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Abstract. — In these lectures, we present a triple description of
the concentration of measure phenomenon, geometric (through Brunn-
Minkoswki inequalities), measure-theoretic (through transportation cost
inequalities) and functional (through logarithmic Sobolev inequalities),
and investigate the relationships between these various viewpoints. Spe-
cial emphasis is put on optimal mass transportation and the dual hy-
percontractive bounds on solutions of Hamilton-Jacobi equations that
offer a unified treatment of these various aspects.

These notes survey recent developments around the concentration of measure
phenomenon through various descriptions, geometric, measure theoretic and functional.
These descriptions aim to analyze measure concentration for both product and (strictly)
log-concave measures, with a special emphasis on dimension free bounds. Inequalities
independent of the number of variables are indeed a key information in the study of a



number of models in probability theory and statistical mechanics, with a view towards
infinite dimensional analysis. To this task, we review the geometric tool of Brunn-
Minkowski inequalities, transportation cost inequalities, and functional logarithmic
Sobolev inequalities and semigroup methods. Connections are developed on the basis
of optimal mass transportation and dual hypercontractive bounds on solutions of
Hamilton-Jacobi equations, providing a synthetic view of these recent developments.
Results and methods are only outlined in the simplest and basic setting. References to
recent PDE extensions are briefly discussed in the last part of the notes. These notes
only collect a few basic results on the topics of these lectures, and only aim to give a
flavour of the subject. We refer to [Le], [B-G-L], [O-V1], [CE], [CE-G-H], [Vi]... for
further material, proofs and detailed references.

1. The concentration of measure phenomenon

The concentration of measure phenomenon was put forward in the early seventies
by V. Milman [Mi1], [Mi3] in the asymptotic geometry of Banach spaces and the
proof of the famous Dvoretzky theorem on spherical sections of convex bodies. Of
isoperimetric inspiration, it is of powerful interest in applications, in various areas
such as geometry, functional analysis and infinite dimensional integration, discrete
mathematics and complexity theory, and probability theory. General references, from
various viewpoints, are [Bal], [Grom], [Le], [MD], [Mi2], [Mi4], [M-S], [Sc], [St], [Ta1]...

1.1 Introduction

To introduce to the concept of measure concentration, we first briefly discuss a few
examples.

A first illustration is suggested by the example of the standard n-sphere Sn in
Rn+1 when dimension n is large. By a standard computation, uniform measure σn on
Sn is almost concentrated when the dimension n is large around the (every) equator.
Actually, the isoperimetric inequality on Sn expresses that spherical caps (geodesic
balls) minimize the boundary measure at fixed volume. In its integrated form, given a
Borel set A on Sn with the same measure as a spherical cap B, then for every r > 0,

σn(Ar) ≥ σn(Br)

where Ar = {x ∈ Sn; d(x,A) < r} is the (open) neighborhood of order r for the geodesic
distance on Sn. One main feature of concentration with respect to isoperimetry is to
analyze this inequality for the non-infinitesimal values of r > 0. The explicit evaluation
of the measure of spherical caps then implies that given any measurable set A with,
say, σn(A) ≥ 1

2 , for every r > 0,

σn(Ar) ≥ 1− e−(n−1)r2/2. (1.1)
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Therefore, almost all points on Sn are within (geodesic) distance 1√
n

from A which is
of particular interest when the dimension n is large. From a “tomographic” point of
view, the visual diameter of Sn (for σn) is of the order of 1√

n
as n → ∞ which is in

contrast with the diameter of Sn as metric space.

This example is a first, and main, instance of the concentration of measure
phenomenon for which nice patterns develop as the dimension is large. It furthermore
suggests the introduction of a concentration function in order to evaluate the decay in
(1.1). Setting

ασn(r) = sup
{
1− σn(Ar);A ⊂ Sn, σn(A) ≥ 1

2

}
, r > 0,

the bound (1.1) amounts to say that

ασn(r) ≤ e−(n−1)r2/2, r > 0. (1.2)

Note that r > 0 in (1.2) actually ranges up to the diameter π of Sn and that (1.2) is
thus mainly of interest when n is large.

By rescaling of the metric, the preceding results apply similarly to uniform measure
σnR on the n-sphere SnR of radius R > 0. In particular,

ασn
R
(r) ≤ e−(n−1)r2/2R2

, r > 0. (1.3)

Properly normalized, uniform measures on high dimensional spheres approximate
Gaussian distributions. More precisely, the measures σn√

n
converge when n tends

to infinity to the canonical Gaussian measure on RN. The isoperimetric inequality
on spheres may then be transferred to an isoperimetric inequality for Gaussian
measures. Precisely, if γ = γk is the canonical Gaussian measure on Rk with density
(2π)−k/2e−|x|

2/2 with respect to Lebesgue measure, and if A is a Borel set in Rk with
γ(A) = Φ(a) for some a ∈ [−∞,+∞] where Φ(t) = (2π)−1/2

∫ t
−∞ e−x

2/2dx is the
distribution function of the standard normal distribution on the line, then for every
r > 0,

γ(Ar) ≥ Φ(a+ r).

Here Ar denotes the r-neigborhood of A with respect to the standard Euclidean metric
on Rk. Throughout these notes, Rk (or subsets of Rk) will be equipped here with
the standard Euclidean structure and the metric |x − y|, x, y ∈ Rk, induced by the
norm |x| =

( ∑k
i=1 x

2
i

)1/2, x = (x1, . . . , xk) ∈ Rk. The scalar product will be denoted
x · y =

∑k
i=1 xiyi, x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk. Defining similarly the

concentration function for γ as

αγ(r) = sup
{
1− γ(Ar);A ⊂ Rk, γ(A) ≥ 1

2

}
we get in particular since Φ(0) = 1

2 and 1− Φ(r) ≤ e−r
2/2, r > 0, that

αγ(r) ≤ e−r
2/2, r > 0. (1.4)
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One may also think of (1.3) in the limit as n → ∞ with R =
√
n. One may again

interpret (1.4) by saying that given a set A with γ(A) ≥ 1
2 , almost all points in Rk are

within distance 5 or 10 say from the set A whereas of course Rk is unbounded. We have
thus here a second instance of measure concentration with the particular feature that
the concentration function of (1.4) does not depend on the dimension of the underlying
state space Rk for the product measure γ = γk. This example will be the reference one
in these lectures.

Our third example will be discrete. Consider the n-dimensional discrete cube
X = {0, 1}n and equip X with the normalized Hamming metric

d(x, y) =
1
n

Card
(
{1 ≤ i ≤ n : xi 6= yi}

)
,

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n. Let µ = µn be uniform (product) measure
on {0, 1}n defined by µ(A) = 2−n Card (A) for every subset A of X. Identifying the
extremal sets A in X for which the infimum inf{µ(Ar);µ(A) ≥ 1

2} is attained may be
used to show here that

αµ(r) ≤ e−2nr2 , r > 0,

where the concentration function αµ for µ on {0, 1}n equipped with the Hamming
metric is defined as above.

A further, non-product, example is given by the symmetric group Πn of permuta-
tions of {1, . . . , n} equipped with the normalized metric

d(σ, π) =
1
n

Card
(
{1 ≤ i ≤ n;σ(i) 6= π(i)}

)
and uniform measure µ (assigning mass (n!)−1 to each permutation). Then

αµ(r) ≤ e−nr
2/32, r > 0.

1.2 Concentration functions and deviation inequalities

Motivated by these examples, we introduce and formalize the concept of concentration
function of a probability measure on, say, a metric space. The preceding concentration
examples indeed rely on two main ingredients, a (probability) measure and a notion of
(isoperimetric) enlargement with respect to which concentration is evaluated.

Let thus (X, d) be a metric space equipped with a probability measure µ on the
Borel sets of (X, d). In other words, (X, d, µ) is a metric measure space in the sense
of M. Gromov [Grom]). The concentration function α(X,d,µ) (denoted more simply αµ
when the underlying metric space (X, d), is implicit) of µ is defined as

α(X,d,µ)(r) = sup
{
1− µ(Ar);A ⊂ X,µ(A) ≥ 1

2

}
, r > 0. (1.5)
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Here Ar = {x ∈ X; d(x,A) < r} is the (open) r-neighborhood of A (with respect to d).
A concentration function is less than or equal to 1

2 , and decreases to 0 as r →∞. When
(X, d) is bounded, the enlargements r > 0 in (1.5) actually range up to the diameter
of (X, d), the concentration function being 0 when r is larger than the diameter. By
definition of the concentration function αµ = α(X,d,µ), given a set A with measure
µ(A) ≥ 1

2 , the set of points which are within distance r > 0 from a point in A has
measure larger than or equal to 1− αµ(r).

The idea of the concentration of measure phenomenon is that, in a number of
basic examples, α(X,d,µ)(r) decreases rapidly as r, or the dimension of X, is large. In
particular, we say that µ has normal concentration on (X, d) if there are constants
C, c > 0 such that, for every r > 0,

α(X,d,µ)(r) ≤ C e−cr
2
. (1.6)

Important examples share this normal concentration, and we will mostly be concerned
with this property throughout these notes. In particular, as we have seen with (1.2), the
normalized invariant measure σn on the standard n-sphere Sn, n ≥ 2, satisfies a normal
concentration with c = (n − 1)/2 and C = 1 that thus yields strong concentration in
high dimension. By (1.4), the canonical Gaussian measure on Euclidean space satisfies
this concentration (with constants c = 1

2 and C = 1 independent of the dimension).
Concentration on the cube {0, 1}n and the symmetric group Πn also belong to this
family. While these examples follow from stronger isoperimetric inequalities, the
approximate property of measure concentration may be investigated in settings far
away from isoperimetry as demonstrated by the tools discussed in these notes. See also
[Ta1] for further examples.

One important technical aspect of the preceding definition is that it may be
expressed equivalently in terms of deviation and concentration inequalities for Lipschitz
functions. If µ is a probability measure on the Borel sets of (X, d), and if F is a
measurable real-valued function on (X, d), we say mF is a median of F for µ if

µ
(
{F ≤ mF }

)
≥ 1

2 and µ
(
{F ≥ mF }

)
≥ 1

2 .

A median mF may not be unique. A real-valued function F on (X, d) is said to be
Lipschitz if

‖F‖Lip = sup
x6=y

|F (x)− F (y)|
d(x, y)

<∞.

We say that F is 1-Lipschitz if ‖F‖Lip ≤ 1.

If F is Lipschitz on (X, d) and if A = {F ≤ m}, for every r > 0 we have the
inclusion Ar ⊂ {F < m+ r‖F‖Lip}. Therefore, if m = mF is a median of F for µ, we
get that for every r > 0,

µ
(
{F ≥ mF + r}

)
≤ αµ

(
r/‖F‖Lip

)
. (1.7)

5



We speak of (1.7) as a deviation inequality. The same argument with −F yields

µ
(
{F ≤ mF − r}

)
≤ αµ

(
r/‖F‖Lip

)
.

Therefore, together with (1.7), we deduce that for every r > 0,

µ
({
|F −mF | ≥ r

})
≤ 2αµ

(
r/‖F‖Lip

)
. (1.8)

This inequality describes a concentration inequality of F around its median (one of
them) with rate αµ. According to the relative size of αµ and ‖F‖Lip, the Lipschitz
function F “concentrates” around one constant value on a portion of the space of big
measure. For example, by (1.2), a Lipschitz function on a high-dimensional sphere
will be almost constant on almost all the space. Moreover, it should be emphasized
that mF and ‖F‖Lip might be of rather different scales, an observation of fundamental
importance in applications. On the other hand, concentration usually does not yield
any particular kind of information on the size of the Lipschitz functions themselves (in
particular of mF ). By homogeneity, it is enough to consider the preceding deviation
and concentration inequalities for 1-Lipschitz functions.

The deviation or concentration inequalities on Lipschitz functions (1.7) and (1.8)
are actually equivalent to the corresponding statement on sets. Let A be a Borel set
in (X, d) with µ(A) ≥ 1

2 . Set F (x) = d(x,A), x ∈ X. Clearly ‖F‖Lip ≤ 1 while

µ
(
{F = 0}

)
≥ µ(A) ≥ 1

2
.

Hence, since F ≥ 0, 0 is a median of F for µ, and thus, by (1.7), for every r > 0,

1− µ(Ar) = µ
(
{F ≥ r}

)
≤ αµ(r).

We may summarize these conclusions in the following statement.

Proposition 1.1. Let (X, d, µ) be a metric measure space, and let αµ = α(X,d,µ) be

its concentration function. Then, for every r > 0,

αµ(r) = supµ
(
{F ≥ mF + r}

)
where the supremum runs over all 1-Lipschitz functions F : X → R.

The notion of observable diameter emphasized by M. Gromov [Grom] is dual to
the one of concentration function, and may be used as a further description of measure
concentration. It describes the diameter of a metric space (X, d) viewed through a
given probability measure µ on the Borel sets of (X, d). Fix κ > 0 to be thought of
as small. define first the partial diameter PartDiamµ(X, d) of (X, d) with respect to
µ as the infimal D such that there exists a subset A of X with diameter less than
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or equal to D and measure µ(A) ≥ 1 − κ. This diameter is clearly monotone for the
Lipschitz ordering: if ϕ : (X, d) → (Y, δ) is 1-Lipschitz, and if µϕ is the pushed forward
measure µ by ϕ, then PartDiamµϕ

(Y, δ) ≤ PartDiamµ(X, d) (for all κ > 0). What is
not obvious is that the partial diameter may dramatically decrease under all 1-Lipschitz
maps from X to a certain Y , that we always take to be R below. We then define the
observable diameter ObsDiamµ(X, d) of (X, d) with respect to µ as the supremum of
PartDiamµF

(R) over all image measures µF of µ by a 1-Lipschiz map F : X → R.
Following [Grom2], we think of µ as a state on the configuration space (X, d) and a
Lipschitz map F : X → R is interpreted as an observable giving the tomographic image
µF on R. We watch µF and can only distinguish a part of its support of measure 1−κ.

On the basis of (1.8), it is not difficult to see (cf. [Le]) that

ObsDiamµ(X, d) ≤ 2α−1
µ

(κ
2

)
(where α−1

µ is the generalized inverse function of αµ. As an example, if µ has normal
concentration αµ(r) ≤ C e−cr

2
, r > 0, on (X, d), then

ObsDiamµ(X, d) ≤ 2

√
1
c

log
2C
κ
.

The important parameter in this bound is the rate c in the exponential decay of the
concentration function, the value of C > 0 being usually a numerical constant that
simply modifies the numerical value of κ by a factor. For example, by (1.2),

ObsDiamσn(Sn) = O
( 1√

n

)
as n is large, which is of course in strong contrast with the diameter of Sn itself as
a metric space. Similarly, the observable diameter of Euclidean space with respect to
Gaussian measures is bounded.

Inequality (1.8) describes a concentration property of the Lipschitz function F

around some median value mF . Often, measure concentration is expressed by tail
inequalities around the mean of Lipschitz functions. The following statement easily
shows that these also entail measure concentration on sets. For simplicity, we only
state it for normal concentration. The numerical constants are not sharp.

Proposition 1.2. Let µ be a Borel probability measure on a metric space (X, d).
Assume that for any bounded 1-Lipschitz function F on (X, d),

µ
(
{F ≥

∫
Fdµ+ r}

)
≤ C e−cr

2/2 (1.9)

for every r > 0. Then

α(X,d,µ)(r) ≤ C e−cr
2/8, r > 0.
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Moreover, any 1-Lipschitz function F is integrable with respect to µ and satisfies (1.9).

Proof. Let A with µ(A) ≥ 1
2 and fix r > 0. Consider F (x) = min(d(x,A), r), x ∈ X.

Clearly ‖F‖Lip ≤ 1, while ∫
Fdµ ≤

(
1− µ(A)

)
r ≤ r

2
.

By the hypothesis,
1− µ(Ar) = µ

(
{F ≥ r}

)
≤ µ

({
F ≥

∫
Fdµ+ r

2

})
≤ C e−cr

2/8.

The first claim follows.

Let now F be a 1-Lipschitz function on (X, d). For every n ≥ 0, Fn = min(|F |, n)
is again 1-Lipschitz and bounded. Applying (1.9) to −Fn, for every r > 0,

µ
(
{Fn ≤

∫
Fndµ− r}

)
≤ C e−cr

2/2. (1.10)

Choose m such that µ({|F | ≤ m}) ≥ 1
2 and r0 such that Ce−cr

2
0/8 < 1

2 . Since for every
n, µ({Fn ≤ m}) ≥ 1

2 , intersecting with (1.10) for r = r0, we get that, independently of
n, ∫

Fndµ ≤ m+ r0

and thus
∫
|F |dµ < ∞ by monotone convergence. Apply then (1.9) to the 1-Lipschitz

function min(max(F,−n), n) and let n→∞. Proposition 1.2 is established.

A convenient tool to achieve normal concentration is Laplace transforms. If
(X, d, µ) is a metric measure space, define the the Laplace functional of µ on (X, d) as

E(X,d,µ)(λ) = sup
∫

eλF dµ, λ ∈ R, (1.11)

where the supremum runs over all (bounded) mean zero 1-Lipschitz functions F on
(X, d). We often write more simply Eµ = E(X,d,µ).

The following elementary proposition, that follows from Chebyshev’s inequality,
gives a simple criterion on the Laplace functional Eµ for normal concentration.

Proposition 1.3. Let µ be a probability measure on the Borel sets of a metric space

(X, d). If, for some constant C > 0,

E(X,d,µ)(λ) ≤ eCλ
2/2, λ ∈ R, (1.12)

then, every 1-Lipschitz function F : X → R is integrable and for every r ≥ 0,

µ
(
{F ≥

∫
Fdµ+ r}

)
≤ e−r

2/2C .
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In particular, (X, d, µ) has normal concentration

α(X,d,µ)(r) ≤ e−r
2/8C , r > 0.

The Laplace functional E(X,d,µ) is a convenient tool to handle concentration in
product spaces with respect to the `1-metric. Namely, if (X, d) and (Y, δ) are two
metric spaces, we equip the product space X × Y with the metric

d(x, x′) + δ(y, y′), x, x′ ∈ X, y, y′ ∈ Y.

Then
E(X×Y,d+δ,µ⊗ν) ≤ E(X,d,µ) E(Y,δ,ν).

In particular, if (1.12) holds for metric measure spaces (Xi, di, µi), i = 1, . . . , n, it
holds with constant Cn for X1 × · · · × Xn and µ1 ⊗ · · · ⊗ µn with respect to the `1-
metric

∑n
i=1 di. In this form, measure concentration behaves ackwardly with respect to

products, and stability for the `1-products, as on the discrete cube, induces dimensional
factors. The basic example of the Gaussian measure suggests that tensorization should
be well-behaved with respect to the classical `2-metric. This is why we investigate here
various descriptions of measure concentration that will be well-suited with respect to
Euclidean tensorization and motivated by dimension free bounds. We refer to [Ta1],
[Le] for further aspects on concentration for product measures.

2. A triple description of measure concentration

In this section, we present three approaches to measure concentration, geometric
(through Brunn-Minkoswki inequalities), measure-theoretic (through transportation
cost inequalities) and functional (through logarithmic Sobolev inequalities). All of them
are well-behaved with respect to Euclidean products, are satisfied by families of log-
concave measures, and yield dimension free concentration bounds. Mass transportation
will be used as a first unifying tool to establish the basic inequalities.

2.1 Brunn-Minkowski inequalities

Our first description will be geometric. Brunn-Minkoswki inequalities may indeed be
used to provide simple but powerful concentration results.

The classical Brunn-Minkowski inequality indicates that for all bounded Borel
measurable sets A,B in Rn,

voln(A+B)1/n ≥ voln(A)1/n + voln(B)1/n (2.1)
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where A+B = {x+ y;x ∈ A, y ∈ B} is the Minkowski sum of A and B and where we
recal that voln(·) denotes the volume element in Rn. In its equivalent (dimension free)
multiplicative form, for every θ ∈ [0, 1],

voln
(
θA+ (1− θ)B

)
≥ voln(A)θvoln(B)1−θ. (2.2)

Indeed, under (2.1),

voln
(
θA+ (1− θ)B

)1/n ≥ θ voln(A)1/n + (1− θ)voln(B)1/n

≥
(
voln(A)θvoln(B)1−θ

)1/n

by the arithmetic-geometric mean inequality. Conversely, if A′ = voln(A)−1/nA and
B′ = voln(B)−1/nB, then (2.2) implies that voln(θA′+(1−θ)B′) ≥ 1 for every θ ∈ [0, 1].
Since

θA′ + (1− θ)B′ =
A+B

voln(A)1/n + voln(B)1/n

for

θ =
voln(A)1/n

voln(A)1/n + voln(B)1/n
,

(2.1) immediately follows by homogeneity.

The Brunn-Minkowski inequality may be used to produce a simple proof of the
classical isoperimetric inequality in Rn by taking B the ball with center the origin and
radius r > 0: then (2.1) shows that

voln(Ar)1/n = voln
(
A+B

)1/n ≥ voln(A)1/n + v(r)1/n

where v(r) is the volume of the Euclidean ball of radius r > 0. Whenever voln(A) =
voln(D) for some ball D with radius s > 0, since v1/n is linear,

voln(A)1/n + v(r)1/n = v(s+ r)1/n

so that
voln(Ar) ≥ voln(Dr)

which amounts to isoperimetry.

The multiplicative form of the Brunn-Minskowski inequality admits a functional
version. We refer to [DG], [Bar] for the historical aspects of this result.

Theorem 2.1. Let θ ∈ [0, 1] and let u, v, w be non-negative measurable functions on

Rn such that for all x, y ∈ Rn,

w
(
θx+ (1− θ)y

)
≥ u(x)θv(y)1−θ. (2.3)
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Then ∫
wdx ≥

( ∫
udx

)θ( ∫
vdx

)1−θ

. (2.4)

Applied to the characteristic functions of bounded measurable sets A and B in Rn,
it yields the multiplicative form (2.2) of the geometric Brunn-Minkowski inequality.

For the sake of completeness, we present a proof of the functional Brunn-Minkowski
theorem using mass transportation that we learned from F. Barthe (cf. [Bar]). Mass
transportation is used in [CE-MC-S] to provide the suitable extension of Theorem 2.1
in a Riemannian context using geodesics and curvature.

Proof. We start with n = 1 and then perform induction on dimension. By homogeneity,
we may assume that

∫
udx =

∫
vdx = 1, and by approximation that u and v are

continuous with strictly positive values. Set dµ = udx, dν = vdx, and define T : R → R
by

ν
(
(−∞, T (x)]

)
= µ

(
(−∞, x]

)
, x ∈ R.

Then T is increasing and differentiable, and ν is the image measure of µ by T . By the
change of variable formula,

v
(
T (x)

)
T ′(x) = u(x), x ∈ R.

Set then z(x) = θx+ (1− θ)T (x) so that z′(x) = θ + (1− θ)T ′(x). By the arithmetic-
geometric mean inequality, for every x,

z′(x) ≥
(
T ′(x)

)1−θ
. (2.5)

Now, since z is injective, by the hypothesis (2.3) and (2.5),∫
wdx =

∫
w

(
z(x)

)
z′(x)dx

≥
∫
u(x)θv

(
T (x)

)1−θ(
T ′(x)

)1−θ
dx

=
∫
udx = 1.

This proves the case n = 1. It is then easy to deduce the general case by induction
on n. Suppose n > 1 and assume the Brunn-Minkowski theorem holds in Rn−1. Let
u, v, w be non-negative measurable functions on Rn satisfying (2.3) for some θ ∈ [0, 1].
Let q ∈ R be fixed and define uq : Rn−1 → [0,∞) by uq(x) = u(x, q) and similarly for
vq and wq. Clearly, if q = θq0 + (1− θ)q1, q0, q1 ∈ R,

wq
(
θx+ (1− θ)y

)
≥ uq0(x)

θvq1(y)
1−θ
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for all x, y ∈ Rn−1. Therefore, by the induction hypothesis,∫
Rn−1

wqdx ≥
( ∫

Rn−1
uq0dx

)θ( ∫
Rn−1

vq1dx

)1−θ

.

Finally, applying the one-dimensional case shows that∫
wdx =

∫ ( ∫
Rn−1

wqdx

)
dq ≥

( ∫
udx

)θ( ∫
vdx

)1−θ

which is the desired result. Theorem 2.1 is established.

The transportation argument for dimension one may actually be extended to higher
dimension by the introduction of monotone mass transportation (see below) to give a
direct proof of the theorem (cf. [Bar]).

As announced, Brunn-Minkowski inequalities may be used to produce concentra-
tion type inequalities, including the basic example of uniform measures on spheres (see
[Le]) and Gaussian measures. The argument goes back to [Mau].

Assume that µ is a probability measure on Rn with smooth strictly positive density
e−V with respect to Lebesgue measure, where V is strictly convex in the sense that for
some c > 0 and all x, y ∈ Rn,

V (x) + V (y)− 2V
(x+ y

2

)
≥ c

4
|x− y|2. (2.6)

The typical example is of course the canonical Gaussian measure γ on Rn for which
c = 1. Given a bounded measurable function f on Rn, apply then the functional
Brunn-Minkowski Theorem 2.1 to

u(x) = eQf(x)−V (x), v(y) = e−f(y)−V (y), w(z) = e−V (z),

where we define Qf as the infimum-convolution

Qf(x) = inf
y∈Rn

[
f(y) +

c

4
|x− y|2

]
, x ∈ Rn.

By definition of Qf and the convexity hypothesis (2.6) on V , condition (2.3) is satisfied
with θ = 1

2 so that

1 ≥
∫

eQfdµ
∫

e−fdµ. (2.7)

Given now a measurable set A in X, apply this result to the function f that is equal
to 0 on A and +∞ outside. Then Qf(x) = c

4 d(x,A)2 where d(x,A) is the Euclidean
distance from the point x to the set A and thus∫

e
c
4 d(·,A)2dµ ≤ 1

µ(A)
.

12



Hence, for every r > 0,

1− µ
(
Ar

)
≤ 1
µ(A)

e−cr
2/4.

Theorem 2.2. Let dµ = e−V dx where V satisfies (2.6). Then,

αµ(r) ≤ 2 e−cr
2/4, r > 0.

In particular

αγ(r) ≤ 2 e−r
2/4, r > 0,

for the canonical Gaussian measure γ on Rn.

2.2 Transportation cost inequalities

We next turn to our second description of measure concentration that will be measure-
theoretic. Let us start with the classical Pinsker-Csizsar-Kullback inequality (cf. [Pi],
[R-R]) that indicates that whenever µ and ν are two probability measures, then

‖µ− ν‖TV ≤
√

1
2

H
(
ν |µ

)
. (2.8)

Here ‖·‖TV denotes the total variation distance, whereas H(ν |µ) is the relative entropy
of ν with respect to µ defined by

H
(
ν |µ

)
=

∫
log

dν

dµ
dν

whenever ν is absolutely continuous with respect to µ with Radon-Nikodym derivative
dν
dµ , and +∞ if not. Inequalities such as (2.8) have been often considered in information
theory.

That such an inequality is related to concentration properties was emphasized by K.
Marton [Mar1], [Mar2], and may be shown in the following way. Given a metric space
(X, d) and two Borel probability measures µ and ν on X, consider the Wasserstein
distance between µ and ν

W1(µ, ν) = inf
∫ ∫

d(x, y)dπ(x, y)

where the infimum runs over all probability measures π on the product space X ×X

with marginals µ and ν having a finite first moment (for d). By the Monge-Kantorovitch
theorem (see below), the total variation distance corresponds to the trivial metric on
X. Given µ, consider then the inequality

W1(µ, ν) ≤
√

2C H
(
ν |µ

)
(2.9)

13



for some C > 0 and every ν. Let A and B be Borel sets with µ(A), µ(B) > 0, and
consider the conditional probabilities µA = µ(· |A) and µB = µ(· |B). By the triangle
inequality for W1 and (2.9),

W1(µA, µB) ≤ W1(µ, µA) + W1(µ, µB)

≤
√

2C H
(
µA |µ

)
+

√
2C H

(
µB |µ

)
=

√
2C log

1
µ(A)

+

√
2C log

1
µ(B)

.

(2.10)

Now, all measures with marginals µA and µB must be supported on A × B, so that,
by definition of W1,

W1(µA, µB) ≥ d(A,B) = inf
{
d(x, y);x ∈ A, y ∈ B

}
.

Then (2.10) implies a concentration inequality. Indeed, given A and B in X such that
d(A,B) ≥ r > 0, we get

r ≤

√
2C log

1
µ(A)

+

√
2C log

1
1− µ(Ar)

(2.11)

where we recall that Ar = {x ∈ X, ; d(x,A) < r}. Inequality (2.11) appears as a
symmetric form of concentration. If, say, µ(A) ≥ 1

2 ,

r ≤
√

2C log 2 +

√
2C log

1
1− µ(Ar)

so that, whenever r ≥ 2
√

2C log 2 for example,

1− µ(Ar) ≤ e−r
2/8C .

As for Laplace transforms, while suitable to `1-metrics, the W1 Wasserstein dis-
tance does not behave dimensional free with respect to Euclidean products. Motivated
again by the example of Gaussian measures, it is more fruitful in order to reach dimen-
sion free concentration properties to think in terms of a quadratic cost. To this task,
let us restrict ourselves to the case of Rn with the Euclidean norm | · |. Given a proba-
bility measure µ on the Borel sets of Rn, say that it satisfies a quadratic transportation
cost inequality whenever there exists a constant C > 0 such that for all probability
measures ν,

W2(µ, ν) ≤
√
C H

(
ν |µ

)
. (2.12)

Here W2 is the Wasserstein distance with quadratic cost

W2(µ, ν) = inf
( ∫ ∫

1
2
|x− y|2dπ(x, y)

)1/2

14



where the infimum is running over all probability measures π on Rn×Rn with respective
marginals µ and ν. (The infimum in W2 is finite as soon as µ and ν have finite second
moment which we shall always assume.) It is clear by Jensen’s inequality that the
quadratic transportation cost inequality is stronger than the W1 transportation cost
inequality (with d(x, y) = |x− y|, x, y ∈ Rn).

It has been shown by M. Talagrand [Ta2] that the canonical Gaussian measure γ
on Rn satisfies (2.12) with C = 1. We outline a proof of it relying, as for the Brunn-
Minkowski theorem, on mass transportation. We first consider the one-dimensional
case n = 1. Let f ≥ 0 such that

∫
fdγ = 1, and set dν = fdγ. For simplicity, assume

that f > 0 everywhere. As in the proof of Theorem 2.1, let T : R → R be defined by

ν
(
(−∞, T (x)]

)
= γ

(
(−∞, x]

)
, x ∈ R,

so that ν is the image measure of γ by the increasing map T . By the change of variables
formula,

f
(
T (x)

)
T ′(x) e−T (x)2/2 = e−x

2/2, x ∈ R.

Hence, taking logarithms, for every x,

log f
(
T (x)

)
+ log T ′(x)− 1

2
T (x)2 = −1

2
x2.

Integrating with respect to γ, and using that T ∗ γ = ν, we get that∫
log fdν =

1
2

∫ [
T (x)2 − x2

]
dγ −

∫
log T ′dγ.

Integrating by parts, ∫
x(T − x)dγ =

∫
(T ′ − 1)dγ

so that ∫
log fdν =

1
2

∫ ∣∣x− T (x)
∣∣2dγ +

∫
[T ′ − 1− log T ′]dγ

≥ 1
2

∫ ∣∣x− T (x)
∣∣2dγ

where we used that α− 1− logα ≥ 0, α ≥ 0. Now, since ν is the image of γ by T , the
image measure π of γ under the map x 7→ (x, T (x)) has marginals γ and ν respectively
so that

1
2

∫ ∣∣x− T (x)
∣∣2dγ =

∫ ∫
1
2
|x− y|2dπ ≥ W2(γ, ν)2.

The result follows in this case. The n-dimensional case follows by tensorization from
the fundamental product property of entropy (together with additivity of the Euclidean
cost) as outlined in [Ta2]. The argument is summarized in the next simple proposition
(see [Le] for a proof).
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Proposition 2.3. Let P = µ1⊗· · ·⊗µn be a product probability measure on the Borel

sets of Rn. Assume that each µi, i = 1, . . . , n, satisfies a quadratic transportation cost

inequality

W2(µi, νi) ≤
√
Ci H

(
νi |µi

)
for every νi on R. Then

W2(P,R) ≤
√

max
1≤i≤n

Ci H
(
R |P

)
for every probability measure R on Rn.

The n-dimensional case may actually be proved alternatively following the one-
dimensional case ([Bl], [CE]) by appropriate monotone transportation in the form of
the Brenier-McCann [Br], [MC] map. Given two probability measures µ and ν on Rn,
a map T : Rn → Rn (defined µ-almost everywhere) is said to push µ forward to ν (or
to transport µ onto ν) if ν is the image measure of µ under T . In other words, for
every bounded non-negative Borel functions ϕ : Rn → R,∫

ϕ(y)dν(y) =
∫
ϕ
(
T (x)

)
dµ(x).

If µ and ν have finite second moments, a map T pushing µ forward to ν is said to be
optimal with respect to the Wasserstein distance W2 if

W2(µ, ν)2 =
1
2

∫ ∣∣x− T (x)
∣∣2dµ(x).

A fundamental result of Y. Brenier [Br], and R. McCann [MC] (cf. [Vi]), is that when
µ is absolutely continuous with respect to Lebesgue measure, there exists a convex
function φ such that T = ∇φ pushes µ towards ν in the optimal sense.

Take µ = γ the canonical Gaussian measure on Rn, and assume that dν = fdγ for
some f ≥ 0 with

∫
fdγ = 1. Whenever licit, the change of variables formula in the

transport from γ to ν leads to the so-called Monge-Ampère equation

f
(
T (x)

)
det

(
Hessφ(x)

)
e−|T (x)|2/2 = e−|x|

2/2, x ∈ Rn,

where Hessφ is the Hessian of φ (we ignore here and below the fact that T = ∇φ may
exist only almost everywhere). Proceeding then exactly as in the one-dimensional case,
using that

log det(Hessφ(x)) ≤ ∆φ− n = ∆
(
φ− |x|2

2

)
, (2.13)

shows that W2(γ, ν) ≤
√

H(ν | γ). The argument easily extends to probability measures
dµ = e−V dx with a strictly convex potential V (in the sense of (2.6)) so to yield the
following theorem.
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Theorem 2.4. Let dµ = e−V dx where, for some c > 0, HessV (x) ≥ c Id uniformly in

x ∈ Rn. Then, for every probability measure ν on Rn,

W2(µ, ν) ≤
√

1
c

H
(
ν |µ

)
.

Extensions to Riemannian manifolds are pointed out in [O-V1], [B-G-L]. More
general transportation cost inequalities on probabilistic path spaces are investigated in
[Wa].

2.3 Logarithmic Sobolev inequalities

Our third description will be functional through logarithmic Sobolev inequalities.

Given a probability measure µ, for every non-negative measurable function f define
its entropy as

Entµ(f) =
∫
f log fdµ−

∫
fdµ log

∫
fdµ

if
∫
f log(1 + f)dµ <∞, +∞ if not. In other words, if

∫
fdµ = 1,

Entµ(f) =
∫

log fdν = H
(
ν |µ

)
where dν = fdµ. Note that Entµ(f) ≥ 0 by Jensen’s inequality and that entropy is
homogeneous of degree 1.

We introduce the concept of logarithmic Sobolev inequality. To avoid technical
questions, let us consider only the case of the Euclidean space Rn. A probability
measure µ on the Borel sets of Rn is said to satisfy a logarithmic Sobolev inequality if
for some constant C > 0 and all smooth enough functions f on Rn,

Entµ(f2) ≤ 2C
∫
|∇f |2dµ. (2.14)

Here ∇f denotes the usual gradient of f and |∇f | its Euclidean length. By smooth we
understand above and below enough regularity so that the various terms in (2.14) make
sense. Changing f2 into f > 0 such that

∫
fdµ = 1, (2.14) may be written equivalently

as

H(ν |µ) ≤ C

2

∫
|∇f |2

f
dµ =

C

2
I(ν) (2.15)

for all ν where I(ν) is the Fisher information of dν = fdµ.

Logarithmic Sobolev inequalities are parts of the family of classical Sobolev
inequalities. In terms of Sobolev embeddings, under a logarithmic Sobolev inequality,
functions in H1 do not belong necessarily to some Lp-space with p > 2, but to the
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Orlicz space L2 log L. This embedding is optimal for the basic example of Gaussian
measures. On the other hand, no constant depending on the dimension arises in the
logarithmic Sobolev inequality for Gaussian measures. This is one fundamental aspect
of the infinite dimensional character of logarithmic Sobolev inequalities that will be
exploited here toward dimension free concentration.

The canonical Gaussian measure γ on Rn satisfies (2.14) with C = 1. Numerous
proofs of this result may be found in the literature (see [An] and the references therein).
We present below two proofs, one relying on semigroup tools, and one based on mass
transportation in the spirit of the one for the transportation cost inequality (2.12)
(and the Brunn-Minkowski theorem) due to D. Cordero-Erausquin [CE] (he actually
presents there a statement including both (2.12) and (2.14) as well as more general
inequalities - see below). In particular, the latter shows the central role played by mass
transportation in this context.

Theorem 2.5. For every smooth enough function f on Rn,

Entγ(f2) ≤ 2
∫
|∇f |2dγ.

First Proof. This proof is based on semigroup methods and diffusion operators. Let
the second-order differential operator L = ∆− x · ∇ on Rn with associated semigroup
(Pt)t≥0 called the Hermite or Ornstein-Uhlenbeck semigroup (cf. [Bak1]). The operator
L satisfies the integration by parts formula with respect to γ expressed by∫

f(−Lg)dγ =
∫
∇f · ∇g dγ

for every smooth functions f , g. The Ornstein-Uhlenbeck semigroup (Pt)t≥0 admits
an explicit integral representation as

Ptf(x) =
∫
f
(
e−tx+ (1− e−2t)1/2y

)
dγ(y), t ≥ 0, x ∈ Rn. (2.16)

Let f be smooth and non-negative on Rn. To be more precise, we take f smooth and
such that ε ≤ f ≤ 1/ε for some ε > 0 that we take to 0 at the end of the argument.
Since P0f = f and limt→∞ Ptf =

∫
fdγ, write

Entγ(f) = −
∫ ∞

0

d

dt

( ∫
Ptf logPtfdγ

)
dt.

Derivation along the semigroup yields the basic relation between entropy and Fisher
information. Namely, by the chain rule formula and integration by parts for L,

d

dt

∫
Ptf logPtfdγ =

∫
LPtf logPtfdγ +

∫
LPtfdγ

= −
∫
|∇Ptf |2

Ptf
dγ
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since γ is invariant under the action of Pt and thus
∫

LPtfdγ = 0. Now, by the integral
representation (2.16), for every t ≥ 0,

∇Ptf = e−tPt(∇f)

and thus ∣∣∇Ptf ∣∣ ≤ e−tPt
(
|∇f |

)
.

By the Cauchy-Schwarz inequality for Pt,

Pt
(
|∇f |

)2 ≤ Ptf Pt

( |∇f |2
f

)
.

Summarizing,

Entγ(f) ≤
∫ ∞

0

e−2t

( ∫
Pt

( |∇f |2
f

)
dµ

)
dt =

1
2

∫
|∇f |2

f
dµ

by invariance. By the change of f into f2, the inequality is established.

Second Proof. As announced, the second proof is based on mass transportation and
follows [CE]. With respect to the transportation proof of (2.12), we now transport
dν = fdγ (f ≥ 0,

∫
fdγ = 1) towards γ in the optimal sense. The corresponding

Monge-Ampère equation then reads

f(x) e−|x|
2/2 = e−|T (x)|2/2det

(
Hessφ(x)

)
, x ∈ Rn.

Taking logarithms, and using (2.13),

log f(x)− 1
2
|x|2 = −1

2

∣∣T (x)
∣∣2 + log det

(
Hessφ(x)

)
≤ −1

2

∣∣T (x)
∣∣2 + ∆

(
φ− |x|2

2

)
.

Hence,

log f(x) ≤ −1
2
|∇φ− x|2 − x · (∇φ− x) + ∆

(
φ− |x|2

2

)
≤ −1

2
|∇φ− x|2 + L

(
φ− |x|2

2

)
where we recall the Ornstein-Uhlenbeck operator L = ∆ − x · ∇. Integrate now with
respect to dν = fdγ to get∫

f log fdγ ≤ −1
2

∫
f |∇φ− x|2dγ +

∫
f L

(
φ− |x|2

2

)
dγ.

By the integration by parts formula for L,∫
f L

(
φ− |x|2

2

)
dγ = −

∫
∇f · ∇(φ− x)dγ
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so that ∫
f log fdγ ≤ −1

2

∫
f |∇φ− x|2dγ −

∫
∇f · ∇(φ− x)dγ

≤ 1
2

∫
|∇f |2

f
dγ

(
=

1
2
I(ν)

)
,

where we used that for vectors a, b in Rn, − 1
2 |b|

2−a · b ≤ 1
2 |a|

2. The proof is complete.

The preceding proofs work similarly for strictly log-concave probability measures
dµ = e−V dx in Rn (cf. [Bak1], [CE]).

Theorem 2.6. Let dµ = e−V dx where, for some c > 0, HessV (x) ≥ c Id uniformly in

x ∈ Rn. Then for all smooth functions f on Rn,

Entµ(f2) ≤ 2
c

∫
|∇f |2dµ.

It should be observed that L. Caffarelli [Ca] (see [Vi]) recently showed that
whenever µ is a probability measure on Rn such that dµ = e−V dx and, for some
c > 0, HessV (x) ≥ c Id uniformly in x ∈ Rn, then the Brenier-McCann transportation
map [Br], [MC] from the canonical Gaussian measure γ to µ is Lipschitz with Lipschitz
norm c−1/2. In particular, Theorems 2.2, 2.4 and 2.6 all follow from their corresponding
statements for Gaussian measure. This justifies limiting ourselves to the Gaussian
model.

As for the quadratic transportation cost inequalities, the fundamental tensorization
property of entropy shows that logarithmic Sobolev inequalities are stable by products
for the Euclidean structure (cf. [Le]).

Proposition 2.7. Let µi on R satisfy the logarithmic Sobolev inequality

Entµi(f
2) ≤ 2Ci

∫
f ′

2
dµi,

i = 1, . . . , n. Then the product measure P = µ1⊗· · ·⊗µn on Rn satisfies the logarithmic

Sobolev inequality on Rn

EntP (f2) ≤ 2 max
1≤i≤n

Ci

∫
|∇f |2dP.

We now come to the application of logarithmic Sobolev inequalities to measure
concentration through the Herbst argument. To start with, let us consider a probability
measure µ on the Borel sets of Rn. Assume that µ satisfies the logarithmic Sobolev
inequality (2.14). We will show that the Laplace functional Eµ of µ (cf. (1.11)) satisfies

Eµ(λ) ≤ eCλ
2/2, λ ∈ R. (2.17)
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By Proposition 1.3, µ has normal concentration αµ(r) ≤ e−r
2/8C , r > 0.

Let thus F be a smooth bounded 1-Lipschitz function on Rn such that
∫
Fdµ = 0.

In particular, since F is assumed to be regular enough, we can have that |∇F | ≤ 1 at
every point. We apply the logarithmic Sobolev inequality (2.14) to f2 = eλF for every
λ ∈ R. We have ∫

|∇f |2dµ =
λ2

4

∫
|∇F |2eλF dµ ≤ λ2

4

∫
eλF dµ.

Setting Λ(λ) =
∫

eλF dµ, λ ∈ R, by the definition of entropy,

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ C

2
λ2Λ(λ)

for every λ. If K(λ) = 1
λ log Λ(λ) (with K(0) = Λ′(0)/Λ(0) =

∫
Fdµ = 0), λ ∈ R, then

K ′(λ) ≤ C
2 for every λ. Therefore, K(λ) ≤ Cλ

2 for every λ, that is∫
eλF dµ ≤ eCλ

2/2.

Replacing F by a smooth convolution, the latter extends to all mean zero Lipschitz
functions and hence (2.17) is established.

3. Relations between the three descriptions

In this third section, we investigate the connections between the preceding descriptions
of measure concentration by means of hypercontractive bounds. As discussed in
the preceding proofs, optimal mass transportation provides a first unified approach
to most of the geometric, measure-theoretic and functional inequalities developed so
far. Through the Monge-Kantorovich theorem, hypercontractive bounds will actually
appear as dual to mass transportation in this framework. They will allow a (almost)
complete circle of implications between the various descriptions presented in the
previous section. We start with a simple result between transportation cost inequalities
and Laplace bounds that will allow the further developments. The main references for
this section are [B-G], [O-V1], [B-G-L], [CE], [CE-G-H], [Vi]...

3.1 Transportation and Laplace bounds

In a first step, we observe that the transportation cost inequality (2.9) is actually
equivalent to the normal Laplace bound (2.17) deduced in the preceding chapter from
logarithmic Sobolev inequalities, and may be thought of as its dual version. We indeed
have the following result due to S. Bobkov and F. Götze [B-G]. We recall the Laplace
functional

Eµ(λ) = sup
∫

eλF dµ, λ ∈ R,
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where the supremum runs over all 1-Lipschitz mean zero functions F : X → R, of a
probability measure µ on (X, d).

Proposition 3.1. Let µ be a Borel probability measure on a metric space (X, d).
Then

W1(µ, ν) ≤
√

2C H
(
ν |µ

)
(3.1)

for some C > 0 and all ν if and only if

Eµ(λ) ≤ eCλ
2/2, λ ∈ R. (3.2)

As we have seen at the end of Section 1, the functional description (3.2) (and thus
equivalently (3.1)) of measure concentration is not well adapted as it is to dimension
free bounds. This observation motivates the investigation of stronger transportation
and logarithmic Sobolev inequalities that do tensorize with dimension free bounds with
respect to the `2-metric (as in the fundamental example of the canonical Gaussian
product measure on Rn).

Proof of Proposition 3.1. By the Monge-Kantorovitch-Rubinstein dual characterization
(cf. [Du], [R-R], [Vi]) of the Wasserstein distance,

W1(µ, ν) = sup
[ ∫

gdν −
∫
fdµ

]
where the supremum is running over all bounded measurable functions f and g such
that

g(x) ≤ f(y) + d(x, y)

for every x, y ∈ X. Under (3.1),∫
gdν −

∫
fdµ ≤

√
2C Entµ

(dν
dµ

)
,

or, equivalently, for every λ > 0,∫
gdν −

∫
fdµ ≤ Cλ

2
+

1
λ

Entµ
(dν
dµ

)
.

Set φ = dν
dµ . The preceding indicates that∫

ψφdµ ≤ Entµ(φ)

where ψ = λg− λ
∫
fdµ−Cλ2/2. Since this inequality holds for every choice of φ (i.e.

ν), applying it to φ = eψ/
∫

eψdµ yields that log
∫

eψdµ ≤ 0. In other words,∫
eλgdµ ≤ eλ

∫
fdµ+Cλ2/2.
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When F is Lipschitz with ‖F‖Lip ≤ 1, one may choose F = g = f so that the latter
amounts to (3.2). Since

Entµ(φ) = sup
∫
φψdµ

where the supremum is running over all ψ’s such that
∫

eψdµ ≤ 1, the preceding
argument clearly indicates that (3.2) is actually equivalent to (3.1). The proof of
Proposition 3.1 is complete.

The same may be proved on the alternate (more classical and easily equivalent)
characterization of W1 as

W1(µ, ν) = sup
[ ∫

Fdµ−
∫
Fdν

]
where the supremum is running over all 1-Lipschitz functions F on (X, d). However,
the preceding choice is motivated by the analagous argument for the quadratic cost (in
X = Rn). Namely, the Monge-Kantorovitch theorem states similarly (cf. [R-R], [Vi])
that

W2(µ, ν)2 = sup
[ ∫

gdν −
∫
fdµ

]
(3.3)

where the supremum is running over all bounded functions f and g such that

g(x) ≤ f(y) +
1
2
|x− y|2

for every x, y ∈ Rn. In the infimum-convolution notation,

g(x) = inf
y∈Rn

[
f(y) +

1
2
|x− y|2

]
achieves the optimal choice. Therefore, the proof of Proposition 3.1 may be exactly
repeated so to yield the analogous statement for W2.

Proposition 3.2 Let µ be a Borel probability measure on Rn. Then

W2(µ, ν) ≤
√
C H

(
ν |µ

)
for some C > 0 and all ν if and only if for all bounded measurable functions f on Rn,∫

eQfdµ ≤ e
∫
fdµ

where Qf is here the infimum-convolution

Qf(x) = inf
y∈Rn

[
f(y) +

1
2C

|x− y|2
]
, x ∈ Rn.

The infimum-convolution inequality of Proposition 3.2 has to be compared to (2.7).
For the matter of comparison with Proposition 3.1, observe also that whenever F is
Lipschitz,

QF ≥ F − C

2
‖F‖2Lip.
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3.2 Hypercontractivity

To go deeper into the relationships, we actually have to connect the quadratic
transportation cost inequality to logarithmic Sobolev inequalities. The key point in
this project will the concept of hypercontractivity. From now on, we only consider
measures on the Borel sets of Rn equipped with its standard Euclidean topology.

The fundamental work by L. Gross [Gros] put forward the equivalence between
logarithmic Sobolev inequalities and hypercontractivity of the associated heat semi-
group. Let us consider a probability measure µ on the Borel sets of Rn satisfying the
logarithmic Sobolev inequality

Entµ(f2) ≤ 2C
∫
|∇f |2dµ (3.4)

for some C > 0 and all smooth enough functions f on Rn.

For simplicity, assume furthermore that µ has a strictly positive smooth density
which may be written e−V for some smooth potential V on Rn. For example, we
may restrict below to the canonical Gaussian. Denote by L the second order diffusion
operator L = ∆ − ∇V · ∇ with invariant measure µ. Integration by parts for L is
described by ∫

f(−Lg)dµ =
∫
∇f · ∇g dµ

for every smooth functions f, g. Under mild growth conditions on V (that will always be
satisfied in applications throughout this work), one may consider the time reversible
(with respect to µ) semigroup (Pt)t≥0 with generator L (cf. [Ev], [F-O-T]). In the
Gaussian case, we know that the associated Ornstein-Uhlenbeck (Pt)t≥0 has the explicit
integral representation (2.16). Given f (in the domain of L), u = u(x, t) = Ptf(x) is
the fundamental solution of the initial value problem (heat equation with respect to L)

∂u

∂t
− Lu = 0 in Rn × (0,∞),

u = f on Rn × {t = 0}.

Logarithmic Sobolev inequalities are a powerful tool to study exponential decay to
equilibrium in relative entropy. Namely, since differentiation of entropy along the heat
semigroup yields Fisher information, (3.4) implies (is equivalent to the fact) that for
every non-negative function f such that

∫
fdµ = 1,

Entµ(Ptf) ≤ e−2t/CEntµ(f)

for every t ≥ 0. This estimate is the prototype of exponential entropy dissipation (cf.
[Vi]).

One of the main results of the contribution [Gros] by L. Gross is that the logarithmic
Sobolev inequality (3.4) for µ holds if and only if the associated heat semigroup (Pt)t≥0
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is hypercontractive in the sense that, for every (or some) 1 < p < q <∞, and every f
(in Lp),

‖Ptf‖q ≤ ‖f‖p (3.5)

for every t > 0 large enough so that

e2t/C ≥ q − 1
p− 1

. (3.6)

In (3.5), Lp-norms are understood with respect to the measure µ. The key idea of the
proof is to consider a function q(t) of t ≥ 0 such that q(0) = p and to take the derivative
in time of F (t) = ‖Ptf‖q(t) (for a non-negative smooth function f on Rn). Since the
derivative of Lp-norms gives rise to entropy, due to the heat equation ∂

∂tPtf = LPtf
and integration by parts, one gets that

q(t)2 F (t)q(t)−1F ′(t)

= q′(t) Entµ
(
(Ptf)q(t)

)
+ q(t)2

∫
(Ptf)q(t)−1LPtfdµ

= q′(t) Entµ
(
(Ptf)q(t)

)
− 2

(
q(t)− 1

) ∫
q(t)2

2
|∇Ptf |2(Ptf)q(t)−2dµ.

(3.7)

By the logarithmic Sobolev inequality applied to (Ptf)q(t)/2, it follows that F ′(t) ≤ 0
as soon as q′(t) = 2(q(t)− 1)/C, that is q(t) = 1+ (p− 1) e2t/C , t ≥ 0, which yields the
claim. It is classical and easy to see that the same argument shows that the logarithmic
Sobolev inequality (3.4) is also equivalent to

‖ ePtf‖e2t/C ≤ ‖ ef‖1

for every t ≥ 0 and f . For further comparison, observe that by linearity

‖ ePtf‖ae2t/C ≤ (resp. ≥) ‖ ef‖a

according as a ≥ 0 (resp. a ≤ 0).

The main observation in our project is that a similar relationship for the solutions
of Hamilton-Jacobi partial differential equations holds. Consider namely the basic
Hamilton-Jacobi initial value problem

∂v

∂t
+

1
2
|∇v|2 = 0 in Rn × (0,∞),

v = f on Rn × {t = 0}.
(3.8)

Solutions of (3.8) are described by the Hopf-Lax representation formula as infimum-
convolutions. Namely, given a (Lipschitz continuous) function f on Rn, define the
one-parameter family of infimum-convolutions of f with the quadratic cost as

Qtf(x) = inf
y∈Rn

[
f(y) +

1
2t
|x− y|2

]
, t > 0, x ∈ Rn. (3.9)
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The family (Qt)t≥0 defines a semigroup with infinitesimal (non-linear) generator
− 1

2 |∇f |
2. That is, v = v(x, t) = Qtf(x) is a solution of the Hamilton-Jacobi initial

value problem (3.8) (at least almost everywhere). Actually, if in addition f is bounded,
the Hopf-Lax formula Qtf is the pertinent mathematical solution of (3.8), that is its
unique viscosity solution (cf. [Ev]).

Once this has been recognized, it is not difficult to try to follow Gross’s idea for
the Hamilton-Jacobi equation. Namely, letting now F (t) = ‖ eQtf‖λ(t), t ≥ 0, for some
function λ(t) with λ(0) = a, a ∈ R, the analogue of (3.7) reads as

λ(t)2 F (t)λ(t)−1F ′(t) = λ′(t) Entµ
(
eλ(t)Qtf

)
−

∫
λ(t)2

2

∣∣∇Qtf ∣∣2eλ(t)Qtfdµ. (3.10)

By the logarithmic Sobolev inequality (3.4) applied to eλ(t)Qtf , F ′(t) ≤ 0 as soon as
λ′(t) = 1/C, t ≥ 0. As a result, the logarithmic Sobolev inequality (3.4) shows that,
for every t ≥ 0, every a ∈ R and every (say bounded) function f ,

‖ eQtf‖a+t/C ≤ ‖ ef‖a. (3.11)

Conversely, if (3.11) holds for every t ≥ 0 and some a 6= 0, then the logarithmic Sobolev
inequality (3.4) holds. We may thus state the following main result (cf. [B-G-L] for
the detailed proof).

Theorem 3.3. Assume that µ is absolutely continuous with respect to Lebesgue

measure and that for some C > 0 and all smooth enough functions f on Rn,

Entµ(f2) ≤ 2C
∫
|∇f |2dµ. (3.12)

Then, for every bounded measurable function f on Rn, every t ≥ 0 and every a ∈ R,

‖ eQtf‖a+t/C ≤ ‖ ef‖a . (3.13)

Conversely, if (3.13) holds for some a 6= 0, all f ’s and all t ≥ 0, then the logarithmic

Sobolev inequality (3.12) holds.

An alternate proof of this result may be provided by the tool of vanishing viscosity
(cf. [Ev]). We only briefly outline the principle that requires some further technical
arguments. The idea is to add a small noise to the Hamilton-Jacobi equation to turn
it after an exponential change of functions into the heat equation. Given a smooth
function f , and ε > 0, denote namely by vε = vε(x, t) the solution of the initial value
partial differential equation

∂vε

∂t
+

1
2
|∇vε|2 − εLvε = 0 in Rn × (0,∞),

vε = f on Rn × {t = 0}.
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As ε→ 0, it is expected that vε approaches in a reasonable sense the solution v of (3.8)
It is easy to check that uε = e−v

ε/2ε is a solution of the heat equation ∂uε

∂t = εLuε

(with initial value e−f/2ε). Therefore,

uε = Pεt
(
e−f/2ε

)
.

We may then apply, with some modifications (cf. [B-G-L]), classical hypercontractivity
to uε to recover Theorem 3.3. It must be emphasized that the perturbation argument
by a small noise has a clear picture in the probabilistic language of large deviations.
Namely, the asymptotic of

vε = −2ε logPεt
(
e−f/2ε

)
as ε → 0 is a Laplace-Varadhan asymptotic with rate described precisely by the
infimum convolution of f with the quadratic large deviation rate function for the heat
semigroup.In this limit, the second order Laplace operator is the leading term in the
definition of L = ∆ − ∇V · ∇ so that the limiting solution u given by the infimum-
convolution Qtf is independent of the potential U and thus of µ. (In particular, this
asymptotic is explicit on the basic Ornstein-Uhlenbeck example.)

With respect to classical hypercontractivity, it is worthwhile noting that Qt is
defined independently of the underlying measure µ. Due to the homogeneity property
Qt(sf) = sQstf , s, t > 0, (3.13) may be rewritten equivalently as

‖ eQ1f‖r+1/C ≤ ‖ ef‖r (3.14)

for r ∈ R. If (3.14) holds for either every r > 0 (or only large enough) or every r < 0
(or only large enough), then the logarithmic Sobolev inequality (3.12) holds.

When a = 0 in (3.13), or r = 0 in (3.14), these two inequalities actually amount to
the infimum-convolution inequality∫

eQCfdµ ≤ e
∫
fdµ (3.15)

holding for every bounded (or integrable) function f . Now, as we saw in Proposition
3.2, (3.15) is exactly the quadratic transportation cost inequality

W2(µ, ν) ≤
√
C H(ν |µ) (3.16)

holding for all probability measures ν absolutely continuous with respect to µ.

That the transportation cost inequality (3.16) follows from the logarithmic Sobolev
inequality (3.12) was established by F. Otto and C. Villani [O-V1]. While the
arguments developed in [O-V1] do involve PDE’s methods, the approach presented
here only relies on the basic Hamilton-Jacobi equation and presents a clear view
of the connection between logarithmic Sobolev inequalities and transportation cost
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inequalities. One feature of the preceding approach is the systematic use of the Monge-
Kantorovitch dual version of the transportation cost inequality involving infimum-
convolution rather than Wasserstein distances. While optimal mass transportation is
not used in the argument above, it is however implicit at various stages (see [O-V2],
[Vi]). For example, optimality in (3.3)∫

Q1fdν −
∫
fdµ = W2(µ, ν)2 =

1
2

∫
|x− T |2dµ

is achieved at a function f such that

Q1f ◦ T = f +
1
2
|x− T |2

where T = ∇φ is the Brenier-McCann optimal transport of µ to ν by the gradient of
a convex function φ : Rn → R. Moreover, ∇f = T−1 − x.

It is an open problem (although probably with negative answer) to know whether
the critical case (3.15) (equivalently the quadratic transportation inequality (3.16)) is
also equivalent to the logarithmic Sobolev inequality (3.12) (with a possibly different
constant C). Partial converses are discussed in [O-V1] through a new family of
inequalities, called HWI inequalities (relating entropy, Wasserstein distance and Fisher
information). Extension to Riemannian manifolds are discussed in [O-V1], [B-G-L],
[Wa].

3.3 Brunn-Minkowski revisited

The final step in our program is to come back to the geometric Brunn-Minskowski
inequalities. Actually, it turns out that the Brunn-Minkowski theorem may be used to
prove the hypercontractive inequalities of Theorem 3.3 for the class of measures with
strictly logconcave densities. Assume, as in Theorem 2.2, 2.4 and 2.6, that dµ = e−V dx
where V : Rn → R is smooth and such that for some c > 0, uniformly in x ∈ Rn,
Hess (V )(x) ≥ c Id in the sense of symmetric matrices. This condition is thus the
condition under which both the quadratic transportation cost and logarithmic Sobolev
inequalities for µ hold with C = 1

c . What we observe here is that the classical Brunn-
Minkowski inequality, in its functional form (Theorem 2.1), may be used to provide
a simple proof of the hypercontractive estimates (3.13) (with a = 1), and thus of
the logarithmic Sobolev inequality (and the quadratic transportation cost inequality
(3.16)). Namely, given a (bounded) function f on Rn, apply Theorem 2.1 to the
functions

u(x) = e
1
θQ(1−θ)/cθf(x)−V (x), v(y) = e−V (y), w(z) = ef(z)−V (z).

(Note the somewhat different choice in the functions u, v, w with respect to the one used
in Section 2.1: the one here will lead to optimal constants.) The convexity assumption
on V amounts to

θV (x) + (1− θ)V (y)− V
(
θx+ (1− θ)y

)
≥ c θ(1− θ)

2
|x− y|2 (3.17)
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for every 0 < θ < 1 and x, y ∈ Rn so that condition (2.3) on u, v, w will be satisfied by
the very definition of the infimum-convolution Q(1−θ)/cθf . Therefore,

∫
efdµ ≥

( ∫
e

1
θQ(1−θ)/cθfdµ

)θ
.

Setting 1
θ = 1+ct, t ≥ 0, immediately yields (3.13) with C = 1

c and a = 1. In particular
the logarithmic Sobolev inequality for µ holds with C = 1

c . We thus recover Theorem
2.6 from the Hamilton-Jacobi approach.

Note that the same argument holds when considering an arbitrary norm in (3.17)
to yield the logarithmic Sobolev inequality (3.12) with the dual norm of the gradient.
This type of logarithmic Sobolev inequalities are out of reach of the heat semigroup
tools.

3.4 Recent developments

Recent extensions of transportation cost and generalized entropic inequalities take
a natural form in a PDE setting where they are used to control decays to equilibrium.
The following comments, and references, are far from exhaustive, and we refer in
particular to the recent monograph by C. Villani [Vi] and the references therein for a
more complete account.

There, the reference measure is Lebesgue measure, and functions are replaced by
probability densities. In particular, the heat equation ∂

∂t − L = 0 with respect to the
operator L = ∆−∇V · ∇ is turned into the Fokker-Planck equation

∂u

∂t
−∇ ·

[
u∇(log u+ V )

]
= 0.

If dµ = e−V dx is the invariant self-adjoint probability measure for L, and if f is a non-
negative function with

∫
fdµ = 1, perform the change of functions ρ = fe−V so that

ρ is a probability density with respect to Lebesgue measure on Rn. The logarithmic
Sobolev inequality (2.14) takes the form∫

ρ log ρdx+
∫
V ρdx ≤ C

2

∫ ∣∣∇(log ρ+ V )
∣∣2ρdx (3.18)

for every smooth probability density ρ on Rn. In this form, it may be generalized in
various directions. For every probability density ρ, define the entropy of ρ as

H(ρ) =
∫
U(ρ)dx+

∫
V ρdx+

1
2

∫ ∫
W (x− y)ρ(x)ρ(y)dxdy

where U : Rn → R+, U(0) = 0, is strictly convex and such that λ → λnU(λ−n) is
convex and increasing, and W is convex and even. The typical examples of U are
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U(x) = x log x (which corresponds to the classical case) and the power type function
U(x) = xm

m−1 corresponding to porous medium equations, while the convolution
interaction W is associated with granular media. Denote by ρ∞ the unique probability
density that minimizes the functional H and set H(ρ | ρ∞) = H(ρ)−H(ρ∞).

The Fisher information on the right-hand side of (3.18) may also be extended to

I(ρ) =
∫ [

∇
(
U ′(ρ) + V +W ∗ ρ

)
· ∇c∗

(
∇

(
U ′(ρ) + V +W ∗ ρ

))]
ρdx

where c : Rn → R+ is a cost function on Rn and c∗ its Legendre transform. (See [Vi]
for admissible costs extending the classical example of c(x) = |x|2

2 , x ∈ Rn.)

In this framework, the generalized entropic inequality extending (3.18) takes the
form

H
(
ρ | ρ∞

)
≤ C I(ρ) (3.19)

for some constant C > 0 and all probability densities ρ, while the transportation cost
inequality generalizing (2.12) expresses that

Wc(ρ, ρ∞) ≤ C H
(
ρ | ρ∞) (3.20)

where
Wc(µ, ν) = inf

∫ ∫
c(x− y)dπ(x, y)

with the infimum taken over all probability measures on Rn×Rn with marginals µ and
ν.

These generalized entropic and transportation cost inequalities have been studied
extensively in a vast recent PDE literature (some, but not all, being referenced here).
In the geometric framework of dissipative evolution equations introduced by F. Otto
[Ot], interpolation along mass transport and displacement convexity have been used
to this task. Alternatively, along the lines of the mass transportation proofs of
Section 2, both (3.19) and (3.20) have been established in [CE-G-H] under various
convexity conditions on V and W (basically uniform convexity of V with respect
to the cost c and convexity of W ). The approaches cover in the same way various
families of inequalities, including in particular HWI inequalities [O-V1], [C-MC-V],
[CE-G-H], and the classical Sobolev and Gagliardo-Nirenberg inequalities with sharp
constants for both Euclidean and arbitrary norms on Rn [CE-N-V]. Even sharper
further developments have been obtained recently in [A-G-K], [Gh]... These estimates
may then be used to produce exponential decays to equilibrium, in relative entropy and
in the Wasserstein distance, of solutions of families of degenerate parabolic equations
(Fokker-Plank, porous medium and fast diffusion, p-Laplacian), with explicit rates [Ot],
[C-J-M-T-U], [A-M-T-U], [C-MC-V], [DP-D1], [DP-D2]... We refer to these works, and
to the monograph [Vi], for a complete discussion, proofs and precise hypotheses in
these recent results and developments.
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In the dual formulation, the generalized entropic inequality (3.19) has been shown,
by I. Gentil and F. Malrieu [G-M], to be equivalent, as in the classical case, to a family
of hypercontractive bounds on the solutions

Qtf(x) = inf
y∈Rn

[
f(y) + tc

(x− y

t

)]
, x ∈ Rn, t > 0,

of the Hamilton-Jacobi equation
∂v

∂t
+ c∗(∇v) = 0 in Rn × (0,∞),

v = f on Rn × {t = 0}.

In particular, this family includes (3.20) extending to this more general framework
the implication on [O-V1] from the generalized entropic inequality (3.19) to the
transportation cost inequality (3.20).

The connection between classical Sobolev inequalities and ultracontractive bounds
of solutions of Hamilton-Jacobi equations is developed in [Ge], in analogy with the
connection with heat kernel bounds (cf. [Da], [Bak1]). See also [Bak2], [DP-D1],
[DP-D2], [DP-D-G]... for various regularization properties of non-linear generalizations
(porious medium, fast diffusion, p-Laplacian...) of the heat equation, with in particular
in [Bak2] the extension of the semigroup proof of Theorem 2.5.
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and optimal transportation (2001). Procedings of the workshop: Mass transportation methods
in kinetic theory and hydrodynamics, to appear.

[CE-MC-S] D. Cordero-Erausquin, R. McCann, M. Schmuckenschläger. A Riemannian interpo-
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