2 L2 PCP, Préparation à l'oral : Algébre Linéaire Généralités.

Exercice 1. Soient A, B, C trois sous espaces vectoriels d'un $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} espace vectoriel E. Montrer que $A \cap B = A + B$ si et seulement si A = B

Exercice 2. Soient H_1, H_2 deux hyperplans dinstincts d'un $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} espace vectoriel E de dimension finie d. Quelle est la dimension de $H_1 \cap H_2$ Même question avec $3, \ldots, d$ hyperplans deux à deux distincts.

Exercice 3. Soit $\mathscr{C} = \{AB - BA, A, B \in M_n(\mathbb{C})\}$. Montrer que $\mathscr{E} := \text{vect}(\mathscr{C})$ est de dimension $n^2 - 1$.

Exercice 4. Déterminer le reste de la division euclidienne de $p(x) = x + x^9 + x^{25} + x^{49} + x^{81}$ par le polynôme $x^3 - x$ (se ramener à la résolution d'un système linéaire simple).

Exercice 5. Soient $A, B \in M_n(\mathbb{R})$ telles que AB = BA et $B^n = 0$. Montrer que $\det(A + B) = \det(A)$ (distinguer successivement les cas $A = I_n$, A est inversible puis quelconque).

Exercice 6. Déterminer la boule (euclidienne) de \mathbb{R}^3 passant par les quatres points $A_1 = (1,0,0), A_2 = (1,1,0), A_3 = (1,1,1), A_4 = (0,1,1)$. (Indic : écrire les équations que devraient vérifier ces points et se ramener à la résolution d'un système linéaire).

Exercice 7. Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1,

- (1) Déterminer le polynôme caractéristique de A.
- (2) Montrer que $det(A + I_n) = trace(A) + 1$.
- (3) Si $A \in GL_n(\mathbb{R})$ et $X \in M_{n,1}(\mathbb{R})$, montrer que $\det(A + X^tX) = \det(A) \cdot (1 + {}^tXA^{-1}X)$.

Exercice 8. Soient E_1 , E_2 deux sous-espaces de \mathbb{R}^{10} vérifiant $E_1 \subset E_2$, $\dim_{\mathbb{R}} E_1 = 3$, $\dim_{\mathbb{R}} E_2 = 6$. Déterminer la dimension du sous espace \mathscr{E} de $\mathscr{L}(\mathbb{R}^{10})$ définit par

$$\mathscr{E} = \left\{ T \in \mathscr{L}(\mathbb{R}^{10}) : T(E_1) \subset E_1 \& T(E_2) \subset E_2 \right\}.$$

(Indic : observer l'allure des matrices des éléments de \mathscr{E} écrites dans une base convenablement choisie de \mathbb{R}^{10}).

Exercice 9. Soit $A \in \mathbb{M}_n(\mathbb{C})$. On désignera par \widehat{A} la matrice obtenue à partir de A en remplacant pour tout $1 \leq i \leq n$ la i-ième colonne de A par la sommes des autres colonnes. On désigne par \widetilde{A} la matrice déduite de A en retranchant pour tout $1 \leq i \leq n$ à la i-ième colonne de A la sommes des colonnes d'indices distincts de i. Exprimer en fonction de $\det(A)$ les déterminants $\det(\widehat{A})$ et $\det(\widetilde{A})$

Exercice 10. Calculer les déterminants :

$$\Delta_n = \begin{vmatrix} 1 + a_1 & 1 & \dots & 1 \\ 1 & 1 + a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 1 + a_n \end{vmatrix}, \quad \det(A_n) = \det((a_{ij} = |i - j|))_{1 \le i, j \le n}.$$

23 mai 2012 Lassère Patrice : Institut de Mathématiques de Toulouse, laboratoire E.Picard, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE.

Page perso. : http://www.math.univ-toulouse.fr/ lassere/ Mèl : lassere@math.univ-toulouse.fr