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How far can you go with the Cauchy-Schwarz
inequality and integration by parts?

To Leonard Gross



Preface

Semigroups of operators on a Banach space provide very general models and tools
in the analysis of time evolution phenomena and dynamical systems. They have a
long history in mathematics and have been studied in a number of settings, from
functional analysis and mathematical physics to probability theory, Riemannian ge-
ometry, Lie groups, analysis of algorithms, and elsewhere.

The part of semigroup theory investigated in this book deals with Markov dif-
fusion semigroups and their infinitesimal generators, which naturally arise as solu-
tions of stochastic differential equations and partial differential equations. As such,
the topic covers a large body of mathematics ranging from probability theory and
partial differential equations to functional analysis and differential geometry for op-
erators or processes on manifolds. Within these frameworks, research interests have
grown over the years, now encompassing a wide variety of questions such as reg-
ularity and smoothing properties of differential operators, Sobolev-type estimates,
heat kernel bounds, non-explosion properties, convergence to equilibrium, existence
and regularity of solutions of stochastic differential equations, martingale problems,
stochastic calculus of variations and so on.

This book is more precisely focused on the concrete interplay between the ana-
lytic, probabilistic and geometric aspects of Markov diffusion semigroups and gen-
erators involved in convergence to equilibrium, spectral bounds, functional inequal-
ities and various bounds on solutions of evolution equations linked to geometric
properties of the underlying structure.

One prototypical example at this interface is simply the standard heat semigroup
(Pt )t≥0 on the Euclidean space R

n whose Gaussian kernel

u = u(t, x) = pt(x) = 1

(4πt)n/2
e−|x|2/4t , t > 0, x ∈ R

n,

is a fundamental solution of the heat equation

∂tu = �u, u(0, x) = δ0,

for the standard Laplace operator �, thus characterized as the infinitesimal generator
of the semigroup (Pt )t≥0.

vii



viii Preface

From the probabilistic viewpoint, the family of kernels pt(x), t > 0, x ∈ R
n,

represents the transition probabilities of a standard Brownian motion (Bt )t≥0 as

E
(
f (x + B2t )

) =
∫

Rn

f (y)pt (x − y)dy = Ptf (x), t > 0, x ∈R
n,

for all bounded measurable functions f :Rn → R.
The third aspect investigated in this work is geometric, and perhaps less imme-

diately apparent than the analytic and probabilistic aspects. It aims to interpret, in
some sense, the commutation of derivation and action of the semigroup as a curva-
ture condition. For the standard Euclidean semigroup example above, the commu-
tation ∇Ptf = Pt (∇f ) will express a zero curvature, although this corresponds not
only to the curvature of Euclidean space as a Riemannian manifold but rather to the
curvature of Euclidean space equipped with the Lebesgue measure, invariant under
the heat flow (Pt )t≥0, and the bilinear operator �(f,g) = ∇f · ∇g.

In order to carry out the investigation along these lines, the exposition emphasizes
the basic structure of a Markov Triple1 (E,μ,�) consisting of a (measurable) state
space E, a carré du champ operator � and a measure μ invariant under the dynamics
induced by �. The notion of a carré du champ operator � associated with a Markov
semigroup (Pt )t≥0 with infinitesimal generator L given (on a suitable algebra A of
functions on E) by

�(f,g) = 1

2

[
L(fg) − f Lg − gLf

]
,

will be a central tool of investigation, the associated �-calculus providing, at least
at a formal level, a kind of algebraic framework encircling the relevant properties
and results.

These analytic, stochastic and geometric features form the basis of the investiga-
tion undertaken in this book, describing Markov semigroups via their infinitesimal
generators as solutions of second order differential operators and their probabilistic
representations as Markov processes, and analyzing them with respect to curvature
properties. The investigation is limited to symmetric (reversible in the Markovian
terminology) semigroups, although various ideas and techniques go beyond this
framework. We also restrict our attention to the diffusion setting, that is when the
carré du champ operator is a derivation operator in its two arguments, even in those
cases where the result could be extended to a more general setting. These restrictions
rule out many interesting fields of applications (discrete Markov chains, models of
statistical mechanics, most of the analysis of algorithms of interest in optimization
theory or approximations of partial differential equations, for example), but allow
us to concentrate on central features in the analysis of semigroups, in the same way
that ordinary differential equations are in general easier to handle than discrete se-
quences. Even within the field of symmetric diffusion semigroups, we have not tried

1The terminology “Markov triple” should not, of course, be confused with solutions of the Markov
Diophantine equation x2 + y2 + z2 = 3xyz!
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to cover all the possible interesting cases. In order to keep the monograph within a
reasonable size, we have had to omit, among other things, the specific analysis re-
lated to hypoelliptic diffusions, special features of diffusions on Lie groups, and
many interesting developments arising from infinite interacting particle systems.

In addition, although we have largely been motivated by the analysis of the be-
havior of diffusion processes (that is, solutions of time homogeneous stochastic dif-
ferential equations), rather than concentrating on the probabilistic aspects of the
subject, such as almost sure convergence of functionals of the trajectories of the un-
derlying Markov processes, recurrence or transience, we instead chose to translate
most of the features of interest into functional analytic properties of the Markov
structure (E,μ,�) under investigation.

Heat kernel bounds, functional inequalities and their applications to convergence
to equilibrium and geometric features of Markov operators are among the main
topics of interest developed in this monograph. A particular emphasis is placed on
families of inequalities relating, on a Markov Triple (E,μ,�), functionals of func-
tions f : E → R to the energy induced by the invariant measure μ and the carré du
champ operator �,

E(f,f ) =
∫

E

�(f,f )dμ.

Typical functionals are the variance, entropy or Lp-norms leading to the main func-
tional inequalities of interest, the Poincaré or spectral gap inequality, the logarithmic
Sobolev inequality and the Sobolev inequality. A particular goal is to establish such
families of inequalities under suitable curvature conditions which may be described
by the carré du champ operator � and its iterated �2 operator.

Similar inequalities are investigated at the level of the underlying semigroup
(Pt )t≥0 for the heat kernel measures, comparing Pt (ϕ(f )) (for some ϕ : R → R)
to Pt(�(f,f )) or �(Ptf,Ptf ), which give rise to heat kernel bounds. With this
task in mind, we will develop the main powerful tool of heat flow monotonicity, or
semigroup interpolation, with numerous illustrative applications and strong intuitive
content. To illustrate the principle, as a wink towards what is to come, let us briefly
present here a heat flow proof of the classical Hölder inequality which is very much
in the spirit of this book. In particular, the reduction to a quadratic bound is typi-
cal of the arguments developed in this work. Let f,g be suitable (strictly) positive
functions on R

n and θ ∈ (0,1). For fixed t > 0, consider, at any point (omitted), the
interpolation

	(s) = Ps

(
eθ logPt−sf +(1−θ) logPt−sg

)
, s ∈ [0, t],

where (Pt )t≥0 is the standard heat semigroup on R
n as recalled above. Together

with the heat equation ∂sPs = �Ps = Ps �, the derivative in s of 	 is given by

	′(s) = Ps

(
�

(
eH

) − eH
[
θ e−F �

(
eF

) + (1 − θ)e−G�
(
eG

)])
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where F = logPt−sf , G = logPt−sg and H = θF + (1 − θ)G. Now by standard
calculus,

e−H �
(
eH

) − [
θ e−F �

(
eF

) + (1 − θ)e−G�
(
eG

)]

= |∇H |2 − θ |∇F |2 − (1 − θ)|∇G|2

which is negative by convexity of the square function. Hence 	(s), s ∈ [0, t], is
decreasing, and thus

	(t) = Pt

(
f θg1−θ

) ≤ (Ptf )θ (Ptg)1−θ = 	(0).

Normalizing by tn/2 and letting t tend to infinity yields Hölder’s inequality for the
Lebesgue measure. Actually, the same argument may be performed at the level of
a Markov semigroup with invariant finite discrete measure, thus yielding Hölder’s
inequality for arbitrary measures.

While functional inequalities and their related applications are an important focal
point, they also give us the opportunity to discuss a number of issues related to
examples and properties of Markov semigroups and operators. One objective of
this work is thus also to present the basic tools and ideas revolving around Markov
semigroups and to illustrate their usefulness in different contexts.

The monograph comprises three main parts.
The first part, covering Chaps. 1 to 3, presents some of the main features,

properties and examples of Markov diffusion semigroups and operators as con-
sidered in this work. In a somewhat informal but intuitive way, Chap. 1 intro-
duces Markov semigroups, their infinitesimal generators and associated Markov
processes, stochastic differential equations and diffusion semigroups. It also de-
scribes a few of the standard operations and techniques while working with semi-
groups. Chapter 2 develops in detail a number of central geometric models which
will serve as references for later developments, namely the heat semigroups and
Laplacians on the flat Euclidean space, the sphere and the hyperbolic space. Sturm-
Liouville operators on the line, and some of the most relevant examples (Ornstein-
Uhlenbeck, Laguerre and Jacobi), are also presented therein. On the basis of these
preliminary observations and examples, Chap. 3 then tries to describe a general
framework of investigation. While it would not be appropriate to try to cover in a
unique formal mould all the cases of interest, it is nevertheless useful to emphasize
the basic properties and tools in order to easily and suitably develop the �-calculus.
In particular, it is necessary to describe with some care the various classes and al-
gebras of functions that we shall be dealing with and to show their relevance in
the classical smooth settings. Note that while infinite-dimensional models would re-
quire further care in this abstract formalism, the methods and principles emphasized
throughout this work are similarly relevant for them. Taking the more classical pic-
ture as granted, Chap. 3 may be skipped at first reading (or limited to the summary
Sect. 3.4).

Part II, forming the core of the text, includes Chaps. 4 to 6 and covers the three
main functional inequalities of interest, Poincaré or spectral gap inequalities, loga-
rithmic Sobolev inequalities and Sobolev inequalities. For each family, some basic
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properties and tools are detailed, in tight connection with the reference examples of
Chap. 2 and their geometric properties. Stability, perturbation and comparison prop-
erties, characterization in dimension one, concentration bounds and convergence to
equilibrium are thus addressed for each family. The discussion then distinguishes
between inequalities for the heat kernel measures (local) and for the invariant mea-
sure (global) which are analyzed and established under curvature hypotheses. Chap-
ter 4 is thus devoted to Poincaré or spectral gap inequalities, closely related to
spectral decompositions. Chapter 5 deals with logarithmic Sobolev inequalities, em-
phasized as the natural substitute for classical Sobolev-type inequalities in infinite
dimension, and their equivalent hypercontractive smoothing properties. Sobolev in-
equalities form a main family of interest for which Chap. 6 provides a number of
equivalent descriptions (entropy-energy, Nash or Gagliardo-Nirenberg inequalities)
and associated heat kernel bounds. A significant proportion of this chapter is devoted
to the rich geometric content of Sobolev inequalities, their conformal invariance, and
the curvature-dimension conditions.

On the basis of the main functional inequalities of Part II, Part III, consisting of
Chaps. 7 to 9, addresses several variations, extensions and related topics of interest.
Chapter 7 deals with general families of functional inequalities, each of them hav-
ing their own interest and usefulness. The exposition mainly emphasizes entropy-
energy (on the model of logarithmic Sobolev inequalities) and Nash-type inequal-
ities. In addition, the tightness of functional inequalities is studied by employing
the tool of weak Poincaré inequalities. Chapter 8 is an equivalent description of the
various families of inequalities for functions presented so far in terms of sets and
capacities for which co-area formulas provide the suitable link. The second part of
this chapter is concerned with isoperimetric-type inequalities for which semigroup
tools again prove most useful. Chapter 9 briefly presents some of the recent impor-
tant developments in optimal transportation in connection with the semigroup and
�-calculus, including in particular a discussion of the relationships between func-
tional and transportation cost inequalities (in a smooth Riemannian setting).

The last part of the monograph consists of three appendices, on semigroups of
operators on a Banach space, elements of stochastic calculus and the basics of dif-
ferential and Riemannian geometry. At the interface between analysis, probability
and geometry, these appendices aim to possibly supplement the reader’s knowledge
depending on his own background. They are not strictly necessary for the compre-
hension of the core of the text, but may serve as a support for the more special-
ized parts. It should be mentioned, however, that the last two sections of the third
appendix on the basics of Riemannian geometry actually contain material on the
�-calculus (in a Riemannian context) which will be used in a critical way in some
parts of the book.

This book has been designed to be both an introduction to the subject, intended to
be accessible to non-specialists, and an exposition of both basic and more advanced
results of the theory of Markov diffusion semigroups and operators. Indeed we chose
to concentrate on those points where we felt that the techniques and ideas are central
and may be used in a wider context, even though we have not attempted to reach
the widest generality. Every chapter starts at a level which is elementary for the
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notions developed in it, but may evolve to more specialized topics which in general
may be skipped at first reading. It should be stressed that the level of exposition
throughout the book fairly non-uniform, sometimes putting emphasis on facts or
results which may appear as obvious or classical for some readers while developing
at the same time more sophisticated issues. This choice is motivated by our desire
to make the text accessible to readers with different backgrounds, and also by our
aim to provide tools and methods to access more difficult parts of the theory or to
be applied in different contexts. This delicate balance is not always reached but we
nevertheless hope that the chosen style of exposition is helpful.

The monograph is intended for students and researchers interested in the mod-
ern aspects of Markov diffusion semigroups and operators and their connections
with analytic functional inequalities, probabilistic convergence to equilibrium and
geometric curvature. Selected chapters may be used for advanced courses on the
topic. Readers who wish to get a flavor of Markov semigroups and their applica-
tions should concentrate on Part I (with the exception of Chap. 3) and Part II. Via
an appropriate selection of topics, Part III tries to synthesise the developments of
the last decade. The book demands from the reader only a reasonable knowledge
of basic functional analysis, measure theory and probability theory. It is also ex-
pected that it may be read in a non-linear way, although the various chapters are not
completely independent. The reader not familiar with the main themes (analysis,
probability and geometry) will find some of the basic material collected together in
the appendices.

Each Chapter is divided into Sections, often themselves divided in Sub-Sections.
Section 1.8 is the eighth section in Chap. 1. Theorem 4.6.2 indicates a theorem in
Chap. 4, Sect. 4.6, and (3.2.2) is a formula in Sect. 3.2. An item of a given chapter
is also referred to in other chapters by the page on which it appears. There are no
references to articles or books within the exposition of a given chapter. The Sections
“Notes and References” at the end of each chapter briefly describe some historical
developments with pointers to the literature. The references are far from exhaustive
and in fact are rather limited. There is no claim for completeness and we apologize
for omissions and errors. For books and monographs, we have tried to present the
references in historical order with respect to original editions (although the links
point toward the latest editions).

This book began its life in the form of lectures presented by the first author
at Saint-Louis du Sénégal in April 2009. He thanks the organizers of this school
for the opportunity to give this course and the participants for their interest. This
work presents results and developments which have emerged during the last three
decades. Over the years, we have benefited from the vision, expertise and help of a
number of friends and colleagues, among them M. Arnaudon, F. Barthe, W. Beck-
ner, S. Bobkov, F. Bolley, C. Borell, E. Carlen, G. Carron, P. Cattiaux, D. Chafaï,
D. Cordero-Erausquin, T. Coulhon, J. Demange, J. Dolbeault, K. D. Elworthy,
M. Émery, A. Farina, P. Fougères, N. Gozlan, L. Gross, A. Guillin, E. Hebey,
B. Helffer, A. Joulin, C. Léonard, X. D. Li, P. Maheux, F. Malrieu, L. Miclo, E. Mil-
man, B. Nazaret, V. H. Nguyen, Z.-M. Qian, M.-K. von Renesse, C. Roberto, M. de
la Salle, L. Saloff-Coste, K.-T. Sturm, C. Villani, F.-Y. Wang, L. Wu and B. Ze-
garliński. We wish to thank them for their helpful remarks and constant support.
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F. Bolley, S. Campese and C. Léonard went through parts of the manuscript at sev-
eral stages of the preparation, and we warmly thank them for all their corrections
and comments that helped to improve the exposition.

We sincerely thank the Springer Editors C. Byrne and M. Reizakis and the pro-
duction staff for a great editing process.

We apologize for all the errors, and invite the readers to report any remarks,
mistakes and misprints. A list of errata and comments will be maintained online.

Dominique Bakry
Ivan Gentil

Michel Ledoux

Lyon, Toulouse
June 2013



Basic Conventions

Here are some classical and basic conventions used throughout the book.
N is the set of integers {0,1,2, . . .}. The set of real numbers is denoted by R.

Functions (on some state space E) are always real-valued. Points in R are usually
denoted by x (if R is the underlying state space) or by r .

An element r ∈ R is positive if r ≥ 0, strictly positive if r > 0, negative if r ≤ 0
and strictly negative if r < 0. Moreover, R+ = [0,∞) is the set of positive real
numbers while (0,∞) denotes the set of strictly positive numbers. For r, s ∈ R,
r ∧ s = min(r, s) and r ∨ s = max(r, s). We agree that 0 log 0 = 0.

In the same way (and somewhat against the current), a positive (respectively
negative) function f (on E) is such that f (x) ≥ 0 (respectively f (x) ≤ 0) for every
x ∈ E. The function is strictly positive or strictly negative whenever the inequal-
ities are strict. Similarly, an increasing (respectively decreasing) function f on R

or some interval of R satisfies f (x) ≤ f (y) (respectively f (x) ≥ f (y)) for every
x ≤ y. The function f is said to be strictly increasing or strictly decreasing when-
ever the preceding inequalities are strict. A function is monotone if it is increasing
or decreasing.

Points in R
n are denoted by x = (x1, . . . , xn) = (xi)1≤i≤n (or sometimes

x = (x1, . . . , xn) = (xi)1≤i≤n depending on the geometric context). The scalar prod-

uct and Euclidean norm in R
n are given by

x · y =
n∑

i=1

xi yi, |x| = (x · x)1/2 =
( n∑

i=1

x2
i

)1/2

.

The notation | · | is used throughout to denote the Euclidean norm of vectors and of
tensors.

The constant function equal to 1 on a state space E is denoted by 1. If A ⊂ E,
1A is the characteristic or indicator function of A.

All measures on a measurable space (E,F) considered here are positive mea-
sures. Positive (measurable) functions on (E,F) may take the value +∞. If μ is a
(positive) measure on (E,F), and if f is a function on E which is integrable with
respect to μ, its integral with respect to μ is denoted by

∫
E

f dμ or
∫
E

f (x)dμ(x),

xv
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or sometimes as
∫
E

f (x)μ(dx). The Lebesgue measure on the Borel sets of Rn is
denoted by dx. If B is a Borel set in R

n, its Lebesgue measure is sometimes denoted
by voln(B).

The terminology “change of variables” is used in the broad sense of changing a
variable x into h(x) and a function f into ψ(f ). “Chain rule” is understood more
in an algebraic sense when h and ψ are polynomials.

The notations are supposed to be reasonably stable throughout the monograph.
Further definitions and conventions will be given in the text when they are needed.
A list of symbols and notations with the corresponding reference pages is given on
p. 523.
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