3 ★ 3 INP – Continuité – Petit Corrigé du Devoir 1.

Exercice 1. Montrer par récurrence sur l'entier n que $|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| + \cdots + |a_n|$ où $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

Solution : Si n = 1 on a $|a_1| = |a_1|$ et il n'y a rien à démontrer. Si n = 2 on a $|a_1 + a_2| \le |a_1| + |a_2|$: on retrouve la célèbre inégalité triangulaire. Par récurrence sur $n \ge 1$ supposons la propriété vraie jusqu'au rang n. Alors $|a_1 + a_2 + \cdots + a_n + a_{n+1}| \le |a_1 + a_2 + \cdots + a_n| + |a_{n+1}| \le |a_1| + |a_2| + \cdots + |a_n|$ (on a appliqué les propriété (P_2) puis (P_n)) soit (P_{n+1}) . Conclusion : la propriété est vraie pour tout $n \ge 1$.

Exercice 2. Soient A, B deux parties de \mathbb{R} , on pose $A + B := \{a + b, a \in A, b \in B\}$, $-A := \{-a, a \in A\}$. Montrer que $\inf(-A) = -\sup(A)$ et $\inf(A + B) = \inf(A + \inf(B)$.

Solution: • Notons $i=\inf(-A)$. Si $i\in\mathbb{R}$ alors i est un minorant de $-A:(\forall\,c\in-A:i\leq c)$ soit encore $(\forall\,a\in A:i\leq -a)$ i.e. $(\forall\,a\in A:a\leq -i)$. -i est donc bien un majorant de -A. Par la caractérisation de la borne inférieure on a aussi: $(\forall\,\varepsilon>0,\exists\,c_\varepsilon=-a_\varepsilon\in-A:c_\varepsilon=-a_\varepsilon< i+\varepsilon)$ soit $(\forall\,\varepsilon>0,\exists\,a_\varepsilon\in A:a_\varepsilon>-i-\varepsilon)$. Cette dernière propriété assure bien que le majorant -i de -A est bien le plus petit des majorants: $-i=-\inf(A)=\sup(-A)$. On traite encore plus simplement les cas où $\inf(A)=\pm\infty$.

• Avec la question précédente : $\inf(A+B) = -\sup(-A-B) = -\sup(-A) - \sup(-A) = \inf(A) + \inf(B)$.

Exercice 3. Si $A \subset \mathbb{R}$ est majorée, montrer que sa borne supérieure est unique.

Solution : Sinon A admet au moins deux bornes supérieures $-\infty \le b_1 < b_2$. On choisit alors $b_2 < b_3 < b_1$ et il existe $\varepsilon > 0$ tel que $b_3 = b_1 - \varepsilon$. b_1 étant une borne supérieure de A, par le cours il existe $a \in A$ tel que $b_2 < b_1 - \varepsilon < a \le b_1$. b_2 n'est donc pas un majorant, contradiction et CQFD.

Exercice 4. f désigne une application de E dans F. A est un sous-ensemble non vide de E et B un sous-ensemble non-vide de F. Justifier les inclusions

- (1) $f(f^{-1}(B)) \subset B$;
- (2) $A \subset f^{-1}(f(A))$.
- (3) A-t-on égalité en général?

Solution:

- (1) Prenons $x \in f(f^{-1}(B))$. Alors, il existe y élément de $f^{-1}(B)$ tel que x = f(y). Puisque y est dans $f^{-1}(B)$, on sait que f(y) est élément de B. Donc x est élément de B ce qui prouve l'inclusion.
- (2) Prenons x élément de A. Alors f(x) est élément de f(A), ce qui signifie exactement que x est élément de $f^{-1}(f(A))$.
- (3) Prenons $f: \{1,2\} \to \{1,2\}, 1 \mapsto 1$ et $2 \mapsto 1$ et $B = \{1,2\}$. Alors $f^{-1}(B) = \{1,2\}$ et $f(f^{-1}(B)) = \{1\}$ qui est différent de B.

Pour l'autre exemple, prenons $A = \{1\}$. Alors $f(A) = \{1\}$ et $f^{-1}(f(A)) = \{1, 2\}$ qui est différent de A.

14 septembre 2011 Lassère Patrice : Institut de Mathématiques de Toulouse, laboratoire E.Picard, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE.

Page perso.: http://www.math.univ-toulouse.fr/lassere/Mèl:lassere@math.univ-toulouse.fr