Agrégation interne de mathématiques – petits exercices électroniques

Exercice 1: On considère une ligne brisée dont les longueurs $L_1, L_2, \ldots L_n, \ldots$ des segments successifs $S_1, S_2, \ldots, S_n, \ldots$ valent respectivement $1, 1/2, \ldots, 1/n, \ldots$ Soit $\theta \in [0, 2\pi[$, on suppose en outre que chaque segment fait avec le précédent un angle θ . Déterminer la distance et l'angle entre l'extrémité initiale et finale (lorsqu'elle existe...) de cette ligne brisée.

Exercice 2 : Pour tout $n \in \mathbb{N}$, [n] désigne l'entier le plus proche de \sqrt{n} . Montrer que

$$\sum_{n=1}^{\infty} \frac{2^{[n]} + 2^{-[n]}}{2^n} = 3.$$

Exercice 3: On considère une matrice $A \in M_n(\mathbb{R})$ vérifiant

$$\det(A+X) = \det(X), \quad \forall X \in M_n(\mathbb{R}).$$

Montrer que A est la matrice nulle. En déduire que si $A, B \in M_n(\mathbb{R})$ vérifient $\forall X \in M_n(\mathbb{R})$: $\det(A + X) = \det(B + X)$, alors A = B.

Exercice 4: Pour quels couples $(a,b) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$ l'intégrale impropre

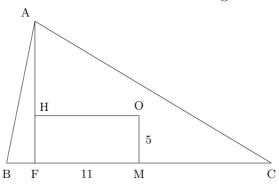
$$\int_{b}^{\infty} \left(\sqrt{\sqrt{x+a} - \sqrt{x}} - \sqrt{\sqrt{x} - \sqrt{x-b}} \right) dx$$

converge?

Exercice 5 : Soit A l'aire du domaine borné délimité par la droite y=x/2, le premier quadrant et l'ellipse d'équation $x^2/9+y^2=1$. Déterminer un réel positif m tel que A coïncide avec l'aire du domaine borné délimité par la droite y=mx, le premier quadrant et l'ellipse d'équation $x^2/9+y^2=1$.

1

Exercice 6 : Soit HOMF un rectangle avec HO = 11, OM = 5. Soit ABC un rectangle tel que : H est à l'intersection des hauteurs, O est le centre du cercle circonscrit, M est le milieu de BC et F est le pied de la hauteur issue de A. Déterminer la longueur du segment BC.



Exercice 7: Soit $f: \mathbb{R}_+^{\star} \to \mathbb{R}$. Si

$$\lim_{x \to 0} f(x) = 0$$
 et $f(x) - f(\frac{x}{2}) = o(x), (x \to 0),$

montrer que $f(x) = o(x), (x \to 0).$

Exercice 8: Soient $A, B \in M_2(\mathbb{Z})$ telles que A, A+B, A+2B, A+3B et A+4B soient inversibles à inverses dans $M_2(\mathbb{Z})$. Montrer que A+5B est inversible et que son inverse est encore à coefficients entiers.

Exercice 9 : $C(\alpha)$ désignant le coefficient de x^{2007} dans le développement en série entière de $(1+x)^{\alpha}$, calculer

$$\int_0^1 C(-t-1) \left(\frac{1}{t+1} + \frac{1}{t+2} + \dots + \frac{1}{t+2007} \right) dt.$$

Exercice 10: Déterminer les fonctions $f \in \mathscr{C}^1(\mathbb{R})$ vérifiant

$$(\mathbf{X}) f^2(x) = \int_0^x (f^2(t) + f'^2(t)) dt + 2007, \quad x \in \mathbb{R}.$$

Exercice 11: Montrer que

$$\int_0^\infty \left(x - \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} - \frac{x^7}{2 \cdot 4 \cdot 6} + \dots \right) \times \left(1 + \frac{x^2}{2} + \frac{x^4}{2^2 \cdot 4^2} + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots \right) dx = \sqrt{e}.$$

Exercice 12 : Combien existe-t-il de nombres premiers de la forme $N=10101\ldots01$ (ie où l'écriture en base 10 de N est constituée d'une alternance de 0 et de 1, par exemple $N=101\ldots)$?

Exercice 13 : Montrer que tout triangle $\Delta(A,B,C)$ aigu (i.e. tous les angles sont dans $]0,\pi/2[$) de cotés le longueur respectifs a,b,c on a l'inégalité

$$27 \le (a+b+c)^3 \left(\frac{1}{a^2+b^2-c^2} + \frac{1}{b^2+c^2-a^2} + \frac{1}{c^2+a^2-b^2} \right).$$

Exercice 14 : Une particule se déplace sur la droite réelle avec une accélération croissante pour $t \in [0, T]$. Montrer que sa vitesse au temps t = T/2 ne peut excéder sa vitesse moyenne $\int_0^T v(t)dt/T$.

Exercice 14:

21 NOVEMBRE 2007 AGRÉGATION INTERNE DE MATHÉMATIQUES. LASSÈRE PATRICE : LABORATOIRE DE MATHÉMATIQUES E.PICARD, UMR CNRS 5580, UNIVERSITÉ PAUL SABATIER, 118 ROUTE DE NARBONNE, 31062 TOULOUSE.

 $E\text{-}mail\ address{:}\ \texttt{lassere@picard.ups-tlse.fr}$