Durée de l'épreuve 1h30, pas de documents, calculatrice, téléphone. Il est obligatoire de signaler les opérations sur les lignes/colonnes effectuées dans vos calculs.

Exercice 1. On considère pour $a \in \mathbb{R}$ le système linéaire :

$$(\mathcal{S}_a) \begin{cases} x + y + z = \alpha \\ x + 2y + 4z = \beta \\ x + ay + a^2z = \gamma \end{cases}$$

- (1) Donner la matrice A_a du système calculer son déterminant et étudier son rang.
- (2) Résoudre le système lorsqu'il est de rang maximal en exprimant la solution à l'aide de déterminants qu'il n'est pas utile de calculer.
- (3) Résoudre le système si a = 2.

Exercice 2. Pour
$$a_1, \ldots, a_n \in \mathbb{R}$$
 on pose : $D(a_1, \ldots, a_n) = \det \begin{pmatrix} a_1 & a_1 & \ldots & a_1 \\ a_1 & a_2 & \ldots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \ldots & a_n \end{pmatrix}$. Calculer

sous forme factorisée $D(a_1), D(a_1, a_2), D(a_1, a_2, a_3)$ et en déduire $D(a_1, \ldots, a_n)$ par récurrence sur $n \in \mathbb{N}^*$.

Exercice 3. On considère pour tout nombre complexe $a \in \mathbb{C}$ le système linéaire :

$$(\mathscr{S}_a) \quad \begin{cases} x + ay + a^2z = \alpha \\ a^2x + ay + z = \beta \end{cases}$$

- (1) Donner la matrice A_a du système et étudier son rang suivant les valeurs de a.
- (2) On suppose A_a de rang maximal, sans résoudre le système sommes nous assurés de l'existence de solutions pour tout choix de $^t(\alpha, \beta) \in \mathbb{R}^2$? Si oui, quelle est l'allure dans l'ensemble des solutions?
- (3) Si (\mathscr{S}_a) n'est pas de rang maximal, sommes nous assurés de l'existence de solutions pour tout choix de $(\alpha, \beta) \in \mathbb{R}^2$?.
- (4) Résoudre le système si a = -1.

Exercice 4. Calculer le déterminant de la matrice suivante :

$$\left(\begin{array}{cccc}
m & 0 & 1 & 2m \\
1 & m & 0 & 0 \\
0 & 2m+2 & m & 1 \\
m & 0 & 0 & m
\end{array}\right).$$

Calculer alors, suivant la valeur du paramètre m, le rang de cette matrice.

Tournez la page SVP

Exercice 5. On considère pour tout nombre complexe $a \in \mathbb{C}$ le système linéaire :

$$(\mathscr{S}_a) \quad \begin{cases} x + ay + a^2z = \alpha \\ a^2x + ay + z = \beta \end{cases}$$

- (1) Donner la matrice A_a du système et étudier son rang suivant les valeurs de a.
- (2) A_a est de rang maximal, et sans résoudre le système, sommes nous assurés de l'existence de solutions pour tout choix de $(\alpha, \beta) \in \mathbb{R}^2$? Si oui, quelle est l'allure dans l'ensemble des solutions.
- (3) Si (\mathscr{S}_a) n'est pas de rang maximal, sommes nous assurés de l'existence de solutions pour tout choix de $(\alpha, \beta) \in \mathbb{R}^2$?.
- (4) Résoudre le système si a = -1.

② ★ ② Fin de l'épreuve.
② ★ ②

I.N.P. 31 Mars 2010

3 % 3

Déterminants et Systèmes Linéaires – Examen.

Durée de l'épreuve 1h30, pas de documents, calculatrice, téléphone. Il est obligatoire de signaler les opérations sur les lignes/colonnes effectuées dans vos calculs.

Exercice 6. On considère pour $a, b \in \mathbb{R}$ le système linéaire :

$$(\mathscr{S}_{a,b}) \quad \begin{cases} ax + y + z = \alpha \\ x + by + bz = \beta \end{cases}$$

- (1) Donner la matrice $A_{a,b}$ du système et étudier son range
- (2) Dans un repère Oab représenter les couples (a,b) tels que $A_{a,b}$ ne soit pas de rang maximal.
- (3) Pour quels couple (a,b) le système $(\mathscr{S}_{a,b})$ admet-t-il une unique solution?
- (4) Sans résoudre le système que peut-on dire de l'ensemble des solutions du système lorsque $A_{a,b}$ est de rang maximal.
- (5) Même question si $A_{a,b}$ n'est pas de rang maximal.
- (6) Résoudre le système si $A_{a,b}$ n'est pas de rang maximal.
- (7) Résoudre le système si (a,b) = (2,-1).

Exercice 7. On considère pour $a \in \mathbb{C}$ le système linéaire :

$$(\mathscr{S}_{a}) \begin{cases} x + y + z = \alpha \\ x + a^{2}y + z = \beta \\ x + y + a^{3}z = \gamma \end{cases}$$

- (1) Donner la matrice A_a du système et calculer son déterminant.
- (2) Etudier le rang de A_a .
- (3) Pour quelles valeurs de a le système admet-il une unique solution? Préciser alors cette solution à l'aide de déterminants qu'il n'est pas utile de calculer.
- (4) Résoudre le système lorsque a = -1.

Exercice 8. Soit Δ_n le déterminant de taille n suivant :

$$\Delta_n = \begin{vmatrix} 3 & 1 & 0 & \cdots & 0 \\ 2 & 3 & 1 & \ddots & \vdots \\ 0 & 2 & 3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 2 & 3 \end{vmatrix}$$

- (1) Montrer que $\forall n \geq 2$: $\Delta_n = 3\Delta_{n-1} 2\Delta_{n-2}$ (avec la convention $\Delta_0 = 1$, $\Delta_1 = 3$).
- (2) En introduisant la suite de terme général $v_n = \Delta_n \Delta_{n-1}, (n \in \mathbb{N}^*)$, montrer que $\Delta_n = 2^{n+1} 1$.

Exercice 9. Calculer sous forme factorisée le déterminant de la matrice

$$A = \begin{pmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{pmatrix} \in M_4(\mathbb{R}).$$

Montrer que cette matrice est de rang maximal dès que le vecteur $^t(a,b,c)$ évite dans \mathbb{R}^3 trois plans dont on précisera une équation cartésienne.

3 4 3

Jeudi 10 Mars 2011, Examen final, durée 1 heure 30, pas de documents, calculatrices, téléphones.

Exercice 10. Déterminer les $(x, y, z) \in (\mathbb{R}_+^*)^3$ solutions de $\begin{cases} xy^{-1}z &= 1 \\ x^2yz &= e \\ x^2y^{-1}z^2 &= e^2 \end{cases}$ la résolution d'un véritable système linéaire par une tranformation convenable.

Exercice 11. Pour $a, b \in \mathbb{R}$ on pose $A_{a,b} = \begin{pmatrix} b & a & a & a \\ a & b & a & a \\ a & a & b & a \\ a & a & a & b \end{pmatrix}$.

- (1) Calculer (sous forme factorisée) le déterminant de $A_{a,b}$.
- (2) Etudier, suivant les valeurs des paramètres a et b, le rang de $A_{a,b}$.
- (3) Sans faire calculs, pour quelles valeurs du paramètre réel $\alpha \in \mathbb{R}$ sommes nous assurés que le système linéaire

$$(\mathscr{S}_{\alpha}) : \begin{cases} \alpha x + y + z + t &= u_1 \\ x + \alpha y + z + t &= u_2 \\ x + y + \alpha z + t &= u_3 \\ x + y + z + \alpha t &= u_4 \end{cases}$$

admet des solutions pour tout $(u_1, u_2, u_3, u_4) \in \mathbb{R}^4$?

- (4) Pour les valeurs des α trouvées dans la question précédente, donner la solution du système (\mathscr{S}_{α}) à l'aide de déterminants que l'on ne calculera pas.
- (5) Discuter de l'allure de l'ensemble des solutions du système (\mathscr{S}): $\begin{cases} x+y+z+t &= u_1 \\ x+y+z+t &= u_2 \\ x+y+z+t &= u_3 \\ x+y+z+t &= u_4 \end{cases}$
- (6) Résoudre le système ($\mathscr S$) lorsqu'il admet des solutions.

Exercice 12.

- (1) Soit $z = a + ib \in \mathbb{C}$. Montrer que $z\overline{z} = |z|^2$.
- (2) Calculer le déterminant de la matrice $M_z := \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 10 z\overline{z} & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 1 (z-2)\overline{(z-2)} \end{pmatrix}$ où $z \in \mathbb{C}$.
- (3) Discuter du rang de M_z suivant les valeurs de $z \in \mathbb{C}$.
- (4) Représenter graphiquement l'ensemble \mathscr{C} des $z \in \mathbb{C}$ tels que M_z ne soit pas de rang maximal et préciser l'aire du domaine borné contenant l'origine et délimité par \mathscr{C} .

Fin de l'épreuve

I.N.P. Mars 2011

3 * 3 Systèmes et Déterminants – Examen Bis Final.

3 * 3

Mercredi 23 Mars 2011, Examen Final Bis, Durée 1 heure 30, pas de documents, calculatrices, téléphones.

Exercice 13. Pour $n \geq 2$ et $a \in \mathbb{R}$ calculer le déterminant de la matrice

$$M_a = \begin{pmatrix} 1 & a & \dots & a \\ a & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ a & \dots & a & 1 \end{pmatrix} \in M_n(\mathbb{R}).$$

Pour quelles valeurs de a est-elle de rang maximal?

Exercice 14. Pour $a \in \mathbb{R}$ on pose $M_a = \begin{pmatrix} 1 & a^2 & -1 & a^2 \\ 1 & 1 & -1 & a^2 \end{pmatrix}$.

- (1) Etudier, suivant les valeurs des paramètre réel a le rang de M_a .
- (2) Pour quelles valeurs du paramètre réel $a \in \mathbb{R}$ la matrice M_a est-elle inversible?
- (3) Sans faire calculs, pour quelles valeurs du paramètre réel $a \in \mathbb{R}$ sommes nous assurés que le système linéaire

$$(\mathscr{S}_a) : \begin{cases} x + a^2y - z + a^2t &= u_1 \\ x + y - z + a^2t &= u_2 \end{cases}$$

admet des solutions pour tout $(u_1, u_2) \in \mathbb{R}^2$?

- (4) Pour les valeurs de a trouvées dans la question précédente, discuter de l'allure de l'ensemble des solutions du système (\mathscr{S}_a) .
- (5) Existe-t-il des valeurs du paramètre réel $a \in \mathbb{R}$ pour lesquelles le système (\mathscr{S}_a) admet une unique solution?
- (6) Résoudre le système (\mathscr{S}) : $\begin{cases} x + 2y z + 2t &= 0 \\ x + y z + 2t &= 0 \end{cases}$ (7) Résoudre le système (\mathscr{S}) : $\begin{cases} x + y z + t &= 2011 \\ x + y z + t &= 2011 \end{cases}$

Exercice 15.

- $(1) \ \ Calculer \ le \ d\'eterminant \ de \ la \ matrice \ \ M_z := \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 10 |z|^2 & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 6 |z 2|^2 \end{pmatrix} \ \ \boldsymbol{où} \ z \in \mathbb{C}.$
- (2) Discuter du rang de M_z suivant les valeurs de $z \in \mathbb{C}$.
- (3) Représenter graphiquement l'ensemble \mathscr{C} des $z \in \mathbb{C}$ tels que M_z ne soit pas de rang maximal et préciser l'aire du domaine borné contenant l'origine et délimité par \mathscr{C} .

Fin de l'épreuve

🕽 🏠 INP, EXAMEN FINAL, Déterminants et Systèmes, 14 Mars 2012. 🔭 🗘

Durée 1h30, documents, calculatrices, téléphones interdits.

Exercice 16. (4 points) Trouver un nombre de trois chiffres sachant que :

- La somme des chiffres est égale à 14.
- En permutant les chiffre des unités avec celui des dizaines le nombre augmente de 36.
- En permutant les chiffre des unités avec celui des centaines le nombre augmente de 297.

Exercice 17. (6 points) Soit $A = ((a_{i,j})) \in M_n(\mathbb{R})$, on note $-A = ((-a_{i,j})) \in M_n(\mathbb{R})$.

- (1) Exprimer det(-A) en fonction de det(A).
- (2) Soit $A = ((a_{i,j})) \in M_n(\mathbb{R})$ vérifiant ${}^tA = -A$ (on dit que A est une matrice antisymétrique).
 - (a) Si n est **impair**, montrer que det(A) = 0.
 - (b) On suppose n = 2p pair et soit $A = ((a_{ij})) \in M_n(\mathbb{R})$ définie par :

$$a_{i,n+1-j} = \begin{cases} 1, & pour \ 1 \le i \le p, \\ -1, & pour \ p+1 \le i \le 2p = n \end{cases}$$

et tous les autres coefficients sont nuls.

- Représenter A et vérifier qu'elle est antisymétrique.
- Calculer son déterminant, conclusion?

Exercice 18. (6 points) On considère les système linéaire

$$\mathcal{S}_{abc} : \begin{cases} bx + ay & = c \\ cx + az = b \\ cy + bz = a \end{cases}$$

- (1) Donner la matrice A du système et calculer son déterminant.
- (2) Etudier le rang de A.
- (3) Soit $\varphi \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme de \mathbb{R}^3 admettant A pour matrice dans la base canonique. Montrer que ker φ n'est jamais un plan vectoriel de \mathbb{R}^3 .
- (4) Pour quels $(a, b, c) \in \mathbb{R}^3$ le système est-il de Cramer?
- (5) Lorsque le système est de Cramer, exprimer les coordonnées de l'unique solution du système à l'aide de déterminants qu'il est inutile de calculer.

- (1) $Calculer \det(B)$.
- (2) Calculer le produit AB.
- (3) $Calculer \det(AB)$ sous forme factorisée.
- (4) En déduire det(A).

→ Fin de l'épreuve → →

1 Durée 1h30, documents, calculatrices, téléphones interdits.

Exercice 20. (4 points) Les deux questions sont indépendantes.

- (1) Calculer la valeur du déterminant $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix}$.
- (2) Calculer la valeur du déterminant $\begin{vmatrix} 20112012 & 15151516 \\ 20113012 & 15152516 \end{vmatrix}$ en effectuant au **maximum** une multiplication (additions et soustractions sont autorisées).

Exercice 21. (4 points) En se ramenant à la résolution d'un système linéaire, trouver un nombre de trois chiffres sachant que :

- La somme des chiffres est égale à 7.
- En permutant le chiffre des unités avec celui des dizaines le nombre augmente de 63.
- En permutant le chiffre des unités avec celui des centaines le nombre augmente de 693.

Exercice 22. (6 points) Soit $A = ((a_{i,j})) \in M_n(\mathbb{R})$, on note $-A = ((-a_{i,j})) \in M_n(\mathbb{R})$.

- (1) Exprimer det(-A) en fonction de det(A).
- (2) Soit $A = ((a_{i,j})) \in M_n(\mathbb{R})$ vérifiant ${}^tA = -A$ (on dit que A est une matrice antisymétrique).
 - (a) Si n est **impair**, montrer que det(A) = 0.
 - (b) On suppose n = 2p pair et soit $A = ((a_{ij})) \in M_n(\mathbb{R})$ définie par :

$$a_{i,n+1-i} = \begin{cases} 2p+1-i, & pour \ 1 \le i \le p, \\ -(2p+1-i), & pour \ p+1 \le i \le 2p = n \end{cases}$$

et tous les autres coefficients sont nuls.

- Représenter A et vérifier qu'elle est antisymétrique.
- $\bullet \ \ Calculer \ son \ \ d\'{e}terminant, \ conclusion \ ?$

Exercice 23. (6 points) Soit $m \in \mathbb{R}$, on considère le système linéaire

$$\begin{cases} x + y + z = m+1 \\ mx + y + (m-1)z = m \\ x + my + z = 1 \end{cases}$$

- (1) Donner la matrice A_m du système et calculer son déterminant.
- (2) Etudier le rang de A_m suivant les valeurs du paramètre réel m.
- (3) Lorsque le système est de Cramer, exprimer les coordonnées de l'unique solution du système à l'aide de déterminants que l'on demande de calculer.
- (4) Résoudre le système lorsque m=1.

∂ ★ Fin de l'épreuve ★ ∂