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Abstract

We are interested in the asymptotic analysis of the binary search tree (BST) under the
random permutation model. Two methods are mainly used: the first one is the embedding in
continuous time and the second one is the tilting probability method. Combining both gives a
commutative scheme between four models:
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In this paper we focus on the upper embedding arrow and on the tilting arrows. We thus
get new results on the BST and also new proofs of known results. In particular, thanks to the
left tilting arrow, we give a conceptual proof (in the sense of Lyons, Pemantle, Peres) of the
asymptotic behavior of the profile.
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1 Introduction

1.1 The model of binary search trees

For a convenient definition of trees we are going to work with, let first define

U = z ∪
⋃

n≥1

{0, 1}n

as the set of finite words on the alphabet {0, 1} (with z as an empty word). For u and v in U,
denote by uv the concatenation of the word u with the word v (by convention we set, for any u ∈ U,
zu = u). If v 6= z, we say that uv is a descendant of u and u is an ancestor of uv. Moreover u0
(resp. u1) is called left (resp. right) child of u.

A complete binary tree T is a finite subset of U such that




z ∈ T
if uv ∈ T then u ∈ T ,
u1 ∈ T ⇔ u0 ∈ T .
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The elements of T are called nodes , and z is called the root ; |u|, the number of letters in u, is the
depth of u (with |z| = 0). Write BinTree for the set of complete binary trees.

A tree T ∈ BinTree can be described by giving the set ∂T of its leaves, that is, the nodes that
are in T but with no descendants in T . The nodes of T\∂T are called internal nodes1.

We study binary search trees (BST), which are widely used to store totally ordered data (the
monograph of Mahmoud [28] gives an overview of the state of the art).

Let A be a totally ordered set of elements named keys and for n ≥ 1, let (a1, ..., an) be picked up
without replacement from A. The (labeled) binary search tree built from these data is a complete
binary tree in which each internal node is associated with a key belonging to (a1, ..., an) in the
following way:

The first key a1 is assigned to the root. The next key a2 is assigned to the left child of the
root if it is smaller than a1, or it is assigned to the right child of the root if it is larger than a1.
We proceed further inserting key by key recursively. We get a labeled complete binary tree with n
internal nodes such that the keys of the left subtree of any given node u are smaller than the key
of u, and the keys of the right subtree are larger than the key of u.
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Figure 1: BST built with the sequence of data 0.5, 0.8, 0.9, 0.3, 0.4 (empty squares are leaves).

To study the shape of these trees for large n, it is classical to introduce a random model.
One usually assumes that the data (xi)i≥1 successively inserted are i.i.d. random variables with a
continuous distribution F . For every n ≥ 1, the string x1, .., xn induces (a.s.) a permutation σn

such that xσn(1) < xσn(2) < · · · < xσn(n). Since the xi are exchangeable, σn is uniformly distributed
on the set Sn of permutations of {1, .., n}. Since this claim is not sensitive to F we will assume,
for the sake of simplicity that F is the uniform distribution on [0, 1]. This is the so-called random
permutation model.

Again by exchangeability, σn is independent of the vector (xσn(1), xσn(2), . . . , xσn(n)) and we
have

P
(
xn+1 ∈ (xσn(j), xσn(j + 1)) |σn

)
= P

(
xn+1 ∈ (xσn(j), xσn(j + 1))

)

= P (σn+1(j + 1) = n + 1) = (n + 1)−1

for every j = 0, 1, .., n, where xσn(0) := 0 and xσn(n+1) := 1. One can also express this property with

the help of the sequential ranks of the permutation: the random variables Rk =
∑k

j=1 1Ixj≤xk
, k ≥ 1

are independent and Rk is uniform on {1, . . . , k} (see for instance Mahmoud [28], section 2.3) , so
that P (Rn+1 = j + 1 |R1, .., Rn) = (n + 1)−1.

1Some authors consider non complete binary trees, removing the third condition in the above definition. The
boundary is then the set of nodes that are not in T but whose predecessors are in T ([6]). It can be seen as a set
of external (or available nodes). Here, we choose to work with complete trees, but this choice has no impact on the
results.
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In term of binary search tree, this is translated by the fact that the insertion of the n + 1st key
in the tree with n internal nodes is uniform among its n + 1 leaves.

In this model, the law of the sequence of the underlying (unlabelled) trees is a Markov chain
(Tn, n ≥ 0) on BinTree defined by T0 = {z} and

Tn+1 = Tn ∪ {Dn+10, Dn+11} ,
P (Dn+1 = u | Tn) = (n + 1)−1, u ∈ ∂Tn , (1)

(Dn+1 is the random node where the n+1-st key is inserted). It is a particular case (α = 1) of the
diffusion-limited aggregation (DLA) on a binary tree, where a constant α is given and the growing
of the tree is random with probability of insertion at a leaf u proportional to α−|u| (Aldous-Shields
[1], Barlow-Pemantle-Perkins [6]).

To describe the evolution of the BST, two important random variables are the saturation level
hn and the height Hn:

hn = min{|u| : u ∈ ∂Tn} , Hn = max{|u| : u ∈ ∂Tn} (2)

which grow logarithmically (see for instance Devroye [14] )

a.s. lim
n→∞

hn

log n
= c′ = 0.3733... lim

n→∞
Hn

log n
= c = 4.31107... , (3)

where c′ and c are the two solutions of the equation η2(x) = 1 where

ηλ(x) := x log
x

λ
− x + λ, x ≥ 0 , (4)

is the Cramer transform of the Poisson distribution of parameter λ. Function η2 has its minimum

at x = 2. It corresponds to the rate of propagation of the insertion depth: Dn

2 log n
P−→ 1.

A more accurate information on Tn is provided by the whole profile

Uk(n) := #{u ∈ ∂Tn, |u| = k} , k ≥ 1 , (5)

counting the number of leaves of Tn at each level. Notice that Uk(n) = 0 for k > Hn and for
k < hn. To get asymptotic results, it is rather natural to code the profile thanks to the so-called
polynomial level

∑
k Uk(n)zk, whose degree is Hn.

For z /∈ 1
2ZZ− = {0,−1/2,−1,−3/2, · · · } let

Mn(z) =
1

Cn(z)

∑

k≥0

Uk(n)zk =
1

Cn(z)

∑

u∈∂Tn

z|u| , n ≥ 0 , (6)

where

Cn(z) =

n−1∏

k=0

k + 2z

k + 1
= (−1)n

(
−2z
n

)
, n ≥ 1, C0(z) = 1 , (7)

and let F(n) be the σ-field generated by all the events {u ∈ Tj}j≤n,u∈U. Jabbour [13, 21] proved
that (Mn(z),F(n))n is a martingale to which, for the sake of simplicity we refer from now as the
BST martingale. If z > 0, this positive martingale is a.s. convergent; the limit M∞(z) is positive
a.s. if z ∈ (z−c , z+

c ), with

z−c = c′/2 = 0.186..., z+
c = c/2 = 2.155... (8)

and M∞(z) = 0 for z /∈ [z−c , z+
c ] (Jabbour [21]). This martingale is also the main tool to prove

that the limit profile has a Gaussian shape (see Theorem 1 in [21]).

3



1.2 Embedding of BST in a continuous time model

The aim of the present paper is to revisit the study of this family of martingales, improving
results (in the critical case, on the uniformity of convergence), using either the embedding method
or the tilting probability method. It allows to get more complete results on the profile of BSTs.

The idea of embedding discrete models (such as urn models) in continuous time branching
processes goes back at least to Athreya-Karlin [4]. It is described for instance in Athreya and Ney
([5], section 9) and it has been recently revisited by Janson [22]. For the BST, various embeddings
are mentioned in Devroye [14], in particular those due to Pittel [32], and Biggins [10, 11]. Here, we
work with a variant of the Yule process, taking into account the tree (or “genealogical”) structure.

Let (ut)t≥0 be a Poisson point process taking values in U with intensity measure νU, the counting
measure on U. Let (TTt)t≥0 be a BinTree valued process such that TT0 = {z} and TT. jumps only
when u. jumps. Let t be a jump time for u.; TTt is obtained from TTt− in the following way:

if ut /∈ ∂TTt− keep TTt = TTt− and if ut ∈ ∂TTt− take TTt = TTt− ∪ {ut0, ut1}.
The counting process (Nt)t≥0 defined by

Nt := #∂TTt (9)

is the classical Yule (or binary fission) process (Athreya-Ney [5]). In the following, we refer to the
continuous-time tree process (TTt)t≥0 as the Yule tree process.

We note 0 = τ0 < τ1 < τ2 < ... the successive jump times (of TT.),

τn = inf{t : Nt = n + 1} . (10)
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Figure 2: Continuous time binary branching process.

1.3 Yule process and fragmentation process

This Yule tree process can also be seen as a fragmentation process. We may encode dyadic
open subintervals of [0, 1] with elements of U


. We set Iz = (0, 1) and for u = u1u2...uk ∈ U


,

Iu =
( k∑

j=1

uj2
−j, 2−k +

k∑

j=1

uj2
−j
)
.

With this coding, the evolution corresponding to the previous process is a very simple example
of fragmentation process. This idea goes back to Aldous and Shields ([1] Section 7f and 7g).
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In other words, for t ≥ 0, F (t) is a finite family of intervals. At time 0, we have F0 = (0, 1).
Identically independent exponential E(1) random variables2 are associated with each intervals of
F (t). Each interval in F (t) splits into two parts (with same size) independently of each other after
an exponential time E(1).

Hence, one has F (0) = (0, 1), F (τ1) = ((0, 1/2), (1/2, 1)) where τ1 ∼ E(1), etc... One can
interpret the two fragments Iu0 and Iu1 issued from Iu as the two children of Iu, one being the left
(resp. right) fragment Iu0 (resp. Iu1), obtaining thus a tree structure. With this interpretation,
one observes that when n fragments are present, each of them will split first equally likely. An
interval with length 2−k corresponds to a leaf at depth k in the corresponding tree structure.
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Figure 3: Fragmentation and its tree representation.

The following proposition allows to build on the same probability space, the Yule tree process
and the BST. This observation was also made in Aldous-Shields [1] section 1, (see also Kingman
[23] p.237 and Tavaré [35] p.164 in other contexts).

Lemma 1.1 a) The jump time intervals (τn − τn−1)n are independent and satisfy:

τn − τn−1 ∼ E(n) for any n ≥ 1. (11)

b) The processes (τn)n≥1 and
(
TTτn

)
n≥1

are independent.

c) (embedding) (
TTτn

)
n≥1

D
=
(
Tn

)
n≥1

(12)

where
D
= means equality in distribution.

Proof: a) and b) are direct consequences of the properties of Poisson processes: a) comes from
the definition of the intensity measure, and b) from the independence of jump chain and jump
times. c) is clear since the evolution rules of the two Markov chains are the same in both models.

A first easy and useful consequence of a) is

E(eτn(1−2z)) = Cn(z)−1 . (13)

2
E(λ) is the exponential distribution of parameter λ, U([0, 1]) is the uniform distribution on [0, 1], and Be(p) is

the Bernoulli distribution of parameter p.
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If we consider only the size of the fragments, the Yule tree process can be seen as a particular
case of branching random walk in continuous time: individuals have an E(1) distributed lifetime,
and at their death, they produce children, whose relative positions are distributed according to a
point process Z. Individuals do not move during their lives. If we denote the set of individuals
alive at time t by Zt and for u ∈ Zt the position of individual u by Xu, then the classical family of
“additive” martingales, parameterized by θ in IR (sometimes in C


) and indexed by t ≥ 0 is given

by

m(t, θ) :=
∑

u∈Zt

exp(θXu − tL(θ)),

where L(θ) = E
∫

eθxZ(dx) − 1 (see [36], [25], and [8] for the fragmentation).
Here, we have Z = 2δ− log 2, Zt = ∂TTt and Xu = −|u| log 2. For easier use, we set z = 2−θ and

then consider the family of martingales

M(t, z) :=
∑

u∈Zt

z|u|et(1−2z). (14)

In particular M(t, 1/2) = 1 and M(t, 1) = e−tNt. A classical result (see Athreya-Ney [5] or Devroye
[14] 5.4) says that

ξ := lim
t→∞

e−tNt ∼ E(1) . (15)

Taking again the (very) particular case z = 1, we remark that since limn τn = ∞ a.s. (see
Lemma 1.1 a) ) we get from (15)

lim
n

ne−τn = ξ a.s. . (16)

The definitions of the martingales together with the embedding Lemma 1.1 c) give:

Proposition 1.2 (martingale connection) For z /∈ 1
2ZZ−

M(τn, z) = eτn(1−2z)Cn(z)Mn(z) , (17)

where τn is independent of Mn(z).

This connection allows us to transfer known results about the Yule martingales to BST martin-
gales, thus giving a very simple proof of known results (such that in Theorem 2.1 below) about the
BST martingale and also getting much more. In particular, in Theorem 2.4 2), we give the answer
to the question asked in [21], about critical values of z, with a straightforward argument.

1.4 Tiltings of the models

We introduce now (and develop in Section 3) the tilting or biasing method which allows us to
interpret the martingales as Radon-Nikodym derivatives. In order to do that, we need to “enlarge”
the probability space [8, 12, 26]. Roughly speaking it consists in marking at random a special “ray”
or branch of the tree, called spine, both in the discrete and in the continuous case. It allows to
deduce important properties of the population from the behavior of the spine.

For the fragmentation process (F (t))t≥0 let us denote by Ft the σ-algebra of the interval frag-
mentation up to time t and V be a U([0, 1]) r.v. independent of the filtration (Ft)t≥0. Since

P(V ∈ {k2−j , 0 ≤ k ≤ 2j , j ∈ N, k ∈ N}) = 0, we may define P-a.s. for every t a unique S(t) ∈ U
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such that IS(t) is an interval of F (t) and V ∈ IS(t). In other words, S(t) is the element of U


coding

the fragment containing V , its length is 2−|S(t)| and

P(S(t) = u | Ft) = 2−|u| , u ∈ ∂TTt (18)

(we choose a fragment at random with probability equals to its length, it is the classical size-biasing
setting). As a consequence of the general theory of homogeneous fragmentations (see Bertoin [7])
or by a direct computation, we see that (|S(t)|, t ≥ 0) is an homogeneous Poisson process with
parameter 1. In particular, if

E(t, z) := (2z)|S(t)|et(1−2z) (19)

then EE(t, z) = 1. Conditionally on F̂s = Fs ∨ σ(S(r), r ≤ s), the restriction of the fragmentation
F (. + s) to the interval IS(s) is distributed as a rescaling of F (.) by a factor 2−|S(s)|, which entails

that
(
E(t, z), F̂t

)
t≥0

is a martingale. By the size biasing scheme (18) and the definition (14) we get

M(t, z) = E [E(t, z) | Ft] . (20)

Coming back to the discrete time, let F(n) be the σ-algebra generated by F (τ1), ..., F (τn) and let
us denote Spinen := S(τn) and sn := |Spinen|. Applying (18) at the (Ft, t ≥ 0) stopping time τn,
we get for every leaf u ∈ ∂Tn (and k ≥ 1) :

P(Spinen = u | F(n)) = 2−|u| , P(sn = k | F(n)) = Uk(n)2−|k| . (21)

Let F̂(0) be the trivial σ-algebra, and for n ≥ 1 let F̂(n) be the σ-algebra obtained from F(n) by

adjunction of S(τ1), ..., S(τn). Let us consider En(z) := E

[
E(τn, z) | F̂(n)

]
(with E0(z) := 1). From

(13) we have

En(z) = (2z)sn Cn(z)−1. (22)

From the martingale property of E(t, z) and the definition of En(z) we see that
(
En(z), F̂(n)

)
is a

martingale. Like in (20), we get easily

Mn(z) = E
[
En(z) | F(n)

]
, (23)

so that the martingales M(t, z) and Mn(z) are obtained from the “exponential martingales” E(z, t)
and En(z) by projection. All these martingales are precisely the main tool to tilt probabilities. In
particular we define P(2z) on (F̂t, t ≥ 0) by

P
(2z)
| bFt

= E(t, z) P| bFt

, (24)

which yields by projection on (Ft, t ≥ 0)

P
(2z)
|Ft

= M(t, z) P|Ft
. (25)

If dP (resp. dP(2z)) is the restriction of P (resp. P(2z)) to ∨nF̂(n), the discrete versions of the above
relations are

dP
(2z)
| bF(n)

= En(z) dP| bF(n)

, dP
(2z)
|F(n)

= Mn(z) dP|F(n)
. (26)
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The probabilities P(2z) that are given above will have a representation (or an interpretation) further
in the paper. In one word, one can say that under P(2z) the evolution of the fragmentation (or the
the one of the Yule tree or BST tree) is biaised. The parameter z serves for a speed-tuner of the
spine (z > 1/2 corresponds to a speed up and z < 1/2 to a slow down).

Let us now explain the content of the paper. In Section 2, we explore the direct consequences of
embedding. First, we exhibit (on the same space of probability) a family of uniform r.v. attached
to the nodes of the tree. These random variables give, for every node u, the limiting proportion of
leaves issued from u among those issued from its parent. They are exactly the r.v. called “fictitious”
by Devroye in [14] p. 258 in its “backward” construction of a typical realization of Tn for n fixed.
In a second part of Section 2, we study the convergence of the BST martingale Mn(z). For z > 0,
the embedding method allows to recover very quickly the behavior of the limit M∞(z): positive
when z ∈ (z−c , z+

c ), zero when z /∈ [z−c , z+
c ]. In the critical case z = z±c the behavior was unknown.

We prove that M∞(z±c ) = 0 a.s. and get the convergence of the derivative. We also give a strong
version of the “quicksort” equation.

In Section 3, we define the biased models (continuous time and discrete time). After enlarging
the space, we prove that the growing tree process can be decomposed into a spine evolution together
with the evolution of subtrees issued from nodes of the spine. We follow the way initiated by Lyons,
Pemantle, Peres ([26],[27]) and followed by many other authors ([3],[12],[6]). In this study, we use
several times the Chinese restaurant model of Dubins and Pitman ([31] p.58). In Section 4, we
explore the benefits of the tilting method. In a first part, we revisit the behavior of the martingales
Mn(z), giving “conceptual” proofs. In a second part, thanks to this method, we are able to
describe the asymptotic behavior of the profile Uk(n) when k = 2z log n + o(

√
log n) in the whole

range z ∈ (z−c , z+
c ), providing large deviations results around k = 2 log n. Previously, the result was

known only on a subdomain due to a L2 method ([13]).

2 Some benefits of the embedding method

Let us begin with the study of some meaningful random variables arising as a.s limits and
playing an important role in the results of Subsection 2.2.

2.1 Uniform r.v. in the BST

For every u ∈ U

, let τ (u) = inf{t : u ∈ TTt} the time (a.s. finite) at which u appears in the tree,

and for t > 0, let

TT
(u)
t = {v ∈ U


: uv ∈ TTt+τ (u)}

the tree process growing from u. In particular we denote

N
(u)
t = #∂TT

(u)
t .

For t > τ (u), the number of leaves at time t in the subtree issued from node u is n
(u)
t := N

(u)

t−τ (u) .

The branching property and (15) give that a.s. for every u ∈ U


lim
t→∞

e−tN
(u)
t = ξu , lim

t→∞
e−tn

(u)
t = ξu e−τ (u)

, (27)

where ξu is distributed as ξ i.e. E(1). Moreover, if u and v are not in the same line of descent, the
r.v. ξu and ξv are independent. Since

n
(u)
t = n

(u0)
t + n

(u1)
t and τ (u0) = τ (u1), (28)
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a small computation yields

n
(u0)
t

n
(u)
t

a.s.−−−→ U (u0) :=
ξu0

ξu0 + ξu1
,

n
(u1)
t

n
(u)
t

a.s.−−−→ U (u1) := 1 − U (u0) =
ξu1

ξu0 + ξu1
, (29)

which allows to attach a U([0, 1]) r.v. to each node of U

. In particular we set

U := U (0) =
ξ0

ξ0 + ξ1
(30)

so that

ξ := ξz = e−τ1(ξ0 + ξ1) , ξ0 = Uξeτ1 , ξ1 = (1 − U)ξeτ1 . (31)

If u0 and u1 are brother nodes, we have U (u1) + U (u0) = 1. We claim that if the finite set of
nodes v1, . . . , vk does not contain any pair of brothers, the corresponding r.v. U (v1), . . . , U (vk) are
independent. When none of the vj is an ancestor of another (“stopping line” property) it is a
consequence of the branching property. In the general case, it is sufficient to prove that U (u) is
independent of (U (v), v < u). To simplify the reading, let us give the details only for |u| = 2, for
instance u = 00. We have, from (28)

U (00) =
ξ00

ξ00 + ξ01
, U (0) =

(ξ00 + ξ01)e
−τ (00)+τ (0)

(ξ00 + ξ01)e−τ (00)+τ (0)
+ (ξ10 + ξ11)e−τ (10)+τ (1)

Actually, from the branching property, ξ00 and ξ01 are independent of ξ10, ξ11, τ
(00), τ (0), τ (10), τ (1).

Moreover since ξ00 and ξ01 are independent and E(1) distributed, then ξ00/(ξ00+ξ01) and (ξ00 +ξ01)
are independent, which allows to conclude that U (00) and U (0) are independent.

Finally, multiplying along the line of the ancestors of a node u, we get the representation

a.s. lim
t→∞

n
(u)
t

Nt
=
∏

v<u

U (v) . (32)

Notice that relation (32) gives a strong (which means a.s.) version of the analogy between BST
and branching random walks, first given by Devroye [14].

2.2 Martingales

For both models a family of martingales plays an essential role: the discrete-time martingale
(6) in the BST, and the continuous time “additive martingale” (14) in the Yule tree. They are
closely related by the martingale connection of Proposition 1.2. Thus, the embedding method is
the key tool for proving and enlarging convergence results on the BST martingale (Theorem 2.4)
and its derivative (Theorem 2.5).

2.2.1 Known results

The following theorem gives a summary of the main properties of the BST martingale, proved
in [21] and [13].
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Theorem 2.1 1) For z ∈ (0,∞), the positive martingale Mn(z) is a.s. convergent when n → ∞
and the limit denoted M∞(z) satisfies

E
(
e−θM∞(z)

)
=

∫ 1

0
E
(
e−θzx2z−1M∞(z)

)
E
(
e−θz(1−x)2z−1M∞(z)

)
dx ; (33)

2) a) for z ∈ (z−c , z+
c ) there exists p > 1 such that the Lp convergence holds, and

M∞(z) > 0 a.s. ,

b) for z /∈ [z−c , z+
c ]

M∞(z) = 0 a.s.

3) On every compact of {z ∈ C


: |z−1| <
√

2
2 } , Mn(z) and all its z-derivative are a.s. uniformly

convergent as n → ∞.

As a consequence of known results for the branching random walks ([8, 9, 36]), we have for the
additive martingale:

Theorem 2.2 1) For z ∈ (z−c , z+
c ), the positive martingale M(t, z) is a.s. convergent when t → ∞

and the limit denoted by M(∞, z) satisfies

M(∞, z) = ze(1−2z)τ1 (M0(∞, z) + M1(∞, z)) a.s. (34)

where M0(∞, z) and M1(∞, z) are independent, distributed as M(∞, z) and independent of τ1.
2) a) For z ∈ (z−c , z+

c ) there exists p > 1 such that the Lp convergence holds, and

M(∞, z) > 0 a.s. .

b) For z ∈ (0,∞) \ (z−c , z+
c ), then M(∞, z) = 0 a.s..

Notice that the zero limit at the critical points z−
c and z+

c is known in the continuous-time case
and not in the discrete-time case.

The derivative

M ′(t, z) =
d

dz
M(t, z)

is a martingale which is no more positive. It is called the derivative martingale. Its behavior is
ruled by the following theorem.

Theorem 2.3 1) For z ∈ (z−c , z+
c ), the derivative martingale is convergent a.s. when n → ∞.

2) a) For z = z−c , the derivative martingale is convergent a.s. to a finite positive limit M ′(∞, z−c )
and E

(
M ′(∞, z−c )

)
= +∞.

b) For z = z+
c , the derivative martingale is convergent a.s. to a finite negative limit M ′(∞, z+

c )
and E

(
M ′(∞, z+

c )
)

= −∞.

10



2.2.2 New results

Theorem 2.4 1) For z ∈ (0,∞) we have a.s.
a) (limit martingale connection)

M(∞, z) =
ξ2z−1

Γ(2z)
M∞(z) , (35)

where ξ ∼ E(1) is defined in (15), and independent of M∞(z).
b)

M∞(z) = z
(
U2z−1M∞,(0)(z) + (1 − U)2z−1M∞,(1)(z)

)
(36)

where U ∼ U([0, 1]) is defined in (29), M∞,(0)(z),M∞,(1)(z) are independent (and independent of
U) and distributed as M∞(z).

2) For z = z±c , M∞(z) = 0 a.s.

The results on the derivative martingales

M′
n(z) =

d

dz
Mn(z)

are given in the following theorem, where Ψ the digamma function is defined by

Ψ(x) =
Γ′(x)

Γ(x)
= lim

n

(
log n −

n−1∑

j=0

1

x + j

)
. (37)

Theorem 2.5 1) For z ∈ [z−c , z+
c ], M′

n(z) converges a.s. and its limit M′
∞(z) is related to M∞(z)

and M ′(∞, z) by

M ′(∞, z) =
ξ2z−1

Γ(2z)

(
M′

∞(z) + 2 (log ξ − Ψ(2z))M∞(z)
)

a.s. (38)

where ξ ∼ E(1) is defined in (15) and is independent of M∞(z) and M′
∞(z). Moreover M′

∞(z)
satisfies a.s.

M′
∞(z) = zU 2z−1M′

∞,(0)(z) + z(1 − U)2z−1M′
∞,(1)(z)

+ 2z
(
U2z−1 log U

)
M∞,(0)(z) + 2z

(
(1 − U)2z−1 log(1 − U)

)
M∞,(1)(z)

+ z−1M∞(z) (39)

where U ∼ U([0, 1]) is defined in (29), and the r.v. M′
∞,(0)(z) and M′

∞,(1)(z) are independent (and

independent of U) and distributed as M′
∞(z).

2) a) M′
∞(z−c ) > 0 and M′

∞(z+
c ) < 0 a.s.

b) E
(
M′

∞(z−c )) = −E
(
M′

∞(z+
c )
)

= +∞

c) For z = z±c , M′
∞(z) satisfies the same equation as in Theorem 2.4 b)

M′
∞(z) = z

(
U2z−1M′

∞,(0)(z) + (1 − U)2z−1M′
∞,(1)(z)

)
a.s. , (40)

where U , M′
∞,(0)(z),M′

∞,(1)(z) are as above. Moreover

M ′(∞, z) =
ξ2z−1

Γ(2z)
M′

∞(z) . (41)
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An easy and remarkable consequence of Theorem 2.5 1) is obtained in the following corollary,
just taking z = 1 in (38) and (39) (remember that Mn(1) ≡ 1). The distribution version (weaker)
of (43) below is the subject of a broad literature (see for instance Fill, Janson, Devroye, Neininger,
Rösler, Rüschendorf [18, 19, 15, 29, 34, 33]) and some properties of the distribution of M ′

∞(1)
remain unknown.

Corollary 2.6 We have

M ′(∞, 1) = ξ
(
M′

∞(1) + 2 (log ξ + γ − 1)
)

a.s. , (42)

where γ is the Euler constant, and M′
∞(1) satisfies the a.s. version of the quicksort equation:

M′
∞(1) = UM′

∞,(0)(1) + (1 − U)M′
∞,(1)(1) + 2U log U + 2(1 − U) log(1 − U) + 1 , (43)

where as above, M′
∞,(0)(1) and M′

∞,(1)(1) are independent (and independent of U), distributed as

M′
∞(1) and U ∼ U([0, 1]).

The following proposition gives an answer to a natural question asked in [13]: what is the
optimal domain in the complex plane where the BST martingale is L1−convergent and uniformly
convergent? Notice that for z ∈ IR, the notations coincide with those of [21].

Theorem 2.7 Let
f(z, q) := 1 + q(2<z − 1) − 2|z|q .

Let Vq = {z : f(z, q) > 0} and V := ∪1<q<2Vq.
As n → ∞, {Mn(z)} converges, a.s. and in L1, uniformly on every compact C of V.

2.2.3 Proofs

In this section we use several times the following lemma.

Lemma 2.8 For z /∈ 1
2ZZ− we have

a) Cn(z) ∼ n2z−1

Γ(2z)
, (44)

b) a.s. lim
n

eτn(1−2z)Cn(z) =
ξ2z−1

Γ(2z)
. (45)

c) a.s. lim
n

[
C ′

n(z)

Cn(z)
− 2τn

]
= 2[−Ψ(2z) + log ξ] . (46)

Proof: a) Use Stirling formula.
b) By (44) and (16) we get limn eτn(1−2z)n2z−1 = ξ2z−1, a.s..
c) Use

C ′
n(z)

Cn(z)
=

n−1∑

j=0

2

j + 2z
,

(16) and (37).

Proof of Theorem 2.4:

12



1) a) Since M(t, z) converges a.s. when t → ∞, and since limn τn = ∞ a.s. we have
limn M(τn, z) = M(∞, z). It remains to apply the martingale connection Proposition 1.2 and
Lemma 2.8.

b) For t > τ1 we have the decomposition

M(t, z) = ze(1−2z)τ1
[
M (0)(t − τ1, z) + M (1)(t − τ1, z)

]
(47)

where for i = 0, 1

M (i)(s, z) =
∑

u∈∂TT
(i)
s

z|u|es(1−2z) ,

and TT(i) is defined in Section 2.1. Take t = τn in (47), condition on the first split time τ1, apply
the branching property, let n → ∞ and apply the limit martingale connection (35) to get

ξ2z−1

Γ(2z)
M∞(z) = ze(1−2z)τ1

(
ξ2z−1
0

Γ(2z)
M∞,(0)(z) +

ξ2z−1
1

Γ(2z)
M∞,(1)(z)

)
(48)

where ξ0 and ξ1 come from section 2.1, which yields b) with the help of (31).
2) The result for critical points comes directly from the limit martingale connection (35) and

the analogous known result in continuous time in Theorem 2.2 2) b).

Proof of Theorem 2.5: 1) Taking derivatives in the martingale connection (Proposition 1.2)
gives

M ′(τn, z) =

[
C ′

n(z)

Cn(z)
− 2τn

]
eτn(1−2z)Cn(z)Mn(z) + eτn(1−2z)Cn(z)M′

n(z). (49)

For z ∈ [z−c , z+
c ], let n → ∞ in (49). From Lemma 2.8 and known results in continuous time

(Theorem 2.3) , we get that M′(∞) satisfies (38).
To prove (39), we differentiate (47) with respect to z

M ′(t, z) = (z−1 − 2τ1)M(t, z) + ze(1−2z)τ1
[
M (0)′(t − τ1, z) + M (1)′(t − τ1, z)

]
,

and we use the same technique as above: take t = τn, let n → ∞, apply (38) and its analogs with
(M ′(i),M(i),M′(i), ξi)i=0,1 instead of (M ′,M,M′, ξ), and use (31).

For z = z±c , 2) a) and 2) b) are consequences of Theorem 2.3 2), since M∞(z±c ) = 0.
Formula (40) of 2) c) is straightforward from (39) since M∞(z±c ) = 0. Formula (41) is (38) for

z = z±c .

Proof of Theorem 2.7: Uniform convergence of martingales in the continuous time BRW has
been studied by Biggins [9] Theorem 6. See also Bertoin-Rouault [8].

It is possible to give a proof of the uniform a.s. convergence of Mn directly from these papers.
Actually, for the uniform L1 convergence, we will prove

lim
N

sup
n≥N

E sup
z∈C

|Mn(z) −MN (z)| = 0 . (50)
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Since (supz∈C |Mn(z) − MN (z)|)n≥N is a submartingale, this will imply also the a.s. uniform
convergence. From (13) and the martingale connection (Proposition 1.2), we have

Mn(z) −MN (z) = E[M(τn, z) − M(τN , z)|F(n)]

so that taking supremum and expectation we get

E sup
z∈C

|Mn(z) −MN (z)| ≤ E

(
sup
z∈C

|M(τn, z) − M(τN , z)|
)

.

Taking again the supremum in n we get

sup
n≥N

E sup
z∈C

|Mn(z) −MN (z)| ≤ E sup
n≥N

(
sup
z∈C

|M(τn, z) − M(τN , z)|
)

≤ E sup
T≥τN

(
sup
z∈C

|M(T, z) − M(τN , z)|
)

. (51)

We have for any t > 0

E sup
T≥τN

(
sup
z∈C

|M(T, z) − M(τN , z)|
)

≤ E sup
T≥t

(
sup
z∈C

|M(T, z) − M(t, z)|
)

+ E

[
1IτN <t sup

T≥τN

(
sup
z∈C

|M(T, z) − M(τN , z)|
)]

:= I(t) + JN (t) (52)

On the one hand, limt I(t) = 0 by [8] Proposition 3. On the other hand, the Hölder inequality
yields (for q ∈ (1, 2) such that infz∈C f(z, q) > 0)

JN (t) ≤ 2

(
E

(
sup
T≥0

sup
z∈C

|M(T, z)|q
))1/q

(IP(τN < t))(q−1)/q . (53)

For any fixed t, limN IP(τN < t) = 0 which allows to end the proof.

3 Biased models and tilting probability

In this Section, we construct an enlarged probability space and we describe the tools (spine
evolution, Chinese restaurant) which will give the key arguments in the proof of Theorems 4.2 and
4.7 of Section 4.

3.1 Construction of biased trees

We call marked tree a tree with a distinguished leaf. More precisely let

MBinTree := {(T, u);T ∈ BinTree, u ∈ ∂T} .

If T̃ = (T, u) is a marked tree, we say that u is the red leaf of T , that {v ∈ ∂T, v 6= u} is the set
of blue leaves of T , and that ancestors of u are red nodes, and other internal nodes are blue. We
denote by ∂T̃ the set of leaves of T with their colors.

14



Let z > 0 be a parameter. We define on U × {red, blue} × {0, 1} a Poisson point process
ũt = (ut, ct, εt) with intensity measure

νU ⊗ {2zδred + δblue} ⊗
{1

2
δ0 +

1

2
δ1

}

and we denote by Q(2z) its law. Let us construct continuous time process (T̃Tt)t≥0 with values in
MBinTree which starts from

T̃T0 = (z,z),

such that T̃T. jumps only when ũ. jumps. Let t be a jump time for ũ.; T̃Tt is obtained from T̃Tt− in
the following way:

– if (ut, ct) /∈ ∂T̃Tt, then T̃Tt = T̃Tt−
– if (ut, ct) ∈ ∂T̃Tt, then the new tree is TTt = TTt− ∪ {ut0, ut1} and its colors are given by

• if ct = blue, the blue leaf ut becomes a blue node and two (new) blue leaves ut0, ut1 appear.
• if ct = red, the red leaf ut becomes a red node, two new leaves appear: utεt which is red

and ut(1 − εt) which is blue.
One notes again the successive jump times (τ̃n)n. Once again, (τ̃n−τ̃n−1), n ≥ 1 are independent

and exponentially distributed, and

τ̃n − τ̃n−1 ∼ E(n − 1 + 2z) .

It is clear by construction that the set of red nodes is a branch ; the red branch is called Spine
and Spinen is the red leaf of T̃Tτ̃n . Its length is sn = |Spinen| .

In terms of the second construction of the Yule process, we have now two kinds of nodes (blue
and red). With each blue node u is associated a clock E(1), and at its death it gives two blue nodes
u0 and u1. With each red node u is associated a clock E(2z) and at its death it gives two nodes a
red one u0 (resp. u1) and a blue one u1 (resp. u0) with probability 1/2 (resp. 1/2). Ancestor is
assumed red.

We can also see this process as a branching process with immigration, as presented in [35] (see
also [31] chap. 10 and [17]). The spine is a Poisson process of rate 2z and at each jump time of this
process begins a new Poisson process of rate 1 independent of the spine process and independent
of all other Poisson processes already running.

One can again define a discrete time process

T̃n = T̃Tτ̃n

containing all the tree structure (and the color) of T̃Tτn . The discrete evolution is as follows:
T̃n is a complete binary tree with 2n + 1 nodes, n blue leaves and one red one. To construct T̃n+1

we choose the red leaf with probability 2z/(n + 2z) and each blue one with probability 1/(n + 2z).
– If the chosen leaf v is blue, T̃n+1 = T̃n ∪ {(v1, blue), (v0, blue)}.
– If the leaf chosen v is red, we toss a fair coin. We put T̃n+1 = T̃n ∪ {(v1, blue), (v0, red)}, if

the coin is heads and T̃n+1 = T̃n ∪ {(v0, blue), (v1, red)} if it is tails.

3.2 Tilted probability

We use the change of measure defined in (26) that we now recall:

dIP
(2z)
| bF(n)

=
(2z)sn

Cn(z)
dIP| bF(n)

(54)
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so that, in particular dIP(1) = dIP. We often omit the superscript d for simplicity when no confusion
is possible. Proposition 3.1 below gives an intuitive interpretation of the change of probability done
in (26).

Proposition 3.1 The law of (T̃n)n under Q(2z) is dIP(2z). It is called a biased BST and for sim-
plicity we denote by P̃ := dIP(2z) the biased probability.

Proof: The dynamics we described above yields the following conditional probabilities.
For any blue leaf v, (v, blue) ∈ ∂T̃n and

Q(2z)(Spinen+1 = Spinen, T̃n+1 = T̃n ∪ (v0, blue)(v1, blue)|T̃n) =
1

n + 2z

For the red leaf, Spinen = v and

Q(2z)(Spinen+1 = v0, T̃n+1 = T̃n ∪ (v0, red)(v1, blue)|T̃n) =
1

2

2z

n + 2z

similarly,

Q(2z)(Spinen+1 = v1, T̃n+1 = T̃n ∪ (v0, blue)(v1, red)|T̃n) =
1

2

2z

n + 2z
.

Summing up, we have for any colored tree t̃n+1 with n + 1 nodes that can be obtained from T̃n by
one insertion

Q(2z)(T̃n+1 = t̃n+1|T̃n) =
zsn+1−sn

n + 2z
(55)

and

Q(1)(T̃n+1 = t̃n+1|T̃n) =
(1/2)sn+1−sn

n + 1
.

It is clear that Q(2z)/Q(1) =
∏n−1

j=0
(2z)sj+1−sj (j+1)

j+2z = (2z)sn Cn(z)−1 = En(z). Hence, dQ(2z) is

absolutely continuous with respect to Q(1), with the Radon-Nikodym derivative announced in (54)
(see Lemma 1 and 2 in Biggins [12] for a detailed proof in another context).

3.3 Spine evolution

Thanks to the previous subsections, it appears that

sn = 1 +

n−1∑

1

εk (56)

where (εk)k≥1 are independent and for every k ≥ 1, εk ∼ Be( 2z
k+2z ). In particular,

E(2z)(sn) = 1 +
n−1∑

1

2z

k + 2z

Var(2z) (sn) =
n−1∑

1

2z

k + 2z
−

n−1∑

1

(
2z

k + 2z

)2

. (57)

As n → ∞

E(2z)(sn) = 2z log n − 2zΨ(2z) + o(1)

16



Var(2z) (sn) = 2z log n − 2zΨ(2z) − 4z2Ψ′(2z) + o(1) . (58)

We can now apply known results on sums of independent r.v. or notice that sn − E(2z)(sn) is a
martingale, to get the following asymptotic behavior (see [30]).

Proposition 3.2 For any parameter z > 0,

1) (strong law)

lim
sn

log n
= 2z , P(2z) − a.s.. (59)

2) (law of the iterated logarithm) P(2z)-a.s.

lim inf
sn − 2z log n

2
√

2z log n log log log n
= −1 , lim sup

sn − 2z log n

2
√

2z log n log log log n
= +1. (60)

3) (central limit theorem) The distribution of
sn − 2z log n√

2z log n
under P(2z) converges to a standard

normal distribution N (0, 1).

4) (local limit theorem)

lim
n

sup
k

∣∣∣
√

2πVn P(2z)(sn = k) − exp
(
− (k − µn)2

2Vn

)∣∣∣ = 0 (61)

where µn = E(2z)(sn) and Vn = Var(2z) (sn).

5) (large deviations) The family of distributions of (sn, n > 0) under IP(2z) satisfies the large
deviation principle on [0,∞) with speed log n and rate function η2z where the function ηλ is
defined in (4).

We give more details in Section 4.2.

To study the growing of the biased BST away from the spine, we need to recall the Chinese
restaurant model.

3.4 Chinese restaurant model (CRM)

Let θ > 0 be a parameter. We recall here the Pitman (0, θ) Chinese restaurant model (see
Pitman [31] p.58). An initially empty restaurant has an unlimited number of tables numbered
1,2,..., each capable of seating an unlimited number of customers. Customers 1,2,... arrive one by
one and are seated according to the following:

Person 1 sits at table 1. For n ≥ 1 assume that n customers have already entered the restaurant,
and are seated in some arrangement, with at least one customer at each of the table j, for j from
1 to k, where k is the number of tables occupied by the n first customers to arrive. Let Aj(n) the
number of customers on table j at time n. The n + 1-st customer sits at table j with probability
Aj(n)/(n + θ) for any j ≤ k. With probability θ/(θ + n) , the n + 1-st customer sits on the new
table k + 1.

The sequence
A(n) = (A1(n), A2(n), . . . )

is a Markov chain which describes the evolution of the occupation of the Chinese restaurant, we
denote by CR(θ) its distribution.

Further we will take θ = 2z. So, for z > 1/2 the creation of new tables is encouraged. This has
to be compared with the speed-tuner of the spine.
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3.5 Decomposition of the biased BST along the Spine

For every n, on T̃n there is a red branch. Each blue node and each blue leaf has some red
ancestors. We class the blue leaves of T̃n according to their highest red ancestors; in other words,
let u0, u1, . . . , usn be the set of red nodes (with u0 = z and for i ≥ 1, ui is the red child of ui−1).
We denote by

Si(n) = {u|u blue leaf of T̃n, ui highest red ancestor of u}.
See Figure 4.

blue leave

red leave

red internal node

blue internal node

PSfrag replacements

red
blue internal node

blue leave

u0

u1

u2

u3

S0

S1

S2

Figure 4: A marked tree and the different classes.

We denote by |Si(n)| = cardSi(n) and

S(n) = (|S0(n)|, |S1(n)|, . . . )

the sequence of classes sizes at time n. It satisfies

S(0) = (0, 0, . . . ), S(1) = (1, 0, 0, . . . ),

and for any n,
+∞∑

i=0

|Si(n)| = n.

Recall that sn is the height of the red leaf. At time n, the class Ssn is the “first empty class”.
(S(k))k≥0 is a Markov chain whose transition at time n can be described as follows:
a) choose class j with probability |Sj(n)|/(n + 2z) and set

|Si(n + 1)| = |Si(n)| + δij

for i = 0, 1, ... where δ is the Kronecker symbol.
b) choose the red leaf with probability 2z/(n + 2z) and set

|Si(n + 1)| = |Si(n)| for i < sn ,
|Ssn(n + 1)| = 1 ,

sn+1 = sn + 1 . (62)

Thus

Ai(n)
(d)
= |Si−1(n)| for any i ≥ 1.

and we may assert

Proposition 3.3 Under P(2z), the Markov chain S(n), n ≥ 0 is CR(2z) distributed.
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In [2] p.52, a Chinese restaurant is also considered for the BST, but associated with the insertion
node, which does not allow to keep track of the dynamics of the spine.

We now study some conditional evolutions. Let us denote by βi = inf{j |ui ∈ T̃j} the birth
date of node ui; we have β0 = 0, and, for any l ≥ 1

βl = inf
{

k
∣∣∣ sk = l

}
.

It is clear that
|Si(n)| > 0 ⇐⇒ n ≥ βi+1.

Since at time βi+1 there are one red leaf, a unique blue leaf on Si, and βi+1 − 1 blue leaves on
others sub-trees, the evolution conditionally on βi+1 is given by the following relations:





|Si(βi+1)| = 1,

|Si(βi+1 + 1)| = 1 + b1 where b1 ∼ Be
( 1

βi+1 + 2z

)

...
...

|Si(βi+1 + k)| = ck−1 + bk where bk ∼ Be
( ck−1

βi+1 + k − 1 + 2z

)
;

(63)

(conditionally on |Si(βi+1 + j)| = cj , j = 1, . . . , k − 1 ).

In other words, we have the following proposition.

Proposition 3.4 Conditionally on βi+1, the distribution of (|Si(βi+1 + k)|, k ≥ 0) under P(2z) is
the same as (A1(k), k ≥ 0) under CR(2z+βi+1−1).

Another decomposition will be useful in the rest of the paper. We use the notation P̃ for dP(2z),
Ẽ for the corresponding expectation, with a superscript if we take a conditional one. We denote by
Ξ = {βi, i ∈ N}.

Proposition 3.5 Under ĨP
Ξ
, for i fixed, the process (Si(n), n ≥ βi+1) has the same distribution

as TWi(n), that is a (non-biased) BST with Wi(n) leaves where (Wi(βi+1 + k), k ≥ 0) is an inho-
mogeneous Markov chain on {1, 2, . . .} with initial state Wi(βi+1) = 1 and the following transition
rule:

• If βi+1 + k ∈ Ξ, then Wi(βi+1 + k + 1) = Wi(βi+1 + k)

• If βi+1 + k /∈ Ξ, then Wi(βi+1 + k + 1) − Wi(βi+1 + k) ∼ Be(Wi(βi+1+k)
βi+1+k ) .

Notice that this evolution of Wi does not give a contradiction with (63) since we are conditioning
with respect to Ξ which is richer than σ(βi+1).

Proof: The fact that Wi(n) is the distribution size of Si(n) is a consequence that at times (βk)k>i

a new class is created and so no new node arrives on Si. It remains to show that knowing Wi(n),
Si(n) is distributed as BST with size Wi(n). This comes from the growing rule of the subtree
under Si. Indeed, knowing that “a node arrives” in Si, this node is inserted uniformly among the
leaves already present on Si, independently from the past. This growing rule is the same as in the
classical BST.
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4 Benefits of tilting

We use the method of the tilted probability to revisit the problem of convergence of the family
Mn(z) (subsection 4.1) and the convergence of profile (subsection 4.2).

The method was initiated by R. Lyons ([26, 27] and developed in several papers involving
branching processes or their generalizations ([24, 3, 12, 8]. The main idea consists in changing
probability and studying under P̃ the spine evolution and the subtrees issued from nodes of the
spine. It is a use to call this method “conceptual”.

4.1 Conceptual proof of convergence of (Mn(z), n ≥ 1)

For every z > 0, Mn(z) is a positive (F(n), P) martingale and then converges P-a.s. to M∞(z).
The L1 convergence is equivalent to

∫
M∞(z)dP = 1.

The main argument to decide on this convergence lies on the following lemma. It comes from
a classical result of measure theory (the most frequently cited reference is [16] Th. 4.3.3, see also
[3, 12]).

Lemma 4.1 Fix z > 0 and let M̄(z) = lim supn Mn(z) (notice that M̄(z) = M∞(z) P-a.s.)

i) Mn(z)−1 is a (F(n), P̃) martingale

ii)
∫
M∞(z)dP = 1 if and only if P̃(M̄(z) < ∞) = 1. In that case the two measures P̃ and P

are absolutely continuous on F(∞) = ∨nF(n) with density M∞(z).

iii) M∞(z) = 0 P-a.s. if and only if P̃(M̄(z) = ∞) = 1. In that case the two measures P̃ and P

are are mutually singular on F(∞).

Thanks to this dichotomy, we are now able to give alternative proofs of Theorem 2.1 and
Theorem 2.4 2). For an easier reading we summarize these results in the following theorem.

Theorem 4.2 a) If z /∈ [z−c , z+
c ] (subcritical case), then P-a.s. limn Mn(z) = 0.

b) If z = z±c (critical case), then P-a.s. limn Mn(z) = 0.

c) If z ∈ (z−c , z+
c ) (supercritical), then P-a.s. limn Mn(z) > 0 .

4.1.1 Subcritical and critical cases (proof of Theorem 4.2 a)b))

For any z ≥ 0, we start from

Mn(z) ≥ zsn

Cn(z)
(64)

and we consider the right hand side under P̃. From (59) and (44) we get

lim
n

sn log z − log Cn(z)

log n
= η2(2z) − 1 , P̃ − a.s.

In the “subcritical case”, i.e. z /∈ [z−c , z+
c ], we have η2(2z) > 1 (see (4)) and

lim
n

zsn

Cn(z)
= ∞ P̃ − a.s.. (65)
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In the critical case, η2(2z) = 1, we use directly in (64) the law of iterated logarithm (60) instead
of the strong law (59). This yields in both cases M̄(z) = lim supn Mn(z) = +∞, P̃- a.s. and by
Lemma (4.1) iii), M∞(z) = 0, P- a.s.

4.1.2 Supercritical case (proof of Theorem 4.2 c) for z ∈ (1/2, z+
c ))

We will show that for z ∈ (1/2, z+
c )

lim inf
n

Mn(z) < ∞ , P̃- a.s. . (66)

This is sufficient since by Lemma 4.1 i) Mn(z)−1 is P̃-a.s. convergent. Its limit is nonzero according
to (66). It will imply that Mn(z) converges P̃- a.s. and allows to conclude with Lemma (4.1)ii).
We stress that for technical reasons, we were able to reach this aim only for z ∈ (1/2, z+

c ).
Consider σn = σ(βi1Iβi≤n, i ≥ 1) the σ-algebra containing the birth date of the red nodes (before

time n). By Fatou’s lemma, (66) is a consequence of the following result.

Proposition 4.3 For z ∈ (1/2, z+
c ),

lim sup
n

Ẽσn(Mn(z)) < +∞ P̃- a.s..

Proof: With the previous decomposition along the spine and by definition of Si(n), we may write

∑

u∈∂Tn

z|u| = zsn +

sn−1∑

i=0

∑

u∈Si(n)

z|u|

hence

Ẽσn

∑

u∈∂Tn

z|u| = zsn +

sn−1∑

i=0

Ẽσn

∑

u∈Si(n)

z|u| .

For every i ≤ sn − 1, we have

Ẽσn

∑

u∈Si(n)

z|u| = ẼσnẼΞ,|Si(n)| ∑

u∈Si(n)

z|u| .

From Proposition 3.5

ẼΞ,|Si(n)| ∑

u∈Si(n)

z|u| = ziC|Si(n)|(z) ,

hence

Ẽσn

∑

u∈∂Tn

z|u| = zsn +

sn−1∑

i=0

zi ẼσnC|Si(n)|(z) . (67)

The main problem is that, knowing σn, |Si(n)| is difficult to handle. Since

k 7→ Ck(z) is decreasing for z < 1/2 and k 7→ Ck(z) is non decreasing for z ≥ 1/2, (68)

we introduce a new sequence of random variables that will bound |Si(n)| for the stochastic order.
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Recall that if X and Y are two random variables, we say X dominates Y for the stochastic
order if for any x ∈ R, P(X ≥ x) ≥ P(Y ≥ x). It implies that for any increasing function g we have
Eg(X) ≥ Eg(Y ).

From Proposition 3.5, the law of |Si(n)| conditionally on P̃Ξ is stochastically dominated by the
law of A1(n − βi+1) under CR(βi+1), and a fortiori by the law of A1(n).

Since z ≥ 1/2, thanks to (68),

Ẽσn
(
C|Si(n)|(z)

)
≤ CRβi+1(CA1(n)(z)) . (69)

Following Barbour & al. [2] page 93 (equations (4.73), (4.74)),

CR(λ)(A1(k) = a) =
λλ(k−a)

λ(k)

(k − 1)!

(k − a)!

where x(n) = x(x+1) . . . (x+n− 1) (this is sometimes called the Polya distribution). In the sequel
of this proof 2z = θ so that θ(n) = Cn(z)n!. Finally, one obtains (denoting β = βi+1)

CR(β)(CA1(n)(z)) =
β(n − 1)!

β(n)

n∑

a=1

θ(a)

a!

β(n−a)

(n − a)!

=
β

n

(
(θ + β)(n)

β(n)
− 1

)
, (70)

where for the last display we applied Chu-Vandermonde’s formula :

n∑

j=0

(
n

j

)
x(j)y(n−j) = (x + y)(n) . (71)

From (67), (69) and (70) we get

Ẽσn

∑

u∈∂Tn

z|u| ≤ zsn +

sn−1∑

i=1

zi βi+1

n

(θ + βi+1)
(n)

β
(n)
i+1

. (72)

Dividing by Cn(z) and setting

an(β, θ) := β
(θ + β)(n)

β(n)

(n − 1)!

θ(n)
=

Γ(θ)Γ(θ + β + n)Γ(β + 1)Γ(n)

Γ(θ + β)Γ(β + n)Γ(θ + n)
,

equation (72) can be rewritten

ẼσnMn(z) ≤ zsn

Cn(z)
+

sn−1∑

i=1

an(βi+1, θ)zi . (73)

Since lim
x→∞

xθΓ(x)

Γ(x + θ)
= 1, one can find C(θ) > 0 such that for every x ≥ 1

1

C(θ)xθ
≤ Γ(x)

Γ(x + θ)
≤ C(θ)

xθ
,
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which yields

an(β, θ) ≤ C(θ)2Γ(θ)
(θ + β + n)θ

βθnθ
.

For β ≤ n and n > θ, this gives an(β, θ) ≤ C ′β−θ , where C ′ is a constant depending only on θ.
Since βi+1 ≤ n for i ≤ sn − 1, this yields, coming back to the notation θ = 2z

ẼσnMn(z) ≤ zsn

Cn(z)
+ C ′

+∞∑

i=1

(βi+1)
1−2zzi. (74)

Since sβl−1
≤ l ≤ sβl+1

the strong law (59) gives

lim
l

log βl

l
=

1

2z
P̃- a.s.

(recall that P̃ = P(2z)), hence

lim
n

(
(βi+1)

1−2zzi
)1/i

= e(η2(2z)−1)/2z < 1 P̃- a.s.

(see (4)) and the series in the right hand side of (74) converges P̃-a.s..
For the same reasons, limn zsnCn(z)−1 = 0, P̃-a.s. This ends the proof of Proposition 4.3 and

then the proof of Theorem 4.2.

4.2 Convergence of profiles

4.2.1 Random measures and profiles

The profile of the tree Tn is the sequence

(
Uk(n), k ≥ 1

)
.

Jabbour in [21] introduced the random measure counting the heights of leaves in Tn

rn :=
∑

k

Uk(n)δk =
∑

u∈∂Tn

δ|u| .

Extreme points of the support of rn are hn and Hn. We are interested in the asymptotic behavior
of rn and of its “local” contributions Uk(n), k ≥ 1. It is related to the behavior of its intensity Ern

(which is a non-random measure). We may also look at the random measure counting the heights
of leaves in the Yule tree:

ρt =
∑

u∈∂TTt

δ|u| .

As it is clear from (3) and as it appears below, the convenient scalings are (log n)−1 for the BST
and t−1 for the Yule tree process.

Our purpose is, from the one hand to explore some direct links between ρt as t → ∞ and rn as
n → ∞, and from the other hand, to give a conceptual proof of the convergence of profiles. A first
result concerns the intensity of these measures.
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Proposition 4.4 a) For x > 2

lim
t→∞

1

t
log E

(
ρt(]xt,∞[)

)
= 1 − η2(x) (75)

lim
n→∞

1

log n
log E

(
rn(]x log n,∞[)

)
= 1 − η2(x) . (76)

b) For x < 2, replacing ]xt,∞[ (resp. ]x log n,∞[) by ]0, xt[ (resp. ]0, x log n[) the same results
hold.

Remark 4.5
– for x ∈]c′, c[ , η2(x) < 1, so there are (in mean) about n1−η2(x) leaves of height ' x log n. We call
this interval ]c′, c[ “supercritical area”.
– for x ∈ [0, c′[∪]c,∞[, η2(x) > 1, so there are (in mean) a very small number of leaves of height
' x log n. We call this set “subcritical area”.

We call the set {c′, c} “critical area” .

Proof: Relation (75) is easy to obtain, noticing first that by size biasing, for any nonnegative
bounded function f , ∫

f(x)ρt(dx) = E
[
2|S(t)|f(|S(t)|) | Ft

]

so that

E

∫
f(x)ρt(dx) = E

[
2|S(t)|f(|S(t)|)

]

and then using large deviations for the Poisson process (|S(t)|, t ≥ 0).
For the BST, we have similarly

∫
f(x)rn(dx) = E

[
2snf(sn) | F(n)

]

so that

E

∫
f(x)rn(dx) = E

[
2snf(sn)

]
,

and then (76) follows using large deviations for (sn) of Proposition 3.2.
Notice that the limit in (76) is related to (3) of [13].

In the supercritical area we have a.s. convergences:

Theorem 4.6 a) For x ∈ (2, c) a.s.

lim
t→∞

1

t
log ρt(]xt,∞[) = 1 − η2(x) (77)

lim
n→∞

1

log n
log rn(]x log n,∞[) = 1 − η2(x) (78)

b) For x ∈ (c′, 2) replacing ]xt,∞[ (resp. ]x log n,∞[) by ]0, xt[ (resp. ]0, x log n[) the same results
hold.
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A sharp (non logarithmic) version of relation (77) is proved in section 5 of [9] (see also Theorem
5 in [8]). Relation (78) is proved by Jabbour [21] in his Theorem 1 (in an equivalent variant for
νn = (n + 1)−1rn ), using Gartner-Ellis theorem. Let us explain shortly how (78) can be deduced
from (77) by embedding.

Taking t = τn in (77) we have

a.s. lim
n→∞

1

τn
log ρτn(]xτn,∞[) = 1 − η2(x) (79)

Now since limne−τn = ξ (cf. (16)) we get

a.s. lim
n→∞

1

log n
log rn(]xτn,∞[) = 1 − η2(x) . (80)

Taking into account that for every γ ′ > 1 > γ a.s. there exists n0 such that for n > n0, γ′x log n <
xτn < γx log n, and using the monotonicity of a 7→ rn(]a,∞[) we get the result.

Let us now consider sharp results for the profile. It is well known that

E
(
Uk(n)

)
=

2k

n!
S(k)

n

where S
(k)
n is the Stirling number of the first kind, so from Hwang ([20]), we get, for any ` > 0 as

n → ∞ and k → ∞ such that r = k/ log n ≤ `

E Uk(n) =
(2 log n)k

k!nΓ(r)
(1 + o(1)), (81)

which yields easily

E Uk(n) ∼ n
1−η2( k

log n
)

Γ( k
log n)

√
2πk

(82)

(see also [13]).
At the level of random variables Jabbour et al. proved in [13] that P − a.s.

lim
n

Uk(n)

EUk(n)
= M∞(z) , (83)

for k = 2z log n + o(log n) and z ∈ [0.6, 1.4]. Since their approach laid on L2 estimations, they
guessed that the range [0.6, 1.4] may be extended to I := (1−2−1/2, 1+2−1/2) = (0.293..., 1.707...)
which is the maximal interval corresponding to a L2 convergence of Mn(z). In the following
subsection we extend the validity of the above result to the entire supercritical interval (z−

c , z+
c ).

Our method consists in adapting the proof of the analogous result in the fragmentation model ([8]).
Its main interest is that the random limit M∞(z) appears naturally as the usual Radon-Nikodym
derivative dĨP/dIP, so it is a “conceptual” proof in the Lyons sense ([26]). Although one can obtain
a sharper result adapting for instance the Biggins’ method ([9]), we prefere to use the conceptual
method to illustrate once more its strength.
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4.2.2 Main result

Theorem 4.7 For k = 2z log n + o(
√

log n) and z ∈ (z−c , z+
c ) then

lim
n

Uk(n)

EUk(n)
= M∞(z) ,

holds in P-probability.

Proof: Let P̃ := P(2z) as defined in Section 3 especially by formulas (26).
We actually will prove that

lim
n

Uk(n)

Mn(z)E
(
Uk(n)

) = 1 (84)

in L2(P̃), which will entail (83). Indeed, the variables Uk(n) and Mn(z) are F(∞)-measurable and

Mn(z) converges P-a.s. to M∞(z). Since z is supercritical, the probabilities P and P̃ are equivalent

on F(∞) , and then
Uk(n)

EUk(n)
will converge in P-probability to M∞(z).

To prove (84) we first remark that

Ẽ

(
Uk(n)

Mn(z)E(Uk(n))

)
= E

(
Uk(n)

E(Uk(n))

)
= 1 (85)

so that it is enough to prove that

lim sup
n

Ẽ

(
Uk(n)2

Mn(z)2(E(Uk(n)))2

)
≤ 1 . (86)

Using again the change of probability and the size-biasing, especially formula (21), we get

Ẽ

(
Uk(n)2

Mn(z)2(E(Uk(n)))2

)
= E

( Uk(n)2

Mn(z)(E(Uk(n)))2

)

= E

[ Uk(n)

Mn(z)(E(Uk(n)))2
E

(
1I|sn|=k2

|sn||F(n)

) ]

= E

[ Uk(n)

Mn(z)(E(Uk(n)))2
1I|sn|=k2

|sn|
]

= Ẽ

[ Uk(n)

Mn(z)(E(Uk(n)))2
1I|sn|=kCn(z)z−|sn|

]
. (87)

Setting

B(k, n) =
Cn(z)z−k

E(Uk(n))
, A(k, n) =

Uk(n)

E(Uk(n))
B(k, n) , (88)

the last display of (87) becomes

Ẽ

(
Uk(n)2

Mn(z)2(E(Uk(n)))2

)
= Ẽ

(
A(k, n)

Mn(z)
1I|sn|=k

)
. (89)

The idea is now to replace A(k, n) (resp. Mn(z)) by a similar quantity Â(k, n) (resp. M̂n(z)),

computed with elements above some “dotted line”, then apply the Markov property to
Â(k, n)

M̂n(z)
1I|sn|=k
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Figure 5: A marked tree and the different classes. On the right, what is known in An (and the
apparition date of the red points).

and the local central limit theorem to the remaining part of the trajectory of the spine. Consider
again a marked BST . Let (αn)n∈N any increasing sequence of integers and let An be the σ-field

An := σ{β0, β1, . . . , βαn , |S0(n)|, . . . , |Sαn(n)|};

An contains the birth date of the αn first classes and the number of nodes of each of these classes.
Consider R(n), the subtree rooted at uαn (the red node at level αn); see Figure 5. It contains a
red branch and its number of blue leaves is

Jn = n −
αn∑

i=1

|Si(n)|.

Lemma 4.8 a) Let θ ∈ (0,∞). Under P(θ) and conditionally on An, R(n) is distributed as T̃Jn

(under P(θ)).

b) Under P and conditionally on {βαn = β}, the distribution of Jn is that of A1(n − β) under
CR(β) for any β ≤ n − 1.

Proof: a) It is clear that R(n) has Jn nodes. The problem is to show that R(n) has the good
“tree structure” distribution. Insertions in the subtree rooted in uαn occur at times which are not
An measurable. But, as a matter of fact, these insertion times are not important. Suppose that
at time j an insertion occurs in the subtree rooted in uαn . At time j − 1, there were (say) k blue
leaves and one red one in this subtree and (say) m blue leaves in the whole tree (m = j − 2). A
simple computation shows that knowing that the insertion occurs in the subtree rooted in uαn , the
insertion occurs on the red node with probability θ/(θ + k) and on each blue leave of the subtree
with probability 1/(k + θ). These probabilities do not depend on j. The evolution of the tree
structure of the subtree is the same as the one of the usual marked tree.

b) It is the result of Proposition 3.4 with z = 1/2.

Let us choose αn = b√log nc and denote by ζ̂n = {v ∈ ∂Tn : v ∈ Si(n) for some i ≤ αn} the set
of leaves below the “dotted line”. Let

M̂n(z) :=
∑

u∈bζn

z|u|

Cn(z)
, Â(k, n) :=

∑

u∈bζn

1I|u|=k
Cn(z)z−k

(EUk(n))2
.

The cost of taking Â and M̂ instead of A and M is given by the following lemma.

27



Lemma 4.9 For every q > 0,

E

(
|Â(k, n) − A(k, n)|

)
= o((log n)−q) , E

(
|M̂n(z) −Mn(z)|

)
= o((log n)−q) , (90)

which implies

Ẽ

(∣∣∣A(k, n)

Mn(z)
− Â(k, n)

M̂n(z)

∣∣∣
)

= o((log n)−q) . (91)

Proof of Lemma 4.9 We have

Mn(z) − M̂n(z) =
∑

u∈ζn−bζn

z|u|

Cn(z)

Using Lemma 4.8 a) with θ = 1 we get

EAn

( ∑

u∈ζn−bζn

z|u|
)

= zαnCJn(z) .

From Lemma 4.8 b) and formula (70) we have for β ≤ n − 1

E(CJn(z)|βαn = β) = CR(β)(CA1(n−β)) =
β(2z + β)(n−β)

(n − β)β(n−β)
− β

(n − β)
(92)

which from (70) gives

E

(
Mn(z) − M̂n(z)

)
=

zαn

Cn(z)
E

(
β

(n − β)

(2z + β)(n−β)

β(n−β)
− β

(n − β)

)
, (93)

and since
β(2z + β)(n−β)

(n − β)β(n−β)
=

n

n − β

Cn(z)

Cβ(z)

we get

E

(
Mn(z) − M̂n(z)

)
= zαnE

(
1

(n − β)

(
n

Cβ(z)
− β

Cn(z)

))

We use here the exponential martingale (introduced in (22)) (Ek(z), k ≥ 1) and its stopping time
βαn , so that the above formula becomes

E

(
Mn(z) − M̂n(z)

)
= 2−αnE

(
Eβαn

(z)Πn(z)
)

(94)

where (writing β for βn)

Πn(z) :=
1

n − β

(
n − β

Cβ(z)

Cn(z)

)
.

We write Πn for Πn(z) and we will prove that Πn is bounded by a (deterministic) constant which
will give

E

(
Mn(z) − M̂n(z)

)
= O(2−αn) . (95)
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For 2z < 1 and β < n we have Cβ(z) > Cn(z) (see (68) so that Πn ≤ 1 .
When 2z > 1, we have

(n − β)Πn = n
(
1 −

n−1∏

k=β

(
1 +

2z

k

)−1)

and using the inequality 1 + 2z
k ≤

(
1 − 1

k

)−2z
we get

Πn ≤ n

(n − β)(n − 1)2z

(
(n − 1)2z − (β − 1)2z

)
≤ 2zn

n − 1
,

where the last inequality comes from Taylor formula. So, estimation (95) holds in any case.
For A we may use the same method. We have, for ever u ∈ U


,

1I|u|=k ≤ zαn−kz|u|−αn . (96)

Adding and taking conditional expectations, we get

EAn


 ∑

u∈ζn−bζn

1I|u|=k


 ≤ zαn−kCJn(z) (97)

so that

E

(
|Ân(z) − An(z)|

)
= O(2−αn)B(k, n)2 (98)

where B(k, n) was defined in (88). From (81)

B(k, n) ∼
√

2πk e(2z log n−k)

(
2z log n

k

)−k

. (99)

In particular if k = 2z log n + o(
√

log n) then

B(k, n) ∼
√

2πk (100)

so that

E

(
|Ân(z) − An(z)|

)
= O(2−αn)k (101)

which, joined with (95) proves the first part of the lemma.
To get (91), it is enough to tilt again and use the triangular inequality.

Proof of Theorem 4.7 (end):
From (89) and (91) we have

Ẽ

(
Uk(n)2

Mn(z)2(EUk(n))2

)
= Ẽ

(
Â(k, n)

M̂n(z)
1Isn=k

)
+ o((log n)−q) . (102)
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By conditioning on the dotted line and applying Lemma 4.8 a), we may replace the above indicator
function by P̃(sn′ = k′) where n′ = n − βαn and k′ = k − αn. However, to control n′ which is
random, we first split the main term of (102) into

Ẽ

(
Â(k, n)

M̂n(z)
1Isn=k

)
≤ Ẽ

(
Â(k, n)

M̂n(z)
1Iβαn≥γn

)
+ Ẽ

(
Â(k, n)

M̂n(z)
1Isn=k, βαn<γn

)
. (103)

On the one hand, we will prove further that, for γn = exp(z−1αn),

Ẽ

(
Â(k, n)

M̂n(z)
1Iβαn≥γn

)
= o(1) . (104)

On the other hand, the second term of (103) becomes

Ẽ

(
Â(k, n)

M̂n(z)
1Isn=k, βαn<γn

)
= Ẽ

(
Â(k, n)

M̂n(z)
1Iβαn<γn

P̃(sn′ = k′)

)
. (105)

Taking into account the local central limit theorem (61), we may, for any ε > 0, find r0 > 0 such
that for r ≥ r0

P̃(sr = k′) ≤ 1 + ε√
2πVr

(106)

and since Vr = 2z log r + o(log r) we may assume r0 large enough to ensure Vr > 2z(1 − ε) log r.
Choose n0 such that n − γn ≥ r0 for n ≥ n0. It entails

Ẽ

(
Â(k, n)

M̂n(z)
1Iβαn<γn

P̃(sn′ = k′)

)
≤ 1 + η√

4πz(1 − η)(log(n − γn))
Ẽ

(
Â(k, n)

M̂n(z)

)
. (107)

Now, again by (90) and (88)

Ẽ

(
Â(k, n)

M̂n(z)

)
≤ Ẽ

(
A(k, n)

Mn(z)

)
+ o((log n)−q = B(k, n) + o((log n)−q .

From (100) this gives

lim sup
n

Ẽ

(
Â(k, n)

M̂n(z)
1Isn=k, βαn<γn

)
≤ 1 + ε√

1 − ε
,

for any ε. If we admit (104) for a while, equations (103) and (102) lead to (86) which ends the
proof of the theorem.

It remains to prove (104). By (91)

Ẽ

(
Â(k, n)

M̂n(z)
1Iβαn≥γn

)
= Ẽ

(
A(k, n)

Mn(z)
1Iβαn≥γn

)
+ o((log n)−q) . (108)

Now, since U(k, n) ≤ z−kCn(z)Mn(z) we have A(k, n) ≤ B(k, n)2Mn(z) and then

Ẽ

(
A(k, n)

Mn(z)
1Iβαn≥γn

)
≤ B(k, n)2 P̃(βαn > γn) ≤ B(k, n)2 P̃(sγn < αn) (109)
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(for the last inequality see the definition of β).
As said in Proposition 3.2 5), the family (s`, ` > 0) satisfies under P̃ the large deviation principle

on [0,∞) with speed log ` and rate function η2z . Therefore, taking γn = exp αn

z we get

lim sup
1

αn
log P̃(sγn < αn) ≤ −η2z(z) = −z(1 − log 2) < 0

which, joined with (100) gives (104). This ends the proof of the theorem.
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[2] R. Arratia, A. Barbour, and S. Tavaré. Logarithmic combinatorial structures: a probabilistic
approach. Preprint (book) available at http://www-hto.usc.edu/books/tavare/index.html.

[3] K. Athreya. Change of measures for Markov chains and the L log L theorem for branching
processes. Bernoulli, 6:323–338, 1999.

[4] K. B. Athreya and S. Karlin. Embedding of urn schemes into continuous time Markov branch-
ing processes and related limit theorems. Ann. Math. Statist., 39:1801–1817, 1968.

[5] K. B. Athreya and P. E. Ney. Branching processes. Springer-Verlag, New York, 1972.

[6] M.T. Barlow, R. Pemantle, and E.A. Perkins. Diffusion-limited aggregation on a tree. Probab.
Theory Relat. Fields, 107:1–60, 1997.

[7] J. Bertoin. Homogeneous fragmentation processes. Probab. Theory Related Fields, 121(3):301–
318, 2001.

[8] J. Bertoin and A. Rouault. Additive martingales and probability tilt-
ing for homogeneous fragmentations. Preprint PMA-808 available at
http://www.proba.jussieu.fr/mathdoc/preprints/index.html#2003.

[9] J. D. Biggins. Uniform convergence of martingales in the branching random walk. Ann.
Probab., 20(1):137–151, 1992.

[10] J. D. Biggins. How fast does a general branching random walk spread? In Classical and
modern branching processes (Minneapolis, MN, 1994), volume 84 of IMA Vol. Math. Appl.,
pages 19–39. Springer, New York, 1997.

[11] J. D. Biggins and D. R. Grey. A note on the growth of random trees. Statist. Probab. Lett.,
32(4):339–342, 1997.

[12] J.D. Biggins and A.E. Kyprianou. Measure change in multitype branching. Preprint available
at http://www.shef.ac.uk/ st1jdb/mcimb.html, 2001.

[13] B. Chauvin, M. Drmota, and J. Jabbour-Hattab. The profile of binary search trees. Ann.
Appl. Prob., 11:1042–1062, 2001.

31



[14] L. Devroye. Branching processes and their applications in the analysis of tree structures and
tree algorithms. In M. Habib et al., editor, Probabilistic Methods for Algorithmic Discrete
Mathematics. Springer, 1998.

[15] L. Devroye, J.A. Fill, and R. Neininger. Perfect simulation from the quicksort limit distribu-
tion. Electronic Communications in Probability, 5:95–99, 2000.

[16] R Durrett. Probability: Theory and Exxamples. Duxbury, Belmont (CA), 1996.

[17] S. Feng and F.M. Hoppe. Large deviation principles for some random combinatorial structures
in population genetics and Brownian motion. The Annals of Prob., 8:975–994, 1998.

[18] J.A. Fill and S. Janson. Approximating the limiting quicksort distribution. In Special Issue
of Analysis on Algorithms, volume 19, pages 376–406, 2001.

[19] J.A. Fill and S. Janson. Quicksort asymptotics. In Special Issue of Analysis on Algorithms,
volume 44, pages 4–28, 2002.

[20] H.K. Hwang. Asymptotic expansions for the Stirling numbers of the first kind. J. Combin.
Theory Ser. A, 71(2):343–351, 1995.

[21] J. Jabbour-Hattab. Martingales and large deviations for binary search trees. Random Structure
and Algorithms, 19:112–127, 2001.

[22] S. Janson. Functional limit theorems for multitype branching processes and generalized Pólya
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