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Abstract : This paper deals with estimations of probabilities of rare
events using fast simulation based on the splitting method. In this tech-
nique, the sample paths are split into multiple copies at various stages in
the simulation. Our aim is to optimize the algorithm and to obtain a precise
confidence interval of the estimator using branching processes. The numeri-
cal results presented suggest that the method is reasonably efficient.
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1 Introduction

The analysis of rare events is of great importance in many fields because
of the risk associated to the event. Their probabilities are often about 10−9

to 10−12. One can use many ways to study them : the first is statistical
analysis, based on the standard extreme value distributions but this needs
a long observation period (see Aldous [1]), the second is modelling which
leads to estimating the rare event probability either by analytical approach
(see Sadowsky [10]), or by simulation.

In this paper we focus on the simulation approach based on Monte-Carlo
method. Nevertheless crude simulation is impracticable for estimating such
small probabilities : to estimate probabilities of order 10−10 with acceptable
confidence would require the simulation of at least 1012 events (which cor-
responds to the occurrence of one hundred rare events).

To overcome these limits, fast simulation techniques are applied. In par-
ticular, importance sampling (IS) is a refinement of Monte-Carlo methods.
The main idea of IS is to make the occurrence of the rare event more frequent.
More precisely IS consists in selecting a change of measure that minimizes
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the variance of the estimator. Using another method based on particles sys-
tems, Cerou et al. [3] give theoretical results on the convergence of this
kind of algorithm. In this paper, we deal with the RESTART (REpetitive
Simulation Trials After Reaching Thresholds) algorithm presented by Villen-
Altamirano in [11] and based on splitting. The basic idea of splitting is to
partition the space-state of the system into a series of nested subsets and
to consider the rare event as the intersection of a nested sequence of events.
When a given subset is entered by a sample trajectory, random retrials are
generated from the initial state corresponding to the state of the system at
the entry point. Thus the system trajectory has been split into a number of
new sub-trajectories. However the analysis of the RESTART model arises
numerous difficulties lying on the lack of hypothesis and the complexity of
formulae.

In this paper, we build a simple model of splitting for which we are able
to derive precise conclusions. It is based on the same idea : before entering
the rare event A there exists intermediate states visited more often than
A by the trajectory : A = BM+1 ⊂ BM ⊂ .. ⊂ B1. Let Pi = P(Bi|Bi−1)
i = 2, ..,M + 1 and P1 = P(B1). The fact that a sample trajectory enters
Bi is represented by a Bernoulli trial. Every time a sample trajectory enters
a subset Bi, i = 1, ..,M it is divided in a number Ri of sub-trajectories
starting from level i. More precisely we generate N random variables with
common law Bernoulli Ber(P1) and check whether the subset B1 is reached
or not. If so, we duplicate the trials in R1 retrials of Ber(P2) and check
whether the subset B2 is reached or not... Thus

P = P(A) = P1..PM+1 (1)

and an unbiased estimator of P is

P̂ :=
1

N

N
∑

i=1

P̂i =
NA

NR1..RM
(2)

where P̂i are i.i.d., NA is the number of trials that reach A during the
simulation and N the number of particles initially generated. An optimal
algorithm is chosen via the minimization of the variance of P̂ for a given
budget. For this, we have to describe the cost of a given simulation : each
time a particle is launched, it generates an average cost which is supposed
here to be a function h of the transition probability. Therefore, the (average)
cost is

C = N

M
∑

i=0

rih(Pi+1)Pi|0 (3)

where ri = R1..Ri, i = 1, ..,M , r0 = 1 and Pi|0 = P1..Pi, i = 1, ..,M + 1,
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P0|0 = 1. Then, the optimal algorithm is described by















Pi = P
1

M+1 i = 1, ..,M + 1

Ri = 1
Pi

i = 1, ..,M

N = C
(M+1)h(P 1/M+1)

.

(4)

and M is given by M = [ lnPy0 ] − 1 or M = [ lnPy0 ] where y0 is the solution of
an equation described below (see Eq.(30)). The optimal sampling number
is independent of the budget and this former only determines the optimal
number of independent particles firstly generated. In the special case of
h = 1,

M = [−0.6275 ln P ] − 1 or [−0.6275 lnP ], Ri ≈ 5 and Pi ≈
1

5
(5)

Thus the optimal sampling number and the optimal transition probabilities
are independent of the rare event probability. For example, if P = 10−12

and C = 103, M = 16, Pi ≈ 0.2, Ri = 5 and N = 59.

Example 1.1 To analyse the behavior of the different implementations des-
cribed above, we perform a simulation experiment using these methods. We
consider a queuing network and we want to estimate the occupancy of finite
buffer queuing system M/M/1/C0. The results are presented in Figure 1. As
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expected and since we proceed for a given cost C (C = 104), crude simula-
tion stops after a few iterations, the number of samples run at the beginning
being not sufficient. However note that splitting simulation and theoretical
analysis give very close results.

Example 1.2 This model can be applied to approximate counting, see Jer-
rum and Sinclair [7] and Diaconis and Holmes [5]. Given a positive real
vector a = (ai)

n
i=1 and a real number b, we want to estimate the number of

0 − 1 vectors x = (xi)
n
i=1 s.t.

a.x :=

n
∑

i=1

aixi ≤ b (6)

For more details see 3.2.

Remark 1.1 Hereafter we shall take all the Ri equal to R and all the Pi
equal to P0 = 1

R . Thus RP0 = 1.

The aim of the paper is to give a precise confidence interval of P̂ .
The bound involving the variance of P̂ and given by the Markov inequa-
lity is not precise enough. Therefore, as done in the theory of large devia-
tions, we introduce the Laplace transform of P̂1 which can be rewritten as

E(eλP̂1) = P0fM (eλ/R
M

)+1−P0 where fM is the M -th functional iterate of
a Bin(R,P0) generating function (g.f.). The elementary theory of branching
processes leads to precise bounds of fM and to a precise confidence interval
that we may compare to the confidence interval if we only use the variance.
For example, for P = 10−9, C = 108 and α = 0.02, the variance gives a
bound about 10−2 and the Laplace transform gives a bound approximati-
vely 10−12.

The paper is organized as follows. Section 2 describes the importance
splitting model, presents our model and goals : the analysis of the behavior
of the probability P of a rare event and introduces an estimator P̂ of P .
Section 3 is dedicated to the optimization of the algorithm. In section 4, we
obtain a precise confidence interval of the estimator via branching processes.
Finally in section 5, we conclude and discuss the merits of this approach and
potential directions for further researches.

2 Importance splitting model

Our goal is to estimate the probability of a rare event A corresponding
for example to the hit of a certain level L by a process X(t). The main
hypothesis is to suppose that before entering the target event there exists
intermediate states visited more frequently than A by the trajectory : thus
define a sequence of sets of states Bi such as A = BM+1 ⊂ BM ⊂ .. ⊂ B1,
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which determines a partition of the state space into regions Bi−Bi+1 called
importance regions. In general, these sets are defined through a function Φ
called importance function from the state space to R such that for all i, Bi =
{Φ ≤ Ti} for some value Ti called thresholds with T1 ≤ T2 ≤ .. ≤ TM ≤ L.

A=B4

B2

B1

O

B 3

Fig. 2 – Splitting model

In this model a more frequent occurrence of the rare event is achieved by
performing a number of simulation retrials when the process enters regions
where the chance of occurrence of the rare event is higher. The fundamental
idea consists in generating N Bernoulli Ber(P1) and check whether the
subset B1 is reached or not. If so, we duplicate the trials in R1 retrials of
Bernoulli Ber(P2) and check whether the subset B2 is reached or not... If
none of the higher levels are reached, the simulation stops.

Thus by the Bayes formula,

P(A) = P(A|BM )P(BM |BM−1)..P(B2|B1)P(B1) (7)

:= PM+1PM ..P2P1. (8)

Then P is the product of M + 1 quantities (conditional probabilities) that
are easier to estimate and with more accuracy than the probability P of the
rare event itself, for a given simulation effort.

The estimator P̂ of P defined in (2) can be rewritten as

P̂ =
1

NR1..RM

N
∑

i0=1

R1
∑

i1=1

..

RM
∑

iM =1

1i01i0i1 ..1i0i1..iM (9)
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where 1i0i1..ij represents the result of the j-th trial. In that case,

P̂i0 =
1

R1..RM

R1
∑

i1=1

..

RM
∑

iM =1

1i01i0i1 ..1i0i1..iM (10)

Moreover, we define P(A) as the probability of reaching A and we suppose
that the process forget the past after reaching a level ; this happens as soon
as the process is Markov.

3 Study of the variance and optimization

3.1 Variance of the estimator

Firstly, note that P̂ is unbiased since

E(P̂ ) = E(
NA

NR1..RM
) =

1

NR1.RM

N
∑

i0=1

R1
∑

i1=1

..

RM
∑

iM =1

E(1i01i0i1 ..1i0i1..iM ) = P (11)

As done in [11], the variance of the estimator P̂ is derived by induction and
the variance for k thresholds is given by

var(P̂ (k)) =
(P1..Pk+1)

2

N

[

k
∑

i=0

1

ri
(

1

Pi+1|0
− 1

Pi|0
)
]

(12)

where P̂ (k) represents the estimator of P in a simulation with k thresholds.
Clearly the formula holds in straightforward simulation i.e. when k = 0,

since P̂ is a renormalized sum of i.i.d. Bernoulli variables with parameter P .
To go from k to k+1, assume (12) thus we have to prove that this formula

holds for k + 1 thresholds. First of all note that for all X and Y random
variables which are independent given the set B and X σ(B)-measurable we
have

var(XY ) = var(X) var(Y ) + var(X)E(Y )2 + var(Y )E(X)2 (13)

Now let

Xi0 = 1i0 , Zi0 =
1

R1..Rk+1

R1
∑

i1=1

..

Rk+1
∑

ik+1=1

1i0i1..1i0i1..ik+1
(14)

The random variables Xi0 are i.i.d. with common law Ber(P1) and conditio-
nally at the event B1, Xi0 and Zi0 are independent. Note that each Zi0 is the
estimator of P in a model with k thresholds, T2 to Tk+1 for the trajectory
issued from the success of Xi0 . Thus

E(Z) = P2..Pk+2 (15)
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and by the induction’s hypothesis,

var(Z) = (P2..Pk+2)
2[

k+1
∑

i=1

1

R1..Ri
(

1

Pi+1|1
− 1

Pi|1
)] (16)

So applying (13) with X ∼ Ber(P1) and Z ∼ Zi0, we have

var(P̂ (k+1)) :=
1

N2
var(

N
∑

i0=1

Xi0Zi0) (17)

=
P1

N
[ var(Z) + (1 − P1)E(Z)2] (18)

=
(P1P2..Pk+2)

2

N

[

k+1
∑

i=0

1

ri
(

1

Pi+1|0
− 1

Pi|0
)
]

(19)

Thus for M thresholds

var(P̂ ) =
P 2

N

[

M
∑

i=0

1

ri
(

1

Pi+1|0
− 1

Pi|0
)
]

(20)

Remark 3.1 The induction principle has a concrete interpretation : if in
a simulation with M steps, the retrials generated in the first level are not
taken into account except one that we call main trial, we have a simulation
with M − 1 steps.

3.2 Optimization of the parameters

As said in the introduction our aim is to minimize the variance for a
fixed budget, giving optimal values for N ,R1,..,RM , P1, .., PM+1 and M .
Therefore, we have to describe the cost of a given simulation : each time
a particle is launched, it generates an average cost function h. We assume
that

– the cost h for a particle to reach Bi starting from Bi−1 depends only
on Pi (and not on the starting level),

– h is decreasing in x (which means that the smaller the transition pro-
bability is, the harder the transition is and the higher is the cost),

– h is non-negative,
– h converges to a constant (in general small) when x converges to 1.

The (average) cost is then

C = E(Nh(P1) +R1N1h(P2) +R2N2h(P3) + ..+RMNMh(PM+1)) (21)

where Ni is the number of trials that have reached threshold i. Finally,

C = N

M
∑

i=0

rih(Pi+1)Pi|0 (22)

7



Example 3.1 We want to study the model of the simple random walk on Z

starting from 0 that we kill as soon as it reaches the level −1 or k (success
if we reach k, failure otherwise).
So let Xn such that X0 = 0 and Xn =

∑n
i=1 Yn where {Yn} is a sequence of

random variables valued in {−1, 1} with P(Yn = 1) = P(Yn = −1) = 1
2 and

define Tk = inf{n ≥ 0 : Xn = −1 or k}.
One can easily check that Xn and X2

n − n are martingales. By the Doob’s
stopping theorem, E(XTk

) = 0 and E(X2
Tk

) = E(Tk) which yields to

p := P(XTk
= k) =

1

k + 1
and E(Tk) = k =

1

p
− 1 (23)

i.e. the cost needed to reach the next level is 1
p − 1 if p is the success proba-

bility.

To minimize the variance of P̂ , the optimal values are derived in three steps :

1. The optimal values of N,R1, .., RM are derived when we consider that
P1, .., PM+1 are constant (i.e. the thresholds Bi are fixed).

2. Replacing these optimal values in the variance, we derive the optimal
transition probabilities : P1, .., PM+1.

3. Replacing these optimal values in the variance, we derive M the opti-
mal number of thresholds.

Optimal values for N,R1, .., RM . Using the method of Lagrange multi-
pliers, we get

Ri =
ri
ri−1

=

√

h(Pi)

h(Pi+1)

√

1

PiPi+1

√

1 − Pi+1

1 − Pi
i = 1, ..,M (24)

N =
1

√

h(P1)

C
√

1/P1 − 1
∑M+1

i=1

√

h(Pi)
√

1
Pi

− 1
(25)

Optimal values for P1, .., PM+1. Thus the variance becomes

var(P̂ ) =
P 2

C

[

M+1
∑

i=1

√

h(Pi)

√

1

Pi
− 1

]2
(26)

Proceeding as previously under the constraint P = P1..PM+1, we obtain that

all the Pi’s satisfy 2
√
Cλ

√

h(x)( 1
x − 1) = h′(x)(1 − x) − h(x)

x . If we assume

that there exists a unique solution to this equation, we have Pi = g(λ),

hence P = g(λ)M+1 and g(λ) = P
1

M+1 .

Finally Pi = P
1

M+1 i = 1, ..,M+1 (27)
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Optimal value for M . The optimal values for P1, .., PM+1 imply that the
optimal Ri become 1/Pi, i = 1, ..,M and thus

var(P̂ ) =
P 2

C
(M + 1)2h(P 1/M+1)(P−1/M+1 − 1) (28)

that we want to minimize in M . Remark that RiPi = 1. Let

f(M) =
P 2

C
(M + 1)2h(P 1/M+1)(P−1/M+1 − 1), (29)

whose derivative cancels in

F (y) := (2(1−ey)+y)h(ey)−y(1−ey)eyh′(ey) = 0, with y =
lnP

M + 1
(30)

In general, this does not give an integer. We have y0 = lnP
M+1 i.e.M+1 = [ lnPy0 ]

or [ lnPy0 ] + 1. Let lnP
y0

= n+ x with 0 < x < 1. Then

– if we take M + 1 = n, y = lnP
n ,

– if we take M + 1 = n+ 1, y = lnP
n+1 .

and the value of the ratio ρ := f(n−1)
f(n) gives the best choice for M :

– if ρ <1, M = n− 1,
– if ρ >1, M = n.

Thus the optimal number of thresholds is given by M = [ lnPy0 ] − 1 or M =

[ lnPy0 ] where y0 solves F (y) = 0. Then M minimizes

var(P̂ ) =
P 2

C
(lnP )2y−2h(ey)(e−y − 1) (31)

Example 3.2 For h = 1, we have to solve y = 2(ey − 1). We get y1 = 0
and y2 ≈ −1.5936. y2 is a minimum and the optimal value of M is

M = [−0.6275 ln P ] − 1 or [−0.6275 ln P ] (32)

With P = 10−k,

k n ratio(ρ) >1,<1 M k n ratio(ρ) >1,<1 M

1 1 > 1 6 8 > 8
2 2 > 2 9 13 < 12
3 4 < 3 12 17 < 16
4 5 > 5 15 21 > 21
5 7 < 6 18 26 < 25

Note that M increases while P decreases and with this value of M , each Ri
and Pi become

Ri ≈ 5 and Pi ≈
1

5
. (33)
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Thus the optimal sampling number and the optimal transition probabilities
are independent of the rare event probability.
Moreover, asymptotically, M = n = [ lnPy0 ] − 1, thus

Pi = P
1

M+1 = e
ln P
M+1 = ey0 and P = e−(n+1)|y0| (34)

Application 3.1 In approximate counting, remind that the goal is to esti-
mate the number of Knapsack solutions i.e. the cardinal of Ω defined by

Ω := {x ∈ {0, 1}n : a.x :=

n
∑

i=1

aixi ≤ b}

for given positive real vector a = (ai)
n
i=1 and real number b. We might try

to apply the Markov Chain Monte-Carlo method (MCMC) [9] : construct a
Markov chain MKnap with state space Ω = {x ∈ {0, 1}n : a.x ≤ b} and
transitions from each state x = (x1, .., xn) ∈ Ω defined by

– with probability 1
2 let y = x ; otherwise

– select i uniformly at random in {1, .., n} and let y′ = (x1, .., xi−1, 1 −
xi, xi+1, .., xn)

– if a.y′ ≤ b then let y = y′ else let y = x
the new state is y. This random walk on the hypercube truncated by the hyper-
plane a.x = b converges to the uniform distribution over Ω. This suggests
a procedure for selecting Knapsack solutions almost uniformly at random.
Starting in state (0, .., 0), simulate MKnap for sufficiently many steps that
the distribution over states is ”close”1 to uniform, then return the current
state. Of course sampling over Ω is not the same as estimating the size of
Ω. But the first task leads to the second.

Keep on taking the vector a fixed but allow b to vary. Note Ω(b) and
MKnap(b) instead of Ω and MKnap to emphasize on the dependence on b.
Assume without loss of generality that a1 ≤ .. ≤ an and define b1 = 0 and
bi = min{b,∑i−1

i=1 aj}. One can check that

|Ω(bi−1)| ≤ |Ω(bi)| ≤ (n+ 1)|Ω(bi−1)| (35)

Now write

|Ω(b)| = |Ω(bn+1)| =
|Ω(bn+1)|
|Ω(bn)|

|Ω(bn)|
|Ω(bn−1)|

..
|Ω(b2)|
|Ω(b1)|

|Ω(b1)| := ρ−1
n ..ρ−1

1 (36)

1The problem is to bound the number of steps necessary to make the Markov chain
MKnap(b) ”close” to stationarity. More precisely, we need a bound of the mixing time :

τmix(ν) := min{t : ∆x(t′) ≤ ν for all t
′ ≥ t}

where ∆x(t) = maxS⊂Ω |P t(x, S) − Π(S)| and Π the stationary distribution. In [7], it is
shown that O(n9/2+ν ) steps suffice.
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The ratio ρi = |Ω(bi)|
|Ω(bi+1)| may be estimated by sampling almost uniformly

from Ω(bi+1) using the Markov chain MKnap(bi+1) and computing the frac-
tion of the samples that lie within Ω(bi).

Now take a = [1, 2, 3, 4], b = 3, h = 1, R = 5 and C = 2600. We
chose the levels as proposed : first define b1 = 0, b2 = 1, b3 = 3, b4 = 3
and b5 = b, secondly B0 = Ω, B1 = Ω(b4), B2 = Ω(b3), B3 = Ω(b2) and
B4 = Ω(b1). Thus here M = n − 1, N = C/n and nstep = 1020. Obviously
Card(Ω) = 5. We run 3 different simulations : the first suggested in [7]
consisting in estimating the n ratios independently, the crude and splitting
ones. We obtain different estimations for Card(Ω) :

– estimation by crude simulation = 4.088,
– estimation by the n ratios independently = 5.44,
– and estimation by splitting = 5.019.

Even though the levels are not optimal, splitting carries out an improvement.

Let us describe briefly the possible solutions of (30). Remind we want to
solve (30) i.e. if z = ey and z 6= 0, 1

H(z) :=
h′(z)

h(z)
=

1

z
(

2

ln z
+

1

1 − z
) =:

l′(z)

l(z)
=: L(z) (37)

First of all, let z0 be the solution of 2(z − 1) = ln z. Since h′ ≤ 0, H is
negative and a quick survey shows that L is positive on ]0, z0[ and negative
on ]z0, 1[. As a consequence, the solutions of (37) lie in ]z0, 1[, if there exist.
Thus solving (30) is equivalent to study the intersections between H and L.
A quick survey of these functions shows that we have 2 cases (see Figure 3) :

– case 1 : an odd number of intersections between L and H

⇔ H(z) > L(z) near 1 (38)

⇔ h′′(1) < 0 (39)

– case 2 : an even number of intersections or 0 between L and H

Note that y = 0 is a solution of (30). In case 1, it corresponds to a maximum
and in case 2, to a minimum. And the second case is excluded since we made
the assumption h(1) > 0.

Remark 3.2 The solution y = 0 corresponds to the following optimal values

M = ∞, Pi = 1, Ri = 1, N ∼M→∞
C

(M + 1)h(1) + ln(P )h′(1)
(40)

But Pi = 1 implies that P = 1 and Ri = 1 means that we just perform a
crude simulation.
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Case 1 : 1 intersection 

Case 2 : 0 intersection 

Case 2 : 2 intersections         
        L(z) 

Fig. 3 – Behavior of H and L

Example 3.3 Here P = 10−12 and C = 104.
1) In Example 3.1, h(1) = 0 and we are in the 2nd case : the unique solution
y = 0 is the minimum.
2) Let h(x) = 1

x − 8x2 + 12x − 5. h(1) = 0 and we are in the first case :
y = 0 and y ≈ −0.9919 are the solutions. y = 0 is the maximum and the
other solution the minimum. Taking y ≈ −0.9919, we obtain

M = 26, P0 ≈ 0.3594, R ≈ 2.7826 and N ≈ 22.9 (41)

and we can take R = 3 and N = 23.
3) Let h(x) = ( 1

x − 1)2e6x. h(1) = 0 and we are in the 2nd case : y = 0,
y1 ≈ −0.4612 and y2 ≈ −0.5645 are the solutions. y = 0 is the minimum
and the second solution the maximum.
4) Let h(x) = 1

x . Here h(1) = 1. We aim at solving (30) whose solutions are
y = 0 and y ≈ −0.6438. Taking y ≈ −0.6438, we obtain

M = 41, P0 ≈ 0.5179, R ≈ 1.9307 and N ≈ 34.5 (42)

and we can take R = 2 and N = 34.
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Thus the control of the variance of P̂ gives a crude confidence interval for
P . Indeed, we get

P(
|P̂ − P |
P

≥ α) ≤ 1

P 2α2
E((P̂ − E(P̂ ))2) (43)

≤ 1

α2C
[(M + 1)2(P−1/M+1 − 1)h(P

1
M+1 )] (44)

≈ 4(M + 1)

α2N
h(P

1
M+1 ) (45)

This estimation is in general useless. For example, for h = 1, M = 12 and
α = 10−2, the upper bound becomes ≈ 5.105

N . To obtain a bound lower than
1, we need N ≥ 5.105. To improve it, we shall use Chernoff’s bounding
method instead of Markov inequality : for all λ > 0,

P(P̂ ≥ P (1 + α)) = P(
1

N

N
∑

i=1

P̂i ≥ P (1 + α)) (46)

= P(eλ
PN

i=1 P̂i ≥ eλNP (1+α)) (47)

≤ e−λNP (1+α)
E(eλP̂1)N (48)

≤ e−N [λP (1+α)−ψ(λ)] (49)

where ψ(λ) = E(eλP̂1) is the log-Laplace of P̂1. Optimization on λ > 0
provides

P(P̂ ≥ P (1 + α)) ≤ e−N supλ>0[λP (1+α)−ψ(λ)] (50)

Similarly, P(P̂ ≤ P (1 + α)) ≤ e−N supλ<0[λP (1−α)−ψ(λ)]

Let ψ∗ be the Crämer transform of ψ : ψ∗(τ) = supλ[λτ − ψ(λ)]. Thus

P(
|P̂ − P |
P

≥ α) ≤ e−Nψ
∗(P (1−α)) + e−Nψ

∗(P (1+α)) (51)

≤ 2e−N min(ψ∗(P (1−α)),ψ∗(P (1−α))) (52)

So we aim at obtaining an accurate lower bound of ψ∗.

Remark 3.3 Although we would therefore like to take Ri so that RiPi = 1,
we are constrained to choose Ri to be a positive integer. Hereafter we suppose
that we are in the good case where Ri = 1/Pi is an integer.

4 Laplace transform of P̂1

To study the Laplace transform of P̂1, we turn to the theory of branching
processes (see Harris [6], Lyons [8] and Athreya and Ney [2]). More precisely
we consider our splitting model as a Galton-Watson process, the thresholds
representing the different generations.
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4.1 Description of the model and first results

We consider a Galton-Watson model (Zn) where the size of the n-th
generation Zn is the number of particles that have reached the level Bn,
with one particle run at the beginning. Then Z0 = 1 and Zn satisfies the
following recurrence relation

Zn+1 =

Zn
∑

i=1

Xn
i (53)

where Xn
i is the number of particles among Ri that have reached the n+1-th

level. The (Xn
i )n≥1 are i.i.d. with common law Binomial with parameters

(Rn, Pn+1) and X0
i ∼ Ber(P1). Take the optimal values of 3.2 :

Ri = R i = 1, ..,M, Pi = P0 i = 1, ..,M + 1. (54)

Let f(s) = E(sZ1) the g.f. of Z1. Then the g.f. of Zn is the n-th iterate of f .
Since P̂1 = 1

RM ZM+1, we get

E(eλP̂1) = E(e
λ

RM ZM+1) = g(fM (eλ/R
M

)) = g(f oM (eλ/R
M

)) (55)

where g is the g.f. of a Ber(P0) and f the one of a Bin(R,P0). Thus we are
interested in the expression of fM the M -th functional iterate of f .

Here m = E(Z1) = RP0 = 1, so we are in the critical case of the
branching process that ensures us the algorithm of the simulation stops
with probability one when M → ∞, see [6], since if f (3)(1) <∞,

lim
n→∞

P(
2Zn
nf”(1)

> u|Zn 6= 0) = e−u, u ≥ 0. (56)

This emphasizes on the rarity character when the number M of thresholds
increases and the probabilities between the levels decrease.
In our case

f(s) = [P0s+ (1 − P0)]
R = [P0(s− 1) + 1]R (57)

The iterated function fM has no explicit tractable form and we shall derive
bounds for fM (s) around s = 1. To do this, we state a general result on the
Laplace transform in critical Galton-Watson models, which we could not
find in the literature.

4.2 Bounds of fn(s) for 0 ≤ s < 1 and m = 1

Remark 4.1 Remind that fn and its derivatives are convex. Furthermore
for all 0 ≤ s ≤ 1, s ≤ f(s) ≤ f(1) = 1, and by induction f(s) ≤ f2(s) ≤
.. ≤ 1. Finally we obtain fn(s) → 1 since fn(s) ≥ fn(0).
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Proposition 4.1 Let α1 = f ′′(1)
2 , C =

maxs∈[0,1] f
′′′(s)

6α1

and γn = nα1[1 − C
n (log n+ 1)] − α1. Then, for s close to 1 and large n

1 − 1 − s

1 + γn(1 − s)
≤ fn(s) ≤ 1 − (1 − s)[1 − α1(1 − s)]

1 + α1(1 − s)(n− 1 − α2
1(1−s)2

2 )
(58)

Proof. Upper bound : Using Taylor’s expansion, with fn(s) ≤ θn ≤ fn(1) =
1,

fn+1(s) = f(fn(s)) = f(1) + (fn(s) − 1)f ′(1) +
(fn(s) − 1)2

2
f ′′(θn)(59)

= fn(s) +
(fn(s) − 1)2

2
f ′′(θn), (60)

since f ′(1) = 1. Let rn = 1 − fn(s), rn satisfies

rn+1 = rn − r2n
f ′′(θn)

2
. (61)

Now let α0 = f ′′(0)
2 . Define the decreasing sequences (an) and (bn) satisfying

an+1 = an − a2
nα1, bn+1 = bn − b2nα0, a0 = b0 = 1 − s (62)

Then an ≤ rn ≤ bn. (63)

1) bn’s upper bound : since 0 ≤ bj ≤ 1 we have

1

bn
=

1

bn−1
+ α0

1

1 − α0bn−1
=

1

b0
+ α0

n−1
∑

j=0

1

1 − α0bj
≥ 1

b0
+ nα0 (64)

Thus bn ≤ 1 − s

1 + α0n(1 − s)
. (65)

2) an’s lower bound : apply this upper bound to an (α0 becoming α1).

an ≤ 1 − s

1 + nα1(1 − s)
. (66)

By injecting (66) in 1
an

= 1
a0

+ α1
∑n−1

j=0
1

1−α1aj
, we get

an ≥ (1 − s)[1 − α1(1 − s)]

1 + α1(1 − s)(n− 1 − α2
1(1−s)

2

2 )
. (67)

Finally (63) and (67) lead to the upper bound of fn in (58).

Lower bound : In fact, we prove by induction

hγ̂n(s) := 1 − 1 − s

1 + γ̂n(1 − s)
≤ fn(s) with







γ̂n+1 = cn + γ̂n
γ̂1 = 0

cn = α1(1 − C
n )

(68)
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For n = 1, the left hand side of (68) is given by the Remark 4.1. Then
note that hγ̂n(s) →n→∞ 1 thus for n large enough 1 − hγ̂n(s) ≤ 1

n . For all
1 − 1

n ≤ s ≤ 1,

hcn(s) = 1 + (s− 1) + cn(s− 1)2 +
(s− 1)3

6
h′′′cn(θ1

n) (69)

≤ 1 + (s− 1) + cn(s− 1)2 (70)

= f(s)− (s − 1)2[
s− 1

6
f ′′′(θ2

n) +
Cα1

n
] (71)

≤ f(s) by definition of C (72)

But by induction, we have hγ̂n(s) ≤ fn(s), and so, since f is increasing,
taking s = hγ̂n(t),

hcn(hγ̂n(t)) = hcn+γ̂n(t) ≤ f(hγ̂n(t)) ≤ f(fn(t)) = fn+1(t) (73)

i.e. hγ̂n+1(t) ≤ fn+1(t) where γ̂n+1 = cn + γ̂n.
Note that γn ∼ γ̂n, more precisely we have γn ≤ γ̂n and we finally obtain
the left hand side of (58) since γ → hγ is increasing.�

In the particular case of f(s) = (P0s + 1 − P0)
R, we can derive a more

precise lower bound :

Proposition 4.2 For s close to 1,

1 − 1 − s

1 + nα1(1 − s)
≤ fn(s) (74)

Observe that this is precise at s = 1.

Proof. Let h(s) = 1 − 1−s
1+α1(1−s) . Since f(1) = h(1) = 1, f ′(1) = h′(1) = 1

and f ′′(1) = h′′(1) = 2α1, the sign of f − h trivially depends on the sign of
the third derivative of f − h which is here obviously negative. Then h ≤ f .
Since f is increasing, we deduce (74) by induction.�

We plot in Figure 4.1 the upper bound and the two lower bounds for
P = 10−12 and s near 1.

4.3 Bounds of fn(s) for 1 ≤ s and m = 1

Remark 4.2 First, let us note that by convexity, for all s ≥ 1

(s− 1)f ′(1) ≤ f(s) − f(1) = f(s) − 1, (75)

hence f(s) ≥ s and by induction on n

fn+1(s) ≥ fn(s) ≥ .. ≥ f(s) ≥ s ≥ 1. (76)

We remark that for s > 1, the iterated function increases rapidly to infinity.

16



0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Value of s

Upper bound
Lower bound
Lower bound general

1 1.05 1.1 1.15
1

1.5

2

2.5

Value of s

Upper bound genral
Upper bound
Lower bound

1. for 0 ≤ s ≤ 1 2. for 1 ≤ s

Fig. 4 – Bounds of fM(s)

Proposition 4.3 Let γ′n = nα1[1 + C
n (log n+ 1)]− α1. Then, for s close to

1 and large n,

1 +
(s− 1)

1 − nα1s
P0−2
n (s − 1)

≤ fn(s) ≤ 1 +
s− 1

1 − nγ′n(s− 1)
(77)

Proof. Proceeding as done in Proposition 4.1 leads to the upper bound. Here
fn →n→+∞ ∞ which prevents us to make a Taylor expansion around 1. To
overcome this difficulty, consider kn the inverse function of fn, it is the n-
th functional iterate of the g.f. k (inverse function of f) which takes the
value 1 in 1, whose derivative is 1 in 1, second derivative is negative and
kn →n→+∞ 1. Thus making a Taylor development and using the same tools
as previously, we get

1 +
(s− 1)(1 − α1(s− 1))

1 + (n− 1)α1(s− 1)
≤ kn(s) ≤ 1 +

s− 1

1 + nα1s
P0−2
n (s − 1)

(78)

where β2 = k”(s)
2 and sn := 1 + 1

nα1
. Using the link between kn and fn and

the upper bound of kn,

1 +
(s− 1)

1 − nα1s
P0−2
n (s− 1)

≤ fn(s). (79)

The lower bound of kn leads to an upper bound of fn. But it provides us no
improvement.�

As done before, we can derive a more precise upper bound in the parti-
cular case of f(s) = (P0s+ 1 − P0)

R :
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Proposition 4.4 For s close to 1,

fn(s) ≤ 1 +
s− 1

1 − nα1(s− 1)
(80)

We plot in Figure 4.2 these three bounds for P = 10−12 and s near 1.

About the geometric distribution If the law of X is such that the
probabilities pk are in a geometric proportion : pk = P(X = k) = bck−1 for
k = 1, 2... and p0 = 1 − p1 − p2... with b, c > 0 and b ≤ 1 − c, then the
associated g.f. is a rational function :

h(s) = 1 − b

1 − c
+

bs

1 − cs
. (81)

Taking b = (1 − c)2 and c = α1
1+α1

leads to

h(s) = 1 +
s− 1

1 − α1(s − 1)
(82)

So we have compared the n-th functional iterate of a Binomial g.f. to the
one of a geometric g.f.. It suggests us to compare the importance splitting
models with Binomial and with geometric laws. The second one is set in the
following way : we run particles one after the other. As long as the next level
is not reached we keep on generating particles, then we start again from it
(the geometric distribution is the law of the first success).

This link is also underlined by Cosnard and Demangeot in [4] : for m = 1
and σ2 = f ′′(1) = 2α1, the asymptotic behavior of f2n

is the same as the
one of a geometric with the same variance i.e. h.

4.4 Optimization of the Crämer transform

Remind that

ψ∗(P (1 + α)) = sup
λ>0

{λP (1 + α) − ln(P0fM(eλ/R
M

) + 1 − P0)} (83)

ψ∗(P (1 − α)) = sup
λ<0

{λP (1 − α) − ln(P0fM(eλ/R
M

) + 1 − P0)} (84)

Considering the gradient of the functions, we prove that the supremum for
λ ≥ 0 is reached near 0. So we can use the upper bounds for fM obtained
in the previous section which leads to lower bounds for ψ∗ :

ψ∗(P (1 + α)) ≥ F (P (1 + α)) and ψ∗(P (1 − α)) ≥ G(P (1 − α)), (85)
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where F (x) = supλ>0[λx− ln(1 + P0
(eλ/RM

−1)

1−Mα1(eλ/RM −1)
)] and

G(x) = supλ<0[λx− ln(1 − P0
(1−eλ/RM

)[1−α1(1−eλ/RM
)]

u0
)]. Finally

P(
|P̂ − P |
P

≥ α) ≤ 2e−N min(F (P (1+α)),G(P (1−α)). (86)

And one can easily obtain explicit but complex expressions for F (x) and
G(x). We plot in Figure 5 the upper bounds obtained by the variance and
by the Laplace transform, for different values of α, the prescribed error of
the confidence interval. We take P = 10−9 and the optimal values obtai-
ned above for the parameters. Note that the upper bound given by the
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Fig. 5 – Upper bounds obtained by the variance and the Laplace transform

Laplace transform is better than the other one (with the variance). We ob-

tain P( |P̂−P
P | ≥ α) ≤ L. In the preceding example where P = 10−9, if we

fix α = 0.05 and L close to 0.01, then the corresponding costs needed are
3 ∗ 107 for the variance and 3 ∗ 106 for the Laplace transform.

5 Conclusion

The simplified model described here has 2 main defaults. First, we cannot
choose in general the optimal level Pi. In practice, we just have empirical
estimation on them, and we can bound to adjust the levels according to
them. A more precise analysis is then needed to get confidence intervals
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of the estimation. Moreover, the optimal sampling number at each level
is not an integer in general. Therefore, in practice, the number of particles
generated at each step should be chosen at random, either such that E(R) =
1
P0

or E( 1
R ) = P0. Thus, we finally need to work in random environment.

This requires a precise asymptotic of random iterates of Laplace transform
where analysis is more delicate than the one presented here and shall be the
purpose of a forthcoming paper.
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