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(Communicated by Peter Li)

Abstract. We present a simple analytic proof of the inequality of P. Buser

showing the equivalence of the first eigenvalue of a compact Riemannian man-

ifold without boundary and Cheeger's isoperimetric constant under a lower

bound on the Ricci curvature. Our tools are the Li-Yau inequality and ideas of

Varopoulos in his functional approach to isoperimetric inequalities and heat ker-

nel estimates on groups and manifolds. The method is easily modified to yield

a logarithmic isoperimetric inequality involving the hypercontractivity constant

of the manifold.

1. BUSER'S INEQUALITY

Throughout this paper, M will denote a compact Riemannian manifold with-

out boundary of dimension « . We denote by p the normalised Riemannian

measure on M, by A the Laplace operator, and by Vf the gradient of a

smooth function f on M with Riemannian length |V/|.
The first nontrivial eigenvalue Xx of the Laplacian is characterised via the

min-max theorem by the Poincaré type inequality

Xxj f2dp< j\Vf\2dp

holding for all smooth functions f on M with j fdp = 0. Alternatively, by
the spectral theorem (or simply by differentiation),

(1) Ilfi/ll2<e-*"ll/ll2,       t>0,

for all / with J fdp = 0, where || • \\p is the Lp-norm (1 < p < oo) with
respect to p and where P, = etA, t > 0, is the heat semigroup on M.

In 1970, Cheeger [C] introduced an isoperimetric constant to bound below

the first eigenvalue Xx . Set

.a(dA)
« = inf

MA)

where the infimum runs over all open subsets A with p(A) < \ and smooth

boundary dA, and where  a(-)  denotes the  (n - 1)-dimensional measure.

Received by the editors October 14, 1992.
1991 Mathematics Subject Classification. Primary 58G11, 58G25, 53C99, 49Q15.

©1994 American Mathematical Society

0002-9939/94 $1.00+ $.25 per page

951



952 M. LEDOUX

Cheeger's result is that

h2
(2) Xx>^.

One simple argument to derive (2) may be sketched as follows (see [Y, GHL]).
First note that the definition of « together with the coarea formula [F, C] leads

to

(3) « /   min(p(g >s),l-p(g> s))ds< Í \Vg\dp

for every positive smooth g on M. Now, let / be a smooth function on M

and denote by m a median of f for p , i.e., p(f >m)>\ and p(f < m) > j.

Set /+ = max(/- m, 0), f~ = -min(f -m,0) so that /- m = f+ - f~ .
By the definition of the median, for every 5 > 0,

p((f+)2 >*)<{-    and    p((f-)2>s)<±.

Hence, (3) applied to g = (f+)2 and g = (f~)2 together with integration by

parts yields

hj\f-m\2dp = h J(f+)2 dp + h J(f-)2 dp
r-cX) |»00

= h       p((f+)2>s)ds + h       p((f~)2>s)ds
Jo Jo

< J\V(f+)2\dp + J\V(f-)2\dp.

By the Cauchy-Schwarz inequality, the right-hand side of this inequality is less

than
1/2  /  r \ V2

2^j\f-m\2dp}     (J\Vf\2dp

Therefore, for every median m of /,

,2

>L j\f-m\2dp<j\vf\2dp.

Since the mean ¡fdp minimises / \f - c\2 dp, c £ K, inequality (2) imme-
diately follows. If M has a boundary, then Cheeger's inequality still holds if

Xx is subject to the Neumann boundary condition.
Cheeger's inequality Xx > «2/4 proved extremely useful in finding geomet-

rical lower bounds on Xx via the isoperimetric constant « . It was therefore

an important observation by Buser [B] that this inequality is sharp in the sense

that Xx and « are actually equivalent, with constants depending only on the

dimension and the Ricci curvature of M. More precisely, Buser obtained the

following result.

Theorem 1. Let M be a compact Riemannian manifold without boundary whose

Ricci curvature is bounded below by - K, K > 0. Then

Xx <C(\fKh + h2),

where C > 0 is a constant which depends only on the dimension of M.

Proof of Theorem 1. While the proof of Buser is geometric, the aim of this paper

is to provide a simple analytic proof of this inequality using some semigroup
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techniques inspired from the work of Varopoulos [VI, V2] in his functional

approach to isoperimetric inequalities and heat kernel estimates on groups and
manifolds.

We present the basic idea of the proof first. Recall the heat semigroup

(Pt)t>o • We start from the Li-Yau inequality [LY]: for every / positive and
smooth, and every a > 1, t > 0, at each point of M,

(4) L^_^<^(1 + «
(Ptf)2 Ptf -   It  V      a-l.

We will use this inequality with simply, say, a = 2. Following [V2], this

inequality implies that, for every in > 0, 0 < t < to , and every / positive and
smooth,

(5) IIIvpjiiu^ii/iu,

where C = [3«(1 + Kt0)]x/2.

For the sake of completeness, we briefly recall below the proofs of (4) and (5),

but first, we would like to describe how inequality (5) may be used to establish
the theorem.

We assume in the following that K > 0. When K = 0, (4) actually holds
with a = 1 and (5) for every t > 0, so that the argument below is trivially

modified to this case. Let us choose therefore to = l/K in (5) (hence C =

(6n)x/2). Integrating (5) yields, by duality, for every / positive and smooth

and every 0 < t < l/K,

(6) ||/-Pí/||1<2Cyí|||V/|||1.

Indeed, for every g smooth with ||g||oo < 1>

/ g(f -Ptf) dp = - j' (| gAPsfdp) ds = J' (| VPsg • Vf dp) ds

< II |V/| ||, f || |VP,*| |U ds < 2CVt\\ \Vf\ ||,,
Jo

where we used (5) in the last step.   Now, we simply apply inequality (6) to

smooth functions approximating the characteristic function xa of an open set
A in M with smooth boundary dA . It yields , for every 0 < t < l/K,

2CVta(dA)>  f[l-Pl(XA)]dp+ i Pt(XA)dp
/^n Ja Jac

= 2 (p(A) - J P,(XA)dp) = 2 (p(A) - \\Pt¡2(xA)\\í) ■

Now, by (1),

(8)     \\P„2(Xa)\\1 = MA)2 + \\Pt/2(XA - P(A))\\22 < p(A)2 + e-l>'\\XA - MA)\\22

so that, with the preceding,

2Cy/ia(dA) > 2p(A)(l - p(A))(l - e~Xlt)

for every 0 < t < l/K. Therefore,

m *>^ sup (-j;-).
2C o<ki/í:
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The proof is complete.  Indeed, if A, > K, we can choose t = l/Xx in the

supremum of (9) to get

while if Xx < K, we simply take t = l/K and then

In any case,

Xx <4CVKh + l6C2h2

which is the result.
As announced, and for the sake of completeness, we briefly recall, to conclude

this proof, the steps (4) and (5) due, respectively, to Li and Yau [LY] and

Varopoulos [V2].
Our exposition of the Li-Yau inequality follows [D]. The starting point is the

Bochner formula (see [BGM, GHL]) which leads to the inequality

(10) ¿A(|Vg|2) - Vg • V(A*) > ~(Ag)2 - K\Vg\2

for all smooth functions g on M. Now, let / be positive and smooth and,

on M x [0, T], T > 0, set g = logP,/. We observe that

(11) Ag + \Vg\2 = gt,

where gt is differentiation with respect to time. By (10), it follows that

l(Ag)2 - 2K\Vg\2 < A(\Vg\2) - 2Vg ■ Vgt + 2Vg ■ V(\Vg\2)

= A(\Vg\2) - ^\Vg\2 + 2Vg ■ V(\Vg\2).

Multiply this inequality by t and set H = t\Vg\2 so that

t ^(Ag)2-2K\Vg\2 <AH-Ht + — + 2Vg-VH.

Now, if we let I = tgt, it is elementary from (11) that

AI-I, + - + 2Vg'VI = 0.

Therefore, if, for any real number a, we let G = H-al = i(|Vg)|2 -agt), we

have obtained that, on M x[0, T],

(12) l(Ag)2-2K\Vg\2 <AG-Gt + - + 2Vg-VG.

Let (x, t) be a point in M x [0, T] at which G takes its maximum value.

Assume first that G(x,t)>0. Then t > 0 and, at (x, t), VG = 0, AG<0,
Gt>0. Therefore, at (x, t), (12) yields

\(Ag)2<^ + 2K\Vg\2.« t¿
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Assume a > 1. Recall that Ag = gt - \Vg\2 and G = f(|Vg|2 - agt). Thus

<^ + 2K\Vg\2.

Multiply both sides of this inequality by a2t2 and set / = |Vg|2/G. Simplify-

ing by G then yields

-(1 + (a - l)tJ)2G < a2(l + 2Kt2J).

Hence, at (x, t),

«a2        l+2Kt2J «o2^ / Kt  \

-    2   ' [l + (a-l)tJ]2 -    2    V       a-l) '

This inequality also holds when G(x, t) < 0, and, recalling that g = log Ptf,

is exactly (4).
To deduce (5) from (4), let thus a = 2 and note that (4) implies that, for

every 0 < t < to and every / positive and smooth,

(APtf)-<n(l+Kto)\ptf,

where (•)" is the negative part. Since / APtfdp = 0 and ¡Ptfdp = Jfdp,

\\APtfh < ̂ ¿Hi/Ill

with C = «(1 + Kt0). By duality, for every / and t > 0,

||APJl|oo<^Vlloo.

Coming back to the Li-Yau inequality (4),

II |vp,/| ||L> < ̂ Hl/ll^o

which is (5).

The preceding proof of Theorem 1 extends to complete noncompact mani-

folds. Define the bottom of the spectrum Xx as the infimum of / |V/|2 dp/

J f2dp, where / runs over sufficiently smooth functions with compact sup-
port (assume the volume of M is infinite). Let « be as before but with the

additional condition that And A be compact. Since (4) and (5) hold similarly
in the noncompact case, one gets in the same way from (6), (7), and (8) that

for every open subset A such that A lid A is compact and all 0 < t < l/K,

2CVta(dA) > 2(p(A) - \\Pt/2(xA)\\22) > 2p(A)(l - e~^).

The proof is then completed in the same way. Since, as mentioned in [B], « <

\J(n - l)K in the noncompact case, the final result here is that Xx < C\[Kh ,

where C only depends on the dimension.

2. ON A LOGARITHMIC ISOPERIMETRIC INEQUALITY

It is a simple matter to modify the preceding approach by using other geomet-

ric invariants of M instead of the spectral gap Xx. One may use, as in [VI, V2,

2
n l)Vg\2+ata J at
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Co], Sobolev constants via heat kernel decays. One may also use the so-called

hypercontractivity constant po of the Laplace operator on M defined as the

least p > 0 such that whenever 1 < p < q < oo and ept > [(q - l)/(p - l)]1^2 ,

(13) \\Ptf\\q<\\f\\p

for every f on M (in Lp(p)). It is known [Rl] that on every compact Rieman-

nian manifold A, > po > 0, and that [Gr] (13) may be expressed equivalently

as a logarithmic Sobolev inequality

(14) Po

1 /9T

J f2 log l/l dp- I f2 dp log (I f2 dp)     \<J I V/l2 dp

for all smooth functions / on M.
Now, if we follow the proof of Theorem 1 and replace, in (7), (8), the spectral

estimate by the hypercontractivity inequality (13), we simply get that, for all

open subsets A of M with smooth boundary dA and for all 0 < t < l/K,

2CVta(dA) > 2(p(A) - ||P(/2(^)|li) > 2(p(A) - p(A)2^),

where p(t) = 1 + «?-*>' (and C = (12«)1/2). Set t0 = min(l//i", l/p0). Since
1 - e~x > x/2 for 0 < x < 1, it follows that for every 0 < t < t0 ,

(15)    CVta(dA) > p(A)(l - p(A)<>°''4) = p(A) -exp(-^ílog.  ]
4     °p(A)

Assume p(A) > 0. Choose then 0 < t < t0 such that

t -i
t = 4t0[ log

(108¡¿y)

provided p(A) is small enough so that p(A) < e 4 . For this value of t, (15)

reads as

^^2^o(1-^0'0^(10g¿))

1 / 1   \x/2

^4cPo^~oP(A)(log]im)

since poto< I ■
The preceding inequality holds for p(A) < e 4 . In general however, when

I
2

0 < p(A) < j , we can always apply (15) with t = to to get

a(dA) > 1J7=P(A) _exp(-^log2 - Í6C VOLVÍA),

so that, combined with the preceding, for every A with 0 < p(A) < j ,

a(dA)>^poVToP(A){lo%^j    .

Hence, we have established the following theorem.
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Theorem 2. Let M be a compact Riemannian manifold without boundary

whose Ricci curvature is bounded below by -K, K > 0. Then, if po denotes
the hypercontractivity constant of M, for every open subset A of M with
0 < p(A) < j and smooth boundary dA,

a(dA)>±min^,^)p(A)(log^)
1/2

where C only depends on the dimension of M.

While only of logarithmic type with respect to the results of [G, B-B-G], this

isoperimetric inequality, on the other hand, involves po rather than the diam-
eter of the manifold. The isoperimetric function in Theorem 2 is precisely (a
form of) the isoperimetric function in Gaussian space (cf. [L]). On the basis of
Theorem 2, one may thus conjecture some "infinite dimensional" extension of

the Lévy-Gromov isoperimetric inequality of [G] which would compare, inde-
pendently of the dimension, the isoperimetric property of a diffusion generator

(with positive curvature) to the Gaussian isoperimetric inequality. In the con-
text of Theorem 2, this would amount to snowing that the constant C may

actually be chosen independent of the dimension of the manifold. Going back
to the proof, we would need the constant in (6) or (5) to be independent of « .

Theorem 2 may actually be stated in an equivalent formulation close to

Buser's inequality. Define the logarithmic isoperimetric constant k of M as
the infimum of

a(dA)

p(A)(iogl^yi2

over all open subsets A with not more than half of the volume and smooth

boundary dA. Note that clearly « > k/2. One may compare k to po as in
Cheeger's inequality. Namely, let g be positive and smooth on M. Then, by

the coarea formula,

tjfrtf >S)(log^)"2<iS</|V^,

where So is such that p(g > in) < \ . Let now / be smooth with J f2dp= 1

and apply the preceding inequality to g = /2(log(3 + f2))x/2. After some

elementary, but tedious, computations, we get

j f2logCi + f2)dp<^j\Vf\2dp + a

for some numerical constant a > 0. For any function / on M, set

E(f) = j f2log\f\dp- j f2dplog(^j f2dp)     .

So far, we have obtained by homogeneity that, for some numerical constant a

(not necessarily the same at each occurrence) and every smooth function / on
M,

(16) E(f)<a(^J\Vf\2dp + jf2dp).
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This is not yet (14), and to get rid of the extra factor, we may use the spectral

gap Xx . Namely, by [DS, p. 246] or [R2], we know that for every /,

E(f)<E(f-Ifdp) + J\f-jfdp\2dp.

Hence, (16) applied to f - J fdp combined with this inequality yields

E(f)<~j\Vf\2dp + (a+l)j\f-ifdp\2dp

<-{ri+a-ir)J™2'»-
for every smooth / on M. Since h> k/2, and hence Xx >k2/l6,it follows

that po > k2/a for some numerical constant a > 0. This relation clarifies and

improves parts of [R2].

On the other hand, the content of Theorem 2 is that

Po<C(k\fK + k2),

where C only depends on the dimension.
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