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ABSTRACT. — Following the equivalence between logarithmic Sobolev inequalities and hypercontrac-
tivity showed by L. Gross, we prove that logarithmic Sobolev inequalities are related similarly to hyper-
contractivity of solutions of Hamilton—Jacobi equations. By the infimum-convolution description of the
Hamilton—Jacobi solutions, this approach provides a clear view of the connection between logarithmic
Sobolev inequalities and transportation cost inequalities investigated recently by F. Otto and C. Villani. In
particular, we recover in this way transportation from Brunn—Minkowski inequalities and for the exponen-
tial measured 2001 Editions scientifiques et médicales Elsevier SAS
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1. Introduction

The fundamental work by L. Gross [17] put forward the equivalence between logarithmic
Sobolev inequalities and hypercontractivity of the associated heat semigroup. Let us consider
for example a probability measureon the Borel sets dR” satisfying the logarithmic Sobolev
inequality:

(LD pEnL (12 <2 [ 177 du

for somep > 0 and all smooth enough functiorfson R" where:
ent, (%) = [ r2log/2du ~ [ s2dulog [ 2

and where|V f| is the Euclidean length of the gradiewtf of f. The canonical Gaussian
measure with densitg2r)~"/2e~1*1*/2 with respect to the Lebesgue measureRdris the basic
example of measure satisfying (1.1) witho = 1.

For simplicity, assume furthermore thathas a strictly positive smooth density which may be
written eV for some smooth functioti onRR”. Denote by L the second-order diffusion operator
L =A —(VU, V) with invariant measurg. Integration by parts for L is described by:
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/f(—Lg) du=/<Vf, Vg)du

for every smooth functiong, ¢. Under mild growth conditions o&i (that will always be satisfied
in applications throughout this work), one may consider the time reversible (with respert to
semigroup( ), >0 With generator L. Givery' (in the domain ofL), u = u(x, t) = P; f (x) is the
fundamental solution of the initial value problem (heat equation with respect to L):

8_u —Lu=0 inR" x (0, 0),
ot
u=jf onR"x {r=0}
One of the main results of the contribution [17] by L. Gross is that the logarithmic
Sobolev inequality (1.1) fop holds if and only if the associated heat semigr@up),~o is
hypercontractive in the sense that, for every (or some)pl< g < oo, and everyf (in L?),

(1.2) 1P fllg < ILFHlps

for everyr > 0 large enough so that
-1
(1.3) IS ey
p—1
In (1.2), theL”-norms are understood with respect to the meagurfehe key idea of the proof

is to consider a functiog (r) of ¢+ > 0 such thayy(0) = p and to take the derivative in time of
F(t) =P fll4u (for a non-negative smooth functiofi on R"). Since the derivative of.”-

norms gives rise to entropy, due to the heat equa%d?af =L P, f and integration by parts, one
gets that:

g2 F (1 O7F (1)

1.4) = BN (P ") +q@? [ (PP LPf du

q(1)?

=q'(OEnt, ((PN)1") = 2(q(1) - 1) f S IVRSP O 2 du.

By the logarithmic Sobolev inequality applied s, f)?)/2, it follows that F/(r) < 0 as soon as
q'(t) =2p(q(t) — 1), thatisq (1) = 1+ (p — 1)€?*, t > 0, which yields the claim. It is classical
and easy to see that the same argument also shows that (1.1) is also equivalent to

(1.5) 6% e < €7y

for everyr > 0 andf (cf. [4]). For further comparison, observe that by linearity
[€" o < (resp.2)[€’],

according ag > 0 (respa < 0).

Whenever—oco < ¢ < p < 1 satisfy (1.3), the logarithmic Sobolev inequality is similarly
equivalent to the so-called reverse hypercontractivity

(1.6) 1P fllg = 11F 1,

for every f taking non-negative values.
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The main result of this work is to establish a similar relationship for the solutions of Hamilton—
Jacobi partial differential equations. Consider the Hamilton—Jacobi initial value problem:

0 1 .
_U+_|vv|2=0 inR" x (0, 00),
(1.7) or 2

v=f onR" x {r=0}.

Solutions of (1.7) are described by the Hopf—Lax representation formula as infimum-convolutions.
Namely, given a (Lipschitz continuous) functighon R”, define the infimum-convolution of
with the quadratic cost as:

(1.8) 0, f(x) = inf |:f(y)+i|x—y|2:|, t>0,xeR"
yeR”? 2t

The family (Q;),>o defines a semigroup with infinitesimal (non-linear) generat(%Wﬂz.

That is,v = v(x, t) = Q; f(x) is a solution of the Hamilton—Jacobi initial value problem (1.7)

(at least almost everywhere). Actually, if in additigns bounded, the Hopf-Lax formulg; f is

the pertinent mathematical solution of (1.7), that is its unique viscosity solution (cf., e.g., [3,16]).
Once this has been recognized, it is not difficult to try to follow Gross's idea for the Hamilton—

Jacobi equation. Namely, letting nof(r) = [|e2/ |, t > 0, for some function.(r) with

A(0) =a, a € R, the analogue of (1.4) reads as:

M(1)2

1.9 AOFO*O7IF (1) =) (1)Ent, (€102) — f T|VQtf|2e“'>fo dp.

By the logarithmic Sobolev inequality (1.1) applied t6’€:/, F’(t) < 0 as soon as&’(r) = p,
t > 0. As a result (and in complete analogy with (1.5) for example), the logarithmic Sobolev
inequality (1.1) shows that, for every= 0, everya € R and every (say bounded) functigh

(1.10) (Cz A [

a+pt
Conversely, if (1.10) holds for every> 0 and somez # 0, then the logarithmic Sobolev
inequality (1.1) holds. With respect to classical hypercontractivity, it is worthwhile notingthat
is defined independently of the underlying measuréctually, hypercontractivity of Hamilton—
Jacobi solutions may also be shown to follow from heat kernel hypercontractivity through the so-
called vanishing viscosity method. Namelyyff is solution of the heat equati®u® /9t = cLu®
(with initial value & //%), thenv® = —2¢logu® approaches as — 0 the Hopf-Lax solution
(1.8). Transferring hypercontractivity of the heat solutionto v* yields another approach to
our main result. In this Laplace—Varadhan large deviation asymptotic, the second-order term in
L =A—(VU, V) isthe leading term that gives rise to the Gaussian kernel and the quadratic cost
in (1.8) (and an expression f@; independent ot/ and thus ofu).

Due to the homogeneity proper®; (sf) = s Qs f, s,t > 0, and setting) for 01, (1.10) may
be rewritten equivalently as:

(1.11) e, <le],

r+p
for r € R. If (1.11) holds for either every > 0 (or only large enough) or every< 0 (or only

large enough), then the logarithmic Sobolev inequality (1.1) holds. The vatu@ is however
critical.
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Whena = 0 in (1.10), orr = 0 in (1.11), these two inequalities actually amount to the
infimum-convolution inequality

(1.12) /eﬂQf du <er ) o

holding for every bounded (or integrable) functigh Inequality (1.12) is known to be the
Monge—Kantorovitch—Rubinstein dual version of the transportation cost inequality (see [7] and
below):

d
(1.13) pWa(u, v)? < H(v|p) = Ent, (d_Z)

holding for all probability measures absolutely continuous with respect towith Radon—
Nikodym derivative @/ duw. HereWs is the Wasserstein distance with quadratic cost:

. 1
Walu, v)? = inf ff Sl yPdr(e ),

where the infimum is running over all probability measure®n R” x R" with respective
marginalsy andv and H (v|uw) is the relative entropy, or informational divergence vofvith
respect tou. (The infimum in W» is finite as soon ag and v have finite second moment
which we shall always assume.) That the transportation cost inequality (1.13) follows from the
logarithmic Sobolev inequality (1.1) was established recently by F. Otto and C. Villani [24] and
motivated the present work. While the arguments developed in [24] do involve PDE’s methods
(further inspired by nice geometric interpretations described in [23]), the approach presented
here only relies on the basic Hamilton—Jacobi equation (together with the dual formulation
(1.12) of the transportation cost inequality (1.13)) and presents a clear view of the connection
between logarithmic Sobolev inequalities and transportation cost inequalities. One feature of our
approach is the systematic use of the Monge—Kantorovitch dual version of the transportation cost
inequality involving infimum-convolution rather than Wasserstein distances.

It is an open problem (although probably with negative answer) to know whether the critical
case (1.12) is also equivalent to the logarithmic Sobolev inequality (1.1). When the paterstial
convey, it was shown in [24] that the transportation cost inequality (1.13) implies conversely the
logarithmic Sobolev inequality (1.1) up to a numerical constant (the precise statement of [24] is
somewhat more general and allows small non-convex wells)ofrhe proof relies on a general
HWI inequality involving the entrop¥ , the Wasserstein distan®& and the Fisher information
I which may be established using the Brenier—-McCann mass transportation by the gradient of a
convex function (see [12,24] and the references therein). The hypercontractive tools developed in
the present paper do not seem to be of help in providing an alternate description of this converse
statement. However, we present in Section 4 a semigroup proof of these results relying on the
Bakry—Emery method and Wang’s Harnack inequalities [32] by means of a short time parabolic
regularization estimate between entropy and Wasserstein distance. In particular, this approach
interpolates between the HWI inequality of [24] and the logarithmic Sobolev inequality under
exponential integrability of [32]. The subsequent comment note [25] by F. Otto and C. Villani
further expands on this theme.

In Section 2 of this work, we give a detailed proof of the main result (1.10). While the general
principle outlined above is straightforward, some regularity questions have to be addressed.
We also discuss the approach through the vanishing viscosity technique that shows a formal
direct equivalence of hypercontractivity for the heat equation and for the Hamilton—Jacobi
equation. The principle of proof extends to Riemannian manifolds (with the Riemannian metric
as transportation cost). In the next section, we present an alternate deduction of the transportation
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cost inequalities via the analogue of the Herbst argument. To this task, we first recall the usual
Herbst argument, and then adapt it to infimum convolutions. We introduce this section by the
Monge—Kantorovitch dual description of transportation cost inequalities. In Section 4, we first
mention that quadratic transportation cost inequalities are stronger than the related Poincaré
inequalities. We then investigate how to reach HWI and logarithmic Sobolev inequalities for
families of log-concave measures following the Bakry—Emery semigroup method. In the fifth
section, we show how the Herbst method for infimum convolutions of Section 3 may be used to
recover similarly the transportation inequality of M. Talagrand [29] for the exponential measure
from the logarithmic Sobolev inequality of [8] (and more generally for measures satisfying
a Poincaré inequality). In the final part, we present further applications and discuss possible
extensions of the basic principle. In particular, we investigate, following [22] and [9], how
Brunn—Minkowski inequalities are related to the infimum-convolution inequalities (1.12) for
strictly convex potential. We also discuss thé-transportation cost and its relation to some
(logarithmic) isoperimetric inequalities.

2. Hamilton—Jacobi equations and logarithmic Sobolev inequalities

This section is devoted to the main result of this work. We first present the direct proof as
outlined in the introduction, and then the alternate vanishing viscosity method. We briefly discuss
extension to a Riemannian setting.

2.1. Hypercontractivity of Hamilton—Jacobi solutions

In this section, we present our main result connecting logarithmic Sobolev inequalities to
hypercontractivity of solutions of Hamilton—Jacobi equations. While the subsequent arguments
extend to Riemannian manifolds, we however present, for clarity, the analysis in the more
classical Euclidean case. The general principle will apply similarly in the Riemannian setting
(Section 2.3).

Let (Q;),>0 be the semigroup of operators:

(2.2) 0. f(0) = inf [f(y)+ L —y|2], (>0,xeR",
yeR? 2t

and Qof(x) = f(x). These operators may be applied to arbitrary functionsR&nwith
values in[—oo, +0o0]. As is well-known (see, e.g., [3,16]), for any andr > 0, Q;f is
upper semicontinuous. If is bounded (resp. Lipschitz], f is bounded and Lipschitz (resp.
Lipschitz). Given a bounded functiofi, Q; f(x) — f(x) ast — 0 if and only if f is lower
semicontinuous at.

The infimum convolutionQ; is known as the Hopf-Lax solution of the Hamilton—Jacobi
equation:
(2.2) %Q,f(x)}%!vgtf(x) ?,
with initial value f. More precisely (cf. [16]), givenf Lipschitz continuous, the Hopf—
Lax f solution is Lipschitz continuous and solves (2.2) almost everywhei®*ix (0, 00).
Standard variants of the classical theory further show thdt i$, say bounded, — Q; f(x)
is differentiable at every > 0 for almost everyx € R”*, and (2.2) holds true (at> 0, almost
everywhere inx).
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Let 1 be a probability measure on the Borel setsRf. We denote below by - ||,
p € R, the LP-norms (functionals whep < 1) with respect tou. As is usual, we agree that
I fllo = e/ 10917141 whenever log f| is u-integrable. The main result of this work is the following
theorem:

THEOREM 2.1. —Assume thap is absolutely continuous with respect to Lebesgue measure
and that for some > 0 and all smooth enough functiofsonR",

(2.3) pEnt (%) <2 [ 19 /P
Then, foreverybounded measurable functighonR", everyr > 0 and every: € R,
2.4) €% s < 1€

Conversely, if2.4) holds for allz > 0 andsomea # 0, then the logarithmic Sobolev inequality
(2.3)holds.

In Theorem 2.1, inequalities (2.4) are stated for bounded functions for simplicity: they readily
extend to larger classes of functions under the proper integrability conditions.
We may define similarly the supremum-convolution semigre@p;-.q by:

O f(x) = Sup|:f(y)——|x—y| ] t>0,xeR",

yeR”

(Oof(x) = f(x)). The operator®), andQ; are related by the property that for any two functions
fandg, g > O, f if and only if f < Q,g so thatQ,Q; f < f < 0:0; f. We also have that
Oi(—f) = —Q,f. In particular, the conclusion (2.4) of Theorem 2.1 may be reformulated
equivalently on(Q;),>0 by:

<[e?7],.

(2‘5) ”ef ”a+pt =

Note that the families of inequalities (2.4) and (2.5) are stable under the respective semigroups.

If « is not absolutely continuous, an easy convolution argument leads to (2.4) at least for
all bounded continuous functions. Namely, the stability by products of the logarithmic Sobolev
inequality shows that if, is the Gaussian measure & with covariances21d, for every
smooth functionf onRR” x R”,

min(p, o ") Entygy, (f f IV du ® ve.
Applied to f(x, y) = f(x + y), x, y € R", for some smooth functiofi onR", we get:

min(p,a )Ent,“ﬁy(r /|Vf| du * Y.

Theorem 2.1 then applies @ * y,. Letting o — 0 yields (2.4) for all bounded continuous
functions.

Proof of Theorem 2.1. i the first part of the argument, we assume that the logarithmic
Sobolev inequality (2.3) holds and show that (2.4) is satisfied for any boupdatd any > 0,
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a € R. By a simple density argument, the logarithmic Sobolev inequality (2.3) holds for all
(locally) Lipschitz functions. Let thug’ be a bounded function oR”. (By regularization, it
may be assumed thdtis compactly supported with bounded derivatives of any orders: however,
besides the final step, regularity does not make life easier here J tgt= ||eQ’f||M,), with

At) =a + pt, t > 0. For all > 0 and almost every, the partial derivative% Q: f (x) exist.
ThusF is differentiable at every point> 0 wherei(t) # 0. For such points, we get that:

(2.6) 22O F (07 F (1) = p Ent, (€091) +/A2(1)%Qtfe’\(’)Q’f du.

Since

0 1
5Q:f(X)=—§|VQrf(X)|2

almost everywhere im, and sinceu is absolutely continuous,
A
W2 F()*O~1F (1) = pEnt, (e)‘(t)Qtf) _f (1)? VO, f12e- 02 gy

Now, sinceQ; f (x) is Lipschitz inx for everyr > 0, we may apply the logarithmic Sobolev
inequality (2.3) to &92:/ to deduce that’(r) < O for all r > 0 except possibly one point
(in casea < 0). SinceF is continuous, it must be non-increasing. Continuity@ff (x) at
t = 0 however requireg’ be lower semicontinuous at the point Apply then the result to
the maximal lower semicontinuous function majorized pyto conclude. (Alternatively, as
mentioned previously, we may regularifeto start with and assumg bounded and Lipschitz
for example.) The first part of the theorem is established.

Turning to the converse, lef be a bounded™! function satisfying (2.4) for every > 0
and somea # 0. Under (2.4), it thus must be that’(0) < 0. Since f is differentiable,

lim,—0 Q: f(x) = £ (x) and

0 1
S0 f ()| =lim = [Qrf(X)—f(X)]——§|Vf(X)|2

t=0

at every point so that (2.6) ag — 0 yields
pEnt, (e) < /|an|2e“f du.

Sincea # 0, this amounts to (2.3) by setting = /. The proof of Theorem 2.1 is completer

Remark2.2. — As in the classical case, the proof of Theorem 2.1 similarly shows that a
defective logarithmic Sobolev inequality of the type

pEnL (1) <2 [ 1vrRduc [ r2du

for someC > 0 is equivalent to the hypercontractive bounds O, @ € R)

169 o <€ 1€

a—+pt
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where:
Ct

MO = e

2.2. Hypercontractivity and vanishing viscosity

An alternate proof of Theorem 2.1 may be provided by the tool of vanishing viscosity
(cf. [16]). We only briefly outline the principle that requires some further technical arguments.
The idea is to add a small noise to the Hamilton—Jacobi equation to turn it after an exponential
change of functions into the heat equation. Given a smooth fun¢tiands > 0, denote namely
by v = v®(x, 1) the solution of the initial value partial differential equation:

ov®
ot
v =f onR"x{r=0}.

1 .
+ §|Vv8|2 —eLv* =0 inR" x (0, 00),

As e — 0, it is expected that® approaches in a reasonable sense the solutioh(1.7). It is
easy to check thai® = e ?"/% s a solution of the heat equatiom?®/d: = eLu® (with initial
value e //%), Therefore,

I/i‘43 = Pgt (e_f/zs)

It must be emphasized that the perturbation argument by a small noise has a clear picture in the
probabilistic language of large deviations. Namely, the asymptotic of

v¥ = —2¢log P, (e7//%)

ase — 0 is a Laplace—Varadhan asymptotic with rate described precisely by the infimum
convolution of f with the quadratic large deviation rate function for the heat semigroup (cf.,
e.g., [3]). In this limit, the second order Laplace operator is the leading term in the definition
of L=A — (V, VU) so that the limiting solutiom given by the infimum-convolutio®; f is
independent of the potenti&l and thus ofx. In particular, this asymptotic is explicit on the basic
Ornstein—Uhlenbeck example.

Apply now classical hypercontractivity @’. More precisely, fo > a > 0 fixed, apply the
reverse hypercontractivity inequality (1.6) with-Op = —2¢a > g = —2¢b and

_ 1+ 2sb
T 14 2ea’

ept

It follows that:
le” 1, < le’],-

Now, ase¢ — 0, r > 0 is such thatb = a + ptr. We thus recover in this way the main
Theorem 2.1. Note however that it was necessary to go through reverse hypercontractivity of
the heat semigroup to reach the conclusion.

2.3. Extension to Riemannian manifolds

As announced, Theorem 2.1 and its proof extend to the setting of logarithmic Sobolev
inequalities on Riemannian manifolds and infimum-convolutions with the Riemannian metric
as in [24]. We briefly outline in this subsection the corresponding resultM_dte a smooth
complete Riemannian manifold of dimensioand Riemannian metri¢. Let 1 be a probability
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measure absolutely continuous with respect to the standard volume elemdrdgatisfying, for
somep > 0 and all smooth enough functiorfson M, the logarithmic Sobolev inequality:

pENt, (f?) < 2/ IV £1%du.

Here|V f| now stands for the Riemannian length of the gradient dfet, fors > 0,x € M,
0. ) = inf | £+ d(x, 1)?
B = eI T Y

It may be observed thap,), >, forms a semigroup since for the geodesic distance,

inf | e, 202+ 2d(z 2| = ——d(x, )2

—d(x, — s = X,
zeM| t ¢ s o s+t Y
forall x,y € M ands, t > 0. Following the argument in the classical Euclidean case (cf. [31]),
one shows similarly that = v(x, t) = Q; f (x) is again a solution of the initial-value Hamilton—
Jacobi problem oi:

0 1 .
a_lt) + E|vv|2=0 in M x (0, 00),

v=f onM x {t=0}.

Theorem 2.1 and its proof thus readily extend to this case. It might be easier to develop the
extension of Hamilton—Jacobi equations to Riemannian manifolds in the compact case first.
Regularizingf into a compactly supported function as in the proof of Theorem 2.1 allows us
to reduce to this case if necessary.

3. Herbst's argument and transportation inequalities

There is yet another way from logarithmic Sobolev inequalities to infimum-convolution
inequalities that goes through the so-called Herbst method (cf. [18]). To introduce it, we first
summarize the Monge—Kantorovitch dual versions of the transportation cost inequalities. We
then recall the classical Herbst argument and apply it in the infimum-convolution context.

3.1. Monge—Kantorovitch duality

Let us start with the Wassertein distance with linear cost between two probability measures on
R”" defined by:

Wl(M,V)=inf// lx — yldm(x,y),

where the infimum is running over all probability measuresn R” x R” with respective mar-
ginalspu andv (having a finite first moment). Bythe Monge—Kantorovitch dual characterization
(cf. [15,26]),

(3.) Wlw,v):sup[ / v — / fdu],

where the supremum is running over all bounded measurable fungtiandg such that

gX) < fO) +1x —yl
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for everyx, y € R". Perhaps more classicaly, we have equivalently that:

(3.2) Wl(M»V)=SUF{/8dM—/8dV:|,

where the supremum is running over all Lipschitz functignsith [|g||j, < 1.
The general form of the dual Monge—Kantorovitch representation of some metric(gpabe
for example indicates that (cf. [26]):

(3.3) inf// T(x,y)dﬂ(x,y):SU[{/gdv—/fd,u],

where the infimum is running over all probability measutewith marginalsy andv such that
T is integrable with respect to and where the supremum is over all pajgs f) of bounded
measurable functions (or respectiveland-integrable) such that for all, y,

gX) < f(W)+T(x,y).
Here T is upper semicontinuoug;-integrable and such th&t(x, y) < a(x) + b(y) for some
measurable functionsandb. OnR", the supremum on the right-hand side of (3.3) may be taken
over smaller classes of smooth functions, such as bounded Lipschitz or so on. (This provides an

alternate regularization procedure for the arguments developed in the next sections.)
For the quadratic cost in particular, we thus have that:

(3.4) Wz(u,v)zzsur{fgdv—ffd,u],

where the supremum is running over all bounded functipasdg such that

1 2
g < fy+ Elx—yl

for everyx, y € R". In the infimum-convolution notation,

_ 1o 2l
gt = inf [f(y) + 5l ] = 0f(x)

achieves the optimal choice.
3.2. Linear transportation cost

In this section, we recall the Herbst argument and its interpretation as a transportation result
with linear cost. Assume the logarithmic Sobolev inequality

(3.5) pEnL (12 <2 [ 177 idu

holds for somep > 0 and all smooth enough (locally Lipschitz) functiofson R”. For
simplicity, assume below that is absolutely continuous with respect to Lebesgue measure.
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Now, letg be a (bounded) Lipschitz function d&i" with Lipschitz coefficient|g||j,. Let us

then apply (3.5) tof2 = 18221815120 \yherea, € R. SetG(L) = fengﬁngufip/zp du. Since
Vgl < llgllLip @almost everywhere, we get from (3.5) that, for every R:

1 —A2|el2 /2 1

/ rg — = 22)1glE, €112 dp — G 10g G (1) < 2218113, G ().
2p 2p

In other words,

(3.6) AG'(M) LG logG(h), reR.

This differential inequality is easily integrated to yield, sin6&0) = [ g du, that for every
Lipschitz (integrable) functiog onR”;

(3.7) /eg du < e/lgdﬂ+||g\|fip/2,0'

By Chebychev’s inequality, this inequality describes the concentration properties of a measure
satisfying a logarithmic Sobolev inequality (cf. [18]).

Inequality (3.7) has been recognized in [7] as a transportation inequality forwthe
Wasserstein distance in the form of:

(3.8) PpWE(, v) <2H(V|M)=2Enp<j—;)

holding for all probability measures absolutely continuous with respect towith Radon—

Nikodym derivative @/duw. Namely by (3.8) and (3.1) (one could use completely similarly
(3.2)), for every bounded measurable functighandg such thatg(x) < f(y) + |x — y| for all

x,yeR",
2 dv
oo [ e [Zem (22),
fg f J 2 du
or, equivalently, for every > 0,
A1 dv
— < — 4z — ).
/gdv /fdu\2p+)LEm”(dM>
Setp = dv/du. The preceding indicates that

fw du < Ent, (@),

wherey = Ag — A2/2p — A [ f du. Since this inequality holds for every choice @f(i.e. v),
applying it tog = €¥/ [ e/ du yields log/ ¥ di. < 0. In other words,

f &8 dy < & /2,

When f is Lipschitz with || f[|j, < 1, one may choosg= f so that the latter exactly amounts
to (3.7). Since

Ent.(¢) = SUD/ ey du,
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where the supremum is running over glls such thatfe‘/’ du < 1, the preceding argument
clearly indicates that (3.7) is actually equivalent to (3.8). This result easily extends to arbitraty
metric spaces.

3.3. Quadratic transportation cost

The aim of this section is to describe how the preceding Herbst argument may be applied
completely similarly to infimum-convolutions. In particular, we recover in this case the
conclusion of Theorem 2.1 at the critical value- 0.

Given a (bounded Lipschitz) functignon R”, apply now the logarithmic Sobolev inequality
(3.5) to /2 = e?2(2) (where we recall tha = Q1). SinceQ(Ag) =10,g, A > 0, we see from
the Hamilton—Jacobi equation that, almost everywhere in space:

1) = Q) + LIV () [
QOg) =A== 0(8) +5[VOOL)|.

We thus immediately deduce from the logarithmic Sobolev inequality (3.5) the differential
inequality (3.6) onG (1) = [ 2?8 du. SinceG'(0) = p [ g du, it follows similarly that:

(3.9) /e"Qé’duge”fgd“,

that is the infimum-convolution inequality (1.12).
Inequality (3.9) amounts, as announced in the introduction, to the transportation cost inequality
for the quadratic cost

d
(3.10) pWa(p, )2 < H(v|p) = Entu<d—;)

for everyv absolutely continuous with respectio Exactly as for the equivalence between (3.7)
and (3.8), by the dual description @fy:

fo  roetem(3)

for all bounded functiong” andg such that

1 2
gy < fOy+ Elx—yl

for every x,y € R". Sinceg = Qf achieves the optimal choice, settigg= dv/du, the
preceding amounts to

/Wp du < Ent, (@),

whereyr = Of — [ f du. Since the inequality holds for every choiceyfit is equivalent to say
that ['e’¥ < 1, that is exactly (3.9).

As a consequence of either Theorem 2.1 or the preceding, we may state the following corollary
first established in [24].
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COROLLARY 3.1.-Assume that is absolutely continuous and that for some- 0 and all
smooth enough functionson R”:

pEnt (12) <2 [ 19 /P
Then, for every probability measureabsolutely continuous with respect

pWa (i, v)? < H(v|p).

Replacingx — y| by the Riemannian distaneix, y) yields the same conclusion on a smooth
manifold M.
It might be worthwhile mentioning that whenevers Lipschitz,

1 2
Qg > g — 5lgllLip-

So clearly, (3.9) represents an improvement upon (3.7) (replagirty g/p). Actually,
Theorem 2.1 (cf. (1.11)) then indicates that for everyR:

por < 5] 415072

el

a much stronger property.

4. Semigroup tools and HWI inequalities

In this section, we examine some converse results from transportation cost inequalities to
logarithmic Sobolev inequalities. We first describe how quadratic transportation cost inequalities
imply spectral inequalities. Then, under appropriate log-concavity assumptions on the underlying
measure, we review the Bakry—Emery criterion and put in parallel the HWI inequalities of [24]
and the results of [32].

4.1. Transportation cost inequalities and spectral gap

Using again the dual Monge—Kantorovitch description (1.12) of the quadratic transportation
inequality (1.13), it is not difficult to see that (1.12) implies the spectral gap, or Poincaré
inequality, foru, in the sense that for all smooth functiofion R":

(4.1) pVar () < [ 197 du.
where Vay,(f) = [ f2du — (f £ du)?. Indeed, homogeneity in (1.12) yields
/eplQlf du < eot [ fdu

Ast — 0, Qtfwf—§|Vf|zsothat:

1+,0t/fdu— /|Vf| du 20 /fzdu 1+ pr fd,u+—</fd,u> +o(t )
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and thus (4.1). A different derivation of this result is given in [24].

It is well-known and classical that, applying the logarithmic Sobolev inequality (1.1) to
1+ ¢f and lettingr — 0O also yields (4.1). Furthermore, both the logarithmic Sobolev inequality
(1.1) and the transportation cost inequality (1.12) (or (1.13)) entail concentration properties. In
particular, logarithmic Sobolev inequality and the transportation inequality for the quadratic cost
are stable by products and therefore lead to dimension free concentration inequalities (cf. [7,18,
21,29] etc.).

4.2. The Bakry—Emery criterion

Before turning to our main question in the next subsection, it is worthwhile to briefly review the
Bakry—Emery criterion [2,4,18], for logarithmic Sobolev inequalities under strict log-concavity
of the measure.

Let thus ¢ = e~Y dx be a probability measure on the Borel set®8fwhereU is a smooth
potential.

THEOREM 4.1. —Assume that for some> 0, HesgU)(x) > cld in the sense of symmetric
matrices uniformly inc € R". Thenu satisfies the logarithmic Sobolev inequality

2
Ent, (/%) < ;foqu
for every smooth functiofi onRR”.

The proof by D. Bakry and M. Emery of this result relies on the commutation properties of the
gradient with the semigrou@?;),>o with generator L= A — (VU, V). Namely, the condition
HesgU)(x) > cld uniformly in x € R” for somec € R (non necessarily strictly positive) is
actually equivalent to saying that for every smooth functfon

(4.2) VP, f1<e“"P(IVF])

(cf.[2,19]). Then, given a smooth strictly positive bounded functigrve may write:

o d o0
Entﬂ(f)z—fEfP,flogP,fdudt=fI(P,f)dt,
0 0

where
VP fI?
I(Pf)= d
(P f) pr W
is the Fisher information of, f. By (4.2) and the Cauchy—Schwarz inequality:
\v/ 2
vrst<en (M) n s,

so that, by invariance aof;,

(4.3) I(P ) <€ I1(f).
Whenc > 0, it immediately follows that:

1
Ent.(f) < o 1(f)

which amounts to Theorem 4.1 by changifignto /2.
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4.3. HWI inequalities

We examine here what happens to the Bakry—Emery argument when the lowerdmutite
Hessian ofU is not strictly positive. While the argument clearly breaks down, it may efficiently
be complemented by transportation cost inequalities. We reach in this way the HWI inequalities
of [24]. For simplicity, we again work in the Euclidean case, all the results and methods however
going through in a Riemannian setting.

Namely, for anyT’ > 0, we may still apply the Bakry—Emery criterion up to tirfie That is,
for any smooth positive and bounded functifmonR" such that/ f du = 1, we may write:

T
Ent, (f) = f 1(P,f)di + Ent, (Pr f).
0

Assuming that Hes#/) > c Id for somec € R, and using (4.3) shows that:

(4.4) Ent, (/) <a(T)I(f) +Ent,(Prf),
where
_ efZCT
a(T) = (=T if c=0).
2c

The idea is now to control EptPr f), T > 0, by some transportation bound. We will prove

the following lemma that describes a kind of reverse transportation cost inequaliBy foin

the form of a short time parabolic regularization estimate. In the subsequent comment note [25],
F. Otto and C. Villani mention that Lemma 4.2 below may actually be shown to follow from their
proof of Theorem 4.3 using the Brenier—McCann transference plan theorem. They establish in the
same way a stronger regularization estimate showing that both entropy and Fisher information
become finite in arbitrarily short time (like @ 1) and Qr~2) respectively) as a variant of an
estimate for gradient flows of a convex function on a Hilbert space going back to H. Brézis [11,
Theorem 3.7].

LEMMA 4.2. —AssumeHesgU) > cld, ¢ € R, and denote by F;),;>q the semigroup with
generatorL = A — (VU, V). Let f onR" be non-negative and such thatf du = 1. Then, for
anyT > O:

1
Ent/L(PTf) < (m - C) Wa(u, V)Z,
wheredv = fdu.

Optimizing in T > 0 in (4.4) together with Lemma 4.2, we obtain the following result that
describes the so-called HWI inequalities connecting entrpyWassertein distanc#> and
Fisher informatior/ .

THEOREM 4.3. -Let du = e Y dx and assume thatlesgU) > cld for somec € R. Then,
for every smooth non-negative functigrsuch that/ f du = 1:

Hv|p) =Ent,(f) <V2I(f)Wa(i, v) — cWa(i, v)?,

(where we recall thatly = f du).
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Theorem 4.3 has been obtained by F. Otto and C. Villani [24] using the Brenier—McCann mass
transport [10,20] together with further PDE arguments. A simple proof, relying on the same tool,
was recently given by D. Cordero-Erausquin [12]. Theorem 4.3 admits the following corollary
that complements Theorem 4.1.

COROLLARY 4.4.—Let du = e Y dx and assume thaHessU) > cld for somec < 0.
Assume that for some> 0 and every,

pWa(, v)% < H(v|p).

Then, provided that + ¢/p > 0, u satisfies the logarithmic Sobolev inequality

pEnt (1) <2 [ 192 du

2
;P c
=1+ 2).
P 4<+p)

To complete our proof of Theorem 4.3, we have to establish Lemma 4.2. To this task, we make
use of a Harnack type result of F.-Y. Wang in [32], that actually bridges the result of [24] with
the logarithmic Sobolev inequalities under exponential integrability of [32] (see also [1,18]).

for every smootly with

Proof of Lemma 4.2. Rewrite first Enj (Pr f) by time reversibility as:
Em#(PTf)Z/fPT(|09PTf)dM~
We boundPr (log Pr f) by the method of [32]. Fix, y in R”. Letx(t) = %x + %y, 0<r<T.
Let furtherk: [0, T]1 — [0, T'] be aC? speed function such that0) = 0 andh(T) = T. Set

y()=xoh(t) and

(t,y(®)=P(ogPor—_ f)(y(®), 0<t<T.

We have
dv |V Par— f1? n(t)
—  =—p | —= " VP] Py e
dr f( (Plef)z>(V(t))+ T ( (log Por— ), y x)
|VP2T,f|2) I (1)
s=P\ g,z Jr@)+ —y||V P (log Por_; f)|.
t( (PZT—tf)2 ()/( )) T |x y” y(log Por tf)|
Using (4.2),
— |VP2T—tf|
V P;(log Por— < cp (YTt ST
|VPi(log Por— )| <€ ,( [ )
Hence, with
\Y A /
(PZT—tf)
we have that
dy

il _y2
& < P (—X°+2XY)
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and thus

|h'()|2 e
— < Pz(Yz) =72 lx — y[2e=?,

It follows that:

x—yP [
Pr(log Pr ) (x) —log Par f (y) < xﬂg / (P2 b
0

For the optimal choice of the spegédthat is

h(t)=T(T —1) 1 (' —1), 0<I<T,

this leads to
1
(4.5) Pr(log Pr [)(x) <1og Par f () + clx = yI2
where
1 1
- = —cC.
S 20(T)

Inequality (4.5) is the analogue, adapted to our purposes, of the Harnack inequality of [32]. For
x fixed, take then the infimum ip in (4.5) to get:

Pr(log Pr f)(x) < Qs (x),

wherep = log P>7 f. Since by Jensen’s inequality

fwdu=f|09P2deu<lOQ(szdeu) =0,

we actually have that:

Pr(og Pr f) < Qs¢ — / od.

Therefore,

EnTﬂ(PTf)=ffPT(|09PTf)dMSSUP[fQs¢dv—/§0d,u],

where the supremum is over all bounded measurable functionBy the dual Monge—
Kantorovitch description (3.4) d¥> together with the scaling property of infimum-convolutions,
the lemma is established O

As mentioned before, Theorem 4.3 and its proof, in particular Lemma 4.2, hold similarly in a
Riemannian context.

Remark4.4. — Lemma 4.2 provides a bridge between the logarithmic Sobolev inequalities of
Theorem 4.3 under the quadratic transportation cost and the result of F.-Y. Wang [32] under
exponential integrability of the square distance, immediate consequence of linear transportation
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cost. Indeed, if we integrate inequality (4.5) il @) rather than to take the infimum i we
get that:

Emﬂ(PTf)=/PTf|09PdeM

—y?

4a(T)e2cT du(x) di(y)

f f F()10g Par £ () due(x) due(y) + f f Fao— 2

f FoX y dp(x) due(y),

where we used Jensen’s inequality. By Young'’s inequalityC a loga + €’,a > 0,b € R,

/f() P G du) < Entu(f>+//

Together with (4.4), we thus get:

(4.6) Entu(f)<2a(T)1(f)+2//

Assume now that for some> 0,

(4.7) // eI gy () du(y) < oo,

where¢ = min(c, 0). We may then choosg > 0 so that the integral in (4.6) is finite. We thus
conclude that for som€ > 0 (depending on the value of the latter),

Ent.(f) <C(I(f)+1).

By homogeneity, for every smooth enougfon R”:

(4.8) Ent, (f <C(f|Vf| d,u+ff d;L)

This is a defective logarithmic Sobolev inequality. One classical way to switch it into a true
logarithmic Sobolev inequality (cf., e.g., [2]) is to establish first the Poincaré inequality for
w under the same condition (4.7). This can be achieved similarly on the basis the Harnack
type inequality of [32] (cf. [1,18]). (With respect to Corollary 4.4, it should be emphasized for
applications that the constant in (4.8), that depends on the value of the integral in (4.7), is highly
dimensional.)

5. Transportation cost for the exponential measure

In this section, we apply the method of Section 3 to investigate the transportation cost
inequality for the exponential measure first explored in [29]. To this task, we need to work with
non-quadratic Hamilton—Jacobi equations.
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5.1. Non-quadratic Hamilton—Jacobi equations

The general principle based on Hamilton—Jacobi equations can be extended to other cost
functions than the square function. Let namdlyy be smooth and convex of"” with
lim |- o0 H(x)/|x] = +00. For a smooth (Lipschitz e.g.) functiofi, the (unique viscosity)
solutionu = u(x, t) of the minimization problem (cf. [3,16]):

ou

(5.1) ot
u=f onR" x {r=0},

+H(Vu)=0 inR" x (0, c0),

is given by the Hopf-Lax formula
L ; =) n
(5.2) u(x, ) = 0, f(x)=y|€n]1£n|:f(Y)+tL<T)i|, t>0,xeR",
f(x)v IZO,XERH,

whereL is the convex conjugate df defined by:

L(y) = sup[(x,y) — Hx)].

xeR”

For arbitrary costQ” f is not continuous in general at= 0 even for smootly .
Following the proof of Theorem 2.1, the derivativefr) = ||eQrLf||M,) then leads to:

W20 F () O~ (1) = pEnt, (2027 ) — 22(1) / H(VQEL f)e 2/ dy.

Useful applications of this principle however seem to require some homogeneity propeHies of
A first set of applications is obtained by replacing the Euclidean norm by arbitrary rjorins

onR”. Setting namely.(y) = 3y[|?, y € R", then, since? andL are self-dualf (x) = 3|2,

x € R", where|| - ||« is the dual norm of - ||. Therefore, under the logarithmic Sobolev inequality

(5.3) pENL (1) <2 [ IV d

holding for someop > 0 and all smooth enough functions on R”, we may conclude as in
Theorem 2.1 to the hypercontractive estimates

L
€% e < €7,

a+pt

for every, say bounded, r > 0 anda € R. In particular,
fepQL.f' du < e/ fau

and, in its equivalent transportation cost form:

PWE (e, v) < H(v|p).
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Here
2 , 1 2
WLw,v):nnf//Enx—yn dr(x, y),

where the infimum is running over all probability measuresn the product spade” x R” with
marginalsu andv. One may also consider more generalbgonvex,p > 2, potentials (cf. [9]).

5.2. Moadified logarithmic Sobolev inequalities

Another important example in the setting of Section 5.1 is the logarithmic Sobolev inequality
for the exponential measure [8] that will lead, via this principle, to the transportation cost
inequality of M. Talagrand [29] for the exponential measure. Recall from [8] that whepever
is the measure on the real line with dens}@f"" with respect to Lebesgue measure, for every
Lipschitz functionf onR such that f'| < ¢ < 1 almost everywhere:

2
(5.4) Ent, () < R / el du.

Fix for simplicity c = 1/2. Set now

4x? if x| < },
H(x)= i
oo if x> 3.
Its dual function is given by:
» if [yl <4,
L(y)= ﬁyﬁ |
-~ 1 if|y| > 4.
One may rewrite (5.4) as
(5.5) Ent,(e/) ng(f/)efdM.

Note thatH (Ax) < A2H (x) wheneveri| < 1.

Although H does not exactly fit all the hypotheses of the classical Hamilton—Jacobi theory, one
may however check thap’ ) is (almost everywhere) in the domain &f (i.e. |x| < 1/2). We
may then argue as in Section 2. Since we cannot expect however for a characterization through
some kind of hypercontractivity (due to the lack of homogeneitsf dfit is actually more simple
to adapt the Herbst argument of Section 3. Namely, given a bounded (Lipschitz) fuyictoe
first shows thaQ' 1 is differentiable irr > 0 and almost every € R" and that:

L0k f+H((2Fr)) =0

SetF(r) = [ €2/ diu which is differentiable i > 0. By (5.5),

tF't) <F@t)logF(t), O0<t<1l



S.G. BOBKOV ET AL. / J. Math. Pures Appl. 80 (2001) 669—696 689

While QF f is not continuous at = 0, it is easy to check however tha@’ f — 0 ast — 0.
ThereforeF’(0) < [ f du, and integrating the preceding differential inequality as in the previous
section, one concludes that:

(5.6) /eQLf du <ef

where QL = Qf. The latter inequality (5.6) actually corresponds exactly to the transportation
cost inequality for the exponential measure put forward in [29]. Namely, by the dual Monge—
Kantorovitch principle (cf. [26]), (5.6) is equivalent to saying that, for every probability measure
v on the real line absolutely continuous with respeqtto

(5.7) Wr(u,v) < H(v|w)
with
Wm,v):infffux —yydeir y),

where the infimum is running over all probability measure®RonR with respective (integrable)
marginalsu andv. Itis then easy to check that the cdsis equivalent, up to numerical constants,
to the cost used in [29].

The preceding extends to products of the exponential distribution by considering the functions
onR" given by} ; H(x;) and)_"_; L(x;) for a vector(xy, ..., x,) € R". To this task, one
may either tensorize the logarithmic Sobolev inequality (5.4) or the transportation inequality
(5.7). As in [29], the main difficulty arises in dimension one.

5.3. Poincaré inequalities and exponential transportation cost

As a main result of the work [8], it was actually shown that every meagu¢absolutely
continuous say) satisfying the Poincaré inequality

(5.8) e, (1) < [ 19412

for somei > 0 and all smooth functiong actually satisfies a modified logarithmic Sobolev
inequality such as (5.4):

(5.9) Eni,(e) < K(c)/ IV 1% du

for every bounded Lipschitz functiofi such thatV f| < ¢ < 2+/A almost everywhere, where
K (c) > 0 only depends on anda. Setting:

K(@©|x?> if |x| <,

H(x)=Hc() = {+oo if |x]>c,

with dual function

|2 .
(5.10) L(y)=Le(y) = [ 2K (0) if |y < 2¢K (o),
clyl — 2K (c) if |y| > 2cK (c),

and arguing exactly as before, we may state the following corollary.



690 S.G. BOBKOV ET AL. / J. Math. Pures Appl. 80 (2001) 669—696

COROLLARY 5.1.-Let u be a measure on the Borel sets Rt satisfying the Poincaré
inequality

xwmun§/Wﬂ%u

for some. > 0 and all smooth functiong. Then, for every < 2+/4, i satisfy the transportation
cost inequality

(5.11) W (i, v) < Hvlp)

for every probability measure « u whereL = L. is the cost functiorf5.10) In addition, all
the inequalitieg5.8), (5.9)and(5.11)are equivalen{up to constanis

The last assertion of Corollary 5.1 simply follows from the fact that the transportation
inequality (5.11) implies back the Poincaré inequality. Namely, fosmooth with compact
support (say) and— 0, it is easy to see that the infimum jak- [z f (y) + L(x — y)] is attained
at someyg = yo(t) — x ast — 0. It follows that:

QF(tf)(x) ~ 1f (x) - K(C)t2|Vf(X)|2-

Applying the transportation inequality (5.6) tg¢ and lettingr — 0 then shows, as in the
introduction for the quadratic cost, that the Poincaré inequality (5.8) holdsm%. It

should be pointed out that sharp constants carry over this procedure. Namely, it is shown in [8]
that K (¢c) may be chosen to satisfy:

2
K(c) = i<2ﬁ+c> eI,
2\ 2Vn —¢

Asc— 0,K(c) —> %

See also [5] for an approach based on optimal transportation and the Brenier—McCann theorem
extending Talagrand’s method for the Gaussian and exponential measures [29]. Applications to
concentration properties are lengthly discussed in [8] and [18].

6. Brunn—Minkowski inequalities and logarithmic isoperimetry
In this final section, we present some further applications of the preceding results. We first
describe exponential integrability of convex functions under a logarithmic Sobolev inequality.
We then present another approach to the Bakry—Emery criterion through Brunn—Minkowski
inequalities and our hypercontractivity result in Theorem 2.1. We finally discuss some analogues
for L1 logarithmic inequalities.

6.1. Exponential integrability of convex functionals

We start by elementary consequences of the transportation inequality:

(6.1) / &POf gy < b f
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for every bounded measurabfgwhere we writeQ for Q1) that corresponds to the critical value
a =0in Theorem 2.1. Equivalently:

6.2) / ef dy < e OF o

(where we writeQ for él). These inequalities can easily be extended from the class of all
bounded measurable functions to the class ofialhitegrable functions” in (6.1) and the class
of all measurable functiong in (6.2) with p-integrable sup-convolution.

The operatorQ, represents a bijection from the class of all concave function®bmvith
values in[—oo, +00) onto itself. Respectivelyé, is a bijection on the class of all convex
functions onR" with values in(—oo, +00]. In particular, if we start with a homogeneous convex
function

f(x)=sup@,x), xeR"TCR",
0eT

then
07 lf(x)= sup[w,x) - Ewﬂ.
0eT 2

The supremum-convolution inequality (6.2) then yields (after a simple approximation argument)
(6.3) /epsumw,x)—lmz/a du < e°/supid.xde,

For the canonical Gaussian measur&dnthis inequality was discovered by B.S. Tsirel'son [30]
in connection with Gaussian mixed volumes. In the general setting of logarithmic Sobolev
inequalities and non-homogeneous convex functions it may be formulated in the following way.

COROLLARY 6.1. —Under the logarithmic Sobolev inequalig.3) of Theoren®.1, for any
convexu-integrable functionf onRR":

fep<f—%|Vf|2> du<er o

For the proof, since is differentiable almost everywhere, for every poirg R” at which f
is differentiable, and alt e R", f(x +z) > f(x) + (Vf(x), z). Therefore:

Of (x) > inf [f(x) +(Vf(x),z)— 3|z|2] = f(x)— }IVf(x)Iz
7 LeRrn ’ 2 2 )

6.2. Brunn—Minskowski inequalities and hypercontractivity

Brunn—Minkowski inequalities may be used to prove the hypercontractive inequalities of
Theorem 2.1 for some classes of measures with log-concave densities. Assume=het ‘dadx
whereU :R" — R is smooth and such that for some- 0, uniformly inx € R”;

HessU)(x) > cld

in the sense of symmetric matrices. This condition is thus the Bakry—Emery criterion
[4] (cf. [2,18]) under which the logarithmic Sobolev inequality ferholds with p = ¢ as we
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have seen in Theorem 4.1. The classical Brunn—Minkowski inequality, in its functional form
(see [14] for the historical developments of this result), may be used to provide a simple proof of
the hypercontractive estimates of Theorem 2.1 (with 1), and thus of the logarithmic Sobolev
inequality. Recall that, in its functional formulation, the Brunn—Minkowski theorem indicates
that whenever, 8 > 0, « + 8 = 1, andu, v, w are non-negative measurable functionsiin

such that for alk, y € R":

(6.3) w(ax + By) = u(x)*v(y)~,

then

(6.4) /wdx}(/udx>a</vdx>ﬂ.

Given a (bounded) functioi onR”, apply then (6.4) to the functions:
u(x) = e% Qﬁ/mf(x)—U(X), v(y) = e—U(y), w(z) = ef@D-U@)

Due to the convexity condition Hed$) > cld, for everyw, 8 > 0,a + 8 =1 andx, y e R",

(6.5) QU(x) + BU() — Ulax + By) > %u—yﬁ

so that condition (6.3) will be satisfied by the very definition of the infimum-convolu@gn, f .

Therefore,
/efd,u> </‘eo_thﬁ/“"fdu) .

Setting Yo = 1 + ct, t > 0, immediately yields (2.4) witlp = ¢ anda = 1. In particular

the logarithmic Sobolev inequality fqu holds with p = ¢. The same arguments holds when
considering an arbitrary norm in (6.5) to yield the logarithmic Sobolev inequality (6.3). We thus
recover with the Hamilton—Jacobi approach the Bakry—Emery result (Theorem 4.1) as well as
some of the main results of [9].

It was shown similarly in [7] and [9] how Brunn—Minkowski inequalities may be used to
deduce directly the transportation cost inequalities of Section 3. See also [5] for further results.
The recent Riemannian version of the functional Brunn—Minkowski inequality of [13] may be
used to extend the preceding to a Riemannian setting and to recover in this way the logarithmic
Sobolev inequality of D. Bakry and M. Emery [4] in manifolds with a strictly positive lower
bound on the Ricci curvature.

It might be worthwhile mentioning that the alternate choice (used in particular in [7,9,22]) in
the functional Brunn—Minkowski inequality of

w(x) = e FrO-U@ ) = @uefM-U0 ) =g U@,

leads to

1a 1/8
(6.6) ( f e Quef d,u) ( f e Pr d,u) <1

As B — 0, (6.6) only yields (2.4) withu = 0, that is the infimum convolution inequality (6.1)
(with p = ¢). In the notation (1.11), (6.6) corresponds to the rande< r < 0. While to reach
the logarithmic Sobolev inequality itself would requirealinegative) large enough, it is already
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interesting to point out that the value= 0 (the infimum-convolution inequality (6.1)) is actually
equivalent to the whole interval1 < r < 0 (the inequalities (6.6)). To prove this claim, rewrite
(6.6) as:

(6.7) 1 log f e Quel dp + % log f e P du<0
o

foreveryw, 8 > 0,0 + 8 = 1. Now,
Iog/ efdu = sup[/ ghdu — Enp(h)},

where the supremum is running over all bounded measurable fundtion such that
[ hdw = 1. Thus we may further rewrite (6.7) as:

1 1
f Q1/c fh1du — f Sfhadu < &Entﬂ(hl) + EEnh(hz),

a,f > 0,0+ B =1, that should therefore hold for alh, 1> > 0 with [hydu = [ hodu = 1.
Optimizing overe andp we get:

f Q1/c fh1du — f fhadu < (VEN (hy) + \/En'fﬂ(hz))z,
that is

(6.8) / Q1) f dvy - / £ dva < (VA + VG2 )

where d1 = h1du, dvy = ho du are arbitrary probability measures Bf absolutely continuous

with respect tou. These measures may also be assumed to have finite second moment. Now
the supremum over alf’s on the left-hand side of (6.8) is equal §V2(v1, 12)? so that (6.8)
becomes

(6.9) VeWa(v1, v2) </ H (i) + v/ H (v2] ).

We thus reduced (6.6) to (6.9). But now the latter follows from (3.7) (with ¢) by the triangle
inequality for the metrid¥,. This proves the claim.

6.3. Logarithmic isoperimetry

In this last part, we turn some tbl-versions of our hypercontractivity results. Letbe
a probability measure on the Borel sets of a metric sgdtel) and assume it satisfies the
(logarithmic) isoperimetric inequality:

+ _ 1
(6.10) W) 2 e(1— n(a)) Iog< — A)>

for every Borel setd in E and some > 0. Recall that in general the-perimeteru™(A) of a
Borel setA C E is defined by:

o1
A = liminf = [n(An) — (A)]
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whereA,, t > 0, is the open-neighborhood ofA in the metricd on E.
The isoperimetric inequality (6.10) is connected with hypercontractivity of the convolution
operators

= inf t>0 E.
O f(x) yeE;:lr(lx’ny(y), >0,xe

As we will see indeed, (6.10) holds if and only if

(6.11) 19: flly < IFI,

for every non-negative measurable functignand all 0< p < g < oo andt > 0 such that
&' > ¢/p. To hint this connection, apply (6.11) o= 1g\a. SinceQ; f = 1g\4,, (6.11) turns
into
(6.12) log(1— n(Ay)) < € log(1— u(A)).
Ast — 0, thisamounts to (6.10).

It should be noted that in “regular” situations one pa3A) = u* (M \ A). This is certainly
the case foru absolutely continuous ot = R", as well as in a more general Riemannian

manifold setting. In the latter cases, it was shown by O. Rothaus [27] that the isoperimetric
inequality (6.10) is equivalent to the logarithmic Sobolev inequality

(6.13) cEntu(f) < [ 1V41d

which should hold in the class of all non-negative locally Lipschitz functfoon R" (or on a
manifold). Furthermore, the standard theory shows that (given a locally Lipschitz) furfcton
R”", the functiorv = v(x, t) = Q; f (x) provides a solution of the initial-value partial differential
equation:

av

(6.14) ot
v=/f onR" x {r=0}.

+|Vu|=0 inR" x (0, 0),

The equivalence between (6.10) and (6.11) may then be proved on the basis of the partial
differential equation (6.14) arguing as in the proof of our main result in Section 2. The particular
structure of theL! case makes it however more general than equation (6.14) and the result
actually holds in the setting of abstract metric spaces, with a purely “metric” proof.

THEOREM 6.2. —Let 1« be a probability measure on the Borel sets of a metric sgg@tel).
The probability measurg satisfies the isoperimetric inequatity

X - _
nHA) = c(1- p(d) loQ(l—M(A)>

for somec > 0in the class of all Borel seta in E if and only if
10: flly <I£1,

for every non-negative measurable functipion £ and all0 < p < ¢ < oo andt > 0 such that

e >
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Proof. —We only need to show the sufficiency part. Siigg f)” = Q, f?, itis enough to deal
with the casep = 1, and thug; = €’ > 1. The isoperimetric inequality (6.10) can be iterated in
t > 0 so to yield (6.12) for every Borel. Given a measurable functigh> 0 on E, andx > 0,
setA = { f < A}. By definition of Q;, for everyr > 0:

{0if <2} =4,
so that by (6.13), we get

w(Qif =21 <u(f =11

Hence
10,714 = / WO f > M) dhd < /M(f > 34 .
0 0

Now it is know that the right-hand side of the latter inequality defines the so-chiféld ,
Lorentz norm of f, and that|| /]|y, < [ fll1 (cf. [28]). This stronger conclusion implies the
result. O

A dual statement to Theorem 6.3 can be formulated with:

0 f(x) = sup  f(y), t>0,x€E.
yeE;d(x,y)<t

Both inequalities (6.10) and (6.11) imply the logarithmic Sobolev inequality

pEnL (1) <2 [ 17/ du

for somep = p(c) > 0 (cf. [27]).

It was shown in [6] that every log-concave measuren R" supported by a ball of radius
satisfies the isoperimetric inequality (6.10) with= 1/2r. In particular, the uniform distribution
on a convex compact bod¥ c R" satisfies (6.10) with some > 0. It would be of interest
to estimate this constant in some special situations. For example, Kherthe unit ball, the
extremal sets in the isoperimetric problem are known. Another important case is the unit cube
K =[0, 1]*. One may also consider the case of the sphere.
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