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COMPLEX HERMITE POLYNOMIALS: FROM THE
SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

MICHEL LEDOUX

ABSTRACT. We study asymptotics of orthogonal polynomial measures of the
form |H|?dy where Hy are real or complex Hermite polynomials with re-
spect to the Gaussian measure 7. By means of differential equations on
Laplace transforms, interpolation between the (real) arcsine law and the
(complex) uniform distribution on the circle is emphasized. Suitable aver-
ages by an independent uniform law give rise to the limiting semi-circular
and circular laws of Hermitian and non-Hermitian Gaussian random matrix
models. The intermediate regime between strong and weak non-Hermiticity
is clearly identified on the limiting differential equation by means of an addi-
tional normal variable in the vertical direction.

1. Introduction

Let AN be a N x N random Hermitian matrix from the Gaussian Unitary
Ensemble (GUE)

P(dX) = % exp (— Tr(X?)/2)dX (1.1)

where dX is Lebesgue measure on the space of N x N Hermitian matrices X and
Z the normalization constant. Equivalently, the entries A,]c\g, 1 <k<I<N,
of AN are independent complex Gaussian variables with mean zero and variance
one. It is a classical result going back to E. Wigner [10] that the empirical mea-
sure 4 ij:l dxn on the (real) eigenvalues AN AN of AN /24/N converges as
N — o0 to the semi-circular law 2 (1 — w2)1/21{|x|<1}dx.

Consider now an independent copy BY of AY, and form the random matrix
AN + BN whose entries are independent complex Gaussian variables with mean
zero and variance two. This is a canonical non-Hermitian ensemble of random ma-
trix theory widely referred to as the (complex) Ginibre Ensemble. Girko’s classical
theorem [3] indicates that the empirical measure on the (complex) eigenvalues of
(AN+iBN)/v/2N converges as N — oo towards the circular law 1 1iz24y2<1ydady
on the plane.

Interpolation from the Ginibre Ensemble to the GUE is provided by the family

AN +ipBN for some real parameter p, |p| < 1, yielding as limiting spectral measure

2 2p°
b* = T

Girko’s elliptic law % 1{(22/a2)+(y2/p2)<1ydxdy Where a’ = #,
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These results extend to families of random matrices with non-Gaussian entries
(cf. [10, 1, 3]...). In the Gaussian case, the determinantal structure of the joint law
of the eigenvalues (cf. [8]) allows, by the so-called orthogonal polynomial method,
for the analysis of the mean spectral measure through the Hermite polynomials.
Following [9], let Hy, ¢ € N, be the Hermite polynomials defined by the generating
series

Ae=A/2 Z (z), AER, z€R.

The family (Hy),cy forms an orthonormal basis of the Hilbert space of real-
valued square integrable functions with respect to the standard normal distribution
dvy(z) = e‘”zQ% on R. Extend now the polynomials H, to the complex plane.
Then, for each 7 > 1, the family

Hz(z):(272—1)_5/2Hg(7x+i 2-1y), z=az+iyeC, LN,

defines an orthonormal sequence with respect to the standard Gaussian measure
dy(z) = dy(z)dy(y) on C. Here and below we identify z = = + iy € C and
(x,y) € R2. The value 7 = 1 corresponds to the real case, while when 7 — oo,
Hj(z) — \/;7127 which form an orthonormal basis of the space of square integrable
analytic functions on C.

As presented in [8], the correlation functions of the random matrix ensemble
AN 4+ipB™ are completely described by the Hermite kernel , o He( YH (=)
with 7 = (1 — p?)~%/2. In particular, the mean eigenvalue density ™ on the
eigenvalues A\, ... A\ of AN +ipB¥ is given by

(f; i ( fok) /f ;Nzlm (2)]dv(2) (1.2)

=0

for every bounded measurable function f on C. Abymptotics of 1V may thus be
read off from the behavior of the probability density 4 Z |He( )|2dy(z) on C
suitably rescaled.

In the contribution [5], inspired by the work [4] by U. Haagerup and S. Thor-
bjernsen, simple Markov integration by parts and differential equations on Laplace
transforms have been emphasized in the context of real orthogonal polynomial en-
sembles, demonstrating in particular the underlying universal character of the
arcsine law. It was shown namely that, properly rescaled, measures H%;dy on the
line converge weakly to the arcsine law %(1 — xQ)_l/Ql{‘zKl}dm (¢ will denote
below a random variable with this distribution). By a simple averaging procedure,
rescaled measures % Zé\;l H fd’y converge to the product VU & where U is uni-
form on [0, 1] and independent from &, giving thus rise to the semi-circular law for
the limiting spectral measure of the GUE by the representation (1.2) (cf. [5]).

The purpose of this note is to show that a similar structure arises in the context
of non-Hermitian random matrices with complex eigenvalues, where the central
role is now played by the uniform distribution on the unit circle. For any fixed p
such that 0 < |p| < 1, equivalently 7 > 1, we show namely that rescaled measures
|H7,|2dy converge to (acos©,bsin ©) where © is uniform on the unit circle. Note
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that projections of © on diameters have the arcsine distribution. The analysis
again relies on second order differential equations for Laplace transforms from
which the limiting distribution may easily be identified.

These results and methods extend to non-compactly supported models aspects
of the classical theory developed in [7] in which recurrence equations for orthogonal
polynomials Py, £ € N, of measures p on the torus or with compact support on the
line are used to show that measures P?du converge to the uniform distribution
on the circle or the arcsine law. Following [5, 6], the same line of investigation
should cover the complex extension of the other classical orthogonal polynomial
ensembles.

After averaging, & Zé\f:_ol |H7 |>dy converges weakly, for every fixed 7 > 1, to
VU (acos ©,bsin ©) where U is uniform on [0, 1] and independent from ©, giving
thus rise to the elliptic law for the non-Hermitian random matrix models. Inter-
estingly enough, the approach allows us to investigate as easily the intermediate
regime studied by Y. Fyodorov, B. Khoruzhenko and H.-J. Sommers [2] concerned
with weak non-Hermiticity as p — 0 (b — 0) with N. The differential equation ap-
proach indeed clearly identifies a Gaussian perturbation in the, properly rescaled,
vertical direction, and it provides in particular a simple description of the limiting
distribution put forward in [2].

In the first section of this note, we present the classical results in the strong
non-Hermitian regime AV + ipBY with 0 < |p| < 1 fixed. In the second part, we
analyze the weak non-Hermitian regime in which p — 0 with V.

2. Strong Non-Hermitian Random Matrices

In this section, we deal with strong non-Hermitian matrices given by the Gini-
bre Ensemble AN +ipBY with 0 < |p| < 1 fixed. In the orthogonal polynomial
description, 7 > 1 (possibly infinite) is therefore fixed independently of N. Fol-
lowing the strategy of [5], the first proposition describes the limiting distribution
of the measures |H7,|2dy properly renormalized by means of differential equations
on Laplace transforms.

Proposition 2.1. Let 7 > 0 be fized, and let Zny = (Xn,Yn) be a random variable
with distribution |HY|?dy on C. Then, as N — oo,
ZN
V2N
in distribution, where © is uniform on the unit circle and where a,b > 0 are such

2_ 2% g 20P-1)
tha/ta —2T2_1,b - 27_2_1 .

— (acos©,bsinO)

Proof. As announced, we follow the general strategy of [5]. Along these lines, it is
easy (although somewhat tedious) to show similarly that if we let

o(t) = / otla/a+By/b) |HN(z)\2d7(z), tER, (2.1)
C

where o, 8 € R, a? + 32 = 1, then ¢ solves the second order differential equation

to" 4+ [1+ 2 (1 —26%) )¢’ — [Pt (1 — ) + 2% + 2N]p =0 (2.2)
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where ¢? = ‘;—z + %2. Considering o(t/v/2N) and letting N — oo, the limiting
differential equation is given, whatsoever the choice of « and 3, by t®"+®'—t® =0
which is the characterizing differential equation of the Laplace transform of the
arcsine law on (—1,4+1). Arguing as in [5] thus shows that, for every a, 5 € R
with o + 82 =1,
1 XN Yy
NG (o= +05) —¢

in distribution where ¢ is distributed according to the arcsine law on (—1,+1).
Since acos © + (sin O, where © is uniform on the unit circle, is distributed as &,
the conclusion follows. O

Proposition 2.1 interpolates between the limiting cases 7 — 1 for which a = /2,
b = 0, which gives rise to the arcsine law (the distribution of cos ), and 7 — oo
for which a = b = 1, which gives rise to the uniform distribution on the unit circle.

To apply the preceding conclusions to the spectral measure of non-Hermitian
random matrix models, we have to deal, according to the representation (1.2),
with averages Zé\’:_ol |H7 |*d~. This is accomplished by a suitable mixture with
an independent uniform random variable. Namely, let f : C — R be bounded and
continuous. Then

L) }Vj; 7 () dn(z) = ;,]:; / f(\/z =P

Together with Proposition 2.1 and Lebesgue’s theorem, the limiting distribution
as N — oo is thus given by VU (acos ©,bsin ©) where U is uniform on [0, 1] and
independent from ©. Now, the law of /U (a cos ©, bsin ©) is uniform on the ellipse
:1/,2 y2

2 + % < 1. By (1.2), we thus easily recover Girko’s elliptic law interpolating
between the Ginibre Ensemble and the GUE.

Corollary 2.2. Let Ay and By be independent copies from the GUE. For every
fized p, 0 < |p| < 1, the mean spectral distribution p of (Ay + ipBn)/V2N

converges as N — oo towards the uniform law on the ellipse z—z + ¥ < 1 where

2 _ 2 2 _ 202
o =52 0" =1

As announced, for p = £1, we recover the circular law, and when (formally)
p = 0, the semi-circular law (the distribution of /U cos ©).

3. Weak Non-Hermitian Random Matrices

In the weak non-Hermitian regime, the parameter p interpolating between the
Ginibre Ensemble and the GUE tends to 0 with N. As investigated in the work [2]
by Y. Fyodorov, B. Khoruzhenko and H.-J. Sommers, a new limiting distribution
of the spectral measure develops in this regime, provided an appropriate zoom is
put on the imaginary part of the eigenvalues. This deformation may be easily
identified on the limiting differential equation on Laplace transforms on which it
is actually seen that the elliptic law is deformed by a Gaussian variable in the
vertical coordinate.
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We start again with equation (2.2). Set, for a parameter £ > 0, . (t) = p(kt),
t € R, where ¢ is defined in (2.1), and

1/)(t) _ e*ﬁ202t2/2§0,~g(t), te R,

where 02 > 0. From (2.2), it is easily seen that 1 solves the second order differential
equation

"+ {1 (k21— 26) + 25202} W
- </€2t3 (K22 (1 = %) = Blot — 2o (1 — 2¢7)] (3.1)

+ t[x*(2¢° + 2N) — 252g2]>¢ =0.

Therefore, provided that x ~ ﬁ and k%c? ~ (%02, the limiting differential

equation is given as above by t¥” + W' — t¥ = 0. Thus, with o ~ o, 2Na3i — 0
and 2No3b3 ~ 1,
1 XN Yy
m(a . +5bN) — &+ oG
in distribution, where £ is distributed according to the arcsine law on (—1,+1)
and G is an independent standard normal variable. As in the preceding section,
we then conclude in particular to the following result.

Proposition 3.1. Let Zy = (Xn,Yn) be a random variable with distribution
|y |dy on C. Then, as oy — o > 0 and 7 = 75v — 1 (by — 0) such that
2NU]2Vb§V—>n2>O,O<77<oo,N—>oo,

XN
——,0onYN | — (c0sO,nsin® + oG
<2\/N N N) ( n )
in distribution, where © is uniform on the unit circle and G is an independent
standard normal variable.

As in the preceding section, Proposition 3.1 may be translated at the level of
the averages % Zé\;l |H7|?dy, and thus, by (1.2), for the mean spectral measure
of the random matrix ensemble. Let Zy = (Xy, Yn) be a random variable with
law |H}¥ |>d~y. For every bounded continuous function f: C — R,

N-1

Uzt

//N/ ( NU NUy(r)’ UN9>\HZN!2dvdr

where Un(r) = ¢/N for {/N < r < ((+1)/N, ¢ =0,1,...,N —1 (Un(0) =
0). Since Un(r) — r, r € (0,1), and since 2NUno%b% — n?r, it follows from
Proposition 3.1 that

(3.2)

N-1

/Cf(%;ﬁ,wy)i[ S 7Py — B(f (VU cos ©,5vT sin® + 0G) )

£=0
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where U is uniform on [0,1] and independent from © and G. In the language of
the spectral measure, we recover in this way the main result of [2].

Corollary 3.2. Let Ay and By be independent copies from the GUE, and denote
by AV, ... AN the eigenvalues of (AN + ipnBN)/2V/N. Set, for each N > 1
andk=1,...,N, AN = Re(A\N) + 2ion VN Im(A\Y), and denote by iV the mean
empirical measure on X{V, .. ,X% Then, asoy — o > 0 and AN o3, pa/(1+p%) —
n?>0,0<n<o00, N— oo, iV converges towards the distribution of

(VU cos ©,7VUsin© + 0G)

where U is uniform on [0,1], © is uniform on [0,27], G is a standard normal
variable, U, © and G being independent.

Typically, oy = o and py ~ ﬁ as investigated in [2]. It is not difficult to
represent the density of the limiting distribution in Corollary 3.2 as

1 /y+77 1-g2 —12/202 dt
€
Yy

—— . (z,y)€(-1,+1) xR
g s (2,9) € ( )

21
(cf. [F-K-S)).
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