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Abstract. — We analyze recent proofs of decay of correlations

and logarithmic Sobolev inequalities for unbounded spin systems in

the perturbative regime developed by B. Zegarlinski, N. Yoshida, B.

Helffer, Th. Bodineau. We investigate to this task a simple analytic

model. Proofs are short and self-contained.

Let µ be a probability measure on R satisfying, for some constant C > 0 and
for every smooth enough function f on R, either the Poincaré (or spectral gap)
inequality

Varµ(f) ≤ C

∫

f ′
2
dµ

where Varµ(f) is the variance of f with respect to µ (see below), or the logarithmic
Sobolev inequality

Entµ(f2) ≤ C

∫

f ′
2
dµ

where Entµ(f2) is the entropy of f2 with respect to µ (see below). It is well-known
that the product measure µn of µ on R

n then satisfies the preceding inequalities
(with the Euclidean length of the gradient of the function f on R

n) with the same
constant C, in particular independent of the dimension n.

Let now H be a smooth function on R
n such that

∫

e−Hdµn < ∞. Define Q the
probability measure on R

n with density

1

Z
e−H

with respect to µn, where Z is the normalization factor. It is a natural question to
ask under which conditions on H, the probability measure Q will satisfy a Poincaré
or logarithmic Sobolev inequality, and to control the dependence of the constants
on H. For example, one may consider potentials H of the form

H(x) = 〈Ax, x〉+ 〈B, x〉, x ∈ R
n,



where A is an n × n matrix and B ∈ R
n. In particular, it might be of interest

to describe classes of matrices A and vectors B for which the spectral gap and
logarithmic Sobolev constants are independent on the dimension n. The simple
example of

H(x) =
n

∑

i=1

xixi+1, x ∈ R
n,

where xn+1 = x1, discussed at the end of Section 1 already raises a number of
non-trivial questions.

This setting includes classical examples of spin systems in statistical mechan-
ics. Logarithmic Sobolev inequalities for compact spin systems have been studied
extensively during the past years, in particular in the papers [S-Z1], [S-Z2] by D.
Stroock and B. Zegarlinski, [L-Y] by S. L. Lu and H. T. Yau and [M-O1], [M-O2] by
F. Martinelli and E. Olivieri. Recently, B. Zegarlinski [Ze1], N. Yoshida [Yo1], [Yo3],
B. Helffer [He2] and Th. Bodineau [B-H1], [B-H2] investigated the more general
and delicate unbounded case. For example, for a finite subset Λ in Z

d, d ≥ 1, and

boundary condition ω ∈ R
Z

d

, consider the measure Q = QΛ,ω with density, with
respect to the product measure µΛ of µ on Λ, 1

Z
e−JH where J ∈ R and

H(x) = HΛ,ω(x) =
∑

p,q∈Λ,p∼q

xpxq +
∑

p∈Λ,q /∈Λ,p∼q

xpωq, x = (xp)p∈Λ ∈ R
Λ,

where the summations are taken on nearest neighbors p ∼ q in Z
d. Results in the

preceding references assert that for one-dimensional phase measures dµ = 1
Z e−udx

where u is strictly convex at infinity, both Poincaré and logarithmic Sobolev inequal-
ities hold uniformly in cubes Λ and boundary conditions ω provided the interaction
coefficient J is small enough (perturbative regime). A typical example of phase u
is given by the double-well function u(x) = x4 − βx2, x ∈ R, β > 0. Spectral gap
and logarithmic Sobolev inequalities represent smoothing properties of the associ-
ated stochastic dynamic of fundamental importance in the control of convergence to
equilibrium for various spin systems (cf. [S-Z4], [Ze1], [Yo2]), thus providing strong
motivation for their investigation.

Our aim in this work is to analyze these results on the preceding abstract model,
and to describe at each step the conditions required on H. Spectral gaps and decays
of correlations are presented following the Witten Laplacian approach by Helffer-
Sjöstrand [He-S], that we however describe in an elementary way by classical semi-
group methods. This global analysis does not seem to work for logarithmic Sobolev
inequalities for which the usual induction procedure on the dimension has to be
performed as developed in [Ze1] and [Yo1]. Together with appropriate correlation
bounds, the proof may actually be described in a rather simple minded way.

The purpose of this work is a mere clarification and simplication of the argu-
ments of the papers [Ze1], [He2], [Yo1] and [B-H1] (see also [Yo3], [B-H2]). We adopt
the convexity assumptions on the phase µ of [B-H1]. We only consider the perturba-
tive regime where the coupling constants are small. For the matter of clarity, all the
constants are explicit. We do not study here the non-perturbative case, for which
spectral gaps and logarithmic Sobolev inequalities usually do not hold uniformly,



but for which a formal equivalence between spectral gap, decay of correlation, and
logarithmic Sobolev inequality has been shown in [S-Z3] for the compact spins and
in [Yo3] for the unbounded case.

Section 1 collects a number of classical results on spectral gaps and logarithmic
Sobolev inequalities, tensorization, convexity and Γ2 conditions etc, essentially by
means of simple semigroup arguments taken from [Ba1], [Le2]. The next section em-
phasizes some correlations inequalities from [He2], [Yo1], [Yo3], [B-H1]. In Section
3, we present Helffer’s method for spectral gaps that we describe in the generality of
our analytic model. This method unfortunately breaks down for logarithmic Sobolev
inequalities so that we have to develop the usual inductive proof. To this end, we
describe, in Section 4, marginal distributions when the phase is strictly convex at
infinity following [B-H1]. We then proceed to the Markov tensorization of the loga-
rithmic Sobolev inequality (martingale method). In Section 6 we present the main
result about uniform logarithmic Sobolev inequalities for the more specific spin sys-
tems mentioned above. We conclude with some remarks and extensions. While the
paper might look long for what it announces, note that the first part (Section 1) is
a self-contained review on known facts and results on spectral gaps and logarithmic
Sobolev inequalities that can be skipped by readers familiar with the theory (and
aware for example of references [Ba], [Ro], [He3], [An], [G-Z]...).

1. General results and known facts

Throughout this work, if m is a probability measure on a measurable space
(E, E), we denote by

Varm(f) =

∫

f2dm−
(

∫

fdm

)2

=

∫

(

f −
∫

fdm
)2

dm

the variance of a square integrable real-valued function f on (E, E) and by

Entm(f) =

∫

f log fdm−
∫

fdm log

(
∫

fdm

)

the entropy of a non-negative function f on (E, E) such that
∫

f log(1+ f)dm < ∞.

Let m be a probability measure on R
n equipped with its Borel σ-field. We say

that m satisfies a Poincaré inequality if there exists λ > 0 such that for all smooth
enough functions f on R

n,

λ Varm(f) ≤
∫

|∇f |2dm (1.1)

where |∇f | is the Euclidean norm of the gradient of f . We denote by SG(m) the
largest λ > 0 such that (1.1) holds for all smooth functions f . (By smooth, we
understand here and throughout this work, enough regularity in order the various
expressions we are dealing with are well defined and finite.) Similarly, we say that



m satisfies a logarithmic Sobolev inequality if there exists ρ > 0 such that for all
smooth enough functions f on R

n,

ρ Entm(f2) ≤ 2

∫

|∇f |2dm. (1.2)

We denote by LS(m) the largest ρ > 0 such that (1.2) holds. The normalization in
(1.2) in chosen in such a way that the classical inequality

LS(m) ≤ SG(m) (1.3)

holds. In particular, logarithmic Sobolev inequalities are stronger than Poincaré
inequalities. The proof of (1.3) follows by applying (1.2) to 1 + εf and by letting
ε tend to 0. Logarithmic Sobolev inequalities go back to the foundation paper [Gr]
by L. Gross where they are shown to describe equivalently smoothing properties
in the form of hypercontractivity. The prime example of measures satisfying (1.1)

and (1.2) is the Gaussian measure with density (2π)−n/2e−|x|
2/2 with respect to

Lebesgue measure on R
n.

In this section, we review basic facts on spectral gaps and logarithmic Sobolev
inequalities as well as known criteria in order for these inequalities to hold. To de-
scribe measures satisfying either Poincaré or logarithmic Sobolev inequalities is a
challenging question. Equivalent conditions in dimension one in terms of the distri-
bution function of m are presented in [B-G]. These conditions are however difficult to
tract and in any case do not extend to higher dimensions. Poincaré and logarithmic
Sobolev inequalities are however well suited to product measures.

Lemma 1.1. If m is a probability measure on R, and if mn denotes the product
measure of m on R

n, then, for each n,

SG(mn) = SG(m) and LS(mn) = LS(m).

Although classical, let us briefly present the argument leading to Lemma 1.1
since it plays a crucial role in the investigation of logarithmic Sobolev inequalities
in dependent cases (cf. Section 5). Let f be a smooth function on R

n, and let fk

on R
k, k = 1, . . . , n, be the conditional expectation of f given x1, . . . , xk. In other

words, in this independent case,

fk(x1, . . . , xk) =

∫

f(x1, . . . , xn)dm(xk+1) · · ·dm(xn), (x1, . . . , xk) ∈ R
k. (1.4)

Now,

Varmn(f) =

n
∑

k=1

[
∫

f2
kdmn −

∫

f2
k−1dmn

]

where we agree that f0 =
∫

fdmn. Since fk−1 is also the conditional expectation of
fk given x1, . . . , xk−1, and since mn is a product measure,

∫

f2
kdmn −

∫

f2
k−1dmn =

∫

Varmk
(f2

k )dmn



where we denote by mk the measure m acting on the k-th coordinate xk. Therefore,

SG(m) Varmn(f) ≤
n

∑

k=1

∫

∣

∣∂kfk

∣

∣

2
dmn

where ∂k denotes partial derivative with respect to the k-th coordinate. Now,

∂kfk =

∫

∂kfk+1dm(xk+1) = · · · =

∫

∂kfdm(xk+1) · · ·dm(xn)

so that, by Jensen’s inequality,

SG(m) Varmn(f) ≤
n

∑

k=1

∫

∣

∣∂kf
∣

∣

2
dmn

from which the claim concerning SG(mn) follows.

To reach a similar conclusion for LS(mn), we have to modify (1.4) into

fk(x1, . . . , xk) =

(
∫

f2(x1, . . . , xn)dm(xk+1) · · ·dm(xn)

)1/2

that does not induce any fundamental changes in the argument. However, since now

2fk∂kfk =

∫

2fk+1∂fk+1dm(xk+1) = · · · =

∫

2f∂kfdm(xk+1) · · ·dm(xn), (1.5)

it is necessary to make use of the Cauchy-Schwarz inequality to get

|∂kfk|2 ≤
∫

|∂kf |2dm(xk+1) · · ·dm(xn)

where we used that f2
k =

∫

f2dm(xk+1) · · ·dm(xn). In the dependent cases we study
in this paper, the derivatives ∂kfk involve correlation terms (cf. (5.4)) that have to
be handled separately by the arguments developed in Sections 2 and 3. The use of
f2

k instead of fk induces furthermore a number of difficulties in the dependent case
that motivate Proposition 2.2 below (cf. Sections 4 and 5).

If m is the product measure of m1, . . . , mn, we have similarly that

SG(mn) = min
1≤i≤n

SG(mi) and LS(mn) = min
1≤i≤n

LS(mi).

Spectral gap and logarithmic Sobolev constants are stable by simple perturba-
tions. Let U be a smooth potential on R

n such that Z =
∫

e−Udx < ∞ and let
m be the probability measure on the Borel sets of R

n defined by dm = 1
Z e−Udx.

Assume m satisfies a spectral gap or logarithmic Sobolev inequality with respective
constants SG(m) and LS(m). We then have



Lemma 1.2. Let m′ be the probability measure defined by dm′ = 1
Z′

e−U ′dx
where ‖U − U ′‖∞ ≤ C. Then m′ satisfies a Poincaré inequality and a logarithmic
Sobolev inequality with constants

SG(m′) ≥ e−4CSG(m) and LS(m′) ≥ e−4CLS(m).

Proof. First note that e−CZ ′ ≤ Z ≤ eCZ ′. Now, for a given smooth function f ,

Varm(f) = inf
a∈R

∫

∣

∣f(x)− a
∣

∣

2
dm

and similarly for Varm′(f). Therefore, for every λ < SG(m),

λ Varm′(f) = λ inf
a∈R

∫

∣

∣f(x)− a
∣

∣

2
eU−U ′ZZ ′−1

dm

≤ e2C λ Varm(f)

≤ e2C

∫

|∇f |2dm

≤ e2C

∫

|∇f |2eU ′−UZ ′Z−1dm′

≤ e4C

∫

|∇f |2dm′.

Similarly, as put forward in [H-S], for every a, b > 0, b log b− b log a− b + a ≥ 0
and

Entm(f2) = inf
a>0

∫

[

f2 log f2 − f2 log a− f2 + a
]

dm.

Therefore, for every ρ < LS(m),

ρ Entm′(f2) = ρ inf
a>0

∫

[

f2 log f2 − f2 log a− f2 + a
]

eU−U ′ZZ ′−1
dm

≤ e2C ρ Entm(f2)

≤ 2e2C

∫

|∇f |2dm

≤ 2e4C

∫

|∇f |2dm′.

Lemma 1.2 is established.

Known examples where Poincaré and logarithmic Sobolev inequalities hold have
been described by the so-called Bakry-Emery Γ2 criterion [Ba-E], [Ba1] that involves
log-concavity assumptions on the measure (rather its density). Assume as before that
m is a probability measure on R

n with smooth strictly positive density with respect
to Lebesgue measure dm(x) = 1

Z e−U(x)dx where U is a smooth potential on R
n such

that
∫

e−Udx = Z < ∞. Let the second order differential operator L = ∆−〈∇U,∇〉
that satisfies the integration by parts formula

∫

f(−Lg)dm =

∫

〈∇f,∇g〉dm (1.6)



for smooth functions f and g on R
n. Under mild growth conditions on U , we may

consider the invariant and time reversible semigroup (Pt)t≥0 with infinitesimal gen-
erator L (cf. [Ba1], [Ro] for details in this respect). Strict convexity (or only strict
convexity at infinity) of U assumed throughout this work easily enters this frame-
work. Now, since for a smooth function f on R

n, P0f = f and P∞f =
∫

fdm, we
may write that

Varm(f) =

∫

f

(

−
∫ ∞

0

LPtfdtdm

)

dt

=

∫ ∞

0

(
∫

Pt/2f(−LPt/2f)dm

)

dt

=

∫ ∞

0

(
∫

|∇Pt/2f |2dm

)

dt.

(1.7)

Set F (t) =
∫

|∇Ptf |2dm, t ≥ 0. By (1.6) again,

F ′(t) = 2

∫

〈∇Ptf,∇LPtf〉dm = −2

∫

(LPtf)2dm.

Assume now that for some κ > 0 and every f ,

κ

∫

|∇f |2dm ≤
∫

(Lf)2dm.

Then −F ′(t) ≥ 2κF (t) for every t ≥ 0 so that F (t) ≤ e−2κtF (0) and

Varm(f) ≤
∫ ∞

0

e−κtF (0)dt =
1

κ

∫

|∇f |2dm.

Hence, SG(m) ≥ κ. On the other hand, by invariance and the Cauchy-Schwarz
inequality,

∫

|∇f |2dm =

∫

f(−Lf)dm

=

∫

(

f −
∫

fdm
)

(−Lf)dm ≤ Varm(f)1/2

(
∫

(Lf)2dm

)1/2

so that SG(m) ≤ κ. Therefore, the largest κ > 0 is exactly SG(m). This is one
simple instance of the Witten Laplacian approach of J. Sjöstrand and B. Helffer
[He-S], [He1] summarized in the next statement.

Proposition 1.3. The spectral gap SG(m) of m is equal to the largest κ > 0
such that

κ

∫

|∇f |2dm ≤
∫

(Lf)2dm

for every smooth function f on R
n.



In order to produce spectral gap inequalities, it is thus of interest to study lower
bounds on κ. To this task, note that by simple calculus (using invariance of L in the
form

∫

Lϕdm = 0),

∫

(Lf)2dm = −
∫

〈∇Lf,∇f〉dm

=

∫
( n

∑

i,j=1

(∂ijf)2 + 〈Hess (U)∇f,∇f〉
)

dm.
(1.8)

The characterization of Proposition 1.3 thus reads

κ

∫

|∇f |2dm ≤
∫

( n
∑

i,j=1

(∂ijf)2 + 〈Hess (U)∇f,∇f〉
)

dm (1.9)

for every smooth f .

Convexity conditions on U , extending the Gaussian example, lead then to simple
criteria ensuring the validity of (1.9).

Corollary 1.4. Let dm = 1
Z

e−Udx where, as symmetric matrices, Hess (U)(x) ≥
c Id for some c > 0 uniform in x ∈ R

n. By (1.9), κ ≥ c so that

SG(m) ≥ c.

This convexity result goes back to A. Lichnerowicz in Riemannian geometry (cf.
[G-H-L]), and also follows from the deeper Brascamp-Lieb inequality [B-L].

Proposition 1.3 has been developed similarly for logarithmic Sobolev inequalities
by D. Bakry and M. Emery [Ba-E] in terms of the so-called Γ2 operator. Let, for a
smooth function f on R

n,

Γ2(f) =
1

2
L
(

〈∇f,∇f〉
)

− 〈∇f,∇Lf〉 =
n

∑

i,j=1

(∂ijf)2 + 〈Hess (U)∇f,∇f〉.

Note that
∫

Γ2(f)dm =
∫

(Lf)2dm. Arguing almost as for the variance, for a smooth
positive function f on R

n,

Entm(f) =

∫ ∞

0

d

dt

(
∫

Ptf log Ptfdm

)

dt =

∫ ∞

0

(
∫

1

Ptf
|∇Ptf |2dm

)

dt.

Set now F (t) =
∫

1
Ptf

|∇Ptf |2dm, t ≥ 0. After several use of the integration by parts

formula (1.6), and by definition of Γ2, it may be shown that

F ′(t) = −2

∫

PtfΓ2(log Ptf)dm.

Assume now that for some κ > 0 and every f ,

κ

∫

f |∇ log f |2dm ≤
∫

fΓ2(log f)dm.



Since F (t) =
∫

1
Ptf

|∇Ptf |2dm =
∫

Ptf |∇ logPtf |2dm, it then follows that −F ′(t) ≥
2κF (t) for every t ≥ 0 so that F (t) ≤ e−2κtF (0). Therefore,

Entm(f) ≤
∫ ∞

0

e−2κtF (0)dt =
1

2κ

∫

1

f
|∇f |2 dm.

Hence, changing f into f2, LS(m) ≥ κ. We may thus state

Proposition 1.5. If for some κ > 0 and every f ,

κ

∫

f |∇ log f |2dm ≤
∫

fΓ2(log f)dm, (1.10)

then LS(m) ≥ κ.

The only, however main, difference with spectral gap is that here LS(m) is not
characterized in general by κ of (1.10) as shown by the following example commu-
nicated to us by B. Helffer. Let dm = 1

z
e−udx be the probability measure on R

with
u(x) = x4 − βx2, x ∈ R, (1.11)

where β > 0. Although u is not uniformly strictly convex, it is clearly convex at
infinity so that, by Corollary 1.7 below, LS(m) > 0. However, if we let f(x) = e−βx2

,
x ∈ R, it is easily seen that

∫

fΓ2(log f)dm = 4β2

∫

[

1 + (12x2 − 2β)x2
]

e−x4 dx

z
< 0

for β large enough so that (1.10) certainly fails (more generally, see [B-H2]).

The same convexity condition as in Corollary 1.4 however leads to the logarith-
mic Sobolev inequality.

Corollary 1.6. Let dm = 1
Z e−Udx where, as symmetric matrices, Hess (U)(x) ≥

c Id for some c > 0 uniform in x ∈ R
n. By the definition of Γ2 applied to log f , (1.10)

holds with κ = c so that
LS(m) ≥ c.

It might be important to recall at this stage that the condition Hess (U) ≥ c Id
for some c > 0 may be used in a slightly different way in proofs of spectral gap and
logarithmic Sobolev inequalities. Inspired by results in Riemannian geometry and
the stochastic calculus of variation, it may be shown indeed (cf. [Ba1], [Ba2]) under
the condition Hess (U) ≥ c Id that, for every smooth function f and every t ≥ 0,

|∇Ptf |2 ≤ e−2ctPt

(

|∇f |2
)

(1.12)

(at each point). Under this condition, by invariance,

∫

|∇Ptf |2dm ≤ e−2ct

∫

Pt

(

|∇f |2
)

dm = e−2ct

∫

|∇f |2dm



so that, by (1.7), Varm(f) ≤ 1
c

∫

|∇f |2dm whenever c > 0. The proof of (1.12) is a
variation on the principle leading to Propositions 1.3 and 1.5. Indeed, fix t > 0 and
define, for every s ≤ t, G(s) = e−2csPs(|∇Pt−sf |2). Then, by the definition of Γ2,

G′(s) = 2 e−2csPs

(

Γ2(Pt−sf)− c |∇Pt−sf |2
)

≥ 0

from which the result follows. This argument may be used similarly for logarith-
mic Sobolev inequalities but requires the strengthening of (1.12) into |∇Ptf | ≤
e−ctPt(|∇f |). We refer to [Ba2], [Le2] for details.

It follows from the perturbation result of Lemma 1.2 together with Corollar-
ies 1.4 and 1.6 that whenever dm = 1

Z e−Udx is such that U = V + W with
Hess (V )(x) ≥ c Id for some c > 0 uniformly in x ∈ R

n and W is bounded (such
a potential will be called below strictly convex at infinity), then the probability
measure m satisfies both a spectral gap and a logarithmic Sobolev inequality. Note
however that by example (1.11), strict convexity at infinity may fail criterion (1.10)
of Proposition 1.5.

Corollary 1.7. Let dm = 1
Z

e−Udx where U = V + W with Hess (V ) ≥ c Id for
some c > 0 and ‖W‖∞ < ∞. Then

SG(m) ≥ LS(m) ≥ c e−4‖W‖∞ > 0. (1.13)

One odd feature of this perturbation argument is that it yields rather poor con-
stants as functions of the dimension. Typically in R

n, the cost would be exponential
in n.

In other directions, it was shown recently by S. Bobkov [Bo2] that whenever
Hess (U) ≥ 0, SG(m) > 0, but again dependence in the dimension is poor. Further-
more, if Hess (U) ≥ c Id for some c ∈ R, F.-Y. Wang [Wa] and S. Aida [Ai] (see also
[Le1]) showed that whenever m is integrable enough in the sense that

∫

eα|x|2dm(x) < ∞

for some α > 2 max(0,−c), then LS(m) > 0 depending on the value of the preceding
integral. Thus again, this result is rather useless for dimension free estimates.

As is pointed out in [Ro], the class of potentials strictly convex at infinity con-
tains the class of potentials U = V + W , Hess (U) ≥ c Id for some c > 0 and W

Lipschitz. To check it, let γσ be the Gaussian density (2πσ2)−n/2 e−|x|
2/2σ2

, σ > 0,
on R

n and write
U = (V + W ∗ γσ) + (W −W ∗ γσ).

It is easily seen that for every α ∈ R
n,

∣

∣〈Hess (W ∗ γσ)α, α〉
∣

∣ ≤ Kσ−2|α|2

where K is the Lipschitz constant of W whereas

‖W ∗ γσ −W‖∞ ≤ K
√

nσ.



Provided σ is large enough so that K < cσ2, the claim follows. (The preceding
argument was kindly communicated to us by L. Miclo.)

To conclude this recall section, and in order to motivate our investigation, let
us consider the following simple example that concentrates most of the questions
we will deal with next. Let, on the real line R, dµ = 1

z e−udx where u is strictly
convex at infinity, that is u = v + w with v′′ ≥ c > 0, and w bounded. A typical
such example is u(x) = x4−βx2, β > 0. As we have seen in Corollary 1.7, µ satisfies
both a spectral gap and a logarithmic Sobolev inequality. On R

n, consider then the
probability measure

dQ(x) =
1

Z
e−U(x)dx

with

U(x) =
n

∑

i=1

u(xi) + J
n

∑

i=1

xixi+1, x ∈ R
n,

where J ∈ R and xn+1 = x1. We would like to known whether Q satisfies a Poincaré
or a logarithmic Sobolev inequality with constants independent of n, at least if J is
small enough for example. The preceding general results allow us to conclude in two
cases. If J = 0, Q is the n-fold product measure µn of µ for which, by Lemma 1.1,
both Poincaré and logarithmic Sobolev inequalities hold with constants independent
of n. If w = 0, then it is not difficult to see that, at every x ∈ R

n, and for every
α = (α1, . . . , αn) ∈ R

n,

〈Hess (U)(x)α, α〉 =

n
∑

i=1

α2
i u

′′(xi) + 2J

n
∑

i=1

αiαi+1 ≥
(

c− 2|J |
)

|α|2

that is thus strictly positive as soon as J is small enough (with respect to c > 0).
Therefore, Hess (U) ≥ c′ Id for some c′ > 0 so that, by Corollaries 1.4 and 1.6,
Q satisfies a Poincaré and a logarithmic Sobolev inequality independently of the
dimension. The main trouble now comes from the fact that if the two situations
are mixed, none of the preceding general arguments may be used to conclude, and
a rather delicate analysis is needed to take into account the perturbation in the
product. This is the problem we investigate below.

2. General correlation inequalities

In this section, we make use of the preceding semigroup tools to describe some
correlation inequalities that will be crucial in the analysis of logarithmic Sobolev
inequalities for spin systems. We start with general L2 correlation inequalities drawn
for the paper [He2]. We take again the notation of the preceding section.

Proposition 1.3 may be adapted to estimates on correlations by a simple change
of metric. If m is a measure on (E, E), denote by Corm(f, g) the correlation (or
covariance)

Corm(f, g) =

∫

fgdm−
∫

fdm

∫

gdm



of the square integrable functions f and g. The correlation may also be written by
duplication

Corm(f, g) =
1

2

∫ ∫

[

f(x)− f(y)
][

g(x)− g(y)
]

dm(x)dm(y).

Let dm = 1
Z e−Udx be as in Section 1 and denote by (Pt)t≥0 the semigroup with

generator L = ∆− 〈∇U,∇〉. As for (1.7), for smooth functions f, g on R
n,

Corm(f, g) =

∫

(

f −
∫

fdm
)

gdm

= −
∫ ∞

0

(
∫

gLPtfdm

)

dt

=

∫ ∞

0

(
∫

〈∇Ptf,∇g〉dm

)

dt

where we used integration by parts (1.6) in the last step. This formula is the semi-
group version of the correlation representation put forward in [H-S], [He1] via the
Witten Laplacian on forms L⊗n + Hess (U). Now, let D be an invertible n × n
diagonal matrix with diagonal (di)1≤i≤n. We may clearly write

Corm(f, g) =

∫ ∞

0

(
∫

〈D∇Ptf, D−1∇g〉dm

)

dt

≤
∫ ∞

0

(
∫

|D∇Ptf |2dm

)1/2( ∫

|D−1∇g|2dm

)1/2

dt.

We analyze F (t) =
∫

|D∇Ptf |2dm, t ≥ 0, as for the spectral gap in Section 1. We
have

F ′(t) = −2

∫

LPtf LDPtfdm

where

LDf =

n
∑

i=1

d2
i ∂iif −

n
∑

i=1

d2
i ∂iU∂if.

If for some κ > 0 and every f ,

κ

∫

|D∇f |2dm ≤
∫

Lf LDfdm, (2.1)

then −F ′(t) ≤ 2κF (t) for every t ≥ 0 so that F (t) ≤ e−2κtF (0). Hence we conclude
to the following result.

Proposition 2.1. If (2.1) holds for some diagonal matrix D and some κ > 0,
for every smooth functions f and g on R

n,

κ Corm(f, g) ≤
(

∫

|D∇f |2dm

)1/2( ∫

|D−1∇g|2dm

)1/2

.



As in (1.8), it is useful to interpret (2.1) with the help of the Hessian of U as

∫

Lf LDfdm =

∫
( n

∑

i,j=1

d2
i (∂ijf)2 +

n
∑

i,j=1

d2
i ∂ijU∂if∂if

)

dm. (2.2)

In particular, κ ≥ cD whenever

D Hess (U)D−1 ≥ cD Id. (2.3)

We turn to our second correlation inequality, put forward in [S-Z1], [S-Z2] and
adapted to the unbounded case in [B-H1] (see also [Yo3]). It will prove useful in the
inductive proof of logarithmic Sobolev inequalities. Although we will only use this
result in dimension one below, we state it in R

n for possible independent interest.

Proposition 2.2. Assume dm = 1
Z e−Udx satisfies the logarithmic Sobolev

inequality with constant ρ > 0. Then, there is a constant C > 0 only depending on
ρ > 0 such that such that for all smooth functions f , g on R

n,

Corm(f2, g) ≤ 2C ‖∇g‖∞
(

∫

f2dm

)1/2( ∫

|∇f |2dm

)1/2

.

The proposition of course applies when U = V + W , Hess (V ) ≥ c Id for some
c > 0 and ‖W‖∞ < ∞ since then, by (1.13), LS(m) ≥ c e−4‖W‖∞ > 0.

Proof. We may assume by homogeneity that ‖∇g‖∞ ≤ 1. By duplication and
the Cauchy-Schwarz inequality,

Corm(f2, g) =
1

2

∫ ∫

[

f(x)− f(y)
][

f(x) + f(y)
][

g(x)− g(y)
]

dm(x)dm(y)

≤
(

1

2

∫ ∫

∣

∣f(x)− f(y)
∣

∣

2
dm(x)dm(y)

)1/2

×
(

1

2

∫ ∫

∣

∣f(x) + f(y)
∣

∣

2∣
∣g(x)− g(y)

∣

∣

2
dm(x)dm(y)

)1/2

≤ Varm(f)1/2

(

2

∫ ∫

f2(x)
∣

∣g(x)− g(y)
∣

∣

2
dm(x)dm(y)

)1/2

.

Now, for a, b ≥ 0, ab ≤ a log a + eb, so that, for every ε > 0,
∫ ∫

f2(x)
∣

∣g(x)− g(y)
∣

∣

2
dm(x)dm(y)

≤ ε Entm(f2) + ε

∫

f2dm

∫ ∫

e|g(x)−g(y)|2/εdm(x)dm(y).

Since LS(m) ≥ ρ, by the Herbst inequality as in [A-M-S] (see [Le1], p. 151), whenever
ερ > 4,

∫ ∫

e|g(x)−g(y)|2/εdm(x)dm(y) ≤ 1
√

1− 4/ερ
.



Summarizing, for every ερ > 4 and some C(ε) > 0 only depending on ε and ρ,

Corm(f2, g) ≤ Varm(f)1/2

(

ε Entm(f2) + C(ε)

∫

f2dm

)1/2

≤
(

∫

f2dm

)1/2
(

ε Entm(f2) + C(ε)Varm(f)
)1/2

.

Since m satisfies SG(m) ≥ LS(m) ≥ ρ > 0, the conclusion follows. Proposition 2.2
is established.

As is clear, the proof of Proposition 2.2 actually shows that for every ε > 0
such that ερ > 4, there exists C(ε) > 0 only depending on ε and ρ such that for all
smooth functions f , g on R

n,

Corm(f2, g) ≤ ‖∇g‖∞
(

∫

f2dm

)1/2
(

ε Entm(f2) + C(ε)Var(f)
)1/2

, (2.4)

an inequality of independent interest in the perturbative regime [Yo3], [B-H2].

In the spirit of Proposition 2.2, one may establish by related tools stronger L1

correlation bounds. More precisely, one can show, mostly on the basis of the material
developed in Section 1, that if dm = 1

Z e−Udx where U = V + W , Hess (V ) ≥ c Id,
c > 0, ‖W‖∞ < ∞ and ‖∇W‖∞ < ∞, then, for some constant C > 0 only depending
on c, ‖W‖∞ and ‖∇W‖∞, and for all smooth functions f , g on R

n,

Corm(f, g) ≤ C ‖∇g‖∞
∫

|∇f |dm. (2.5)

Applied to f2 instead of f , it yields a stronger conclusion than Proposition 2.2 of
possible independent applications (see the final comments after Theorem 6.3).

3. Spectral gaps for some families of potentials

Let u be a smooth function on R such that z =
∫

e−udx < ∞ and denote by µ
the probability measure on the Borel sets of R defined by

dµ(x) =
1

z
e−u(x)dx.

Let now H be a smooth potential on R
n such that Z =

∫

e−Hdµn < ∞ and consider
the probability measure

dQ =
1

Z
e−Hdµn. (3.1)

In the notation of Section 1,

dQ =
1

Z ′
e−Udx



with

U(x) =

n
∑

i=1

u(xi) + H(x), x = (x1, . . . , xn) ∈ R
n,

(and Z ′ = znZ).

Whenever i1, . . . , ik are distinct in {1, . . . , n}, we denote below by Qxi1
,...,xik

the conditional measure on R
n−k given xi1 , . . . , xik

defined by

dQxi1
,...,xik (xj : j 6= i1, . . . , ik) =

1

Zxi1
,...,xik

e−H(x)
∏

j 6=i1,...,ik

dµ(xj)

where

Zxi1
,...,xik =

∫

e−H(x)
∏

j 6=i1,...,ik

dµ(xj).

These should actually only be considered for almost every (xi1 , . . . , xik
) ∈ R

k. We
will ignore below the negligeable sets involved in this definition.

In this section, we describe, following [He2], conditions on H in order that Q
satisfies a Poincaré inequality. The following proposition has been observed by B.
Helffer [He2] by means of his Witten Laplacian approach. The proof is elementary.

Proposition 3.1. Assume that for some h = hQ and h̄ = h̄Q in R, Hess (H)(x) ≥
h Id and max1≤i≤n ∂iiH(x) ≤ h̄ uniformly in x ∈ R

n. Let

s = sQ = inf SG
(

Qx1,...,xi−1,xi+1,...,xn
)

where the infimum is running over all x1, . . . , xi−1, xi+1, . . . , xn in R and 1 ≤ i ≤ n.
Then

SG(Q) ≥ s + h− h̄.

Proof. By Proposition 1.3 and (1.9) of Section 1, it is enough to show that

∫

(Lf)2dQ =

∫
( n

∑

i,j=1

(∂ijf)2 + 〈Hess (U)∇f,∇f〉
)

dQ ≥
(

s + h− h̄
)

∫

|∇f |2dQ

where we recall that U(x) =
∑n

i=1 u(xi) + H(x). For a smooth function f on R
n,

n
∑

i,j=1

(∂ijf)2+〈Hess (U)∇f,∇f〉

=
n

∑

i,j=1

(∂ijf)2 +
n

∑

i=1

u′′(xi)(∂if)2 + 〈Hess (H)∇f,∇f〉

≥
n

∑

i=1

(∂iif)2 +
n

∑

i=1

u′′(xi)(∂if)2 + h|∇f |2.



Now, for every i = 1, . . . , n,
∫

[

(∂iif)2 + u′′(xi)(∂if)2
]

dQ

≥
∫

[

(∂iif)2 +
(

u′′(xi) + ∂iiH
)

(∂if)2
]

dQ− h̄

∫

(∂if)2dQ

=

∫
(

∫

[

(∂iif)2 +
(

u′′(xi) + ∂iiH
)

(∂if)2
]

dQx1,...,xi−1,xi+1,...,xn

)

dQ

− h̄

∫

(∂if)2dQ.

The one-dimensional measure Qx1,...,xi−1,xi+1,...,xn has a spectral gap bounded below
by s. By Proposition 1.3, it thus also satisfy the corresponding integral criterion (1.9)
with κ = s. Now, the definition of Qx1,...,xi−1,xi+1,...,xn shows that

dQx1,...,xi−1,xi+1,...,xn(xi) =
1

zZx1,...,xi−1,xi+1,...,xn
e−u(xi)−H(x)dxi (3.2)

so that (1.9) applied to Qx1,...,xi−1,xi+1,...,xn yields that
∫

[

(∂iif)2 +
(

u′′(xi) + ∂iiH
)

(∂if)2
]

dQx1,...,xi−1,xi+1,...,xn

≥ s

∫

(∂if)2dQx1,...,xi−1,xi+1,...,xn .

Proposition 3.1 is established.

Proposition 2.1 may be used in the same way to produce correlation bounds. If
D is an invertible n× n diagonal matrix, let hD ∈ R be such that

D Hess (H)D−1 ≥ hD Id.

Together with Proposition 2.1 and (2.2), note that

n
∑

i,j=1

d2
i (∂ijf)2+

n
∑

i,j=1

d2
i ∂ijU∂if∂if

=
n

∑

i,j=1

d2
i (∂ijf)2 +

n
∑

i=1

d2
i u

′′(xi)(∂if)2 +
n

∑

i,j=1

d2
i ∂ijH∂if∂if

≥
n

∑

i=1

d2
i

[

(∂iif)2 + u′′(xi)(∂if)2
]

+ hD
n

∑

i=1

d2
i (∂if)2.

One then argue as in the proof of Proposition 3.1 to conclude to the following result
of B. Helffer [He2].

Proposition 3.2. In the notation of Proposition 3.1, for every smooth functions
f, g on R

n,

(s + hD − h̄) CorQ(f, g) ≤
(

∫

|D−1∇f |2dQ

)1/2( ∫

|D∇g|2dQ

)1/2

.



Note that Proposition 3.2 includes the case f = g of Proposition 3.1 with optimal
constant. A similar result holds with hD−1

.

Typical applications of Propositions 3.1 and 3.2 are the following. Assume for
example that

H(x) = 〈Ax, x〉+ 〈B, x〉
where A is an n×n matrix with zero diagonal and B ∈ R

n. Then Hess(H) = A+ tA
so that h is the infimum of the eigenvalues of the symmetric matrix A + tA while
∂iiH = 0 for every i. Furthermore s = infθ∈R SG(µθ) where, for every θ ∈ R,

dµθ(x) =
1

zθ
eθxdµ(x).

In another direction, assume that u is strictly convex at infinity, that is u = v+w,
for some c > 0, u′′(x) ≥ c uniformly in x and ‖w‖∞ < ∞. Provided that for some
c′′ < c,

∂iiH(x) ≥ −c′′ (3.3)

for every x ∈ R
n and i = 1, . . . , n, then

s ≥ (c− c′′) e−4‖w‖∞. (3.4)

Indeed, by (3.2), along the i-th coordinate,

u(xi) + H(x) = v(xi) + H(x) + w(xi)

with v′′(xi) + ∂iiH(x) ≥ c − c′′ > 0 and ‖w‖∞ < ∞. The claim thus follows from
(1.13). In particular, if max1≤i≤n ‖∂iiH‖∞ ≤ c′′ < c,

SG(Q) ≥ s + h− h̄ ≥ (c− c′′) e−4‖w‖∞ + h− c′′.

Some examples with non-convex phase have been constructed recently by I.
Gentil and C. Roberto [G-R] using perturbations via Hardy inequalities.

4. Marginal distributions

Due to example (1.11), we cannot hope for Proposition 3.1 to hold similarly
for logarithmic Sobolev inequalities. We thus have to turn back to the induction
method for product measures. In particular, we need to apply a logarithmic Sobolev
inequality at each step. To this task, we describe following [B-H1] the marginals of
our probability measure Q. It will be enough to consider one-dimensional marginals.

Let Q be as defined by (3.1). Denote by Qi its marginals on the i-th coordinate,
i = 1, . . . , n. Qi is a probability measure on R with density e−Hi with respect to
Lebesgue measure given by Hi(xi) = u(xi)−Ki(xi) where

Ki(xi) = log

(

1

zZ

∫

e−H(x)
∏

j 6=i

dµ(xj)

)

, xi ∈ R.



In order to show that Qi satisfies a Poincaré or logarithmic Sobolev inequality, we
will use the convexity criteria on Hi developed in Section 1. To this task, let us
describe the second derivative of Hi. Denote by Qxi the probability Q conditionally
on xi. It is easy to check that

K ′′
i (xi) = VarQxi (∂iH)−

∫

∂iiHdQxi . (4.1)

By the definition of the spectral gap,

SG(Qxi) VarQxi (∂iH) ≤
∫

|∇∂iH|2dQxi (4.2)

where the gradient ∇ is acting on the coordinates x1, . . . , xi−1, xi+1, . . . , xn.

In order to make use of (4.2), we follow the observation of [B-H1] by imposing
convexity condition on the one-dimensional phase measure µ. Assume namely that
u is strictly convex at infinity, that is, for some c > 0, u = v + w with v′′ ≥ c > 0,
‖w‖∞ < ∞. Assume furthermore that for some c′, c′′, c′ + c′′ < c,

∫

|∇∂iH|2dQxi ≤ c′ SG(Qxi) and

∫

∂iiHdQxi ≥ −c′′

uniformly in xi ∈ R. Then, provided that SG(Qxi) > 0, Hi = (v −Ki) + w where,
by (4.1) and (4.2),

(v −Ki)
′′(xi) ≥ c− c′ − c′′.

Hence, by (1.13), LS(Qi) ≥ (c− c′ − c′′) e−4‖w‖∞ .

We may summarize these conclusions in the following statement.

Proposition 4.1. Assume that u is convex at infinity, that is u = v + w,
v′′ ≥ c > 0, ‖w‖∞ < ∞. If for some c′, c′′, c′ + c′′ < c,

∫

|∇∂iH|2dQxi ≤ c′ SG(Qxi) and

∫

∂iiHdQxi ≥ −c′′ (4.3)

uniformly in xi ∈ R, i = 1, . . . , n, the one-dimensional marginal Qi of Q has density
e−Hi with respect to Lebesgue measure on R where Hi = vi+w, v′′i ≥ c−c′−c′′ > 0,
‖w‖∞ < ∞. In particular, SG(Qi) ≥ LS(Qi) ≥ (c− c′ − c′′) e−4‖w‖∞.

In the setting of Proposition 4.1, we may apply furthermore Proposition 2.2 to
the marginals Qi. Assume thus that (4.3) of Proposition 4.1 holds. We write below
f = f(xi) to indicate that a smooth function f is actually a one-variable function
only depending on the i-th coordinate, i = 1, . . . , n. Let f = f(xi) and g be smooth
functions on R

n. To apply Proposition 2.2, observe first that

CorQ(f, g) = CorQi
(f, G)

where G(xi) =
∫

gdQxi (conditional expectation under Q of g given xi). We thus
deduce from Proposition 2.2 that for some constant C > 0 only depending on
c− c′ − c′′ > 0 and ‖w‖∞ < ∞,

CorQ(f2, g) ≤ 2C ‖G′‖∞
(

∫

f2dQ

)1/2( ∫

f ′
2
dQ

)1/2

. (4.4)



In the following, we will show that ‖G′‖∞ can be made small in several instances.
To that purpose, note that

G′(xi) =

∫

∂igdQxi − CorQxi (g, ∂iH) (4.5)

and G(xi) = g(xi) if g = g(xi). If g does not depend on xi, we will see below how
the L2 bounds of Proposition 3.2 on the correlations CorQxi (g, ∂iH) will ensure that
‖G′‖∞ is small as a function of the distance between the supports of f and g.

5. Logarithmic Sobolev inequalities

In this section, we investigate the logarithmic Sobolev inequality with the pre-
ceding tools. Consider the probability measure Q of (3.1) defined by dQ = 1

Z e−Hdµn.
We follow in a natural way the proof of Lemma 1.1 and perform a Markov tensoriza-
tion (the so-called martingale method [L-Y]).

Given a smooth function f on R
n, define, for k = 1, . . . , n, fk on R

k as the
square root of the conditional expectation of f 2 given x1, . . . , xk under the law Q.
Since f2

n = f2 and f2
0 =

∫

f2dQ,

EntQ(f2) =
n

∑

k=1

[
∫

f2
k log f2

kdQ−
∫

f2
k−1 log f2

k−1dQ

]

.

Now, f2
k−1 is also the conditional expectation of f 2

k given x1, . . . , xk−1 so that it
may be represented as

f2
k−1(x1, . . . , xk−1) =

∫

f2
k (x1, . . . , xk)dQx1...,xk−1(xk, . . . , xn) (5.1)

where we recall that Qx1,...,xk−1 is the conditional distribution given x1, . . . , xk−1.
Therefore,

EntQ(f2) =

n
∑

k=1

∫

EntQx1,...,xk−1 (f2
k )dQ.

Furthermore, since f2
k is a function of x1, . . . , xk, and since Qx1,...,xk−1 is a measure

of the variables xk, . . . , xn,

EntQx1,...,xk−1 (f2
k ) = Ent

Q
x1,...,xk−1

k

(f2
k )

where Q
x1,...,xk−1

k is the first marginal of Qx1,...,xk−1 (marginal in the xk coordinate).

Let u on R be strictly convex at infinity, u = v + w, v′′ ≥ c > 0, ‖w‖∞ <
∞. Assume that each one-dimensional marginal Q

x1,...,xk−1

k satisfy a logarithmic
Sobolev inequality with constant ρ > 0 uniform in x1, . . . , xk−1 and k = 1, . . . , n.
By Proposition 4.1, this is ensured in particular if, for some c′, c′′, c′ + c′′ < c,

∫

|∇∂kH|2dQx1,...,xk ≤ c′ SG(Qx1,...,xk) and

∫

∂kkHdQx1,...,xk ≥ −c′′ (5.2)



uniformly over x1, . . . , xk−1 and k = 1, . . . , n, with ρ = (c − c′ − c′′) e−4‖w‖∞ . In
(5.2), the gradient ∇ is a priori acting on the coordinates xk+1, . . . , xn. In this case
therefore,

ρ EntQ(f2) ≤ 2
n

∑

k=1

∫

|∂kfk|2dQ. (5.3)

In the next step, we evaluate the partial derivatives ∂kfk. As a substitute to
(1.5), we now have, for every 1 ≤ k ≤ ` < n,

2f`∂kf` = ∂kf2
` =

∫

2f`+1∂kf`+1dQx1,...,x` − CorQx1,...,x`

(

f2
`+1, ∂kH

)

. (5.4)

This formula displays the importance of correlation bounds to investigate logarith-
mic Sobolev inequalities.

Next, we control the correlation terms in (5.4) together with (4.4) above. Under
(5.2), we may apply (4.4) to each Qx1,...,x` to see that, uniformly in x1, . . . , x`,

∣

∣CorQx1,...,x`

(

f2
`+1, ∂kH

)
∣

∣ ≤ 2C · Ck,`+1f`

(
∫

|∂`+1f`+1|2dQx1,...,x`

)1/2

(5.5)

(recall f2
` =

∫

f2
`+1dQx1,...,x`) where, by (4.5), for 1 ≤ k ≤ ` < n,

Ck,`+1 = ‖∂`+1,kH‖∞ +
∣

∣ sup
x1,...,x`+1

CorQx1,...,x`+1 (∂kH, ∂`+1H)
∣

∣. (5.6)

Now, by (5.4) and (5.5),

|f`∂kf`| ≤
∫

|f`+1∂kf`+1|dQx1,...,x` + C · Ck,`+1f`

(
∫

|∂`+1f`+1|2dQx1,...,x`

)1/2

.

Since again f2
` =

∫

f2
`+1dQx1,...,x` , we get from the Cauchy-Schwarz inequality that

|∂kf`| ≤
(

∫

|∂kf`+1|2dQx1,...,x`

)1/2

+ C · Ck,`+1

(
∫

|∂`+1f`+1|2dQx1,...,x`

)1/2

.

By the triangle inequality in L2 and the composition of conditional expectations, it
follows by iteration that, for every 1 ≤ k < n,

|∂kfk| ≤
(

∫

|∂kf |2dQx1,...,xk

)1/2

+ C
n−1
∑

`=k

Ck,`+1

(
∫

|∂`+1f`+1|2dQx1,...,xk

)1/2

.

Hence (since (a + b)2 ≤ 2a2 + 2b2 and f2
n = f2),

n
∑

k=1

∫

|∂kfk|2dQ

≤ 2

n
∑

k=1

∫

|∂kf |2dQ + 2C2
n

∑

k=1

∫
( n−1

∑

`=k

Ck,`+1

(
∫

|∂`+1f`+1|2dQx1,...,xk

)1/2)2

dQ

≤ 2

n
∑

k=1

∫

|∂kf |2dQ + 2C2
n

∑

k=1

n−1
∑

j=k

Ck,j+1

n−1
∑

`=k

Ck,`+1

∫

|∂`+1f`+1|2dQ



where we used the Cauchy-Schwarz inequality. Now,

n
∑

k=1

n−1
∑

j=k

Ck,j+1

n−1
∑

`=k

Ck,`+1

∫

|∂`+1f`+1|2dQ

=
n−1
∑

`=1

(

∑̀

k=1

n−1
∑

j=k

Ck,j+1Ck,`+1

)
∫

|∂`+1f`+1|2dQ.

Provided that

max
`

∑̀

k=1

n−1
∑

j=k

Ck,j+1Ck,`+1 ≤
1

4C2
(5.7)

(where C > 0 is the constant of (4.4)), it follows that

n
∑

k=1

∫

|∂kfk|2dQ ≤ 4

n
∑

k=1

∫

|∂kf |2dQ.

Hence, under (5.7) and together with (5.3), the logarithmic Sobolev inequality for
Q holds, with a constant only depending on ρ.

Proposition 5.1. Assume that, for some c′, c′′, c′ + c′′ < c,

∫

|∇∂kH|2dQx1,...,xk ≤ c′ SG(Qx1,...,xk) and

∫

∂kkHdQx1,...,xk ≥ −c′′

uniformly over x1, . . . , xk and k = 1, . . . , n and that the coefficients Ck,`+1 of (5.6)
satisfy (5.7). Then, for every smooth function f on R

n,

ρ

4
EntQ(f2) ≤ 2

∫

|∇f |2dQ

with ρ = (c− c′ − c′′) e−4‖w‖∞. In other words, LS(Q) ≥ 1
4 (c− c′ − c′′) e−4‖w‖∞ .

It will be the purpose of the next section to describe models and conditions
under which the hypotheses of Proposition 5.1 may be seen to be easily satisfied.

6. Logarithmic Sobolev inequalities for spin systems

We illustrate in this section the preceding general conclusions in the context
of unbounded spin systems with nearest neighbors interaction. We develop here
the tools to check the conditions in Propositions 3.1 and 5.1 for these specific spin
systems. For a finite subset Λ in Z

d, d ≥ 1, denote by µΛ the product measure of

µ on R
Λ. Given the boundary condition ω ∈ R

Z
d

, consider the probability measure
dQ = dQΛ,ω = 1

Z e−HdµΛ on R
Λ with Hamiltonian

H(x) = HΛ,ω(x) =
∑

{p,q}∩Λ6=∅,p∼q

Jpq(xp, xq), x = (xp)p∈Λ ∈ R
Λ. (6.1)



In (6.1), the summation is taken on couple (p, q) = (q, p) of nearest neighbors p ∼ q
in Z

d, and when p /∈ Λ, xp = ωp. The functions Jpq, p, q ∈ Z
d, are symmetric

smooth functions on R
2. The typical choices for Jpq are Jpq(x, y) = Jxy (cf. [Yo1])

or Jpq(x, y) = V (x− y) (cf. [He2], [B-H1]).

We assume that the single spin phase µ has a density that is strictly convex at
infinity, that is dµ(x) = 1

z e−u(x)dx where u = v + w, v′′ ≥ c > 0 and w is bounded.
The typical assumption on the functions Jpq in the definition (6.1) will concern the
quantity

J = sup
p,q

(

‖∂11Jpq‖∞ + ‖∂12Jpq‖∞
)

. (6.2)

We will only be concerned with the perturbative regime where the coupling param-
eter J is small enough.

Since u is convex at infinity, U(x) =
∑

r∈Λ u(xr)+H(x), x = (xr)r∈Λ, is convex

at infinity on R
Λ as soon as J is small enough. In particular, Z =

∫

e−HdµΛ < ∞
for every Λ and boundary condition ω. Furthermore, by Corollary 1.7, SG(Qλ,ω) ≥
LS(Qλ,ω) > 0 with bounds however depending on (the size of) Λ and ω. It is the
purpose of this section to show that these can actually be made uniform.

We now check on this model the various conditions required in order to apply
the conclusions of the preceding sections. The various details might look tedious, but

are straightforward. Fix Λ ⊂ Z
d and ω ∈ R

Z
d

and write sometimes for simplicity Q
instead of QΛ,ω. Conditional distributions of Q = QΛ,ω are of the same form QΛ′,ω′

for some Λ′ ⊂ Λ ⊂ Z
d and ω′ ∈ R

Z
d

.

We start with the spectral gap and the bounds h and h̄ on Hess (H) and ∂iiH
of Proposition 3.1 where H = HΛ,ω is defined by (6.1). For r, r′ ∈ Λ,

∂rrH =
∑

p∼r

∂11Jrp

while when r 6= r′,
∂rr′H = ∂12Jrr′

if r ∼ r′ and ∂rr′H = 0 if not. In particular,

max
r∈Λ

‖∂rrH‖∞ ≤ 2dJ. (6.3)

Similarly, for α = (αr)r∈Λ ∈ R
Λ,

〈Hess (H)α, α〉 =
∑

r

∂rrH α2
r +

∑

r∼r′

∂rr′H αrαr′

≥ −max
a∈Λ

‖∂aaH‖∞
∑

r

α2
r − max

a,b∈Λ
‖∂abH‖∞

∑

r∼r′

|αr||αr′ |

≥ −2dJ |α|2.

(6.4)

Hence, together with (3.3) and (3.4), s ≥ (c− 2dJ) e−4‖w‖∞ and

s + h− h̄ ≥ (c− 2dJ) e−4‖w‖∞ − 4dJ.



As a consequence of Proposition 3.1, we may already state for this example the
following result of B. Helffer [He2]. It produces uniform spectral gaps in the pertur-
bative regime (J small).

Proposition 6.1. For every finite subset Λ ⊂ Z
d and every boundary condition

ω ∈ R
Z

d

,
SG(QΛ,ω) ≥ (c− 2dJ) e−4‖w‖∞ − 4dJ.

In particular, there exist J0 > 0 and λ > 0 small enough, only depending on d ≥ 1,
c > 0 and ‖w‖∞ < ∞, such that for every finite subset Λ ⊂ Z

d, every boundary

condition ω ∈ R
Z

d

, and every |J | ≤ J0,

SG(QΛ,ω) ≥ λ.

In other words, the spectral gap inequality holds for the measures QΛ,ω uniformly

over finite subsets Λ ⊂ Z
d and boundary conditions ω ∈ R

Z
d

provided J is small
enough.

Now, we aim to use Proposition 3.2 to deduce some L2 correlation inequalities
that will be of help later on. Again, fix Λ and ω and write Q = QΛ,ω. Let p, q ∈ Λ,
and denote by d(p, q) the graph distance between p and q on Z

d. Recall we write
f = f(xp), p ∈ Λ, to express that a smooth function f on R

Λ is actually a one-
variable function only depending on the coordinate xp. Let then f = f(xp) and
g = g(xq). Choose the diagonal matrix D in Proposition 3.2 with (dr)r∈Λ given by

dr = ed(p,r). Other choices are clearly possible at this stage, and might be helpful to
carefully follow the various constants involved into the problem. (What is actually

needed right now is a function σ of the distance such that supa>0 |σ(a+1)
σ(a) | < ∞.)

We however only consider this one for more simplicity. Then,

∫

|D∇f |2dQ =

∫

f ′
2
dQ

while
∫

|D−1∇g|2dQ = e−2d(p,q)

∫

g′
2
dQ.

One has now to control hD of Proposition 3.2 for this choice of D. But, for every
α = (αr)r∈Λ ∈ R

Λ, it is easily seen as in (6.4) that

∑

r,r′∈Λ

drd
−1
r′ ∂rr′H αrαr′ =

∑

r

∂rrH α2
r +

∑

r∼r′

ed(p,r)e−d(p,r′)∂rr′H αrαr′

≥ −max
a∈Λ

‖∂aaH‖∞
∑

r

α2
r − e max

a,b∈Λ
‖∂abH‖∞

∑

r∼r′

|αr||αr′ |

≥ −2deJ |α|2.

Therefore, if J is small enough,

s + hD − h̄ ≥ (c− 2dJ) e−4‖w‖∞ − 2d(1 + e)J > 0.



As a consequence of Proposition 3.2, we may therefore state for this example the
following result of B. Helffer [He2] on correlations bounds.

Proposition 6.2. If

(c− 2dJ) e−4‖w‖∞ − 2d(1 + e)J ≥ θ > 0,

for every finite subset Λ ⊂ Z
d, every boundary condition ω ∈ R

Z
d

, and every smooth
functions f and g on R

Λ, f = f(xp), g = g(xq), p, q ∈ Λ,

CorQΛ,ω (f, g) ≤ θ−1 e−d(p,q)

(
∫

f ′
2
dQΛ,ω

)1/2( ∫

g′
2
dQΛ,ω

)1/2

.

In particular,

CorQΛ,ω(f, g) ≤ θ−1 e−d(p,q)‖f ′‖∞‖g′‖∞.

This result may be stated more generally as in [He2] and [B-H1] (see also ([B-
H2]) for functions with arbitrary disjoints supports. We will not use this extension
below.

Finally, we investigate the logarithmic Sobolev inequality for these spin systems
through Propositions 5.1. Fix Q = QΛ,ω. Recall that since the conditional distri-
butions of Q are given by some QΛ′,ω′ , Propositions 6.1 and 6.2 apply to all the
conditional distributions of Q with the same uniform bounds. Let J0 > 0 be small
enough so that both Proposition 6.1, for some λ > 0, and Proposition 6.2, for some
θ > 0, hold for every |J | ≤ J0. If r ∈ Λ and if ∇ is the gradient acting on R

Λ\{r},
then

|∇∂rH|2 =
∑

r′∼r

|∂rr′H|2 ≤ 2dJ2.

Recall also (6.3). Therefore, assuming that for some c′, c′′ with c′+c′′ < c, J is small
enough so that

2d J2 ≤ c′λ and 2dJ ≤ c′′, (6.5)

the first hypothesis in Proposition 5.1 is clearly satisfied.

We turn to the control of the coefficients Ck,`+1 of (5.6). Given Q = QΛ,ω, it is

necessary to fix an enumeration i = 1, . . . , n of a finite subset Λ of Z
d with cardinal

n. To distinguish between points of the lattice and elements in the enumeration,
we use the letters p, q, r, . . . for the first ones, and k, `, . . . for the latter ones. By
Proposition 6.2 applied to Qx1,...,x`+1 , for 1 ≤ k ≤ ` < n, and the definition of J ,

∣

∣CorQx1,...,x`+1 (∂kH, ∂`+1H)
∣

∣ ≤
∑

r∼k

∑

r′∼`+1

∣

∣CorQx1,...,x`+1 (∂1Jkr, ∂1J`+1,r′)
∣

∣

≤
∑

r∼k

∑

r′∼`+1

J2θ−1 e−d(r,r′)

≤ (2deJ)2θ−1 e−d(`+1,k).



Therefore, for 1 ≤ k ≤ ` < n, together with ‖∂`+1,kH‖∞ ≤ J if ` + 1 ∼ k and 0
otherwise,

Ck,`+1 ≤
(

eJ + (2deJ)2θ−1
)

e−d(`+1,k).

It is then a simple matter to check that condition (5.7) will be fulfilled for every J
small enough. Setting, for fixed k (in Λ), Im = {r ∈ Z

d; d(k, r) = m},

n−1
∑

j=k

e−d(j+1,k) =

∞
∑

m=0

e−m
n−1
∑

j=k

1{j+1∈Im} ≤
∞
∑

m=0

e−mCard (Im).

Therefore, for every k,

n−1
∑

j=k

e−d(j+1,k) ≤
∞
∑

m=0

2d (m + 1)d−1e−m < ∞.

Similarly, for every `,

∑̀

k=1

e−d(`+1,k) ≤
∞
∑

m=0

2d (m + 1)d−1e−m < ∞.

One deduces that

max
`

∑̀

k=1

n−1
∑

j=k

Ck,j+1Ck,`+1 ≤ M = M(J) (6.6)

where M(J) only depends on d, λ and J . Furthermore, M(J) → 0 as J → 0.

To conclude, recall first J0 > 0 and λ, θ > 0 have been chosen small enough so
that Propositions 6.1 and 6.2 hold uniformly in Λ, ω and |J | ≤ J0. For c′ + c′′ < c,
choose further J0 small enough such that (6.5) holds and such that in (6.6) M(J) ≤

1
4C2 for every |J | ≤ J0. Hence (5.7) is satisfied and Proposition 5.1 applies. We may
thus conclude in this way to the main result of the works [Ze1], [Yo1], [He2], [B-H1],
in the form presented in [B-H1], in the perturbative regime.

Theorem 6.3. Let u be convex at infinity, u = v + w with v′′ ≥ c > 0,
‖w‖∞ < ∞. There exist J0 > 0 and ρ > 0 small enough, only depending on d ≥ 1,

c > 0 and ‖w‖∞ < ∞, such that for every finite subset Λ ⊂ Z
d, every boundary

condition ω ∈ R
Z

d

, and every |J | ≤ J0,

LS(QΛ,ω) ≥ ρ.

In other words, the logarithmic Sobolev inequality holds for the measures QΛ,ω

uniformly over finite subsets Λ ⊂ Z
d and boundary conditions ω ∈ R

Z
d

provided J
is small enough.

We conclude by a brief discussion of possible extensions and generalizations.
The preceding proof may be adapted to the compact (continuous) spin systems for



which it provides a more simple analysis. We may consider different measures on
each fibers, with uniform spectral gap and logarithmic Sobolev constants. Nearest
neighbor interactions may also clearly by extended to finite range interactions. The
proof presented above possibly allows infinite range of exponentially decreasing in-
teractions. In another direction, appropriate polynomial decay of the correlations
in Proposition 6.2 is actually sufficient to conclude (under the assumption that the
one-dimensional marginals QΛ,ω

r satisfy uniformly a logarithmic Sobolev inequality).

In the particular case of the dimension d = 1, it has been proved by B. Zegar-
linski [Ze1] that if the phase is super-convex (u′′ → ∞), and satisfies some techni-
cal assumption, then the spectral gap and the logarithmic Sobolev inequality hold
uniformly whatever the value of J . In the non-perturbative regime (J arbitrary),
N. Yoshida [Yo3] (see also [B-H2]), extending [S-Z3] in the compact case, showed
the formal equivalence between spectral gap, decay of correlations and logarithmic
Sobolev inequalities.

The scheme of proof of Theorem 6.3, together with the L1-bounds on the cor-
relations (2.5), may be used exactly in the same way to prove by induction the
isoperimetric inequality, in its functional form,

I
(∫

fdQΛ,ω
)

≤
∫

√

I2(f) + C|∇f |2 dQΛ,ω (6.7)

of [Bo1] and [Ba-L] for QΛ,ω. This inequality strengthens the logarithmic Sobolev
inequality. In (6.7), I is the Gaussian isoperimetric function defined as I = ϕ ◦ Φ
where Φ is the distribution function of the standard Gaussian distribution on R

and ϕ its density, and f is a smooth function with values in [0, 1]. Indeed, (6.7)
is stable by products as Poincaré and logarithmic Sobolev inequalities (cf. [Bo1],
[Ba-L]), and the Markov tensorization of Section 5 together with the L1 correlation
bounds apply similarly to yield the desired claim. However, since nearest neighbor
interactions produce a uniform lower bound (6.4) on Hess (H), one may also use at a
cheaper price Theorem 4.1 of [Ba-L] to deduce directly the isoperimetric inequality
from the logarithmic Sobolev inequality of Theorem 6.3. Inequality (6.7) for discrete
spin systems is considered in [Ze2], [Fo].

Acknowledgement. I am grateful to Th. Bodineau, B. Helffer and N. Yoshida
for helpful comments and to I. Gentil and C. Roberto for a careful reading of the
manuscript.
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