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ABSTRACT. – Following the equivalence between logarithmic Sobolev inequalities and hypercontrac-
tivity showed by L. Gross, we prove that logarithmic Sobolev inequalities are related similarly to hyper-
contractivity of solutions of Hamilton–Jacobi equations. By the infimum-convolution description of the
Hamilton–Jacobi solutions, this approach provides a clear view of the connection between logarithmic
Sobolev inequalities and transportation cost inequalities investigated recently by F. Otto and C. Villani. In
particular, we recover in this way transportation from Brunn–Minkowski inequalities and for the exponen-
tial measure. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The fundamental work by L. Gross [17] put forward the equivalence between logarithmic
Sobolev inequalities and hypercontractivity of the associated heat semigroup. Let us consider
for example a probability measureµ on the Borel sets ofRn satisfying the logarithmic Sobolev
inequality:

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ(1.1)

for someρ > 0 and all smooth enough functionsf on R
n where:

Entµ
(
f 2) =

∫
f 2 logf 2 dµ −

∫
f 2 dµ log

∫
f 2 dµ

and where|∇f | is the Euclidean length of the gradient∇f of f . The canonical Gaussian
measure with density(2π)−n/2e−|x|2/2 with respect to the Lebesgue measure onR

n is the basic
example of measureµ satisfying (1.1) withρ = 1.

For simplicity, assume furthermore thatµ has a strictly positive smooth density which may be
written e−U for some smooth functionU onR

n. Denote by L the second-order diffusion operator
L = � − 〈∇U,∇〉 with invariant measureµ. Integration by parts for L is described by:
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∫
f (−Lg)dµ =

∫
〈∇f,∇g〉dµ

for every smooth functionsf,g. Under mild growth conditions onU (that will always be satisfied
in applications throughout this work), one may consider the time reversible (with respect toµ)
semigroup(Pt )t�0 with generator L. Givenf (in the domain ofL), u = u(x, t) = Ptf (x) is the
fundamental solution of the initial value problem (heat equation with respect to L):

∂u

∂t
− Lu = 0 in R

n × (0,∞),

u = f onR
n × {t = 0}.

One of the main results of the contribution [17] by L. Gross is that the logarithmic
Sobolev inequality (1.1) forµ holds if and only if the associated heat semigroup(Pt )t�0 is
hypercontractive in the sense that, for every (or some) 1< p < q < ∞, and everyf (in Lp),

‖Ptf ‖q � ‖f ‖p,(1.2)

for everyt > 0 large enough so that

e2ρt � q − 1

p − 1
.(1.3)

In (1.2), theLp-norms are understood with respect to the measureµ. The key idea of the proof
is to consider a functionq(t) of t � 0 such thatq(0) = p and to take the derivative in time of
F(t) = ‖Ptf ‖q(t) (for a non-negative smooth functionf on R

n). Since the derivative ofLp-

norms gives rise to entropy, due to the heat equation∂
∂t

Ptf = LPtf and integration by parts, one
gets that:

q(t)2F(t)q(t)−1F ′(t)

= q ′(t)Entµ
(
(Ptf )q(t)

) + q(t)2
∫

(Ptf )q(t)−1LPtf dµ

= q ′(t)Entµ
(
(Ptf )q(t)

) − 2
(
q(t) − 1

)∫
q(t)2

2
|∇Ptf |2(Ptf )q(t)−2 dµ.

(1.4)

By the logarithmic Sobolev inequality applied to(Ptf )q(t)/2, it follows thatF ′(t) � 0 as soon as
q ′(t) = 2ρ(q(t)− 1), that isq(t) = 1+ (p − 1)e2ρt , t � 0, which yields the claim. It is classical
and easy to see that the same argument also shows that (1.1) is also equivalent to∥∥ePt f

∥∥
e2ρt �

∥∥ef
∥∥

1(1.5)

for everyt � 0 andf (cf. [4]). For further comparison, observe that by linearity∥∥ePtf
∥∥
ae2ρt � (resp.�)

∥∥ef
∥∥
a

according asa � 0 (resp.a � 0).
Whenever−∞ < q < p < 1 satisfy (1.3), the logarithmic Sobolev inequality is similarly

equivalent to the so-called reverse hypercontractivity

‖Ptf ‖q � ‖f ‖p(1.6)

for everyf taking non-negative values.



S.G. BOBKOV ET AL. / J. Math. Pures Appl. 80 (2001) 669–696 671

The main result of this work is to establish a similar relationship for the solutions of Hamilton–
Jacobi partial differential equations. Consider the Hamilton–Jacobi initial value problem:

∂v

∂t
+ 1

2
|∇v|2 = 0 in R

n × (0,∞),

v = f onR
n × {t = 0}.

(1.7)

Solutions of (1.7) are described by the Hopf–Lax representation formula as infimum-convolutions.
Namely, given a (Lipschitz continuous) functionf on R

n, define the infimum-convolution off
with the quadratic cost as:

Qtf (x) = inf
y∈Rn

[
f (y) + 1

2t
|x − y|2

]
, t > 0, x ∈ R

n.(1.8)

The family (Qt )t�0 defines a semigroup with infinitesimal (non-linear) generator−1
2|∇f |2.

That is,v = v(x, t) = Qtf (x) is a solution of the Hamilton–Jacobi initial value problem (1.7)
(at least almost everywhere). Actually, if in additionf is bounded, the Hopf–Lax formulaQtf is
the pertinent mathematical solution of (1.7), that is its unique viscosity solution (cf., e.g., [3,16]).

Once this has been recognized, it is not difficult to try to follow Gross’s idea for the Hamilton–
Jacobi equation. Namely, letting nowF(t) = ‖eQtf ‖λ(t), t � 0, for some functionλ(t) with
λ(0) = a, a ∈ R, the analogue of (1.4) reads as:

λ(t)2F(t)λ(t)−1F ′(t) = λ′(t)Entµ
(
eλ(t)Qtf

) −
∫

λ(t)2

2
|∇Qtf |2eλ(t)Qtf dµ.(1.9)

By the logarithmic Sobolev inequality (1.1) applied to eλ(t)Qtf , F ′(t) � 0 as soon asλ′(t) = ρ,
t � 0. As a result (and in complete analogy with (1.5) for example), the logarithmic Sobolev
inequality (1.1) shows that, for everyt � 0, everya ∈ R and every (say bounded) functionf ,∥∥eQtf

∥∥
a+ρt

�
∥∥ef

∥∥
a
.(1.10)

Conversely, if (1.10) holds for everyt � 0 and somea �= 0, then the logarithmic Sobolev
inequality (1.1) holds. With respect to classical hypercontractivity, it is worthwhile noting thatQt

is defined independently of the underlying measureµ. Actually, hypercontractivity of Hamilton–
Jacobi solutions may also be shown to follow from heat kernel hypercontractivity through the so-
called vanishing viscosity method. Namely, ifuε is solution of the heat equation∂uε/∂t = εLuε

(with initial value e−f/2ε), thenvε = −2ε loguε approaches asε → 0 the Hopf–Lax solution
(1.8). Transferring hypercontractivity of the heat solutionuε to vε yields another approach to
our main result. In this Laplace–Varadhan large deviation asymptotic, the second-order term in
L = �−〈∇U,∇〉 is the leading term that gives rise to the Gaussian kernel and the quadratic cost
in (1.8) (and an expression forQt independent ofU and thus ofµ).

Due to the homogeneity propertyQt(sf ) = sQstf, s, t > 0, and settingQ for Q1, (1.10) may
be rewritten equivalently as: ∥∥eQf

∥∥
r+ρ

�
∥∥ef

∥∥
r

(1.11)

for r ∈ R. If (1.11) holds for either everyr > 0 (or only large enough) or everyr < 0 (or only
large enough), then the logarithmic Sobolev inequality (1.1) holds. The valuer = 0 is however
critical.
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When a = 0 in (1.10), orr = 0 in (1.11), these two inequalities actually amount to the
infimum-convolution inequality ∫

eρQf dµ � eρ
∫

f dµ(1.12)

holding for every bounded (or integrable) functionf . Inequality (1.12) is known to be the
Monge–Kantorovitch–Rubinstein dual version of the transportation cost inequality (see [7] and
below):

ρW2(µ, ν)2 � H(ν|µ) = Entµ

(
dν

dµ

)
(1.13)

holding for all probability measuresν absolutely continuous with respect toµ with Radon–
Nikodym derivative dν/dµ. HereW2 is the Wasserstein distance with quadratic cost:

W2(µ, ν)2 = inf
∫ ∫

1

2
|x − y|2 dπ(x, y),

where the infimum is running over all probability measuresπ on R
n × R

n with respective
marginalsµ andν andH(ν|µ) is the relative entropy, or informational divergence, ofν with
respect toµ. (The infimum inW2 is finite as soon asµ and ν have finite second moment
which we shall always assume.) That the transportation cost inequality (1.13) follows from the
logarithmic Sobolev inequality (1.1) was established recently by F. Otto and C. Villani [24] and
motivated the present work. While the arguments developed in [24] do involve PDE’s methods
(further inspired by nice geometric interpretations described in [23]), the approach presented
here only relies on the basic Hamilton–Jacobi equation (together with the dual formulation
(1.12) of the transportation cost inequality (1.13)) and presents a clear view of the connection
between logarithmic Sobolev inequalities and transportation cost inequalities. One feature of our
approach is the systematic use of the Monge–Kantorovitch dual version of the transportation cost
inequality involving infimum-convolution rather than Wasserstein distances.

It is an open problem (although probably with negative answer) to know whether the critical
case (1.12) is also equivalent to the logarithmic Sobolev inequality (1.1). When the potentialU is
convex, it was shown in [24] that the transportation cost inequality (1.13) implies conversely the
logarithmic Sobolev inequality (1.1) up to a numerical constant (the precise statement of [24] is
somewhat more general and allows small non-convex wells ofU ). The proof relies on a general
HWI inequality involving the entropyH , the Wasserstein distanceW2 and the Fisher information
I which may be established using the Brenier–McCann mass transportation by the gradient of a
convex function (see [12,24] and the references therein). The hypercontractive tools developed in
the present paper do not seem to be of help in providing an alternate description of this converse
statement. However, we present in Section 4 a semigroup proof of these results relying on the
Bakry–Emery method and Wang’s Harnack inequalities [32] by means of a short time parabolic
regularization estimate between entropy and Wasserstein distance. In particular, this approach
interpolates between the HWI inequality of [24] and the logarithmic Sobolev inequality under
exponential integrability of [32]. The subsequent comment note [25] by F. Otto and C. Villani
further expands on this theme.

In Section 2 of this work, we give a detailed proof of the main result (1.10). While the general
principle outlined above is straightforward, some regularity questions have to be addressed.
We also discuss the approach through the vanishing viscosity technique that shows a formal
direct equivalence of hypercontractivity for the heat equation and for the Hamilton–Jacobi
equation. The principle of proof extends to Riemannian manifolds (with the Riemannian metric
as transportation cost). In the next section, we present an alternate deduction of the transportation



S.G. BOBKOV ET AL. / J. Math. Pures Appl. 80 (2001) 669–696 673

cost inequalities via the analogue of the Herbst argument. To this task, we first recall the usual
Herbst argument, and then adapt it to infimum convolutions. We introduce this section by the
Monge–Kantorovitch dual description of transportation cost inequalities. In Section 4, we first
mention that quadratic transportation cost inequalities are stronger than the related Poincaré
inequalities. We then investigate how to reach HWI and logarithmic Sobolev inequalities for
families of log-concave measures following the Bakry–Emery semigroup method. In the fifth
section, we show how the Herbst method for infimum convolutions of Section 3 may be used to
recover similarly the transportation inequality of M. Talagrand [29] for the exponential measure
from the logarithmic Sobolev inequality of [8] (and more generally for measures satisfying
a Poincaré inequality). In the final part, we present further applications and discuss possible
extensions of the basic principle. In particular, we investigate, following [22] and [9], how
Brunn–Minkowski inequalities are related to the infimum-convolution inequalities (1.12) for
strictly convex potential. We also discuss theL1-transportation cost and its relation to some
(logarithmic) isoperimetric inequalities.

2. Hamilton–Jacobi equations and logarithmic Sobolev inequalities

This section is devoted to the main result of this work. We first present the direct proof as
outlined in the introduction, and then the alternate vanishing viscosity method. We briefly discuss
extension to a Riemannian setting.

2.1. Hypercontractivity of Hamilton–Jacobi solutions

In this section, we present our main result connecting logarithmic Sobolev inequalities to
hypercontractivity of solutions of Hamilton–Jacobi equations. While the subsequent arguments
extend to Riemannian manifolds, we however present, for clarity, the analysis in the more
classical Euclidean case. The general principle will apply similarly in the Riemannian setting
(Section 2.3).

Let (Qt )t�0 be the semigroup of operators:

Qtf (x) = inf
y∈Rn

[
f (y) + 1

2t
|x − y|2

]
, t > 0, x ∈ R

n,(2.1)

and Q0f (x) = f (x). These operators may be applied to arbitrary functions onR
n with

values in [−∞,+∞]. As is well-known (see, e.g., [3,16]), for anyf and t > 0, Qtf is
upper semicontinuous. Iff is bounded (resp. Lipschitz),Qtf is bounded and Lipschitz (resp.
Lipschitz). Given a bounded functionf , Qtf (x) → f (x) as t → 0 if and only if f is lower
semicontinuous atx.

The infimum convolutionQt is known as the Hopf–Lax solution of the Hamilton–Jacobi
equation:

∂

∂t
Qtf (x) = −1

2

∣∣∇Qtf (x)
∣∣2,(2.2)

with initial value f . More precisely (cf. [16]), givenf Lipschitz continuous, the Hopf–
Lax f solution is Lipschitz continuous and solves (2.2) almost everywhere inR

n × (0,∞).
Standard variants of the classical theory further show that iff is, say bounded,t → Qtf (x)

is differentiable at everyt � 0 for almost everyx ∈ R
n, and (2.2) holds true (att > 0, almost

everywhere inx).



674 S.G. BOBKOV ET AL. / J. Math. Pures Appl. 80 (2001) 669–696

Let µ be a probability measure on the Borel sets ofR
n. We denote below by‖ · ‖p ,

p ∈ R, theLp-norms (functionals whenp < 1) with respect toµ. As is usual, we agree that
‖f ‖0 = e

∫
log|f |dµ whenever log|f | isµ-integrable. The main result of this work is the following

theorem:

THEOREM 2.1. –Assume thatµ is absolutely continuous with respect to Lebesgue measure
and that for someρ > 0 and all smooth enough functionsf on R

n,

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ.(2.3)

Then, foreverybounded measurable functionf on R
n, everyt � 0 and everya ∈ R,∥∥eQtf

∥∥
a+ρt

�
∥∥ef

∥∥
a
.(2.4)

Conversely, if(2.4)holds for all t � 0 andsomea �= 0, then the logarithmic Sobolev inequality
(2.3)holds.

In Theorem 2.1, inequalities (2.4) are stated for bounded functions for simplicity: they readily
extend to larger classes of functions under the proper integrability conditions.

We may define similarly the supremum-convolution semigroup(Q̃t )t>0 by:

Q̃tf (x) = sup
y∈Rn

[
f (y) − 1

2t
|x − y|2

]
, t > 0, x ∈ R

n,

(Q̃0f (x) = f (x)). The operatorsQt andQ̃t are related by the property that for any two functions
f andg, g � Q̃tf if and only if f � Qtg so thatQ̃tQtf � f � QtQ̃tf . We also have that
Q̃t (−f ) = −Qtf . In particular, the conclusion (2.4) of Theorem 2.1 may be reformulated
equivalently on(Q̃t )t�0 by: ∥∥ef

∥∥
a+ρt

�
∥∥eQ̃t f

∥∥
a
.(2.5)

Note that the families of inequalities (2.4) and (2.5) are stable under the respective semigroups.
If µ is not absolutely continuous, an easy convolution argument leads to (2.4) at least for

all bounded continuous functions. Namely, the stability by products of the logarithmic Sobolev
inequality shows that ifγσ is the Gaussian measure onR

n with covarianceσ 2 Id, for every
smooth functionf̃ on R

n × R
n,

min
(
ρ,σ−1)Entµ⊗γσ

(
f̃ 2) � 2

∫
|∇f̃ |2 dµ ⊗ γσ .

Applied to f̃ (x, y) = f (x + y), x, y ∈ R
n, for some smooth functionf onR

n, we get:

min
(
ρ,σ−1)Entµ∗γσ

(
f 2) � 2

∫
|∇f |2 dµ ∗ γσ .

Theorem 2.1 then applies toµ ∗ γσ . Letting σ → 0 yields (2.4) for all bounded continuous
functions.

Proof of Theorem 2.1. –In the first part of the argument, we assume that the logarithmic
Sobolev inequality (2.3) holds and show that (2.4) is satisfied for any boundedf , and anyt > 0,
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a ∈ R. By a simple density argument, the logarithmic Sobolev inequality (2.3) holds for all
(locally) Lipschitz functions. Let thusf be a bounded function onRn. (By regularization, it
may be assumed thatf is compactly supported with bounded derivatives of any orders: however,
besides the final step, regularity does not make life easier here.) LetF(t) = ‖eQtf ‖λ(t), with
λ(t) = a + ρt , t > 0. For all t > 0 and almost everyx, the partial derivatives∂

∂t
Qtf (x) exist.

ThusF is differentiable at every pointt > 0 whereλ(t) �= 0. For such points, we get that:

λ2(t)F (t)λ(t)−1F ′(t) = ρ Entµ
(
eλ(t)Qtf

) +
∫

λ2(t)
∂

∂t
Qtf eλ(t)Qtf dµ.(2.6)

Since

∂

∂t
Qtf (x) = −1

2

∣∣∇Qtf (x)
∣∣2

almost everywhere inx, and sinceµ is absolutely continuous,

λ2(t)F (t)λ(t)−1F ′(t) = ρ Entµ
(
eλ(t)Qtf

) −
∫

λ(t)2

2
|∇Qtf |2eλ(t)Qtf dµ.

Now, sinceQtf (x) is Lipschitz inx for every t > 0, we may apply the logarithmic Sobolev
inequality (2.3) to eλ(t)Qtf to deduce thatF ′(t) � 0 for all t > 0 except possibly one point
(in casea < 0). SinceF is continuous, it must be non-increasing. Continuity ofQtf (x) at
t = 0 however requiresf be lower semicontinuous at the pointx. Apply then the result to
the maximal lower semicontinuous function majorized byf to conclude. (Alternatively, as
mentioned previously, we may regularizef to start with and assumef bounded and Lipschitz
for example.) The first part of the theorem is established.

Turning to the converse, letf be a boundedC1 function satisfying (2.4) for everyt > 0
and somea �= 0. Under (2.4), it thus must be thatF ′(0) � 0. Sincef is differentiable,
limt→0Qtf (x) = f (x) and

∂

∂t
Qtf (x)

∣∣∣∣
t=0

= lim
t→0

1

t

[
Qtf (x) − f (x)

] = −1

2

∣∣∇f (x)
∣∣2

at every pointx so that (2.6) ast → 0 yields

ρ Entµ
(
eaf

)
� 1

2

∫
|a∇f |2eaf dµ.

Sincea �= 0, this amounts to (2.3) by settingg2 = eaf . The proof of Theorem 2.1 is complete.✷
Remark2.2. – As in the classical case, the proof of Theorem 2.1 similarly shows that a

defective logarithmic Sobolev inequality of the type

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ + C

∫
f 2 dµ

for someC > 0 is equivalent to the hypercontractive bounds (t � 0, a ∈ R)∥∥eQtf
∥∥
a+ρt

� eM(t)
∥∥ef

∥∥
a
,
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where:

M(t) = Ct

a(a + ρt)
.

2.2. Hypercontractivity and vanishing viscosity

An alternate proof of Theorem 2.1 may be provided by the tool of vanishing viscosity
(cf. [16]). We only briefly outline the principle that requires some further technical arguments.
The idea is to add a small noise to the Hamilton–Jacobi equation to turn it after an exponential
change of functions into the heat equation. Given a smooth functionf , andε > 0, denote namely
by vε = vε(x, t) the solution of the initial value partial differential equation:

∂vε

∂t
+ 1

2

∣∣∇vε
∣∣2 − εLvε = 0 in R

n × (0,∞),

vε = f onR
n × {t = 0}.

As ε → 0, it is expected thatvε approaches in a reasonable sense the solutionv of (1.7). It is
easy to check thatuε = e−vε/2ε is a solution of the heat equation∂uε/∂t = εLuε (with initial
value e−f/2ε). Therefore,

uε = Pεt

(
e−f/2ε).

It must be emphasized that the perturbation argument by a small noise has a clear picture in the
probabilistic language of large deviations. Namely, the asymptotic of

vε = −2ε logPεt

(
e−f/2ε)

as ε → 0 is a Laplace–Varadhan asymptotic with rate described precisely by the infimum
convolution off with the quadratic large deviation rate function for the heat semigroup (cf.,
e.g., [3]). In this limit, the second order Laplace operator is the leading term in the definition
of L = � − 〈∇,∇U〉 so that the limiting solutionu given by the infimum-convolutionQtf is
independent of the potentialU and thus ofµ. In particular, this asymptotic is explicit on the basic
Ornstein–Uhlenbeck example.

Apply now classical hypercontractivity touε. More precisely, forb > a > 0 fixed, apply the
reverse hypercontractivity inequality (1.6) with 0> p = −2εa > q = −2εb and

e2ερt = 1+ 2εb

1+ 2εa
.

It follows that: ∥∥evε∥∥
b
�

∥∥ef
∥∥
a
.

Now, as ε → 0, t > 0 is such thatb = a + ρt . We thus recover in this way the main
Theorem 2.1. Note however that it was necessary to go through reverse hypercontractivity of
the heat semigroup to reach the conclusion.

2.3. Extension to Riemannian manifolds

As announced, Theorem 2.1 and its proof extend to the setting of logarithmic Sobolev
inequalities on Riemannian manifolds and infimum-convolutions with the Riemannian metric
as in [24]. We briefly outline in this subsection the corresponding result. LetM be a smooth
complete Riemannian manifold of dimensionn and Riemannian metricd . Letµ be a probability
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measure absolutely continuous with respect to the standard volume element onM satisfying, for
someρ > 0 and all smooth enough functionsf onM, the logarithmic Sobolev inequality:

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ.

Here|∇f | now stands for the Riemannian length of the gradient off . Let, for t > 0, x ∈ M,

Qtf (x) = inf
y∈M

[
f (y) + 1

2t
d(x, y)2

]
.

It may be observed that(Qt )t�0 forms a semigroup since for the geodesic distance,

inf
z∈M

[
1

t
d(x, z)2 + 1

s
d(z, y)2

]
= 1

s + t
d(x, y)2

for all x, y ∈ M ands, t > 0. Following the argument in the classical Euclidean case (cf. [31]),
one shows similarly thatv = v(x, t) = Qtf (x) is again a solution of the initial-value Hamilton–
Jacobi problem onM:

∂v

∂t
+ 1

2
|∇v|2 = 0 in M × (0,∞),

v = f onM × {t = 0}.
Theorem 2.1 and its proof thus readily extend to this case. It might be easier to develop the
extension of Hamilton–Jacobi equations to Riemannian manifolds in the compact case first.
Regularizingf into a compactly supported function as in the proof of Theorem 2.1 allows us
to reduce to this case if necessary.

3. Herbst’s argument and transportation inequalities

There is yet another way from logarithmic Sobolev inequalities to infimum-convolution
inequalities that goes through the so-called Herbst method (cf. [18]). To introduce it, we first
summarize the Monge–Kantorovitch dual versions of the transportation cost inequalities. We
then recall the classical Herbst argument and apply it in the infimum-convolution context.

3.1. Monge–Kantorovitch duality

Let us start with the Wassertein distance with linear cost between two probability measures on
R

n defined by:

W1(µ, ν) = inf
∫ ∫

|x − y|dπ(x, y),

where the infimum is running over all probability measuresπ on R
n × R

n with respective mar-
ginalsµ andν (having a finite first moment). Bythe Monge–Kantorovitch dual characterization
(cf. [15,26]),

W1(µ, ν) = sup

[∫
g dν −

∫
f dµ

]
,(3.1)

where the supremum is running over all bounded measurable functionsf andg such that

g(x) � f (y) + |x − y|
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for everyx, y ∈ R
n. Perhaps more classicaly, we have equivalently that:

W1(µ, ν) = sup

[∫
g dµ −

∫
g dν

]
,(3.2)

where the supremum is running over all Lipschitz functionsg with ‖g‖Lip � 1.
The general form of the dual Monge–Kantorovitch representation of some metric space(E,d)

for example indicates that (cf. [26]):

inf
∫ ∫

T (x, y)dπ(x, y) = sup

[∫
g dν −

∫
f dµ

]
,(3.3)

where the infimum is running over all probability measuresπ with marginalsµ andν such that
T is integrable with respect toπ and where the supremum is over all pairs(g, f ) of bounded
measurable functions (or respectivelyν andµ-integrable) such that for allx, y,

g(x) � f (y) + T (x, y).

HereT is upper semicontinuous,π -integrable and such thatT (x, y) � a(x) + b(y) for some
measurable functionsa andb. OnR

n, the supremum on the right-hand side of (3.3) may be taken
over smaller classes of smooth functions, such as bounded Lipschitz or so on. (This provides an
alternate regularization procedure for the arguments developed in the next sections.)

For the quadratic cost in particular, we thus have that:

W2(µ, ν)2 = sup

[∫
g dν −

∫
f dµ

]
,(3.4)

where the supremum is running over all bounded functionsf andg such that

g(x) � f (y) + 1

2
|x − y|2

for everyx, y ∈ R
n. In the infimum-convolution notation,

g(x) = inf
y∈Rn

[
f (y) + 1

2
|x − y|2

]
= Qf (x)

achieves the optimal choice.

3.2. Linear transportation cost

In this section, we recall the Herbst argument and its interpretation as a transportation result
with linear cost. Assume the logarithmic Sobolev inequality

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ(3.5)

holds for someρ > 0 and all smooth enough (locally Lipschitz) functionsf on R
n. For

simplicity, assume below thatµ is absolutely continuous with respect to Lebesgue measure.
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Now, letg be a (bounded) Lipschitz function onRn with Lipschitz coefficient‖g‖Lip. Let us

then apply (3.5) tof 2 = eλg−λ2‖g‖2
Lip/2ρ whereλ ∈ R. SetG(λ) = ∫

eλg−λ2‖g‖2
Lip/2ρ dµ. Since

|∇g| � ‖g‖Lip almost everywhere, we get from (3.5) that, for everyλ ∈ R:∫ [
λg − 1

2ρ
λ2‖g‖2

Lip

]
eλg−λ2‖g‖2

Lip/2ρ dµ − G(λ) logG(λ) � 1

2ρ
λ2‖g‖2

LipG(λ).

In other words,

λG′(λ) � G(λ) logG(λ), λ ∈ R.(3.6)

This differential inequality is easily integrated to yield, sinceG′(0) = ∫
g dµ, that for every

Lipschitz (integrable) functiong onR
n:∫

eg dµ � e
∫
g dµ+‖g‖2

Lip/2ρ
.(3.7)

By Chebychev’s inequality, this inequality describes the concentration properties of a measureµ

satisfying a logarithmic Sobolev inequality (cf. [18]).
Inequality (3.7) has been recognized in [7] as a transportation inequality for theW1

Wasserstein distance in the form of:

ρW2
1 (µ, ν) � 2H(ν|µ) = 2 Entµ

(
dν

dµ

)
(3.8)

holding for all probability measuresν absolutely continuous with respect toµ with Radon–
Nikodym derivative dν/dµ. Namely by (3.8) and (3.1) (one could use completely similarly
(3.2)), for every bounded measurable functionsf andg such thatg(x) � f (y) + |x − y| for all
x, y ∈ R

n, ∫
g dν −

∫
f dµ �

√
2

ρ
Entµ

(
dν

dµ

)
,

or, equivalently, for everyλ > 0,∫
g dν −

∫
f dµ � λ

2ρ
+ 1

λ
Entµ

(
dν

dµ

)
.

Setϕ = dν/dµ. The preceding indicates that∫
ψϕ dµ � Entµ(ϕ),

whereψ = λg − λ2/2ρ − λ
∫

f dµ. Since this inequality holds for every choice ofϕ (i.e. ν),
applying it toϕ = eψ/

∫
eψ dµ yields log

∫
eψ dµ � 0. In other words,∫

eλg dµ � eλ
∫
f dµ+λ2/2ρ.

Whenf is Lipschitz with‖f ‖Lip � 1, one may chooseg = f so that the latter exactly amounts
to (3.7). Since

Entµ(ϕ) = sup
∫

ϕψ dµ,
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where the supremum is running over allψ ’s such that
∫

eψ dµ � 1, the preceding argument
clearly indicates that (3.7) is actually equivalent to (3.8). This result easily extends to arbitraty
metric spaces.

3.3. Quadratic transportation cost

The aim of this section is to describe how the preceding Herbst argument may be applied
completely similarly to infimum-convolutions. In particular, we recover in this case the
conclusion of Theorem 2.1 at the critical valuea = 0.

Given a (bounded Lipschitz) functiong on R
n, apply now the logarithmic Sobolev inequality

(3.5) tof 2 = eρQ(λg) (where we recall thatQ = Q1). SinceQ(λg) = λQλg, λ > 0, we see from
the Hamilton–Jacobi equation that, almost everywhere in space:

Q(λg) = λ
∂

∂λ
Q(λg) + 1

2

∣∣∇Q(λg)
∣∣2.

We thus immediately deduce from the logarithmic Sobolev inequality (3.5) the differential
inequality (3.6) onG(λ) = ∫

eρQ(λg) dµ. SinceG′(0) = ρ
∫

g dµ, it follows similarly that:∫
eρQg dµ � eρ

∫
g dµ,(3.9)

that is the infimum-convolution inequality (1.12).
Inequality (3.9) amounts, as announced in the introduction, to the transportation cost inequality

for the quadratic cost

ρW2(µ, ν)2 � H(ν|µ) = Entµ

(
dν

dµ

)
(3.10)

for everyν absolutely continuous with respect toµ. Exactly as for the equivalence between (3.7)
and (3.8), by the dual description ofW2:∫

g dν −
∫

f dµ � 1

ρ
Entµ

(
dν

dµ

)
for all bounded functionsf andg such that

g(x) � f (y) + 1

2
|x − y|2

for every x, y ∈ R
n. Since g = Qf achieves the optimal choice, settingϕ = dν/dµ, the

preceding amounts to ∫
ψϕ dµ � Entµ(ϕ),

whereψ = Qf − ∫
f dµ. Since the inequality holds for every choice ofϕ, it is equivalent to say

that
∫

eρψ � 1, that is exactly (3.9).
As a consequence of either Theorem 2.1 or the preceding, we may state the following corollary

first established in [24].
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COROLLARY 3.1. –Assume thatµ is absolutely continuous and that for someρ > 0 and all
smooth enough functionsf onR

n:

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ.

Then, for every probability measureν absolutely continuous with respect toµ,

ρW2(µ, ν)2 � H(ν|µ).

Replacing|x −y| by the Riemannian distanced(x, y) yields the same conclusion on a smooth
manifoldM.

It might be worthwhile mentioning that wheneverg is Lipschitz,

Qg � g − 1

2
‖g‖2

Lip .

So clearly, (3.9) represents an improvement upon (3.7) (replacingg by g/ρ). Actually,
Theorem 2.1 (cf. (1.11)) then indicates that for everyr ∈ R:∥∥eg

∥∥
ρ+r

�
∥∥eg

∥∥
r
e‖g‖2

Lip/2
,

a much stronger property.

4. Semigroup tools and HWI inequalities

In this section, we examine some converse results from transportation cost inequalities to
logarithmic Sobolev inequalities. We first describe how quadratic transportation cost inequalities
imply spectral inequalities. Then, under appropriate log-concavity assumptions on the underlying
measure, we review the Bakry–Emery criterion and put in parallel the HWI inequalities of [24]
and the results of [32].

4.1. Transportation cost inequalities and spectral gap

Using again the dual Monge–Kantorovitch description (1.12) of the quadratic transportation
inequality (1.13), it is not difficult to see that (1.12) implies the spectral gap, or Poincaré
inequality, forµ, in the sense that for all smooth functionsf on R

n:

ρ Varµ(f ) �
∫

|∇f |2 dµ,(4.1)

where Varµ(f ) = ∫
f 2 dµ − (

∫
f dµ)2. Indeed, homogeneity in (1.12) yields∫

eρtQtf dµ � eρt
∫

f dµ.

As t → 0,Qtf ∼ f − t
2|∇f |2 so that:

1+ρt

∫
f dµ− ρt2

2

∫
|∇f |2 dµ+ ρ2t2

2

∫
f 2 dµ � 1+ρt

∫
f dµ+ ρ2t2

2

(∫
f dµ

)2

+o
(
t2)
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and thus (4.1). A different derivation of this result is given in [24].
It is well-known and classical that, applying the logarithmic Sobolev inequality (1.1) to

1+ tf and lettingt → 0 also yields (4.1). Furthermore, both the logarithmic Sobolev inequality
(1.1) and the transportation cost inequality (1.12) (or (1.13)) entail concentration properties. In
particular, logarithmic Sobolev inequality and the transportation inequality for the quadratic cost
are stable by products and therefore lead to dimension free concentration inequalities (cf. [7,18,
21,29] etc.).

4.2. The Bakry–Emery criterion

Before turning to our main question in the next subsection, it is worthwhile to briefly review the
Bakry–Emery criterion [2,4,18], for logarithmic Sobolev inequalities under strict log-concavity
of the measure.

Let thus dµ = e−U dx be a probability measure on the Borel sets ofR
n whereU is a smooth

potential.

THEOREM 4.1. –Assume that for somec > 0, Hess(U)(x) � c Id in the sense of symmetric
matrices uniformly inx ∈ R

n. Thenµ satisfies the logarithmic Sobolev inequality:

Entµ
(
f 2) � 2

c

∫
|∇f |2 dµ

for every smooth functionf on R
n.

The proof by D. Bakry and M. Emery of this result relies on the commutation properties of the
gradient with the semigroup(Pt )t�0 with generator L= � − 〈∇U,∇〉. Namely, the condition
Hess(U)(x) � c Id uniformly in x ∈ R

n for somec ∈ R (non necessarily strictly positive) is
actually equivalent to saying that for every smooth functionf :

|∇Ptf | � e−ctPt

(|∇f |)(4.2)

(cf. [2,19]). Then, given a smooth strictly positive bounded functionf , we may write:

Entµ(f ) = −
∞∫

0

d

dt

∫
Ptf logPtf dµdt =

∞∫
0

I (Pt f )dt,

where

I (Ptf ) =
∫ |∇Ptf |2

Ptf
dµ

is the Fisher information ofPtf . By (4.2) and the Cauchy–Schwarz inequality:

|∇Ptf |2 � e−2ctPt

( |∇f |2
f

)
Ptf,

so that, by invariance ofPt ,

I (Pt f ) � e−2ct I (f ).(4.3)

Whenc > 0, it immediately follows that:

Entµ(f ) � 1

2c
I (f )

which amounts to Theorem 4.1 by changingf into f 2.
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4.3. HWI inequalities

We examine here what happens to the Bakry–Emery argument when the lower boundc on the
Hessian ofU is not strictly positive. While the argument clearly breaks down, it may efficiently
be complemented by transportation cost inequalities. We reach in this way the HWI inequalities
of [24]. For simplicity, we again work in the Euclidean case, all the results and methods however
going through in a Riemannian setting.

Namely, for anyT > 0, we may still apply the Bakry–Emery criterion up to timeT . That is,
for any smooth positive and bounded functionf on R

n such that
∫

f dµ = 1, we may write:

Entµ(f ) =
T∫

0

I (Pt f )dt + Entµ(PT f ).

Assuming that Hess(U) � c Id for somec ∈ R, and using (4.3) shows that:

Entµ(f ) � α(T )I (f ) + Entµ(PT f ),(4.4)

where

α(T ) = 1− e−2cT

2c
(= T if c = 0).

The idea is now to control Entµ(PT f ), T > 0, by some transportation bound. We will prove
the following lemma that describes a kind of reverse transportation cost inequality forPT f in
the form of a short time parabolic regularization estimate. In the subsequent comment note [25],
F. Otto and C. Villani mention that Lemma 4.2 below may actually be shown to follow from their
proof of Theorem 4.3 using the Brenier–McCann transference plan theorem. They establish in the
same way a stronger regularization estimate showing that both entropy and Fisher information
become finite in arbitrarily short time (like O(t−1) and O(t−2) respectively) as a variant of an
estimate for gradient flows of a convex function on a Hilbert space going back to H. Brézis [11,
Theorem 3.7].

LEMMA 4.2. –AssumeHess(U) � c Id, c ∈ R, and denote by(Pt )t�0 the semigroup with
generatorL = � − 〈∇U,∇〉. Letf on R

n be non-negative and such that
∫

f dµ = 1. Then, for
anyT > 0:

Entµ(PT f ) �
(

1

2α(T )
− c

)
W2(µ, ν)2,

wheredν = f dµ.

Optimizing in T > 0 in (4.4) together with Lemma 4.2, we obtain the following result that
describes the so-called HWI inequalities connecting entropyH , Wassertein distanceW2 and
Fisher informationI .

THEOREM 4.3. –Let dµ = e−U dx and assume thatHess(U) � c Id for somec ∈ R. Then,
for every smooth non-negative functionf such that

∫
f dµ = 1:

H(ν|µ) = Entµ(f ) �
√

2I (f )W2(µ, ν) − cW2(µ, ν)2,

(where we recall thatdν = f dµ).
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Theorem 4.3 has been obtained by F. Otto and C. Villani [24] using the Brenier–McCann mass
transport [10,20] together with further PDE arguments. A simple proof, relying on the same tool,
was recently given by D. Cordero-Erausquin [12]. Theorem 4.3 admits the following corollary
that complements Theorem 4.1.

COROLLARY 4.4. –Let dµ = e−U dx and assume thatHess(U) � c Id for somec � 0.
Assume that for someρ > 0 and everyν,

ρW2(µ, ν)2 � H(ν|µ).

Then, provided that1+ c/ρ > 0, µ satisfies the logarithmic Sobolev inequality

ρ′ Entµ
(
f 2) � 2

∫
|∇f |2 dµ

for every smoothf with

ρ′ = ρ

4

(
1+ c

ρ

)2

.

To complete our proof of Theorem 4.3, we have to establish Lemma 4.2. To this task, we make
use of a Harnack type result of F.-Y. Wang in [32], that actually bridges the result of [24] with
the logarithmic Sobolev inequalities under exponential integrability of [32] (see also [1,18]).

Proof of Lemma 4.2. –Rewrite first Entµ(PT f ) by time reversibility as:

Entµ(PT f ) =
∫

fPT (logPT f )dµ.

We boundPT (logPT f ) by the method of [32]. Fixx, y in R
n. Letx(t) = 1−t

T
x+ t

T
y, 0� t � T .

Let furtherh : [0, T ] → [0, T ] be aC1 speed function such thath(0) = 0 andh(T ) = T . Set
γ (t) = x ◦ h(t) and

Ψ
(
t, γ (t)

) = Pt (logP2T −t f )
(
γ (t)

)
, 0 � t � T .

We have

dΨ

dt
= −Pt

( |∇P2T −t f |2
(P2T −t f )2

)(
γ (t)

) + h′(t)
T

〈∇Pt (logP2T −t f ), y − x
〉

� −Pt

( |∇P2T −t f |2
(P2T −t f )2

)(
γ (t)

) + |h′(t)|
T

|x − y|∣∣∇Pt(logP2T −t f )
∣∣.

Using (4.2), ∣∣∇Pt (logP2T −t f )
∣∣ � e−ctPt

( |∇P2T −t f |
P2T −t f

)
.

Hence, with

X = |∇P2T −t f |2
(P2T −t f )2 and Y = |h′(t)|

2T
|x − y|e−ct ,

we have that

dΨ

dt
� Pt

(−X2 + 2XY
)
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and thus

dΨ

dt
� Pt

(
Y 2) = |h′(t)|2

4T 2
|x − y|2e−2ct .

It follows that:

PT (logPT f )(x) − logP2T f (y) � |x − y|2
4T 2

T∫
0

∣∣h′(t)
∣∣2e−2ct dt .

For the optimal choice of the speedh, that is

h(t) = T
(
e2cT − 1

)−1(e2ct − 1
)
, 0 � t � T ,

this leads to

PT (logPT f )(x) � logP2T f (y) + 1

2S
|x − y|2,(4.5)

where

1

S
= 1

2α(T )
− c.

Inequality (4.5) is the analogue, adapted to our purposes, of the Harnack inequality of [32]. For
x fixed, take then the infimum iny in (4.5) to get:

PT (logPT f )(x) � QSϕ(x),

whereϕ = logP2T f . Since by Jensen’s inequality∫
ϕ dµ =

∫
logP2T f dµ � log

(∫
P2T f dµ

)
= 0,

we actually have that:

PT (logPT f ) � QSϕ −
∫

ϕ dµ.

Therefore,

Entµ(PT f ) =
∫

fPT (logPT f )dµ � sup

[∫
QSϕ dν −

∫
ϕ dµ

]
,

where the supremum is over all bounded measurable functionsϕ. By the dual Monge–
Kantorovitch description (3.4) ofW2 together with the scaling property of infimum-convolutions,
the lemma is established.✷

As mentioned before, Theorem 4.3 and its proof, in particular Lemma 4.2, hold similarly in a
Riemannian context.

Remark4.4. – Lemma 4.2 provides a bridge between the logarithmic Sobolev inequalities of
Theorem 4.3 under the quadratic transportation cost and the result of F.-Y. Wang [32] under
exponential integrability of the square distance, immediate consequence of linear transportation
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cost. Indeed, if we integrate inequality (4.5) in dµ(y) rather than to take the infimum iny, we
get that:

Entµ(PT f ) =
∫

PT f logPT f dµ

�
∫ ∫

f (x) logP2T f (y)dµ(x)dµ(y) +
∫ ∫

f (x)
|x − y|2

4α(T )e2cT dµ(x)dµ(y)

�
∫ ∫

f (x)
|x − y|2

2S
dµ(x)dµ(y),

where we used Jensen’s inequality. By Young’s inequalityab � a loga + eb, a � 0, b ∈ R,

∫ ∫
f (x)

|x − y|2
2S

dµ(x)dµ(y) � 1

2
Entµ(f ) +

∫ ∫
e

|x−y|2
S dµ(x)dµ(y).

Together with (4.4), we thus get:

Entµ(f ) � 2α(T )I (f ) + 2
∫ ∫

e
|x−y|2

S dµ(x)dµ(y).(4.6)

Assume now that for someε > 0,∫ ∫
e(−c̃+ε)|x−y|2 dµ(x)dµ(y) < ∞,(4.7)

wherec̃ = min(c,0). We may then chooseT > 0 so that the integral in (4.6) is finite. We thus
conclude that for someC > 0 (depending on the value of the latter),

Entµ(f ) � C
(
I (f ) + 1

)
.

By homogeneity, for every smooth enoughf onR
n:

Entµ
(
f 2) � C

(∫
|∇f |2 dµ +

∫
f 2 dµ

)
.(4.8)

This is a defective logarithmic Sobolev inequality. One classical way to switch it into a true
logarithmic Sobolev inequality (cf., e.g., [2]) is to establish first the Poincaré inequality for
µ under the same condition (4.7). This can be achieved similarly on the basis the Harnack
type inequality of [32] (cf. [1,18]). (With respect to Corollary 4.4, it should be emphasized for
applications that the constant in (4.8), that depends on the value of the integral in (4.7), is highly
dimensional.)

5. Transportation cost for the exponential measure

In this section, we apply the method of Section 3 to investigate the transportation cost
inequality for the exponential measure first explored in [29]. To this task, we need to work with
non-quadratic Hamilton–Jacobi equations.
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5.1. Non-quadratic Hamilton–Jacobi equations

The general principle based on Hamilton–Jacobi equations can be extended to other cost
functions than the square function. Let namelyH be smooth and convex onRn with
lim|x|→∞ H(x)/|x| = +∞. For a smooth (Lipschitz e.g.) functionf , the (unique viscosity)
solutionu = u(x, t) of the minimization problem (cf. [3,16]):

∂u

∂t
+ H(∇u) = 0 in R

n × (0,∞),

u = f onR
n × {t = 0},

(5.1)

is given by the Hopf–Lax formula

u(x, t) =
QL

t f (x) = inf
y∈Rn

[
f (y) + tL

(
x − y

t

)]
, t > 0, x ∈ R

n,

f (x), t = 0, x ∈ R
n,

(5.2)

whereL is the convex conjugate ofH defined by:

L(y) = sup
x∈Rn

[〈x, y〉 − H(x)
]
.

For arbitrary cost,QL
t f is not continuous in general att = 0 even for smoothf .

Following the proof of Theorem 2.1, the derivative ofF(t) = ‖eQL
t f ‖λ(t) then leads to:

λ2(t)F (t)λ(t)−1F ′(t) = ρ Entµ
(
eλ(t)QL

t f
) − λ2(t)

∫
H

(∇QL
t f

)
eλ(t)QL

t f dµ.

Useful applications of this principle however seem to require some homogeneity properties ofH .
A first set of applications is obtained by replacing the Euclidean norm by arbitrary norms‖ · ‖

onR
n. Setting namelyL(y) = 1

2‖y‖2, y ∈ R
n, then, sinceH andL are self-dual,H(x) = 1

2‖x‖2∗,
x ∈ R

n, where‖ ·‖∗ is the dual norm of‖ ·‖. Therefore, under the logarithmic Sobolev inequality

ρ Entµ
(
f 2) � 2

∫
‖∇f ‖2∗ dµ(5.3)

holding for someρ > 0 and all smooth enough functionsf on R
n, we may conclude as in

Theorem 2.1 to the hypercontractive estimates∥∥eQL
t f

∥∥
a+ρt

�
∥∥ef

∥∥
a

for every, say boundedf , t � 0 anda ∈ R. In particular,∫
eρQLf dµ � eρ

∫
f dµ

and, in its equivalent transportation cost form:

ρW2
L(µ, ν) � H(ν|µ).
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Here

W2
L(µ, ν) = inf

∫ ∫
1

2
‖x − y‖2 dπ(x, y),

where the infimum is running over all probability measuresπ on the product spaceRn ×R
n with

marginalsµ andν. One may also consider more generallyp-convex,p � 2, potentials (cf. [9]).

5.2. Modified logarithmic Sobolev inequalities

Another important example in the setting of Section 5.1 is the logarithmic Sobolev inequality
for the exponential measure [8] that will lead, via this principle, to the transportation cost
inequality of M. Talagrand [29] for the exponential measure. Recall from [8] that wheneverµ

is the measure on the real line with density1
2e−|x| with respect to Lebesgue measure, for every

Lipschitz functionf onR such that|f ′| � c < 1 almost everywhere:

Entµ
(
ef

)
� 2

1− c

∫
f ′2ef dµ.(5.4)

Fix for simplicity c = 1/2. Set now

H(x) =


4x2 if |x| � 1

2
,

+∞ if |x| > 1

2
.

Its dual function is given by:

L(y) =


y2

16
if |y| � 4,

|y|
2

− 1 if |y| > 4.

One may rewrite (5.4) as

Entµ
(
ef

)
�

∫
H(f ′)ef dµ.(5.5)

Note thatH(λx) � λ2H(x) whenever|λ| � 1.
AlthoughH does not exactly fit all the hypotheses of the classical Hamilton–Jacobi theory, one

may however check that(QL
t f )′ is (almost everywhere) in the domain ofH (i.e. |x| � 1/2). We

may then argue as in Section 2. Since we cannot expect however for a characterization through
some kind of hypercontractivity (due to the lack of homogeneity ofH ), it is actually more simple
to adapt the Herbst argument of Section 3. Namely, given a bounded (Lipschitz) functionf , one
first shows thatQL

t f is differentiable int > 0 and almost everyx ∈ R
n and that:

∂

∂t
QL

t f + H
((

QL
t f

)′) = 0.

SetF(t) = ∫
etQL

t f dµ which is differentiable int > 0. By (5.5),

tF ′(t) � F(t) logF(t), 0< t � 1.
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While QL
t f is not continuous att = 0, it is easy to check however thattQL

t f → 0 ast → 0.
ThereforeF ′(0) �

∫
f dµ, and integrating the preceding differential inequality as in the previous

section, one concludes that: ∫
eQLf dµ � e

∫
f dµ,(5.6)

whereQL = QL
1 . The latter inequality (5.6) actually corresponds exactly to the transportation

cost inequality for the exponential measure put forward in [29]. Namely, by the dual Monge–
Kantorovitch principle (cf. [26]), (5.6) is equivalent to saying that, for every probability measure
ν on the real line absolutely continuous with respect toµ

WL(µ,ν) � H(ν|µ)(5.7)

with

WL(µ,ν) = inf
∫ ∫

L(x − y)dπ(x, y),

where the infimum is running over all probability measures onR×R with respective (integrable)
marginalsµ andν. It is then easy to check that the costL is equivalent, up to numerical constants,
to the cost used in [29].

The preceding extends to products of the exponential distribution by considering the functions
on R

n given by
∑n

i=1 H(xi) and
∑n

i=1L(xi) for a vector(x1, . . . , xn) ∈ R
n. To this task, one

may either tensorize the logarithmic Sobolev inequality (5.4) or the transportation inequality
(5.7). As in [29], the main difficulty arises in dimension one.

5.3. Poincaré inequalities and exponential transportation cost

As a main result of the work [8], it was actually shown that every measureµ (absolutely
continuous say) satisfying the Poincaré inequality

λVarµ(f ) �
∫

|∇f |2 dµ(5.8)

for someλ > 0 and all smooth functionsf actually satisfies a modified logarithmic Sobolev
inequality such as (5.4):

Entµ
(
ef

)
� K(c)

∫
|∇f |2ef dµ(5.9)

for every bounded Lipschitz functionf such that|∇f | � c < 2
√

λ almost everywhere, where
K(c) > 0 only depends onc andλ. Setting:

H(x) = Hc(x) =
{
K(c)|x|2 if |x| � c,
+∞ if |x| > c,

with dual function

L(y) = Lc(y) =
 |y|2

4K(c)
if |y| � 2cK(c),

c|y| − c2K(c) if |y| > 2cK(c),
(5.10)

and arguing exactly as before, we may state the following corollary.
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COROLLARY 5.1. –Let µ be a measure on the Borel sets ofR
n satisfying the Poincaré

inequality

λVarµ(f ) �
∫

|∇f |2 dµ

for someλ > 0 and all smooth functionsf . Then, for everyc < 2
√

λ, µ satisfy the transportation
cost inequality

WL(µ,ν) � H(ν|µ)(5.11)

for every probability measureν � µ whereL = Lc is the cost function(5.10). In addition, all
the inequalities(5.8), (5.9)and(5.11)are equivalent(up to constants).

The last assertion of Corollary 5.1 simply follows from the fact that the transportation
inequality (5.11) implies back the Poincaré inequality. Namely, forf smooth with compact
support (say) andt → 0, it is easy to see that the infimum infy∈Rn[tf (y) + L(x − y)] is attained
at somey0 = y0(t) → x ast → 0. It follows that:

QL(tf )(x) ∼ tf (x) − K(c)t2
∣∣∇f (x)

∣∣2.
Applying the transportation inequality (5.6) totf and letting t → 0 then shows, as in the
introduction for the quadratic cost, that the Poincaré inequality (5.8) holds withλ = 1

2K(c)
. It

should be pointed out that sharp constants carry over this procedure. Namely, it is shown in [8]
thatK(c) may be chosen to satisfy:

K(c) = 1

2λ

(
2
√

λ + c

2
√

λ − c

)2

ec
√

5/λ.

As c → 0,K(c) → 1
2λ .

See also [5] for an approach based on optimal transportation and the Brenier–McCann theorem
extending Talagrand’s method for the Gaussian and exponential measures [29]. Applications to
concentration properties are lengthly discussed in [8] and [18].

6. Brunn–Minkowski inequalities and logarithmic isoperimetry

In this final section, we present some further applications of the preceding results. We first
describe exponential integrability of convex functions under a logarithmic Sobolev inequality.
We then present another approach to the Bakry–Emery criterion through Brunn–Minkowski
inequalities and our hypercontractivity result in Theorem 2.1. We finally discuss some analogues
for L1 logarithmic inequalities.

6.1. Exponential integrability of convex functionals

We start by elementary consequences of the transportation inequality:∫
eρQf dµ � eρ

∫
f dµ(6.1)
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for every bounded measurablef (where we writeQ for Q1) that corresponds to the critical value
a = 0 in Theorem 2.1. Equivalently:∫

eρf dµ � eρ
∫

Q̃f dµ(6.2)

(where we writeQ̃ for Q̃1). These inequalities can easily be extended from the class of all
bounded measurable functions to the class of allµ-integrable functionsf in (6.1) and the class
of all measurable functionsf in (6.2) withµ-integrable sup-convolution.

The operatorQt represents a bijection from the class of all concave functions onR
n with

values in[−∞,+∞) onto itself. Respectively,̃Qt is a bijection on the class of all convex
functions onRn with values in(−∞,+∞]. In particular, if we start with a homogeneous convex
function

f (x) = sup
θ∈T

〈θ, x〉, x ∈ R
n, T ⊂ R

n,

then

Q̃−1f (x) = sup
θ∈T

[
〈θ, x〉 − 1

2
|θ |2

]
.

The supremum-convolution inequality (6.2) then yields (after a simple approximation argument)∫
eρ supθ [〈θ,x〉−|θ |2/2] dµ � eρ

∫
supθ 〈θ,x〉dµ.(6.3)

For the canonical Gaussian measure onR
n, this inequality was discovered by B.S. Tsirel’son [30]

in connection with Gaussian mixed volumes. In the general setting of logarithmic Sobolev
inequalities and non-homogeneous convex functions it may be formulated in the following way.

COROLLARY 6.1. –Under the logarithmic Sobolev inequality(2.3) of Theorem2.1, for any
convexµ-integrable functionf onR

n:∫
eρ(f− 1

2 |∇f |2) dµ � eρ
∫
f dµ.

For the proof, sincef is differentiable almost everywhere, for every pointx ∈ R
n at whichf

is differentiable, and allz ∈ R
n, f (x + z) � f (x) + 〈∇f (x), z〉. Therefore:

Qf (x) � inf
z∈Rn

[
f (x) + 〈∇f (x), z

〉 − 1

2
|z|2

]
= f (x) − 1

2

∣∣∇f (x)
∣∣2.

6.2. Brunn–Minskowski inequalities and hypercontractivity

Brunn–Minkowski inequalities may be used to prove the hypercontractive inequalities of
Theorem 2.1 for some classes of measures with log-concave densities. Assume that dµ = e−U dx
whereU :Rn → R is smooth and such that for somec > 0, uniformly inx ∈ R

n:

Hess(U)(x) � c Id

in the sense of symmetric matrices. This condition is thus the Bakry–Emery criterion
[4] (cf. [2,18]) under which the logarithmic Sobolev inequality forµ holds withρ = c as we
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have seen in Theorem 4.1. The classical Brunn–Minkowski inequality, in its functional form
(see [14] for the historical developments of this result), may be used to provide a simple proof of
the hypercontractive estimates of Theorem 2.1 (witha = 1), and thus of the logarithmic Sobolev
inequality. Recall that, in its functional formulation, the Brunn–Minkowski theorem indicates
that wheneverα,β > 0, α + β = 1, andu, v, w are non-negative measurable functions onR

n

such that for allx, y ∈ R
n:

w(αx + βy) � u(x)αv(y)β,(6.3)

then ∫
w dx �

(∫
udx

)α(∫
v dx

)β

.(6.4)

Given a (bounded) functionf on R
n, apply then (6.4) to the functions:

u(x) = e
1
α
Qβ/cαf (x)−U(x), v(y) = e−U(y), w(z) = ef (z)−U(z).

Due to the convexity condition Hess(U) � c Id, for everyα,β > 0,α + β = 1 andx, y ∈ R
n,

αU(x) + βU(y) − U(αx + βy) � cαβ

2
|x − y|2(6.5)

so that condition (6.3) will be satisfied by the very definition of the infimum-convolutionQβ/cαf .
Therefore, ∫

ef dµ �
(∫

e
1
α Qβ/cαf dµ

)α

.

Setting 1/α = 1 + ct , t � 0, immediately yields (2.4) withρ = c and a = 1. In particular
the logarithmic Sobolev inequality forµ holds withρ = c. The same arguments holds when
considering an arbitrary norm in (6.5) to yield the logarithmic Sobolev inequality (6.3). We thus
recover with the Hamilton–Jacobi approach the Bakry–Emery result (Theorem 4.1) as well as
some of the main results of [9].

It was shown similarly in [7] and [9] how Brunn–Minkowski inequalities may be used to
deduce directly the transportation cost inequalities of Section 3. See also [5] for further results.
The recent Riemannian version of the functional Brunn–Minkowski inequality of [13] may be
used to extend the preceding to a Riemannian setting and to recover in this way the logarithmic
Sobolev inequality of D. Bakry and M. Emery [4] in manifolds with a strictly positive lower
bound on the Ricci curvature.

It might be worthwhile mentioning that the alternate choice (used in particular in [7,9,22]) in
the functional Brunn–Minkowski inequality of

u(x) = e−βf (x)−U(x), v(y) = eαQ1/cf (y)−U(y), w(z) = e−U(z),

leads to (∫
eαQ1/cf dµ

)1/α(∫
e−βf dµ

)1/β

� 1.(6.6)

As β → 0, (6.6) only yields (2.4) witha = 0, that is the infimum convolution inequality (6.1)
(with ρ = c). In the notation (1.11), (6.6) corresponds to the range−1 � r � 0. While to reach
the logarithmic Sobolev inequality itself would require allr (negative) large enough, it is already
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interesting to point out that the valuer = 0 (the infimum-convolution inequality (6.1)) is actually
equivalent to the whole interval−1 � r � 0 (the inequalities (6.6)). To prove this claim, rewrite
(6.6) as:

1

α
log

∫
eαQ1/cf dµ + 1

β
log

∫
e−βf dµ � 0(6.7)

for everyα,β > 0, α + β = 1. Now,

log
∫

eg dµ = sup

[∫
ghdµ − Entµ(h)

]
,

where the supremum is running over all bounded measurable functionsh � 0 such that∫
hdµ = 1. Thus we may further rewrite (6.7) as:∫

Q1/cf h1 dµ −
∫

f h2 dµ � 1

α
Entµ(h1) + 1

β
Entµ(h2),

α,β > 0, α + β = 1, that should therefore hold for allh1, h2 � 0 with
∫

h1 dµ = ∫
h2 dµ = 1.

Optimizing overα andβ we get:∫
Q1/cf h1 dµ −

∫
fh2 dµ �

(√
Entµ(h1) + √

Entµ(h2)
)2

,

that is ∫
Q1/cf dν1 −

∫
f dν2 �

(√
H(ν1|µ) + √

H(ν2|µ)
)2

,(6.8)

where dν1 = h1 dµ, dν2 = h2 dµ are arbitrary probability measures onR
n absolutely continuous

with respect toµ. These measures may also be assumed to have finite second moment. Now
the supremum over allf ’s on the left-hand side of (6.8) is equal toc2W2(ν1, ν2)

2 so that (6.8)
becomes

√
cW2(ν1, ν2) �

√
H(ν1|µ) + √

H(ν2|µ).(6.9)

We thus reduced (6.6) to (6.9). But now the latter follows from (3.7) (withρ = c) by the triangle
inequality for the metricW2. This proves the claim.

6.3. Logarithmic isoperimetry

In this last part, we turn some toL1-versions of our hypercontractivity results. Letµ be
a probability measure on the Borel sets of a metric space(E,d) and assume it satisfies the
(logarithmic) isoperimetric inequality:

µ+(A) � c
(
1− µ(A)

)
log

(
1

1− µ(A)

)
(6.10)

for every Borel setA in E and somec > 0. Recall that in general theµ-perimeterµ+(A) of a
Borel setA ⊂ E is defined by:

µ+(A) = lim inf
t→0

1

t

[
µ(At) − µ(A)

]
,
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whereAt , t > 0, is the opent-neighborhood ofA in the metricd onE.
The isoperimetric inequality (6.10) is connected with hypercontractivity of the convolution

operators

Qtf (x) = inf
y∈E;d(x,y)<t

f (y), t > 0, x ∈ E.

As we will see indeed, (6.10) holds if and only if

‖Qtf ‖q � ‖f ‖p(6.11)

for every non-negative measurable functionf and all 0< p < q < ∞ and t > 0 such that
ect � q/p. To hint this connection, apply (6.11) tof = 1E\A. SinceQtf = 1E\At , (6.11) turns
into

log
(
1− µ(At)

)
� ect log

(
1− µ(A)

)
.(6.12)

As t → 0, this amounts to (6.10).
It should be noted that in “regular” situations one hasµ+(A) = µ+(M \ A). This is certainly

the case forµ absolutely continuous onE = R
n, as well as in a more general Riemannian

manifold setting. In the latter cases, it was shown by O. Rothaus [27] that the isoperimetric
inequality (6.10) is equivalent to the logarithmic Sobolev inequality

cEntµ(f ) �
∫

|∇f |dµ(6.13)

which should hold in the class of all non-negative locally Lipschitz functionf on R
n (or on a

manifold). Furthermore, the standard theory shows that (given a locally Lipschitz) functionf on
R

n, the functionv = v(x, t) = Qtf (x) provides a solution of the initial-value partial differential
equation:

∂v

∂t
+ |∇v| = 0 in R

n × (0,∞),

v = f onR
n × {t = 0}.

(6.14)

The equivalence between (6.10) and (6.11) may then be proved on the basis of the partial
differential equation (6.14) arguing as in the proof of our main result in Section 2. The particular
structure of theL1 case makes it however more general than equation (6.14) and the result
actually holds in the setting of abstract metric spaces, with a purely “metric” proof.

THEOREM 6.2. –Let µ be a probability measure on the Borel sets of a metric space(E,d).
The probability measureµ satisfies the isoperimetric inequality:

µ+(A) � c
(
1− µ(A)

)
log

(
1

1− µ(A)

)
for somec > 0 in the class of all Borel setsA in E if and only if

‖Qtf ‖q � ‖f ‖p

for every non-negative measurable functionf onE and all 0< p < q < ∞ andt > 0 such that

ect � q

p
.
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Proof. –We only need to show the sufficiency part. Since(Qtf )p = Qtf
p , it is enough to deal

with the casep = 1, and thusq = ect � 1. The isoperimetric inequality (6.10) can be iterated in
t > 0 so to yield (6.12) for every BorelA. Given a measurable functionf � 0 onE, andλ > 0,
setA = {f < λ}. By definition ofQt , for everyt > 0:{

Qtf < λ
} = At,

so that by (6.13), we get

µ(Qtf � λ) � µ(f � λ)q.

Hence

‖Qtf ‖q
q =

∞∫
0

µ(Qtf � λ)dλq �
∞∫

0

µ(f � λ)q dλq .

Now it is know that the right-hand side of the latter inequality defines the so-called‖f ‖1,q
Lorentz norm off , and that‖f ‖1,q � ‖f ‖1 (cf. [28]). This stronger conclusion implies the
result. ✷

A dual statement to Theorem 6.3 can be formulated with:

Q̃tf (x) = sup
y∈E;d(x,y)<t

f (y), t > 0, x ∈ E.

Both inequalities (6.10) and (6.11) imply the logarithmic Sobolev inequality

ρ Entµ
(
f 2) � 2

∫
|∇f |2 dµ

for someρ = ρ(c) > 0 (cf. [27]).
It was shown in [6] that every log-concave measureµ on R

n supported by a ball of radiusr
satisfies the isoperimetric inequality (6.10) withc = 1/2r. In particular, the uniform distribution
on a convex compact bodyK ⊂ R

n satisfies (6.10) with somec > 0. It would be of interest
to estimate this constant in some special situations. For example, whenK is the unit ball, the
extremal sets in the isoperimetric problem are known. Another important case is the unit cube
K = [0,1]n. One may also consider the case of the sphere.
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