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ABSTRACT. We present short and elementary proofs of three recent results

on exponential integrability of Lipschitz functions and quantitative bounds

on the diameter under logarithmic Sobolev inequalities due respectively to S.

Aida, T. Masuda, I. Shigekawa [A-M-S], D. Bakry, D. Michel [B-M] and L.

Saloff-Coste [SC].

Although the first two results we aim to simplify deal with abstract Markov generators

on probability spaces, we would like to briefly present the purpose of this note in the setting

of the Laplace-Beltrami operator ∆ on a complete connected Riemannian manifold M of

finite volume V . We will consider the normalized measure dµ = 1
V dv where dv denote the

Riemannian measure and let ∇ be the Riemannian gradient on M .

For a nonnegative bounded (say) real valued function f on M , let E(f) denote the

entropy of f with respect to µ defined by

E(f) =

∫
f log fdµ−

∫
fdµ log

(∫
fdµ

)
.

We will say that ∆ satisfies a logarithmic Sobolev inequality if there exists ρ > 0 such that

for all C∞, compactly supported or bounded, functions f on M ,

ρE(f2) ≤ 2

∫
f(−∆f)dµ = 2

∫
|∇f |2dµ.

The largest possible value ρ0 for ρ is called the logarithmic Sobolev constant of the Laplacian

∆ on M , or simply of M .

More generaly, one may consider, following [B], inequalities between entropy and energy

of the type

E(f2) ≤ Φ
(∥∥|∇f |∥∥2

2

)



for all C∞ bounded functions f with ‖f‖2 = 1 where Φ is a nonnegative function on [0,∞).

With these notations, S. Aida, T. Masuda and I. Shigekawa [A-M-S] recently showed

that, when ρ0 > 0, whenever f is a function on M such that ‖|∇f |‖∞ ≤ 1 (that is f is

Lipschitz with Lipschitz norm less than or equal to 1), then, for every 0 < α < ρ0/2,

(1)

∫
eαf

2

dµ <∞.

Moreover,
∫

eαf
2

dµ ≤ exp
(
αρ0(ρ0 − 2α)−1‖f‖22

)
.

D. Bakry and D. Michel (see [B-M] for a special case and [B] for the general result), using

refined semigroup minorations, showed that under a general inequality between entropy and

energy, the diameter D of M satisfies the quantitative estimate

(2) D ≤
∫ ∞

0

1

x2
Φ(x2)dx.

In particular, if the latter integral is finite, every Lipschitz function on M is bounded.

Finally, L. Saloff-Coste [SC] recently proved that if the Ricci curvature of M is bounded

below, the existence of a logarithmic Sobolev inequality for ∆ forces M to be compact.

Moreover, for some constant C > 0 only depending on the dimension of M and the lower

bound on the Ricci curvature,

(3)
D

logD
≤ C

ρ0

as soon as D ≥ C.

As announced, the purpose of this note is to provide short and elementary proofs of

these three results. In the proof of (1), we closely follow the argument of [A-M-S] (originally

due to I. Herbst and E. B. Davies and B. Simon [D-S]) with some improvements in the

exposition and show in particular that the strong exponential integrability (1) also holds

under defective logarithmic Sobolev inequalities (see also [A-S]). This method is used to give

a very simple proof of the bound (2) on the diameter. In the last part, we establish (3) and

actually improve the quantitative estimate by removing the logarithmic factor. As we will

see, it then turns out to be sharp.

1. Exponential integrability and bounds on the diameter

The framework of the first two results (1) and (2) deals more generally with abstract

Markov generators and we now turn to some notation in this respect. On some probability

space (E,B, µ), let L be a Markov generator with (L2-) domain D. Without going to far into

the technical details (refering to [B], [D-M-M], [A-M-S]), we will assume that there exists

an algebra A of bounded real valued functions on E contained in D and dense in L2(µ). We
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moreover assume that A is stable by L and by the action of C∞ functions and that L is

invariant for µ on A. One can introduce the “carré du champ” operator by setting

Γ(f, g) = 1
2 L(fg)− fLg − gLf

for every f, g in A. In particular, by invariance,
∫
f(−Lf)dµ =

∫
Γ(f, f)dµ for every f in A.

As an additional main assumption on L, we will assume that Γ is a derivation in the sense

that when ϕ is a real C∞ function, for every f, g in A,

Γ
(
ϕ(f), g

)
= ϕ′(f)Γ(f, g).

It is well known that the definition of the operator Γ may be extended to all of the domain

of the Dirichlet form E(f, f) =
∫
f(−Lf)dµ <∞. For our purposes here, we will simply agree

that a function f on E is such that ‖Γ(f, f)‖∞ ≤ 1 if there is a sequence (fn)n∈N in A such

that ‖Γ(fn, fn)‖∞ ≤ 1 for every n which converges µ-almost surely to f . Such a function

may be considered as a Lipschitz function with respect to L (or Γ). For example, for the

Laplace operator on a Riemannian manifold M of finite volume, Γ(f, g) = ∇f ·∇g for smooth

functions f and g (for example C∞ and bounded or constant outside some compact set) and

a function f on M such that ‖Γ(f, f)‖∞ ≤ 1 in the preceding sense is simply a Lipschitz

function with Lipschitz norm ‖|∇f |‖∞ ≤ 1. One further important example included in this

abstract setting is the Ornstein-Uhlenbeck generator on Wiener space (E,H, µ) for which

‖Γ(f, f)‖∞ ≤ 1 if and only if the Malliavin derivative Df of f satisfies ‖|Df |H‖∞ ≤ 1 (see

[A-M-S]). Equivalently, f is 1-Lipschitz in the directions of the Cameron-Martin Hilbert

space H [E-S].

In this framework, one may speak of the “diameter” of the space E for L in the following

sense (cf. [B-M], [B]). If f is measurable on E, set f̃(x, y) = f(x) − f(y) on E × E. Define

then the diameter D of E by

D = sup
f∈A,‖Γ(f,f)‖∞≤1

‖f̃‖L∞(µ⊗µ).

It is easily seen that this definition coincides with the usual diameter in a Riemannian

setting.

To ease the notation, we use sometimes 〈f〉 to denote the expectation of an integrable

function f on (E,B, µ). As before, we then say that ρ0 is the logarithmic Sobolev constant

of L if for all functions f in A,

ρ0E(f2) ≤ 2〈f(−Lf)〉 = 2〈Γ(f, f)〉.

One speaks of an inequality between entropy and energy if for all functions f in A with

〈f2〉 = 1,

(4) E(f2) ≤ Φ
(
〈Γ(f, f)〉

)
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where Φ is nonnegative on [0,∞). If we assume Φ to be concave, we can replace Φ by the

family of its tangent lines so that inequality (4) may be expressed equivalently by a family

of (generalized) logarithmic Sobolev inequalities (cf. [D])

E(f2) ≤
(
Φ(x)− xΦ′(x)

)
〈f2〉+ Φ′(x)〈Γ(f, f)〉, x ≥ 0.

We may now turn to the proof of (1) and (2) which we treat simultaneously. Let

first g ∈ A be such that ‖Γ(g, g)‖∞ ≤ 1. We will apply inequality (4) to the family

of functions f = eλg/2, λ ∈ R. Let G(λ) =
∫

eλgdµ be the Laplace transform of g and

observe that G′(λ) =
∫
geλgdµ (= 1

λ

∫
f2 log f2dµ) (λ 6= 0). Now, since Γ is a derivation,

Γ(f, f) = eλgΓ(g, g) so that inequality (4) yields that, for every λ,

λG′(λ)−G(λ) logG(λ) ≤ G(λ)Φ
(λ2

4

)
.

Let then H(λ) = 1
λ logG(λ), λ > 0. The preceding inequality reads

(5) H ′(λ) ≤ 1

λ2
Φ
(λ2

4

)
for every λ > 0. Since

H(0) = lim
λ→0

1

λ
logG(λ) =

G′(0)

G(0)
= 〈g〉,

it follows that, for every λ > 0,

1

λ
logG(λ) = H(λ) = H(0) +

∫ λ

0

H ′(u)du ≤ 〈g〉+

∫ λ

0

1

u2
Φ
(u2

4

)
du.

Therefore,

(6)

∫
eλ(g−〈g〉)dµ ≤ exp

(
λ

∫ λ

0

1

u2
Φ
(u2

4

)
du

)
for every λ ≥ 0.

Now, assume that C =
∫∞

0
1
u2 Φ(u

2

4 )du = 1
2

∫∞
0

1
x2 Φ(x2)dx < ∞. By the preceding

inequality applied to g and −g, for every λ ≥ 0 and every ε > 0,

µ
(
|g − 〈g〉| ≥ C + ε

)
≤ µ

(
g − 〈g〉 ≥ C + ε

)
+ µ

(
−g − 〈−g〉 ≥ C + ε

)
≤ 2e−λ(C+ε)eλC .

As λ → ∞, we get that ‖g − 〈g〉‖∞ ≤ C. Inequality (2) then immediately follows by the

very definition of D.

We turn to (1) and assume thus the existence of a logarithmic Sobolev constant ρ0 > 0.

We may therefore take Φ(x) = 2
ρ0
x in (6). Hence, for every λ ≥ 0 (actually every λ by

replacing g by −g), ∫
eλ(g−〈g〉)dµ ≤ eλ

2/2ρ0 .
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By Chebyshev’s inequality, for every t ≥ 0 and λ ≥ 0,

µ
(
g − 〈g〉 ≥ t

)
≤ e−λteλ

2/2ρ0 ,

and, optimizing in λ,

(7) µ
(
g − 〈g〉 ≥ t

)
≤ e−ρ0t

2/2.

By applying the result also to −g, for every t ≥ 0,

(8) µ
(∣∣g − 〈g〉∣∣ ≥ t) ≤ 2e−ρ0t

2/2.

This inequality thus holds for every function g in A such that ‖Γ(g, g)‖∞ ≤ 1. Let

now (gn)n∈N be a sequence in A which converges µ-almost surely to g and such that

‖Γ(gn, gn)‖∞ ≤ 1 for every n. Let m be large enough so that µ(|g| ≤ m) ≥ 3
4 . Then,

for some n0 and every n ≥ n0, µ(|gn| ≤ m + 1) ≥ 1
2 . Choose furthermore t0 > 0 with

2e−ρ0t
2
0/2 < 1

2 . Since each gn satisfies (8), it follows, by intersecting the sets {|gn| ≤ m+ 1}
and {|gn − 〈gn〉| ≥ t0}, that |〈gn〉| ≤ t0 +m+ 1 for every n ≥ n0. Moreover, coming back to

(8),

µ
(
|gn| ≥ t+ t0 +m+ 1

)
≤ 2e−ρ0t

2/2

for every n ≥ n0 and every t ≥ 0. In particular, supn
∫
g2
ndµ <∞ so that, by uniform integra-

bility, it immediately follows that every Lipschitz function g on E such that ‖Γ(g, g)‖∞ ≤ 1

is integrable and satisfies (7). In particular,
∫

eαg
2

dµ <∞ for every α < ρ0/2. Let us men-

tion however that the deviation inequality (7) is a much more precise and useful tool than

rather only the latter integrability property. This is in particular the case in the context of

abstract Wiener spaces and Gaussian measures on Banach spaces. For example, if µ is the

canonical Gaussian measure on Rn and g the Euclidean distance | · | to the origin, then, for

every t ≥ 0,

µ
(
x ∈ Rn; |x| ≥

√
n+ t

)
≤ e−t

2/2.

The deviation inequalities (7) actually belongs to the family of concentration inequalities

of isoperimetric flavor. We refer to [L-T] and [L2] for more information on this aspect. It

should be mentioned also that this approach to deviation inequalities of course requires first

the knowledge of a logarithmic Sobolev inequality and that usually the arguments needed

to prove a logarithmic Sobolev inequality yield in a direct and shorter way these deviation

inequalities (see e.g. [L1] for the Gaussian example).

The preceding strong exponential integrability under logarithmic Sobolev inequalities

actually also holds under the so-called defective logarithmic Sobolev inequalities of the type

(9) E(f2) ≤ a〈f2〉+ b〈Γ(f, f)〉, f ∈ A,

for some a, b > 0. Thus, in the preceding notation, Φ(x) = a + bx, x ≥ 0. Indeed, coming

back to (5), for every g ∈ A with ‖Γ(g, g)‖∞ ≤ 1, we see that we also have, for every λ ≥ 1,

1

λ
logG(λ) = H(λ) = H(1) +

∫ λ

1

H ′(u)du ≤ logG(1) + a+
1

4
bλ.
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Hence, for λ ≥ 1,

(10)

∫
eλgdµ ≤

(∫
egdµ

)λ
eaλ+bλ2/4.

Let us choose first λ = 2. Then
∫

e2gdµ ≤ C(
∫

egdµ)2 with C = e2a+b. Let m be large

enough so that µ(|g| ≥ m) ≤ 1/4C. Then µ(eg ≥ em) ≤ 1/4C and∫
egdµ ≤ em + µ

(
eg ≥ em

)1/2(∫
e2gdµ

)1/2

≤ em +
√
Cµ
(
eg ≥ em

)1/2 ∫
egdµ

≤ 2em.

Returning to (10), for every λ ≥ 1,∫
eλgdµ ≤ 2λ emλ+aλ+bλ2/4 ≤ eC

′λ2

where C ′ = 1 +m+ a+ b/4. Using Chebyshev’s inequality as before, we see that

µ(g ≥ t) ≤ e−t
2/4C′

at least for every t ≥ 0 large enough (depending on C ′). The same inequality applies to −g.

Moreover, the proof was presented in such a way to show that this inequality also applies

to any g in E with ‖Γ(g, g)‖∞ ≤ 1 since, besides ‖Γ(g, g)‖∞ ≤ 1, the only parameter used

on g is m. In particular, under a defective logarithmic Sobolev inequality (9),
∫

eαg
2

dµ <∞
for some α > 0 for every g with ‖Γ(g, g)‖∞ ≤ 1, improving thus upon Theorem 3.2 in

[A-M-S]. This result has been obtained in [A-S] where further integrability properties under

only Lp-bounds on Γ(g, g) are described.

2. Logarithmic Sobolev constant in Riemannian manifolds with Ricci curva-

ture bounded below

In the final part of this work, we turn to a proof of (3). As in [SC], our argument

is based on the parabolic inequality by P. Li and S.-T. Yau, however at some elementary

level. Let thus M be as in the introduction a complete connected (noncompact) Riemannian

manifold of dimension n with normalized Riemannian measure dµ. We assume that the Ricci

curvature Ric on M is bounded below by −K, K ≥ 0. We denote by ρ0 the logarithmic

Sobolev constant of the Laplacian ∆ on M and assume in what follows that ρ0 > 0.

Let Pt = et∆, t ≥ 0, be the heat semigroup on M . The Li-Yau inequality [L-Y] (cf. [D])

indicates that for every positive C∞ function f on M , and every α > 1, t > 0, at each point

of M ,
|∇Ptf |2

(Ptf)2
− α ∆Ptf

Ptf
≤ nα2

2t

(
1 +

Kt

α− 1

)
.
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(Note that when K = 0 one may choose α = 1.) In the sequel, we simply take α = 2. We will

not try actually to sharpen our choices of constants. Anyway, this could only improve the

constant C in (3) but not the dependence on ρ0. In particular therefore, for every 0 < t ≤ 1,

−∆Ptf

Ptf
≤ γ

t

where γ = γ(n,K) = n(1 + K) (≥ 1). Fix f positive and smooth on M . Letting

F (t) = Ptf , 0 < t ≤ 1, evaluated at some point in M , the preceding inequality implies

that γF (t) + tF ′(t) ≥ 0 for every 0 < t ≤ 1. Therefore, the function tγF (t) is increasing on

(0, 1] so that

(11) Ptf ≤
1

tγ
P1f, 0 < t ≤ 1.

Now, by the fundamental relation between logarithmic Sobolev inequalities and hypercon-

tractivity due to L. Gross [G], we know that the heat semigroup (Pt)t≥0 has hypercon-

tractivity constant ρ0, that is, for every 1 < p < q < ∞, ‖Ptf‖q ≤ ‖f‖p as soon as

eρ0t ≥ [(q−1)/(p−1)]1/2. We apply this property with p = 2 and t = 1 so that q = 1 + e2ρ0 .

Therefore, taking the Lq-norms of both sides of (11), we get that, for every C∞ bounded

function f on M (positive or not),

‖Ptf‖q ≤
1

tγ
‖P1f‖q ≤

1

tγ
‖f‖2, 0 < t ≤ 1.

It is well-known that such a semigroup estimate is equivalent to a (local) Sobolev inequality.

To somewhat keep track of the constants, let us briefly recall the steps of the argument. By

interpolation, for every f as before,

‖Ptf‖r ≤
1

tθγ
‖f‖2, 0 < t ≤ 1,

where 1
θ ( 1

2 −
1
r ) = (1

2 −
1
q ), 0 < θ < 1. Let us choose simply θ such that θγ = 1

4 . Now, using

that

(I−∆)−1/2 =
1√
π

∫ ∞
0

1√
t

e−tPt dt,

it rather easily follows (cf. e.g. [D] or [V-SC-C]) that for every smooth function f on M ,

‖(I−∆)−1/2f‖2r ≤ 8‖f‖22, that is

(12) ‖f‖2r ≤ 8
(
‖f‖22 +

∥∥|∇f |∥∥2

2

)
.

(The numerical constant 8 has no reason to be sharp.) It is rather surprising that a Sobolev

inequality of logarithmic type implies a true Sobolev inequality (of power type). This may

be considered as an effect of curvature. One could now deduce from this Sobolev inequality

(12) that D is bounded and thus that M is compact by various arguments. For example,

this inequality could be iterated (very much as in Moser’s iteration principle). An alternate
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argument combines minorations of volumes of balls together with the fact that M has finite

volume. Taking into account our first part, we prefer to follow the approach by D. Bakry

and D. Michel [B-M] and bound the diameter D of M with (2) and some inequality between

entropy and energy. This method seems indeed to yield rather sharp bounds in general (cf.

[B]). To this aim, fix a function f with ‖f‖2 = 1 and consider the probability measure

dν = f2dµ. By Jensen’s inequality,

log ‖f‖2r =
2

r
log

(∫
|f |r−2dν

)
≥ r − 2

r

∫
log f2dν =

r − 2

r
E(f2).

Hence, (12) implies that

E(f2) ≤ Φ1

(∥∥|∇f |∥∥2

2

)
, ‖f‖2 = 1,

with Φ1(x) = r
r−2 log(8 + 8x), x ≥ 0. In addition, we also have by the definition of the

logarithmic Sobolev constant ρ0 that

E(f2) ≤ Φ2

(∥∥|∇f |∥∥2

2

)
, ‖f‖2 = 1,

with Φ2(x) = 2
ρ0
x, x ≥ 0. We therefore get an inequality between entropy and energy (4)

with Φ = min(Φ1,Φ2). According to (2),

D ≤
∫ ∞

0

1

x2
Φ(x2)dx ≤ 2

ρ0
+

∫ ∞
1

r

r − 2

1

x2
log(8 + 8x2)dx

≤ 2

ρ0
+ C1

r

r − 2

where C1 > 0 is numerical. Now, recall that q = 1 + e2ρ0 , γ = n(1 +K) and that(1

2
− 1

r

)
=

1

4γ

(1

2
− 1

q

)
.

We then simply observe that

r

r − 2
= 4γ

q

q − 2
= 4γ

1 + e2ρ0

1 + e2ρ0 − 2
≤ 20γ

min(1, ρ0)
.

Therefore,

(13) D ≤ C

min(1, ρ0)

where the constant C only depends on n and K. The conclusion follows since when D > C,

ρ0 ≤ 1 and thus D ≤ C/ρ0. This bound is sharp since, as is mentioned at the end of

[SC], classical arguments from the theory of hypercontractivity show conversely that when

λ1 ≥ ε > 0, where λ1 is the first eigenvalue of −∆, then

ρ0 ≥
c

D
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where c > 0 only depends on n, K and ε. Recall also from [SC] that there exist (compact)

manifolds of constant negative sectional curvature with arbitrarily large diameter and λ1

uniformly bounded away from zero. One consequence of (3) or (13) is thus that the ratio

ρ0/λ1 (always ≤ 1) can be made arbitrarily small. This is in constrast with the case of

compact manifolds with nonnegative Ricci curvature for which 4n
(n+1)2λ1 ≤ ρ0 ≤ λ1 [R].

Notice that, together with (13), we recover in this case a weak form of Cheng’s inequality

λ1 ≤ nπ2/D2 [C].

It should be noticed finally that, rather than hypercontractivity, the preceding proof of

the compactness of M under the condition ρ0 > 0 only uses actually that there exist t0 > 0

and 1 ≤ p < q ≤ ∞ such that Pt0 is a bounded operator from Lp into Lq.
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