L2 PCP, Préparation à l'oral

1. Algébre Linéaire : Généralités

Exercice 1. Déterminer la boule (euclidienne) de \mathbb{R}^3 passant par les quatres points $A_1 = (1,0,0), A_2 = (1,1,0), A_3 = (1,1,1), A_4 = (0,1,1)$. (Indic : écrire les équations que devraient vérifier ces points et se ramener à la résolution d'un système linéaire).

Exercice 2. Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1, montrer que $\det(A + I_n) = trace(A) + 1$.

Exercice 3. Soient E_1 , E_2 deux sous-espaces de \mathbb{R}^{10} vérifiant $E_1 \subset E_2$, $\dim_{\mathbb{R}} E_1 = 3$, $\dim_{\mathbb{R}} E_2 = 6$. Déterminer la dimension du sous espace \mathscr{E} de $\mathscr{L}(\mathbb{R}^{10})$ définit par

$$\mathscr{E} = \left\{ T \in \mathscr{L}(\mathbb{R}^{10}) : T(E_1) \subset E_1 \& T(E_2) \subset E_2 \right\}.$$

(Indic : observer l'allure des matrices des éléments de \mathcal{E} écrites dans une base convenablement choisie de \mathbb{R}^{10}).

Exercice 4. Calculer les déterminants :

$$\Delta_n = \begin{vmatrix} 1 + a_1 & 1 & \dots & 1 \\ 1 & 1 + a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 1 + a_n \end{vmatrix}, \quad \det(A_n) = \det((a_{ij} = |i - j|))_{1 \le i, j \le n}.$$

Exercice 5. Soit $A \in \mathbb{M}_n(\mathbb{C})$. On désignera par \widehat{A} la matrice obtenue à partir de A en remplacant pour tout $1 \leq i \leq n$ la i-ième colonne de A par la sommes des autres colonnes. On désigne par \widehat{A} la matrice déduite de A en retranchant pour tout $1 \leq i \leq n$ à la i-ième colonne de A la sommes des colonnes d'indices distincts de i. Exprimer en fonction de $\det(A)$ les déterminants $\det(\widehat{A})$ et $\det(\widehat{A})$

Exercice 6. Soit n un entier impair et $A \in M_n(\mathbb{R})$ une matrice vérifiant $A^2 = O_n$ ou $A^2 = I_n$. Montrer que $\det(A + I_n) \ge \det(A - I_n)$.

Exercice 7. Soient $n \in \mathbb{N}^*$, $A \in \mathbb{C}[X] \setminus \{O\}$ et $B \in \mathbb{C}[X]$ de degré n. Soit $\varphi \in \mathcal{L}(\mathbb{C}_{n-1}[X])$ qui à $P \in \mathbb{C}_{n-1}[X]$) associe $\varphi(P)$ le reste de la division Euclidienne de AP par B.

- (1) Montrer que φ est bien dans $\mathscr{L}(\mathbb{C}_{n-1}[X])$.
- (2) $D\acute{e}terminer \ker(\varphi)$.
- (3) Donner une condition nécessaire et suffisante sur la paire A, B pour que $\varphi \in GL_n(\mathscr{L}(\mathbb{C}_{n-1}[X]))$.

2. Algébre Linéaire : Réduction

Exercice 8. (ccp, 2010) Soit $A \in M_3(\mathbb{R})$ vérifiant $A \neq O$ et $A^3 + A = O$.

(1) A est-elle diagonalisable dans \mathbb{C} ? dans \mathbb{R} ? et A^2 ?

(2) Montrer que A est semblable à
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Exercice 9. (ccp, 2010) Soit $A \in M_n(\mathbb{R})$ vérifiant $A^2 = 2A + 8I_n$.

- (1) Aest-elle inversible? A est-elle diagonalisable? donner l'allure de $P_A(X)$.
- (2) Déterminer les matrices $M \in Vect\{I_n, A\}$ vérifiant $M^2 = 2M + 8I_n$.

Exercice 10. Soient $A \in M_n(\mathbb{R})$, si $B \in GL_n(\mathbb{R}) \cap \mathbb{R}[A]$ montrer qu'alors $B^{-1} \in \mathbb{R}[A]$.

Exercice 11. Soient $A, B \in M_2(\mathbb{Z})$ vérifiant AB = BA et det(B) = 1. Montrer que $det(A^3 + B^3) = 1$ implique $A^2 = O_2$.

Exercice 12. Soit $A \in M_3(\mathbb{R})$ vérifiant $A^4 = A^2$. Si 1 et -1 sont valeurs propres de A, montrer que A est diagonalisable.

Exercice 13. Soit $A \in GL_6(\mathbb{R})$ vérifiant $A^3 - 3A^2 + 2A = 0$ et trace(A) = 8. Quel est le polynôme caractéristique de A? montrer que A est diagonalisable.

Exercice 14. Soit $A \in M_n(\mathbb{R})$ vérifiant $A^4 + A^3 + 2A^2 + A + I_n = 0$. Montrer que n est pair, que A est diagonalisable et que $trace(A) \in -\mathbb{N}$.

Exercice 15. Résoudre dans $M_n(\mathbb{R})$ l'équation $A^5 = A^3$ et trace(A) = n.

Exercice 16. Soit $A \in M_2(\mathbb{Z})$. On suppose qu'il existe un entier $N \in \mathbb{N}$ tel que $A^N = I_2$. Montrer que $A^{12} = I_2$.

Exercice 17. Soient $A, B \in M_n(\mathbb{R})$ telles que AB = BA et $B^n = 0$. Montrer que $\det(A+B) = \det(A)$ (distinguer successivement les cas $A = I_n$, A est inversible puis quelconque).

Exercice 18. Soit $A \in M_3(\mathbb{R})$ telle que $A^2 = A^4$ et $spec(A) \supset \{\pm 1\}$. Montrer que A est diagonalisable dans $M_3(\mathbb{R})$.

3. Algébre bilinéaire

Exercice 19. Dans l'espace affine de dimension 3 muni d'un repère orthonormé on considère les deux droites

$$(\mathscr{D}) \begin{cases} x = 4z - 1, \\ y = 2z + 3 \end{cases}, \quad (\mathscr{D}') \begin{cases} x = -z + 2, \\ y = 2z - 1. \end{cases}$$

Déterminer un système d'équation cartésiennes définissant la perpendiculaire commune Δ aux deux droites. En déduire la distance entre ces deux droites.

Exercice 20. Soit $A = ((a_{ij})) \in M_n(\mathbb{R})$. On se propose de démontrer que $|\det(A)| \leq n^{n/2} \delta^n$ où $\delta := \max_{1 \leq i,j \leq n} |a_{ij}|$. Traiter le cas où $A \notin GL_n(\mathbb{R})$. On suppose maintenant que $A \in GL_n(\mathbb{R})$ et note C_i la i-ième colonne de $A : A = (C_1, \ldots, C_n)$.

- (1) Construire (avec Schmidt) une base orthogonale (V_1, \ldots, V_n) de \mathbb{R}^n vérifiant $|\det(A)| = |\det(C_1, \ldots, C_n)| = |\det(V_1, \ldots, V_n)| = ||V_1|| \ldots ||V_n||$.
- (2) Avec Pythagore, montrer que $||C_i||^2 \ge ||V_i||^2$.
- (3) Conclure.

Exercice 21. Soit (E, \langle, \rangle) un espace euclidien de dimension $n \geq 3$, $a, b \in E$ deux vecteurs non colinéaires et unitaires. On définit $f: E \ni x \mapsto f(x) = \langle a, x \rangle a + \langle b, x \rangle b$.

- (1) Montrer que f est un endomorphisme symétrique de E.
- (2) Déterminer les valeurs propres et sous-espaces propres de f.

Exercice 22. Déterminer le paramètre réel λ pour que les deux droites d'équations

$$(\mathscr{D}_1) \begin{cases} x+y+z &= 1, \\ x-2y+2z &= \lambda \end{cases}, \quad (\mathscr{D}_2) \begin{cases} z-2x &= 2, \\ y-x &= 1. \end{cases}$$

soient coplanaires et donner alors une équation du plan qui les contient et calculer la distance du point (1,1,1) à ce plan.

Exercice 23. Pour $B, C \in M_n(\mathbb{R})$ on pose $\langle A, B \rangle := trace(B^{t}C)$. Soit $A \in M_n(\mathbb{R})$ vérifiant trace(AX) = 0 pour toute matrice $X \in M_n(\mathbb{R})$ de trace nulle.

- (1) Montrer que $(M_n(\mathbb{R}), \langle, \rangle)$ un espace euclidien.
- (2) Soit $\mathscr{E} := \{ M \in M_n(\mathbb{R}) \mid trace(M) = 0 \}$. Montrer que \mathscr{E} est un sous espace vectoriel de $M_n(\mathbb{R})$, préciser sa dimension, une base et son orthogonal.
- (3) Montrer que $A = \lambda I_n, \ \lambda \in \mathbb{R}$.

4. Intégrales impropres

Exercice 24. Convergence et convergence absolue de $\int_0^{+\infty} t \sin(t^3 - t) dt$.

Exercice 25. Convergence et calcul de $\int_0^{+\infty} \exp\left(-2011\left(t+1/t\right)\right) \frac{dt}{\sqrt{t}}.$

Exercice 26. $C(\alpha)$ désignant le coefficient x^{2011} dans le DL à l'origine et à un ordre convenable de $(1+x)^{\alpha}$ calculer $\int_0^1 C(-t-1) \left(\frac{1}{t+1} + \frac{1}{t+2} \cdots + \frac{1}{t+2011}\right) dt$.

Exercice 27. Soient $f, g \in \mathcal{C}([0,1])$. Déterminer $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right)$.

Exercice 28. Déterminer toutes les fonctions continues $f: \mathbb{R} \to [1, +\infty[$ vérifiant $\exists A \in \mathbb{R}, \ N \in \mathbb{N}: f(x)f(2x)\dots f(nx) \leq An^N, \ \forall n \in \mathbb{N}, \ x \in \mathbb{R}.$

Exercice 29. Convergence et convergence absolue de $\int_0^\infty \frac{\sin(t)}{t^{\alpha}} dt$, $(\alpha \in \mathbb{R})$ (pour $0 < \alpha \le 1$ on pourra minorer $\sum_{k=1}^N \int_{k\pi+\pi/4}^{k\pi+3\pi/4} \frac{|\sin(t)|}{t^{\alpha}} dt$)..

Exercice 30. Préciser la nature des intégrales impropres suivantes :

$$\int_{1}^{\infty} \frac{\left(\cos(x^{-1})\right)^{x} - 1}{x^{\alpha}} dx, \ \alpha \in \mathbb{R}, \quad \int_{0}^{\infty} \left(x + 2 - \sqrt{x^{2} + 4x + 2}\right) dx, \quad \int_{2}^{\infty} \frac{x^{\log(x)}}{\log^{x}(x)} dx, \quad \int_{0}^{\infty} \cos(x^{2}) dx.$$

5. Suites et Séries

Exercice 31. (ccp 2010) On désigne par G_n la moyenne géométrique des coefficients binomiaux $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$ i.e.

$$G_n = \sqrt[n+1]{\binom{n}{0}\binom{n}{1}\cdots\binom{n}{n}}.$$

Montrer que $\lim_{n\to\infty} \sqrt[n]{G_n} = \sqrt{e}$ (Indic : on peut commencer par montrer que $\binom{n}{0}\binom{n}{1}\ldots\binom{n}{n} = \prod_{k=1}^n \left(\frac{n+1-k}{n+1}\right)^{n+1-2k}$ en remarquant que $\sum_{k=1}^n (n+1-2k) = 0$ pour reconnaitre dans $n^{-1}\log(G_n)$ une somme de Riemann...).

Exercice 32. (ccp 2010) Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=0$ et $u_{n+1}=\sqrt{\frac{1+u_n}{2}}$, $(n\in\mathbb{N})$. On pose aussi $p_n=u_1u_2\ldots u_n$.

(1) Montrer que pour tout $n \in \mathbb{N}^*$ on a $2u_n = \sqrt{2\sqrt{2 + \dots \sqrt{2}}}$ (n racines).

- (2) Montrer que tout $n \in \mathbb{N}^*$ on $a \cos(\pi/2^{n+1}) = 2u_n$.
- (3) En déduite (à l'aide de la formule $\sin(2x) = 2\sin(x)\cos(x)$) que $\lim_n p_n = \frac{2}{\pi}$.

Exercice 33. Existe-t-il $f: [-1,1] \to \mathbb{R}$ deux fois continuement dérivable et telle que $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ converge et $\sum_{n=1}^{\infty} \left| f\left(\frac{1}{n}\right) \right|$ diverge? (Indic: utiliser la formule de Taylor)

Exercice 34. Préciser selon les valeurs de $\alpha \in \mathbb{R}$ la nature (divergence, convergence, convergence absolue) de la série de terme général $a_n = \frac{(-1)^n}{(-1)^n + n^{\alpha}}$. Chercher un équivalent du module de la suite de terme général $v_n = \frac{(-1)^n}{(-1)^n + \sqrt{n}}$; tends-elle en module vers zéro en décroissant?

Exercice 35. Montrer que la série $\sum_{n\geq 1} \frac{\cos(\log n)}{n}$ diverge. (Indic : estimer la somme sur des blocs ou les cosinus est $\geq \sqrt{22}...$).

Exercice 36. Montrer que dans $\{x \in \mathbb{R} : \sin^2(x) \leq \frac{1}{2}\}$ on ne trouvera jamais trois entiers consécutifs. En déduire la nature de la série $\sum_{n\geq 1} \frac{\sin^2(n)}{n}$.

Exercice 37. Pour $n \in \mathbb{N}$ on pose $a_n = \int_0^1 \frac{dt}{(1+t^4)^n}$.

- (1) Montrer successivement que $(a_n)_n$ est décroissante, convergente de limite nulle.
- (2) Montrer que pour $n \ge 2$: $a_n \ge \frac{1-2^{1-n}}{n-1}$. Quelle est la nature de la série $\sum_n a_n$?
- (3) Montrer que pour $n \in \mathbb{N}$: $a_n = 2^{-n} + 4n(a_n a_{n+1})$. Quelle est la nature de la série $\sum_n a_n/n$?

6. Suites et Séries de fonctions

Exercice 38. (1) Etudier la suite de fonctions définie sur \mathbb{R}_+ par $f_n(x) = \left(\sum_{k=0}^{2n} x^k\right)^{-1}$, $n \in \mathbb{N}$.

- $(2) \ \ \textit{Etudier la suite de fonctions définie sur} \ \left[0,1\right] \ \textit{par} \ f_n(x) = 4^n \left(x^{2^n} x^{2^{n+1}}\right), \ n \in \mathbb{N}.$
- (3) Etudier la suite de fonctions définie sur $[1, +\infty[$ par $f_n(x) = n(\sqrt[n]{x} 1)$.
- (4) Etudier la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \sqrt[2n]{1 + x^{2n}}$.
- (5) On pose pour $n \in \mathbb{N}$: $f_n(x) = \sqrt{n+1}\sin^n(x)\cos(x)$. Montrer que la suite $(f_n)_n$ est simplement convergente sur \mathbb{R} , la convergence est-elle uniforme sur \mathbb{R} ?
- (6) Etudier la convergence simple et uniforme sur \mathbb{R}_+ de la suite de fonctions $f_n: x \mapsto x^n e^{-x}/n!$ et déterminer $\lim_n \int_{\mathbb{R}_+} f_n(t) dt$. Commentaire?

Exercice 39. Pour $f \in \mathscr{C}(\mathbb{R}_+) \cap L^{\infty}(\mathbb{R}_+)$ on pose $a_n = \int_{\mathbb{R}_+} \frac{nf(t)}{1+n^2t^2} dt$. Aprés avoir justifié la définition de a_n , montrer que la suite a_n converge et préciser sa limite.

Exercice 40. On pose pour $n \in \mathbb{N}^*$, $a_n = \int_1^\infty e^{-t^n} dt$. Après avoir justifié la définition de a_n , montrer que la suite a_n converge, préciser sa limite et donner un équivalent de a_n .

Exercice 41. On pose pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$: $f_n(x) = \frac{1}{x^{1/n}(1+x/n)^n}$.

- (1) Montrer que l'intégrale impropre $I_n := \int_{\mathbb{R}_+} f_n(t) dt$ converge si et seulement si $n \geq 2$.
- (2) Montrer que pour tout $x \ge 1$ et $n \ge 2$: $|f_n(x)| \le 4/x^2$.
- (3) Montrer que la suite $(I_n)_2^{\infty}$ converge et préciser sa limite.

7. Séries de Fourier

Exercice 42. Montrer que $f(x) = \sin^3(x)$ est développable en série de fourier et préciser ce développement.

Exercice 43. Soit $f \in \mathcal{C}_{2\pi}(\mathbb{R})$ (continue et 2π -périodique...). Si tous les coefficients de Fourier de f sont nuls; montrer que f est identiquement nulle.

Exercice 44. (mines 96) Déterminer toutes les applications $f \in \mathscr{C}^1_{2\pi}(\mathbb{R})$ (de classe C^1 et 2π -périodique) vérifiant 2f(x+1) = f(x) + f(2x), $\forall x \in \mathbb{R}$.

Exercice 45. (mines 94) Déterminer toutes les applications $f \in \mathscr{C}^{\infty}_{2\pi}(\mathbb{R})$ (de classe C^{∞} et 2π -périodique) vérifiant $f(2x) = 2\sin(x)f'(x)$, $\forall x \in \mathbb{R}$.

Exercice 46. Existe-t'il $f \in \mathscr{C}_{2\pi}$ dont la série de Fourier soit $\sum_{n\geq 1} \frac{\sin(nx)}{\sqrt{n}}$?

Exercice 47. Démontrer que $f(x) = \log(2 + \cos(x))$, $(x \in \mathbb{R})$ est développable en série de Fourier et préciser ce développement.

Exercice 48. (mines 2003) Démontrer que $f(x) = Arsin(\sin x)$ est développable en série de Fourier et préciser ce développement.

Exercice 49. Utiliser les séries de Fourier pour évaluer l'intégrale

$$I_n = \int_0^{\pi} \cos(\cos(x)) ch(\sin(x)) \cos(nx) dx, \quad n \in \mathbb{N}.$$

Exercice 50. (X, 1997) Démontrer que $f(x) = \frac{1+\cos(x)}{4-2\cos(x)}$, $(x \in \mathbb{R})$ est développable en série de Fourier et préciser ce développement (deux méthodes sont possibles : développer la fraction en une série d'exponentielles e^{ikx} , $(k \in \mathbb{Z})$ ou bien trouver une relation de recurrence satisfaite par les coefficients de Fourier réels de f).

Exercice 51. Soit $n \in \mathbb{N}$. La fonction $f_n(x) = \frac{\sin^2(nx)}{\sin^2(x)}$ est-elle développable en série de Fourier? Calculer ce développement (indic : éviter le calcul direct des coef.).

Exercice 52. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction paire, 2π -périodique égale à \sqrt{x} sur $[0,\pi]$.

- (1) Y a-t-il dans le cours un théorème permettant d'affirmer que f est développable en série de Fourier?
- (2) Soit G la fonction définie sur \mathbb{R} par $G(x) = \int_0^x \sin(t^2) dt$, montrer que pour tout x > 0: $G(x) = \frac{1-\cos(x^2)}{2x} + \int_0^x \frac{1-\cos(t^2)}{2t^2} dt$. En déduire que la limite $\lim_{x \to +\infty} G(x)$ existe, est finie et strictement positive.
- (3) Soit pour $n \in \mathbb{N}$, $a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(nt) dt$. à l'aide de la question précédente montrer que $a_n = 0(n^{-3/2})$.
- (4) Montrer que f est développable en série de Fourier.