1-Lipschitz with respect to ν if for every

ξ ∈ F ′, 〈ξ, f〉 : Rn → R is Lipschitz with coefficient
( ∫
〈ξ, x〉2dν(x)

)1/2
. Of course,

the choice of ν = γk on F = Rk leads to the usual definition of 1-Lipschitz function
f : Rn → Rk. With the help of Theorem 4, we may thus extend the concentration
of maps to Lipschitz functions with respect to a given Gaussian measure ν.
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Corollary 2. Let dµ = e−V dx on Rn with V ′′ ≥ c Id, c > 0. Let furthermore
ν be a centered Gaussian measure on a Banach space F . Then, for any function
f : Rn → F 1-Lipschitz with respect to ν and such that

∫
fdµ = 0,

µ
(
‖f‖ ≥ r

)
≤ K ν

(
x; ‖x‖ ≥

√
c r/K

)
for every r ≥ 0, where K is some positive universal constant.

Proof. By standard smoothing arguments (convoluting f with C∞0 approximation
of δ0) we can assume that f is smooth. By Caffarelli’s result, it is enough to deal
with the Gaussian case µ = γn (alternatively, use Corollary 1). By definition of
1-Lipschitz with respect to ν, for any fixed x, and any ξ ∈ F ′,∫

〈ξ, y · ∇f(x)〉2dγn(y) ≤
∫
〈ξ, y〉2dν(y).

This covariance domination implies that ν is a convolution of (∇f(x))∗γn (the image
of γn under linear transportation by ∇f(x)) with some other centered Gaussian
measure. Therefore, by Jensen’s inequality, for every convex function Ψ : F → R
and any x ∈ Rn, ∫

Ψ(y · ∇f(x))dγn(y) ≤
∫

Ψ(y)dν(y).

Now, by Theorem 4∫
Ψ(2f/π)dγn ≤

∫ ∫
Ψ(y · ∇f(x))dγn(y)dγn(x) ≤

∫
Ψ(y)dν(y).

The comment following Theorem 3 does not apply here since the norm on F may
differ from the Euclidean norm induced by ν. We need another argument. Let G
be an F -valued Gaussian random vector with distribution ν. Denote by M the

median of ‖G‖ and let σ = sup ξ∈F ′: ‖ξ‖=1

(
E〈 ξ,G 〉2

)1/2
. The Gaussian isoperimetry

implies that for g ∼ N (0, 1) there is E exp
(
(‖G‖ −M)2/(4σ2)

)
≤ Eeg2/4 =

√
2. Let

Ψ(y) = exp
(
‖y‖2/(8σ2)

)
. Since ‖G‖2 ≤ 2M2 + 2(‖G‖ −M)2 we have∫

Ψ(2f/π)dγn ≤ EΨ(G) ≤ eM2/(4σ2) E exp
(
(‖G‖ −M)2/(4σ2)

)
≤
√

2 eM2/(4σ2).

If r < πM then obviously γn(‖f‖ ≥ r) ≤ 2P(‖G‖ ≥ r/π). If r ≥ πM then, by
Chebyshev’s inequality,

γn(‖f‖ ≥ r) ≤
√

2 eM2/(4σ2)e−r2/(2π2σ2) ≤
√

2 e−r2/(4π2σ2) ≤
√

2A−1 · T
( r

2πσ

)
,
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where A = infs≥0 T (s)es2
is a positive universal constant (see Lemma 2). Choose

ξ ∈ F ′ such that ‖ξ‖ = 1 and
(
E〈 ξ,G 〉2

)1/2 ≥ σ/2. Then

ν
(
x; ‖x‖ ≥ r

4π

)
= P

(
‖G‖ ≥ r

4π

)
≥ P

(
〈 ξ,G 〉 ≥ r

4π

)
≥

P
(σ

2
g ≥ r

4π

)
= T

( r

2πσ

)
≥ A√

2
· γn

(
‖f‖ ≥ r

)
and the proof is finished by setting K = max(

√
2/A, 4π). �

The couple (Rn, γn) may be replaced in the above statements by an abstract
Wiener space. Lipschitz has then to be understood in the directions of the repro-
ducing kernel Hilbert space.

The preceding results have counterparts on the discrete cube {0, 1}n. It has been
shown by Pisier [11] that for every f : {0, 1}n → F with mean zero with respect to
the uniform measure µ on the cube, and every p ≥ 1,

(6)

∫
‖f‖pdµ ≤ Cp

∫ ∫ ∥∥∥∥ n∑
i=1

yiDif(x)

∥∥∥∥p

dµ(x)dµ(y)

where Dif(x) = 1
2

[f(x) − f(si(x))] and si(x) is obtained from x ∈ {0, 1}n by
changing the i-th coordinate. In general, the constant C = 2e log n and may not
be improved for arbitrary spaces F . It is however independent of n in the case of
F = Rk with its classical Euclidean structure (see [13]).

By the comparison between Rademacher and Gaussian averages, we may in-
crease the right-hand side of (6) replacing dµ(y) by dγn(y) (at the expense of a
multiplicative factor). Now, the same reasoning as for Theorem 1 may be applied.
If f : {0, 1}n → Rk is such that

∫
fdµ = 0 and, for every ξ ∈ Rk,

n∑
i=1

(ξ ·Dif(x))2 ≤ ‖ξ‖2

uniformly in x, then ∫
‖f‖pdµ ≤ Cp

∫
‖y‖pdγk(y).

Together with Lemma 1, we conclude that

µ
(
‖f‖ ≥ r

)
≤ Cγk

(
x; ‖x‖ ≥ r/C

)
for every r ≥ 0.
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5 Concluding comments and questions

In what follows supf denotes the supremum over all 1-Lipschitz functions f : Rn → Rk.
In view of Gromov’s result [5] described in Introduction it is natural to ask what is
the optimal rate of concentration of f around some value of f - namely, what is the
asymptotics of supn supf infx∈Rn ‖f(x)−Ef(Gn)‖ as k →∞ and, for fixed k, what
is the asymptotics (as t→∞) of supn supf infx∈Rn P(‖f(x)− f(Gn)‖ ≥ t)?

Dealing with concentration properties of (X ×X,µ⊗ µ) rather than (X,µ) (see
e.g. Barthe’s isoperimetric inequality for Sn−1 × Sn−1 [1], Proposition 11) can lead
to the concentration results of slightly different form: instead of estimating from
above P(‖f(Gn)− Ef(Gn)‖ ≥ t) one can bound P(‖f(Gn)− f(G′

n)‖ ≥ t) where G′
n

is an independent copy of Gn. Another possible direction of research is related to
the following definition.

Definition 1. Let F be a separable real Banach space and let X and Y be F -
valued random vectors. We will say that X is weakly dominated by Y if for every
bounded linear functional ϕ ∈ F ′

and all t > 0,

P(|〈ϕ,X〉| ≥ t) ≤ P(|〈ϕ, Y 〉| ≥ t).

It is of interest under what additional assumptions about distributions of X and
Y does weak domination imply E‖X‖ ≤ C E‖Y ‖, or even

P(‖X‖ ≥ t) ≤ C P(‖Y ‖ ≥ t/C) for all t > 0.

Note that the latter inequality easily implies E‖X‖ ≤ C2E‖Y ‖.
It is not very difficult to see that this is always so if both X and Y are centered

Gaussian vectors (see [9] or [6], Chapter 5.5 - we have used a similar approach in the
proof of Corollary 2). Some results of the present paper, especially Theorem 2, refer
to the case when F is equal to Rk equipped with the standard Euclidean structure.
Recently Kwapień and Lata la (private communication) obtained several interesting
results concerning the case when we make some additional assumptions about Y
only. Also, Lata la proved that the following natural conjecture would be a corollary
to the so-called Bernoulli Conjecture of Talagrand (which is still open, see [14]):

Conjecture 1. Let r1, r2, . . . be i.i.d. sequence of symmetric ±1 random vari-
ables. There exists a universal constant C > 0 such that for any separable real
Banach space F and every choice of vectors v1, w1, v2, w2, . . . , vn, wn ∈ F such that
X =

∑n
j=1 rjvj is weakly dominated by Y =

∑n
j=1 rjwj, there is also

P(‖X‖ ≥ t) ≤ C P(‖Y ‖ ≥ t/C) for all t > 0.
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Below we will show an example of Rk-valued random vectors X and Y, both
rotation invariant with respect to the standard Euclidean structure, indicating that
even under such additional assumptions the weak domination cannot in general
imply that P(‖X‖ ≥ t) ≤ C P(‖Y ‖ ≥ t/C) for all t > 0.

Recall that T is a continuous and strictly decreasing function. Fix C > 1. Choose
xC > 0 so great that 2CT (xC) ≤ 1/4. Then choose β ∈ (0, 1

2C
) so small that

2Cβ

1− β
≤ inf

x∈[0,xC ]

T (2Cx)

T (x)
.

The way in which we chose xC implies that, for all x ≥ xC

(7) 2CβT (x)− (1− β)T (2Cx) ≤ β/4.

Now we will choose b ∈ (0, 1) so little that for all x > 0,

(8) 2CβT (x) ≤ (1− β)T (2Cx) + βT (bx).

From the way in which we chose β we deduce that (8) is satisfied whenever x ∈ [0, xC ]
and b > 0. Hence it suffices to choose the proper b for x ≥ xC . One can easily check
that (4) implies T−1(s)/

√
2 ln(1/s) −→ 1 as s −→ 0+ and therefore

lim
x→∞

T−1
(

2CT (x)− (1− β)T (2Cx)/β
)
/x = 1,

so that there exists y > xC such that for every x ≥ y,

2CβT (x) ≤ (1− β)T (2Cx) + βT (x/2).

On the other hand by (7), we have for every x ∈ [xC , y],

2CβT (x) ≤ (1− β)T (2Cx) + β/4 ≤ (1− β)T (2Cx) + βT
(
T−1(1/4)x/y

)
.

Therefore b = min
(

1/2, T−1(1/4)/y
)

satisfies our requirements. Recall that L(Gk) =

N (0, Idk) and let ‖ · ‖ denote the standard Euclidean norm on Rk, as usually. Con-
sider random vectors (Gaussian mixtures) X and Y with distributions given by

L(X) = (1 − 2Cβ)δ0 + 2CβL(Gk) and L(Y ) = (1 − β)L
(

(2C)−1Gk

)
+ βL(Gk/b).

The inequality (8) means that X is weakly dominated by Y. By the Law of Large
Numbers limk→∞ P(‖Gk‖ ≥ w

√
k) is equal to 0 if w > 1 and it is equal to 1 if

w ∈ (0, 1), so that

P(‖X‖ ≥ 0.9
√
k) = 2Cβ P(‖Gk‖ ≥ 0.9

√
k)

k→∞−→ 2Cβ,
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whereas

C P(‖Y ‖ ≥ 0.9
√
k/C) ≤ C(1− β) P(‖Gk‖ ≥ 1.8

√
k) + Cβ

k→∞−→ Cβ.

Hence, in general, the weak domination cannot yield the inequality

P(‖X‖ ≥ t) ≤ C P(‖Y ‖ ≥ t/C) for all t > 0.

for any universal C. However, one can quite easily prove such inequality with C
depending on k.

On the other hand, note that for this example (and for any pair of rotation
invariant Rk-valued X and Y such that X is weakly dominated by Y ), for every
p > 0,

E‖X‖p ≤ E‖Y ‖p

for any norm ‖ · ‖ on Rk (not necessarily Euclidean).
Indeed, because of the rotation invariance we have E‖X‖p = E‖X‖p

◦ and E‖Y ‖p =

E‖Y ‖p
◦, where ‖v‖◦ =

( ∫
O(k)

‖U(v)‖p dσH(U)
)1/p

(the integral is taken with respect

to the normalized Haar measure σH) for v ∈ Rk. The norm ‖·‖◦ is rotation invariant
and our assertion follows from the fact that ‖ · ‖◦ must be proportional to another
rotation invariant norm ‖v‖◦◦ := (E|θ · v|p)1/p. Obviously, E|θ ·X|p ≤ E|θ · Y |p.
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