
A Proof of Weierstrass's Theorem
Author(s): Dunham Jackson
Reviewed work(s):
Source: The American Mathematical Monthly, Vol. 41, No. 5 (May, 1934), pp. 309-312
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2300993 .
Accessed: 19/01/2012 06:30

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/2300993?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


1934] A PROOF OF WEIERSTRASS S THEOREM 309 

A PROOF OF WEIERSTRASS'S THEOREM' 
By DUNHAM JACKSON, University of Minnesota 

Weierstrass's theorem with regard to polynomial approximation can be 
stated as follows: 

If f(x) is a given continuous function for a < x < b, and if e is an arbitrary posi- 
tive quantity, it is possible to construct an approximating polynomial P(x) such 
that 

1f(x) - P(X)I < E 

for a ? x < b. 
This theorem has been proved in a great variety of different ways. No 

particular proof can be designated once for all as the simplest, because simplic- 
ity depends in part on the preparation of the reader to whom the proof is ad- 
dressed. A demonstration which follows directly from known facts about power 
series or Fourier series, for example, is not so immediate if a derivation of those 
facts has to be gone through first. A proof commonly regarded as among the 
simplest and neatest is the one due to Landau2 in which an approximating 
polynomial is given explicitly by means of a certain type of "singular" integral. 
The purpose of this note is to present a modification or modified formulation of 
Landau's proof which is believed to possess further advantages of simplicity, at 
least from some points of view. 

Let f(x) be a given continuous function for a ? x ? b. Without essential loss 
of generality it can be supposed that 0 <a < b < 1, since any finite interval what- 
ever can be carried over into an interval contained in (0, 1) by a linear trans- 
formation, under which any continuous function will go into a continuous func- 
tion and any polynomial into a polynomial of the same degree. For convenience 
in the writing of the formulas which enter into the proof, let the function 
f(x), supposed given in the first instance only for a < x ? b, be defined outside the 
interval (a, b) as follows: 

f(x) = 0 for x _ 0, 

x 
f(x)= -f(a) for0<x<a, 

a 

1-x 
f(x) = _bf(b) for b < x <1, 

f(x) =0 for x>1. 

Then f(x) is defined and continuous for all values of x. The question at issue is 
that of approximating it by means of a polynomial for values of x belonging to 

I Presented to the Minnesota Section of the Association, May 13, -1933. 
2 E. Landau, Uber die Approximation einer stetigen Funktion durch eine ganze rationale Funk- 

tion, Rendiconti del Circolo Matematico di Palermo, vol. 25 (1908), pp. 337-345; see also Courant- 
Hilbert, Methoden der Mathematischen Physik, vol. I, second edition, Berlin, 1931, pp 55-57. 
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the interval (a, b). 
Let J,n denote the constant 

in= ( - u2) du, 

and let 

Pn(x) =- f(t) [ - (t - x)2]ndt. 

The integrand in the latter integral is a polynomial of degree 2n in x with 
coefficients which are continuous functions of t, and the integral is for each value 
of n a polynomial in x of degree 2n (at most) with constant coefficients. 

If 0 ? x _ 1, the value of the integral is not changed if the limits are replaced 
by -1 +x and 1 +x, since f(t) vanishes everywhere outside the interval (0, 1), 
and vanishes in particular from -1 +x to 0 and from 1 to 1 +x: 

1 ,1+Z 
Pn(x) = f f(t) [1 - (t- x)2]ndt. 

By the substitution t - x = u this becomes 

I1 r 
(1) nP(X) - + f(x + u)(I- U2)ndu. 

If the equation 

1 =-f?(1 - u2)ndu 

is multiplied by f(x), this factor, being independent of u, may be written under 
the integral sign: 

I 1 
(2) f(x) =- ff(x)( - U2)ndu. 

Hence, by subtraction of (2) from (1), 

1 r' 
(3) Pn(x) -f(x) = -J [f(x + U) - f(X)](I - U2)ndu. 

The problem now is to show that the value of this expression approaches zero 
as n becomes infinite. 

Let e be any positive quantity. Since f(x) is (uniformly) continuous there 
is a 6 >0 (independent of x) such that If(x+u) -f(x) I < e/2 for |u I 8. Let 
M be the maximum of !f(x)I. Then lf(x+u) -f(x) I :52M for all values of u. 
For IUI u , 1 U2/82, and 

I f(x + u) - f(x) I _ 2MU2/2. 
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For any value of u, one or the other of the quantities e/2, 2Mu2/82 is greater 
than or equal to |f(x+u) -f(x) I, and their sum therefore is certainly greater 
than or equal to jf(x+u) -f(x) I: 

If(x + u) - f(x) < e/2 + 2Mu2/52 

for all values of u. Consequently, for 0 _ x < 1, 

P.(x) -f(x)I < (e/2)(1-u2)ndu .r 2M2+ (1-2)ndu 
in -1 Jn1 a2 

2M 
-e/2 + 2J J -2( U2)1du 

Let the last integral be denoted by J'n. By integration by parts, 

I IUU( U2nd (I1- 2) n+1- 1 
Jn = &( )S" 

r 1 (I -u2)nrl Jn+1 
+fu du= - ( + 

J_.1 2(n+1) 2(n +1) 

But Jn+1 < Jn, since 1-u2 <1 throughout the interior of the interval of integra- 
tion and hence (1 -u2)+1 = (1 -u2) (1 -u2)" < (1 -u2)". So 

h 1~~~~~ 
2(ne + 1) J,, 2(n + 1) 

It follows that as soon as n is sufficiently large 

2MJ,' 
52Jn 

and consequently 

IPn(x) - f(X)l < el 

for 0? x< 1 and in particular for a ? x < b. This is the substance of the conclu- 
sion to be proved. 

The above proof has something in common with that of S. Bernstein,3 the 
fundamental difference being that Landau's integral is used here instead of the 
algebraic formula for a binomial frequency distribution. It was in fact suggested 
to the writer, not by consideration of Bernstein's proof as such, but by a con- 
versation with Professor W. L. Hart on the subject of Bemoulli's theorem. A 
noteworthy characteristic of Bernstein's proof is that it makes Weierstrass's 
theorem in effect a corollary of that of Bernoulli. 

An alternative organization of the present method of proof is as follows. Let 
f(x) at first be not merely continuous, but subject to the Lipschitz condition 

I See e.g. P61ya and Szego, Aufgaben und Lehrsittze aus der Analysis, vol. I, Berlin, -1925, pp. 
66, 230. 
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(4) If(x2) - f(Xl)I < XX2 - Xl 

If this condition is satisfied by f(x) as originally defined for a < x < b, it will be 
satisfied, possibly with a different value of X, when the definition is extended to 
cover all values of x. Then, in (3), If(x+u) -f(x) I X uI, and 

Xr' 2X r 
IPO(X) -f(X) l yJ U (I - U2)du U( - U2)(1_ 

Let 6 = 1/n/2, and let 

1 = - U( -u2)ndu, I2 = u( - u2)ndu, 

so that IPn(x)-f(x)I <2X(I1+I2)/Jn. In A1, u<1/n"l2, and 

I, ? n-12(l - u2)ndu < n-12(l - u2)ndu = 2n-"12Jn 211/Jn < 1/nl2. 

In 12, 1/u_n"l2 and u=u2/u<nl?2u2, so that by application of the previous 
reckoning with Jn' 

r1 * 
12 < nhl2f u2(1 - u2)ndu ? n1I2 u2(1 - u2)ndu = lnl'2J <knl"2Jn/(n+ 1), 

212/J, < lnl"2/(n + 1) < 1/nl2. 

So it appears not merely that I P.(x) -f(x) J is less than a quantity independent 
of x which approaches zero as n becomes infinite, but also, more specifically,4 
that it is less than a quantity of the order of 1/n"12. This is proved, to be sure, 
only for a function satisfying (4). But (4) is satisfied in (a, b) by any continuous 
function whose graph is a broken line made up of a finite number of straight 
line segments with finite slope, and as any function whatever that is continuous 
for a ? x _ b can be approximated with any desired accuracy by a function of this 
special type, the general conclusion of Weierstrass's theorem follows im- 
mediately. 

The method can be applied equally well to the proof of Weierstrass's 
theorem on the trigonometric approximation of a periodic continuous function, 
by the use of de la Vallee Poussin's integral' 

1 rT /~~~~~~~~~~~~~~~~~~t- x\ irT 
f(t) Cos2n - )dt, Hn = Cos2-du, 

and to the proof of corresponding theorems on the approximate representation 
of continuous functions of more than one variable. 

I Cf. C. de la Vall6e Poussin, Sur I' approximation des fonctions d' une variable rMelle et de leurs 
d6rivUes par des polyndmes et des suites limittes de Fourier, Bulletins de la Classe des Sciences, 
Acad6mie Royale de Belgique, 1908, pp. 193-254; pp. 221-224. 

6 See de la Vall6e Poussin, loc. cit., pp.. 228-230. 


	Article Contents
	p. 309
	p. 310
	p. 311
	p. 312

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 41, No. 5 (May, 1934), pp. 279-340
	Front Matter [pp. ]
	The Secular Effect of Tides on the Motion of Planetary Systems [pp. 279-296]
	A Method of Solving the Linear Differential Equation With Constant Coefficients [pp. 296-299]
	Some Interpolation Series [pp. 300-308]
	A Proof of Weierstrass's Theorem [pp. 309-312]
	Questions, Discussions, and Notes
	On the Vanishing of the Sum of the Nth Powers of the Roots of a Cubic Equation [pp. 313-316]
	On the General Equation of the Parabola [pp. 316-317]

	Recent Publications
	Reviews
	Review: untitled [pp. 317-319]
	Review: untitled [pp. 319-321]
	Review: untitled [pp. 322]


	Mathematics Clubs [pp. 322-326]
	Problems and Solutions
	Elementary Problems
	Problems for Solution: E93-E99 [pp. 327-328]
	Solutions
	E65 [pp. 328-329]
	E66 [pp. 329]
	E67 [pp. 330]
	E68 [pp. 330-332]
	E69 [pp. 332]


	Advanced Problems
	Problems for Solution: 3679-3685 [pp. 333-334]
	Solutions
	3612 [pp. 334-335]
	3613 [pp. 335-337]
	3615 [pp. 337]
	3618 [pp. 338-339]



	News and Notices [pp. 339-340]
	Back Matter [pp. ]



