Fonctions d'une Variable Réelle – Feuille d'Exercices Semaine 2.

Exercice 1. Que dire des fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant une des conditions ci-dessous?

- a) $\forall \eta > 0, \exists \varepsilon > 0 : |x 2| < \eta \implies |f(x) 3| < \varepsilon.$
- b) $\exists \varepsilon > 0, \ \forall \eta > 0 : |x 2| < \eta \implies |f(x) 3| < \varepsilon$.
- c) $\exists \varepsilon > 0, \ \exists \eta > 0 : |x 2| < \eta \implies |f(x) 3| < \varepsilon.$
- d) $\forall \varepsilon > 0, \ \forall \eta > 0 : |x 2| < \eta \implies |f(x) 3| < \varepsilon$.
- e) $\exists \eta > 0, \ \forall \varepsilon > 0 : |x 2| < \eta \implies |f(x) 3| < \varepsilon$.
- $f) \exists A \in \mathbb{R}, \ \forall B > 0 : x > B \implies f(x) > A.$
- $g) \forall B > 0, \exists A \in \mathbb{R} : x > B \implies f(x) > A.$
- $h) \ \forall A \in \mathbb{R}, \ \exists \varepsilon > 0 : x < A \implies |f(x) 1| < \varepsilon.$
- $i) \ \forall A \in \mathbb{R}, \ \forall \varepsilon > 0 : x < A \implies |f(x) 1| < \varepsilon.$

Exercice 2. • Montrer avec « les ε et η » que :

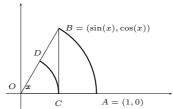
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}, \qquad \lim_{x \to +\infty} \frac{x}{x+1} = 1, \qquad \lim_{x \to 0_+} \sqrt{x} = 0, \qquad \lim_{x \to +\infty} e^{-x+\pi} = 0.$$

• Pour $a \in \mathbb{R}$ calcular $\lim_{x \to a} \frac{x^3 - a^3}{x - a}$, puis $\lim_{x \to a} \frac{x^n - a^n}{x - a}$, $n \ge \mathbb{N}$.

• Montrer que tout fonction $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie en $+\infty$ est constante.

• Soit $f: \mathbb{R} \to \mathbb{R}$ croissante et telle que la suite $(f(n))_n$ diverge vers $+\infty$. Montrer que $\lim_{+\infty} f(x) = +\infty$; ce résultat subsiste-t-il si f n'est pas croissante?

Exercice 3. On définit pour $x \in \mathbb{R}$ la fonction sinus de manière trigonométrique (voir figure) but de cet exercice est de montrer « proprement » la formule classique $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.



1) En observant bien la figure, montrer que

$$\frac{x\cos^2(x)}{2} \le \frac{\sin(x)\cos(x)}{2} \le \frac{x}{2}, \quad \forall \, 0 < x < \pi/2.$$

(« rappel » : l'aire d'un secteur angulaire d'angle α et de rayon r est $\alpha r^2/2$). Conclure. En déduire que pour tout $a \in \mathbb{R}$: $\lim_{x \to a} \frac{\sin(x) - \sin(a)}{x - a} = \cos(a)$ et la limite analogue avec les cosinus.

Exercise 4. Quelques dernières limites : $\lim_{x\to +\infty} \sqrt{x^2+1}-x = ?$ (idem en $-\infty$), $\lim_{x\to 0} \frac{1-\cos(x)}{x}$, $\lim_{x\to 0} xE(x^{-1})$, $\lim_{x\to 0_+} \sqrt{x}E(x^{-1})$, $\lim_{x\to 0} x^2 (1+2+3+\cdots+E(|x|^{-1}))$, $\lim_{x\to +\infty} \frac{x+\cos(x)}{x+2}$.

Exercice 5. Soit $f(x) = \begin{cases} \sin(x^{-1}), & \text{si } x \in \mathbb{R}^* \\ 0, & \text{si } x = 0 \end{cases}$, $g(x) = \begin{cases} 0, & \text{si } x \in \mathbb{Q} \\ 1, & \text{si } x = 0 \end{cases}$, $f_1(x) = xf(x)$, $g_1(x) = xf(x)$

xg(x). Etudier les limites à l'origine de ces fonctions et esquisser leur graphe...