3 ★ 3 Fonctions d'une Variable Réelle – Corrigé du Devoir 4.

On se propose de démontrer [théorème des cordes universelles de Paul Levy, 1935] que les réels de la forme 1/n, $n \in \mathbb{N}^*$ sont les seuls ayant la propriété suivante : « pour toute fonction $f \in \mathscr{C}^0([0,1])$ telle que f(0) = f(1) et tout $n \in \mathbb{N}^*$, il existe $x_n \in [0,1]$ tel que $f(x_n+1/n) = f(x_n)$ ».

- (1) Soit $f \in \mathcal{C}^0([0,1])$ telle que f(0) = f(1), supposons qu'il existe $n \ge 1$ tel que $g(x) := f(x) f(x+1/n) \ne 0$ pour tout $x \in [0,1]$; en considérant $\sum_{k=0}^{n-1} g(k/n)$ montrer que la condition est nécessaire.
- (2) En considérant $f(x) = \sin^2(\pi x/r) x\sin^2(\pi/r)$, montrer que la condition est suffisante.

Solution:

- (1) g continue, est sans zéros sur [0,1] donc de signe constant, par exemple strictement positive; mais par télescopage : $0 < \sum_{k=0}^{n-1} g(k/n) = f(1) f(0) = 0$ c'est absurde : la condition est nécessaire.
- (2) f(x+r) = f(x) implique $r \sin^2(\pi/r) = 0$ soit r = 1/m avec $m \in \mathbb{N}^*$. La condition est suffisante.

25 septembre 2012 Lassère Patrice : Institut de Mathématiques de Toulouse, laboratoire E.Picard, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE.

Page perso.: http://www.math.univ-toulouse.fr/ lassere/INP.html Mèl: lassere@math.ups-tlse.fr

1