Université Paul Sabatier, 17 novembre 2010 Master MEI MEIS7M2 – Feuille d'exercices 9.

Exercice 1. Montrer que transformée de Fourier de la fonction $(x) = e^{-\pi x^2}$ vérifie $\mathscr{F}(t) = f$.

Exercice 2. Pour $t \in \mathbb{R}_+^*$ on pose $q_t(x) = \frac{e^{-x^2/4t}}{\sqrt{4\pi t}}$. Calculer la transformée de Fourier de q_t et dire que $q_t \star q_s = q_{t+s}$.

Exercise 3. Montrer que pour tout a > 0: $\mathscr{F}\left(x \mapsto \frac{x}{(a^2 + x^2)^2}\right)(y) = -\frac{i\pi^2}{a}\exp\left(-2\pi|y|\right)$.

Exercice 4. (1) Calculer la transformée de Fourier de la fonction « triangle » : f(x) = 1 + x, $x \in [-1, 0]$, f(x) = 1 - x, $x \in [0, 1]$ et nulle ailleurs.

(2) Retrouver ce résultat en reconnaissant en f un produit de convolution.

(3) En « déduire » la valeur de l'intégrale $\int_0^\infty \frac{\sin^2(t)}{t^2} \cos(xt) dt$.

Exercice 5. Soient $f_a(x) := \frac{a}{\pi(x^2 + a^2)}$, $g_a(x) = \frac{\sin(ax)}{\pi x}$, $(a \in \mathbb{R})$. Montrer que l'on a $f_a \star f_b = f_{a+b}$, $g_a \star g_b = g_{\min\{a,b\}}$.

Exercice 6. Pour $a \in \mathbb{R}_+^*$, calculer la transformée de Fourier de la fonction $f_a(x) = \left(1 - \left|\frac{x}{a}\right|\right) \mathbf{1}_{[-a,a]}(x)$.

Exercice 7. Pour $a \in \mathbb{R}_+^*$ on pose $f_a(x) = e^{-a|x|}$.

- (1) Calculer la transformée de Fourier de f_a .
- (2) A l'aide de la formule de réciprocité en déduire celle de $x \mapsto \frac{1}{1+x^2}$.
- (3) Calculer $f_a \star f_a$ pour en déduire la transformée de Fourier de $x \mapsto \frac{1}{(1+x^2)^2}$.
- (4) Drminer la transformée de Fourier de $x \mapsto \frac{x}{(1+x^2)^2}$

Exercice 8. (Transformée de Fourier et convolution dans $L^1(\mathbb{R})$).

- (1) En utilisant la tranformée de Fourier, montrer que l'algèbre $(L^1(\mathbb{R}), \star)$ ne possède pas d'unité (i.e. il n'existe pas de fonction $g \in L^1(\mathbb{R})$ vérifiant $f \star g = f$ pour tout $f \in L^1(\mathbb{R})$.
- (2) Résoudre dans $L^1(\mathbb{R})$ l'équation $f \star f = f$.

Exercice 9. (1) Montrer que $f(x) = \sin(x)/x \in L^2(\mathbb{R})$.

- (2) Montrer que si g(t) = H(1 |t|) alors $\mathscr{F}(g) = 2f$.
- (3) En déduire $\mathscr{F}(f)$.
- (4) En déduire que $f \not\in L^1(\mathbb{R})$.

Exercice 10. (Transformée de Fourier et convolution dans $L^2(\mathbb{R})$).

- (1) Calculer la transformée de Fourier de $\mathbf{1}_{[a,b]}$.
- (2) La fonction $x \mapsto \sin(x)/x$ est-elle dans $L^1(\mathbb{R})$? dans $L^2(\mathbb{R})$? Calculer sa transformée de Fourier-Plancherel.
- (3) On note $f_a(x) := \sin(ax)/x$; calculer $f_a \star f_b$ et en déduire que l'équation $f \star f = f$ admet une infinité de solutions dans $L^2(\mathbb{R})$.

17 novembre 2010 Lassère Patrice: Institut de Mathématiques de Toulouse, laboratoire E.Picard, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE.

 $Page\ perso.: http://www.math.univ-toulouse.fr/\ lassere/masterenseignement.html \\ M\'el: lassere@math.ups-tlse.fr$