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Abstract

In this paper, we prove convex concentration inequalities for dis-

crete and continuous time counting processes. Then we apply these

inequalities to prove that the supremum of independent binomial ran-

dom variables and the supremun of independent Poisson random vari-

ables satisfy convex concentration inequalities.
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1 Introduction.

In this paper, we will introduce the concept of binomial (resp. Poissonian)

convex concentration inequality for discrete (resp. continuous) time process

see Definition 1 (resp. Definition 2). We will then give examples of processes

who satisfy these inequalities.

This concept was first introduced by Hoeffding in [6]. In this paper,

Hoeffding compares E (φ(Sn)) with E (φ(S?
n)), when Sn =

∑n

i=1 Xi is the

sum of independent Bernoulli distributed random variables with parameters

pi and S?
n is B(n, p̄)−distributed with p̄ the arithmetic mean of the pi’s.
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Proposition 1 (Hoeffding [6], Shorack-Wellner [12]). Let b1, . . . , bn be in-

dependent random variables Bernoulli distributed with parameters pi and

Sn = b1 + · · · + bn . Let p̄ =
p1 + . . . + pn

n
then for any convex function

φ we have

E

(

φ(Sn)
)

≤ E

(

φ
(

B(n, p̄)
)

)

. (1)

These inequalities are very useful to derive tail inequalities as pointed by

Hoeffding [6], Bretagnolle [3] who gave a functional version of this result,

Pinelis in [7] and [8] studies a more general case where the function φ is

in a general class of functions. Shao in [11] treats the case of Negatively

Associated (N.A) random variables and shows how convex concentrations

inequalities lead to classical inequalities like Rosenthal maximal inequality

or Kolmogorov inequality. In particular, he is able to extend Hoeffding’s in-

equality on the probability bounds for the sum of a random sample without

replacement from a finite population. Bentkus in [1] uses convex concentra-

tion inequalities to give bounds for probabilities tails of discrete martingales

with bounded jumps.

In this paper, we introduce a class of discrete processes which satisfy con-

vex concentration inequalities. Our approach is similar to Shao’s approach

[11]. Indeed our first result (Theorem 1) states that under some appropriate

hypothesis on the discrete process (Zn)n∈N (Assumption 1), for any convex

function φ,

E (φ(Zn)) ≤ E (φ(Sn)) , (2)

where Sn is B(n, E(Zn)/n)−distributed1. The key argument in the proof of

this result is that (Zn+1 − Zn, Zn) is N.A. for any n ∈ N.

Next, we give an analogue of Theorem 1 for continuous time counting

processes (At)t≥0 (see Dellacherie-Meyer [5] or Brémaud for complete study

of these processes and in particular for properties of their compensator).

Our result for continuous time process states that under some appropriate

hypothesis (Assumption 2 and Assumption 3), for any convex function φ

E (φ(At)) ≤ E (φ(Yt)) , (3)

1B(n, p) is the binomial distribution with parameters n and p, E(λ) is the exponential

distribution of parameter λ, b(p) is the Bernoulli distribution of parameter p and P(µ) is

the Poisson distribution of parameter µ.
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where Yt is P(E(Zt))−distributed (Assumption 2, concerning the absolutely

continuity of the compensator of At is due to Reynaud-Bourret [10]). The

proof of the continuous time theorem (Theorem 2) relies on differential equa-

tions.

Section 4 is devoted to applications of Theorems 1 and 2. First, we

will prove that suprema of binomial (resp. Poissonian) independent ran-

dom variables are more concentrated in the sence of convex concentration

inequality than a single binomial (resp, Poissonian) variable. In other words,

let (Yi)1≤i≤p be independent random variables with distribution B(n, pi) and

Zn = sup(Y1, . . . , Yp). For any convex function φ

E (φ(Zn)) ≤ E (φ(Sn)) , (4)

where Sn is B(n, E(Zn)/n)−distributed. In the same way, if
(

N (i)
)

1≤i≤p
are

independent random variables with Poisson distribution with parameter µi

and At = sup(N (1), . . . , N (p)) for any convex function φ

E (φ(At)) ≤ E (φ(Pt)) , (5)

where Pt is P(E(At))−distributed. The key argument here, is that we are able

to compute the compensator of (At)t≥0. The result is, in fact, a concentration

inequality for the supremum of a set indexed Poisson process, when the class

of sets is a class of disjoint sets. So it is quite natural to formulate the

question below.

(Q) Does the process (sup(Πt(A), A ∈ A))t≥0 satisfies a convex

Poissonnian concentration inequality when (Πt)t≥0 is Poisson process .

Reynaud-Bourret (see [9]) proved that the answer is positive if we restrict

the functions φ to be of the form φλ(x) = exp(λx). We can then conjecture

that the question (Q) has a positive answer.

In the last application we study the example of 3−ary search trees, and

we show that they are an example for which theorem 1 is valid.

2 Definitions and statement of results

Let (Zn)n∈N? be a nondecreasing discrete time process, with Z0 = 0 and with

jumps equal to 1. In this paper we are interested in concentration inequalities
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for the process Z.

Definition 1 . A process (Xn)n is said to satisfy a binomial convex concen-

tration inequality if for any n ∈ N, any convex function φ we have

E (φ(Xn)) ≤ E (φ(Yn)) , (6)

where Yn is B(n, E(Xn)/n)−distributed.

We will also consider continuous time counting processes. We recall that

(At)t≥0 is a counting process if it is a random increasing piecewise constant

function with A0 = 0 and with jumps equal to 1 (for a complete description of

these processes see Brémaud [2]). Let (Ft)t≥0 be a filtration and assume that

(At)t≥0 is (Ft)−measurable. Let (Λt)t≥0 be the compensator of the counting

process A, i.e. the nondecreasing function such that (Mt = At − Λt)t≥0 is

a martingale (see Brémaud [2] or Dellacherie and Meyer [5] for a complete

description of compensators). In the sequel we are interested in concentration

inequalities for the process A.

Definition 2 . A process (Xt)t≥0 is said to satisfy a Poissonian convex

concentration inequality, if for any t ≥ 0 and any convex function φ we have

E (φ(Xt)) ≤ E (φ(Yt)) , (7)

where Yt is P(E(Xt))−distributed.

2.1 Theorem for discrete time processes

Let (Zn)n∈N? be a nondecreasing discrete time process, with Z0 = 0 and

jumps equal to 1 i.e. Zn+1 − Zn = 0 or Zn+1 − Zn = 1. We suppose that

(Zn)n∈N? satisfies the following assumption

Assumption 1 . For any fixed n, the sequence

(P(Zn+1 = k + 1 | Zn = k))k≥0

is nonincreasing.
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Theorem 1 (Discrete time). Under Assumption 1, the process (Zn)n∈N sat-

isfies a binomial convex concentration inequality. In other words, for any

convex function φ we have

E (φ(Zn)) ≤ E (φ(Yn)) , (8)

where Yn is B(n, E(Xn)/n)−distributed.

2.2 Theorem for continuous time processes

Let (At)t≥0 be a counting process, whose compensator (Λt)t≥0 satisfies the

following two assumptions.

Assumption 2 . The compensator (Λt)t≥0 is absolutely continuous and a.s.

finite on [0, T ].

Note that Assumption 2 implies that A has a.s. a finite number of jumps

(recall the jumps are equal to 1). In the sequel we will denote by λs the

derivative of dΛs with respect to ds (see Reynaud-Bourret [10] who introduces

this assumption and gives other applications for counting processes).

Assumption 3 . E(λt | At−) is a nonincreasing function of At−.

Theorem 2 (Continuous time). Under assumptions 2 and 3, the process

(At)t≥0 satisfies a Poissonian convex concentration inequality. In other words

, for any convex function φ we have

E (φ(At)) ≤ E (φ(Yt)) , (9)

where Yt is P(E(Xt))−distributed.

3 Proofs

3.1 Proof of theorem 1

Theorem 1 will be a consequence of Theorem 3, which is Theorem 1 in Shao

[11]. We briefly recall Shao’s setting. A finite family of random variables
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{Xi, 1 ≤ i ≤ n} is said to be negatively associated (N.A.) if for every pair

of disjoint subsets A1 and A2 of {1, 2, . . . , n},

Cov{f1(Xi, i ∈ A1), f2(Xj, j ∈ A2)} ≤ 0, (10)

whenever f1 and f2 are coordinatewise increasing and the covariance exists.

An infinite family is N.A. if every finite subfamily is N.A.

Theorem 3 (shao [11]). Let {Xi, 1 ≤ i ≤ n} be a N.A sequence and let

{X?
i , 1 ≤ i ≤ n} be a sequence of independent random variables such that Xi

and X?
i have the same distribution for each i = 1, 2, . . . , n. Then

E

(

(

f

n
∑

i=1

Xi

)

)

≤ E

(

f
(

n
∑

i=1

X?
i

)

)

(11)

for any convex function f on R, whenever the expectation on the right hand

side of (11) exists.

Remark 1 . The proof of Theorem 3 requires only that (Sn, Xn+1) is N.A.

for any n ∈ N.

Theorem 3 implies the following lemma.

Lemma 1 . Let φ be a convex function. Under the assumptions of

Theorem 1, we have

E(φ(Zn)) ≤ E(φ(Sn)), (12)

where Sn is the sum of independent Bernoulli variables, a1 + · · · + an, such

that E(ai) = E (Zi − Zi−1).

Proof: Let bn+1 = Zn+1 −Zn and let us prove that (Zn, bn+1) is N.A for any

n ∈ N. Let t ≥ 0, using Assumption 1 we have

P(bn+1 = 1 | Zn ≥ t) ≤ P(bn+1 = 1).

This equation can be written as

P(Zn ≥ t, bn+1 = 1) ≤ P(Zn ≥ t)P(bn+1 = 1).
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As bn+1 = 0 or bn+1 = 1 we get, for any (s, t) ∈ R
2,

P(Zn ≥ t, bn+1 ≥ s) ≤ P(Zn ≥ t)P(bn+1 ≥ s).

In other words

Cov{IZn≥t Ibn+1≥s} ≤ 0. (13)

From this inequality we get that, for any nondecreasing functions f and g,

Cov{f(Zn), g(bn+1)} ≤ 0. (14)

From (14) and Theorem 3 (cf. Remark 1), we then get Lemma 1. �

Theorem 1 is an easy consequence of both Lemma 1 and Proposition 1.

3.2 Proof of theorem 2

We will use differential equation technics to prove Theorem 2. The key point

is the lemma below which gives a concrete description of the compensator of
(

φ(At) − φ(A0)
)

t≥0
.

Lemma 2 . Let φ be a nondecreasing convex function. Then the predictable

compensator
(

Λt(At, φ)
)

t≥0
of
(

φ(At) − φ(A0)
)

t≥0
is defined by

Λt(At, φ) =

∫ t

0

(

φ(1 + As−) − φ(As−)
)

λsds. (15)

Proof : Using the fact that the process (At)t≥0 is piecewise constant with

jumps equal to 1 we have

φ(At) − φ(A0) =

∫ t

0

(

φ(1 + As−) − φ(As−)
)

dAs.

As the process (At)t≥0 is càdlàg, the process (At−)t≥0 is left continuous and

so is the process (φ(1 + As−) − φ(As−))s≥0. Using Theorem T8, p. 27 in

Brémaud [2] we get that

Yt =

∫ t

0

(

φ(1 + As−) − φ(As−)
)

(dAs − λsds)
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is a (Ft)−martingale. This ends the proof of Lemma 2. �

In order to prove Theorem 2, we will exhibit differential equations satisfied

by E (φ(At)) and E (φ(Nt)). Denote by C the set of all convex functions and

by C2 the set of all convex functions of the class C2. Let (Nt)t≥0 be a Poisson

point process on R
+, with E(Nt) = E(At). Let

h(φ, t) = E (φ(At)) , g(φ, t) = E (φ(Nt)) .

For a ∈ R, set Aa
t = At + a, Na

t = Nt + a. Let

ha(φ, t) = E (φ(Aa
t )) , ga(φ, t) = E (φ(Na

t )) .

Note that h0 = h and g0 = g. Then

g(φ, t) =
∞
∑

k=0

φ(k)eE(At)E(At)
k/k!.

Using the definition of λt and Fubini’s theorem, we get

d

dt
E(At) = E(λt).

Consequently

dg

dt
(φ, t) = E(λt)

(

−
∞
∑

k=0

φ(k)eE(At)E(At)
k/k! +

∞
∑

k=0

φ(k + 1)eE(At)E(At)
k/k!

)

.

This equation can be written in the following way

dg

dt
(φ, t) = E(λt)

(

E(φ(Nt + 1) − φ(Nt)
)

,

whence
dg0

dt
(φ, t) + E(λt)g0(φ, t) − E(λt)g1(φ, t) = 0. (16)

Let us now deal with h. From Lemma 2 we have

h(φ, t) = E(φ(At)) = E(φ(A0)) + E

(
∫ t

0

(

φ(1 + As−) − φ(As−)
)

λsds

)

.

(17)
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From Fubini’s theorem t 7→ h(φ, t) is absolutely continuous with respect to

Lebesgue’s measure and, denoting by
dh

dt
its derivative,

dh

dt
(φ, t) = E

(

φ(1 + At−) − φ(At−)
)

λt

)

. (18)

Let E
At− denote the expectation conditionally to At−. Then

dh

dt
(φ, t) = E

(

E
At−

(

(

φ(1 + At−) − φ(At−)
)

λt

))

= E

(

(

φ(1 + At−) − φ(At−)
)

E
At−(λt)

)

.

Now, using the convexity of φ, on one hand
(

φ(1+At−)−φ(At−)
)

is a nonde-

creasing function of At−, and on the other hand, from Assumption 3, E
At−(λt)

is a nonincreasing function of At−. Hence
(

φ(1 + At−) − φ(At−), EAt−(λt)
)

is

negatively associated, which ensures that

dh

dt
(φ, t) ≤ E

(

φ(1 + At−) − φ(At−)
)

E(λt).

From the convexity of φ

φ(1 + At−) − φ(At−) ≤ φ(1 + At) − φ(1 + At),

because At− ≤ At. Whence

dh

dt
(φ, t) ≤ E

(

φ(1 + At) − φ(At)
)

E(λt). (19)

In other words

dh0

dt
(φ, t) +

(

h0(φ, t) − h1(φ, t)
)

E(λt) ≤ 0. (20)

Replacing φ by φa : x 7→ φ(x + a) in (16) and (20). We get, for any a ∈ R,

dga

dt
(φ, t) +

(

ga(φ, t) − ga+1(φ, t)
)

E(λt) = 0, (21)

dha

dt
(φ, t) +

(

ha(φ, t) − ha+1(φ, t)
)

E(λt) ≤ 0. (22)
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Now, define, for u ∈ R and x ∈ R
+, the function φu by

φu(x) = (u − x)+ = sup(u − x, 0),

and consider E = {φu, u ∈ R}.

It is easy to see that φu(x + y) = 0 as soon as y ≥ u. Hence

hy(φu, t) = gy(φu, t) = 0 for any y ≥ u. (23)

Let y be the first integer greater than u. From equations (23),

hy(φu, t) ≤ gy(φu, t). (24)

Now, let us prove, by backward induction on k, that hk(φu, t) ≤ gk(φu, t) for

any k in [0, y]. If hk(φu, t) ≤ gk(φu, t) at rank k then

dgk−1

dt
(φu, t) + gk−1(φu, t)E(λt) = gk(φu, t)E(λt), (25)

dhk−1

dt
(φu, t) + hk−1(φu, t)E(λt) ≤ gk(φu, t)E(λt). (26)

Both the initial condition

hk−1(φu, 0) = gk−1(φu, 0) = (u − k + 1)+

and equations (25) and (26) imply that hk−1(φu, t) ≤ gk−1(φu, t). Hence by

induction we get that h0(φu, t) ≤ g0(φu, t). Whence Theorem 2 is proved for

any φ ∈ E .

Now, if φ ∈ C2, thanks to Taylor formula, we can write

φ(x) = φ(0) + xφ′(0) +

∫ +∞

0

(x − u)+φ′′(u)du. (27)

Now (x − u)+ = (x − u) + (u − x)+. Hence equation (27) becomes

φ(x) = φ(0) + xφ′(0) +

∫ ∞

0

((x − u) + (u − x)+)φ′′(u)du. (28)

Then

E (φ(At)) = φ(0) + E(At)φ
′(0) + E

(

∫ ∞

0

((At − u) + (u − At)+) φ′′(u)du
)

.
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As the functional inside the integral is nonnegative Fubini’s theorem ap-

plies and consequently

E (φ(At)) = φ(0) + E(At)φ
′(0) +

∫ ∞

0

E

(

((At − u) + (u − At)+)
)

φ′′(u)du.

Now, from the validity of Theorem 2 for the elements of E , we get

E (φ(At)) ≤ φ(0) + E(Nt)φ
′(0) +

∫ ∞

0

E

(

((Nt − u) + (u − Nt)+)
)

φ′′(u)du.

Using again Fubini’s theorem we have

E (φ(At)) ≤ E (φ(Nt)) . (29)

We complete the proof using a density argument since C2 is dense in C. �

4 Applications.

In this section, we will give applications of Theorems 1 and 2 of Section 2.

The two first applications show that suprema of independent binomial ran-

dom variables (resp. Poisson variables) satisfy a binomial (resp Poissonian)

convex concentration inequality. The third deals with 3−ary search trees.

We will show that the process of saturated nodes in an 3−ary search tree is

an easy example of discrete time models which satisfied Assumption 1.

4.1 Supremum of binomial random variables

Let p1 ≥ p2 ≥ . . . ≥ pl be a nonincreasing sequence of reals. The aim of this

section is to give a concentration inequality for Z = sup(B1, . . . , Bl) where

the Bi’s are independent B(n, pi)−distributed random variables.

Theorem 4 . If Z = sup(B1, . . . , Bl), then, for any convex function φ, we

have E(φ(Z)) ≤ E(φ(Y )), where the Bi’s are independent B(n, pi)−distributed

random variables and Y ∼ B(n, E(Z)/n).
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4.1.1 A discrete time representation

Here, we introduce a discrete time counting process (Zu)u∈N such that

Z = Znl. (30)

Next, we apply Theorem 1 to Zu with u = nl.

Let Xij, i = 1..n, j = 1..l be independent variables such that Xij is Bernoulli

distributed with parameter pj. Assume that the pj’s are nonincreasing. If

u = an + b with 0 ≤ b < n, we define Zu by

Zu = max
(

Sn(p1), Sn(p2), . . . , Sn(pa), Sb(pa+1)
)

, (31)

where Sm(pj) =
∑m

i=1 Xij is B(m, pj)−distributed.

Lemma 3 . (Zu)u∈N satisfies the hypothesis of Theorem 1.

The proof of Lemma 3 requires the two technical lemmas below whose proofs

are postponed to the end of the section.

Lemma 4 . Let Y be a B(n, p)−distributed random variable and let us

denote by G its distribution function. Then for any k ≥ 1 we have

G2(k) − G(k − 1)G(k + 1) ≥ 0. (32)

Lemma 5 . Assume that p1 ≥ p2 . Set

Ik(p1, p2) =
P

(

Sj(p2) < k
)

P

(

Sn(p1) = k
)

P

(

Sj(p2) = k
)

P

(

Sn(p1) ≤ k
) . (33)

Then the sequence (Ik(p1, p2))k=1,...,j is nondecreasing with respect to k for

any j ∈ {0, . . . , n − 1}.
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4.1.2 Proof of lemma 3.

Define F (m, j, l) = P(Sm(pj) ≤ k),

Na+1(k) = P (Sb(pa+1) = k)

a
∏

i=1

F (n, i, k),

and, for any i ∈ {1, . . . , a},

Ni(k) = F (b, a + 1, k − 1)

i−1
∏

m=1

F (n, m, k)P(Sn(pi) = k)

a
∏

m=i+1

F (n, m, k − 1).

Set uk = P(Zj+1 = k + 1 | Zj = k). Then

uk =
Na+1(k)
∑a+1

i=1 Ni(k)
P
(

Xb(pj = 1)
)

. (34)

Let

ck = 1 +

a
∑

i=1

Ni(k)

Na+1(k)
. (35)

From (34), we get that (uk)k∈N is nonincreasing if and only if (ck)k∈N is

nondecreasing. Let

vi(k) =
Ni(k)

Na+1(k)
.

It is enough to prove that each sequence (vi(k))k∈N is nondecreasing . From

the definition of the numbers N1(k), . . . , Na+1(k),

vi(k) =
P(Sj(pa) < k)

P(Sj(pa) = k)

P(Sn(pi) = k)

P(Sn(pi) ≤ k)

∏a

m=i+1 P(Sn(pm) < k)
∏a

m=i+1 P(Sn(pm) ≤ k)

= Ik(pi, pa)

∏a

m=i+1 P(Sn(pm) < k)
∏a

m=i+1 P(Sn(pm) ≤ k)
.

Using Lemmas 4 and 5 we get that (vi(k))k∈N is a product of two nonde-

creasing sequences. Consequently (ck)k∈N is nondecreasing, which ends up

the proof. �
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4.1.3 Proofs of the technical lemmas

Proof of lemma 4: It is a well known log-concavity result (see Pinelis [8]

for instance). Anyway it can easily be proven by induction that

log G(k) ≥
1

2

(

log G(k − 1) + log G(k + 1)
)

.

�

Proof of Lemma 5: We will first prove this lemma when p1 = p2 = p. Set

j = n − m, then Ik(p1, p2) becomes

Ik(p1, p2) =
P

(

Sn−m < k
)

P

(

Sn = k
)

P

(

Sn−m = k
)

P

(

Sn ≤ k
) .

Set

Ĩk =
(n − m − k)!

(n − k)!

P

(

Sn−m < k
)

P

(

Sn ≤ k
) ,

then

Ik(p1, p2) =
n!

(n − m)!
(1 − p)mĨk.

As the factor in front of Ĩk is independent of k, (Ik(p1, p2))k∈N is nondecreasing

if and only if (Ĩk)k∈N is nondecreasing. Now let Jk be the inverse of Ĩk. Then

Jk = J
(1)
k + J

(2)
k with























J
(1)
k =

(n − k)!

(n − m − k)!

(

P(Sn−m < k, Sm ≤ k − Sn−m)

P(Sn−m < k)

)

,

J
(2)
k =

(n − k)!

(n − m − k)!

(

P(Sn−m = k)P(Sm = 0)

P(Sn−m < k)

)

.

Consequently, it is enough to show that
(

J
(1)
k

)

k∈N

and
(

J
(2)
k

)

k∈N

are nonin-

creasing. Set ri = P(Sn−m = i) and qi = P(Sl ≤ i). Then, setting

γ1(k) =
(n − k − 1)!

(n − m − k − 1)!

1
∑k−1

j=0 rj

∑k

j=0 rj

,
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we get

J
(1)
k − J

(1)
k+1

γ1(k)
= (n − k)

k−1
∑

i=0

riqk−i

k
∑

j=0

rj − (n − m − k)

k
∑

i=0

riqk−i

k−1
∑

j=0

rj.

Hence J
(1)
k − J

(1)
k+1 has the same sign as

δ1(k) =

(

(n − k)

k−1
∑

i=0

riqk−i

k
∑

j=0

rj − (n − m − k)

k
∑

i=0

riqk−i

k−1
∑

j=0

rj

)

.

Now

δ1(k) ≥ (n − k)rk

(

k−1
∑

i=0

riqk−i − q0

k−1
∑

i=0

ri

)

.

The right hand side of this inequality is positive since the sequence (qi)i∈N is

nondecreasing. Hence (J
(1)
k )k∈N is nonincreasing.

Let us deal now with J
(2)
k . Denoting by F the distribution function of Sn−m

and setting

γ2(k) =
(n − k − 1)!

(n − m − k − 1)!

(1 − p)m

F (k − 1)F (F )
,

we have

J
(2)
k − J

(2)
k+1 = γ2(k)

(

(n − k)
(

F (k) − F (k − 1)
)

F (k)

− (n − m − k)
(

F (k + 1) − F (k)
)

F (k − 1).
)

. (36)

Using Lemma 4, we see that the right hand side of (36) is nonnegative.

Then (J
(2)
k )k∈N is nonincreasing, whence (Jk)k∈N is nonincreasing. Which

implies that (Ik)k∈N is nondecreasing.

Consider now the case where p1 > p2 and j = n − m. Write

Ik(p1, p2) = Ik(p1, p1)
Ik(p1, p2)

Ik(p1, p1)

and set

Lk :=
Ik(p1, p2)

Ik(p1, p1)
=

P(Sj(p2) < k)P(Sj(p1) = k)

P(Sj(p2) = k)P(Sj(p1) < k)
.
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We now prove that (Lk)k∈N is nondecreasing, which will be enough to con-

clude.

For i = 1, 2 set ri = pi/(1 − pi) (note that as p1 > p2 we have r1 < r2).

Setting

γ3 =

(

1 − p1

1 − p2

)j

,

we get

Lk = γ3
rk
1

rk
2

P(Sj(p2) < k)

P(Sj(p1) < k)
.

Expanding Lk, we see that Lk+1 − Lk as the same sign as ∆k, with

∆k :=

∑k−1
i=0

(

j

i

)

ri+1
1

∑k

i=0

(

j

i

)

ri
1

−

∑k−1
i=0

(

j

i

)

ri+1
2

∑k

i=0

(

j

i

)

ri
2

.

Let

Ck(r) =
r
∑k−1

i=0

(

j

i

)

ri

∑k

i=0

(

j

i

)

ri
=

rAk−1(r)

Ak−1(r) +
(

j

k

)

rk
, (37)

with Ak−1(r) =
∑k−1

i=0

(

j

i

)

ri. Then it is obvious that ∆k = Ck(r1) − Ck(r2).

Hence Lemma 5 will be proved if we prove that Ck(r) is nondecreasing.

Taking the derivative with respect to r in (37) we see that the sign of C ′
k(r)

is the same as the one of

dk(r) = A2
k−1 +

(

j

j

)

rk
(

rA′
k−1(r) − (k − 1)Ak−1(r)

)

.

Now

dk(r) =
(

k−1
∑

i=0

(

j

i

)

ri
)2

−

(

j

k

)

(

(k − 1) +
k−1
∑

i=1

(

j

i

)

(k − 1 − i)ri
)

rk (38)

is a polynomial function in r for which the coefficient of rk+i is

k−1
∑

u=i+1

(

j

u

)(

j

k + i − u

)

−

(

j

k

)(

j

i

)

(k − 1 − i).

For 0 ≤ i ≤ 2k − 2 and i + 1 ≤ u ≤ k − 1, it is easy to check that
(

j

i + 1

)(

j

k − 1

)

≤

(

j

u

)(

j

k + i − u

)

,
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whence
(

j

k

)(

j

i

)

≤

(

j

u

)(

j

k + i − u

)

. (39)

This last inequality implies that dk(r) is nonnegative. Which concludes the

proof of Lemma 5. �

4.2 Supremum of Poisson random variables

Let µ1 ≥ . . . ≥ µp be a finite nonincreasing sequence of real numbers. The

aim of this section is to give a concentration inequality for

W = sup(Y1, . . . , Yp)

where the Yi’s are independent and P(µi)−distributed.

Theorem 5 . For any convex function φ we have if Y ∼ P(E(W )) the

following inequality

E(φ(W )) ≤ E(φ(Y )). (40)

4.2.1 A continuous time model representation

Here, we introduce a continuous time counting process (At)t≥0, such that

W = A1. (41)

Next, we will apply Theorem 2 to At with t = 1.

Let µ be equal to µ1 + . . . + µp. Let (Ti)i∈N∗ be i.i.d random variables

E(µ)−distributed. Define the process Sn by S0 = 0 and for any n > 0, Sn =
∑n

j=1 Tj. It is well known that Nt =
∑+∞

k=1 1l{Sk≤t} is a Poisson point process.

Consider now the nonincreasing sequence of reals (ti)1≤i≤p with sum 1 define

by tiµ = µi. Let ai =
∑i

j=1 ti. Then Nai
− Nai−1

is P(µi)−distributed. By

homogeneity we can assume that µ = 1 in the sequel. We define for t ≤ 1,

N (i) = Nai
− Nai−1

(42)

and

k(t) = sup(i, ai ≤ t).
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We consider

At = sup(N (1), . . . , N (k(t)), Nt − Nak(t)
).

Lemma 6 (Compensator of At). If ai ≤ t < ai+1 define λt by setting λt = 1

if At = Nt − Nak(t)
and λt = 0 otherwise. Then Λt =

∫ t

0
λudu is the compen-

sator of At.

Proof of Lemma 6: Let t be in [ai, ai+1[ and s < t we will show that

E
Fs

(

At − As −

∫ t

s

λudu

)

= 0. (43)

Suppose first that s > ai. Then

At = sup{Aai
, Nt − Nai

}, (44)

As = sup{Aai
, Ns − Nai

}. (45)

If As = Ns − Nai
, we have At = Nt − Nai

and λu = 1 for any u ∈ [s, t]. As

the event

B := {As = Ns − Nai
} (46)

is Fs-measurable and Nt − Ns is independent of Fs, we have

E
Fs

(

(

At − As −

∫ t

s

λudu
)

1l{B}

)

= E
Fs

((

Nt − Ns − (t − s)
)

1l{B}

)

= 1l{B}E
Fs (Nt − Ns − (t − s))

= 1l{B}E (Nt − Ns − (t − s)) = 0. (47)

Now on Bc we have Ns − Nai
< As, whence As = Aai

. Then

δ := Aai
− (Ns − Nai

)

is a positive number and is Fs-measurable. Now if Nt − Ns < δ we have

At = Aai
and λu = 0 for all u ∈ [s, t]. This implies

E
Fs

(

(

At − As −

∫ t

s

λudu
)

1l{Bc}1l{Nt−Ns<δ}

)

= 0. (48)
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If Nt −Ns ≥ δ let τ be the first time in ]s, t] such that Nτ −Nai
= Aai

. Note

that τ is a (Ft)t≥0-stopping time. Then At = Nt − Nai
, As = Aai

, λu = 0 if

u ∈ [s, τ [ and λu = 1 if u ∈ [τ, t]. Hence

E
Fs

(

(

At − As−

∫ t

s

λudu
)

1l{Bc}1l{Nt−Ns≥δ}

)

=

E
Fs

((

Nt − Nτ − (t − τ)
)

1l{Bc}1l{Nt−Ns≥δ}

)

. (49)

Clearly {Nt − Ns > δ} = {Nt − Nτ > 0} = {τ ≤ t}. Therefore

E
Fs

(

(

At − As−

∫ t

s

λudu
)

1l{Bc}1l{Nt−Ns≥δ}

)

=

1l{Bc}E
Fs

(

E
Fτ

(

(

Nt − Nτ − (t − τ)
)

1l{Nt−Nτ≥0}

))

= 0. (50)

Putting together equations (47) (48) (50), we get

E
Fs

(

At − As −

∫ t

s

λudu

)

= 0, (51)

for any ai < s < t < ai+1. Using similar arguments we see that equation (51)

is valid for any 0 < s < t < 1. �

Thanks to the following lemma, Theorem 5 is an easy consequence of

Theorem 2, with t = 1.

Lemma 7 . (At, λt)t satisfies Assumption 3

Proof of Lemma 7: First, for a fixed t, At = At− almost surely. Hence

E (λt | At−) = E (λt | At) almost surely. If t ∈ [ai, ai+1[, then λt = 1 iff

At = Nt − Nai
. Consequently

E (λt | At) = P(At = Nt − Nai
| At). (52)

We now prove that the sequence (uk(t))k defined below is nonincreasing.

Let

uk(t) := P(At = Nt − Nai
| At = k). (53)
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If Vi = Nt − Nai
then

uk(t) =
P(Vi = k, N (j) ≤ k, j = 1..i)

P(At = k)
. (54)

The end of the proof needs the following lemma whose proof is postponed

to the end of the section.

Lemma 8 . (i) For any 1 ≤ j ≤ i,

vk(j) =
P(Vi = k, N (j) ≤ k)

P(Vi = k, N (j) ≤ k) + P(Vi < k, N (j) = k)
. (55)

is nonincreasing with respect to k.

(ii) For any i > 0,

Mi(k) =
P(N (i) < k)

P(N (i) ≤ k)
(56)

is nondecreasing with respect to k.

Recall we have to show that (uk(t))k∈N is nonincreasing. From the indepen-

dence of the random variables N (j) and Nt − Nai
, setting

D(k) =P(V = k)
i
∏

j=1

P(N (j) ≤ k)

+ P(V < k)

i−1
∑

u=0

P(N (i−u) = k)
∏

l>i−u

P(N (l) < k)
∏

l<i−u

P(N (l) ≤ k),

we get

uk(t) =
P(V = k)

∏i

j=1 P(N (j) ≤ k)

D(k)
. (57)

Set Wk(t) = (uk(t))
−1. Rewriting (57) we have

Wk =1 +
P(V < k)P(N (i) = k)

P(V = k)P(N (i) ≤ k)
+

P(V < k)P(N (i) < k)P(N (i−1) = k)

P(V = k)P(N (i) ≤ k)P(N (i−1) ≤ k)

+ · · ·+
P(V < k)P(N (i) < k) . . .P(N (2) < k)P(N (1) = k)

P(V = k)P(N (i) ≤ k) . . . P(N (1) ≤ k)
.
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Any component of this sum is of the form αkβk, with

αk =
P(V < k)P(N (j) = k)

P(V = k)P(N (j) ≤ k)
and βk =

∏

l

P(N (l) < k)

P(N (l) ≤ k)
.

Using Lemma 8, we see that both αk and βk are nondecreasing sequences

of k, which ends the proof of Lemma 7. �

4.2.2 Proof of lemma 8

(i) Let t ∈ [ai, ai+1[. Let us prove that (vk(j))k is nonincreasing for all j ≤ i.

Recall that

vk(j) =
P(Vi = k, N (j) ≤ k)

P(Vi = k, N (j) ≤ k) + P(Vi < k, N (j) = k)
. (58)

Fix j and set vk = vk(j). It is enough to show that

Uk =
P(V < k)P(N (j) = k)

P(V = k)P(N (j) ≤ k)
(59)

is nondecreasing in k.

As θi+1 < tj, and t−ai < θj, there exists θ in ]0, 1[ such that t−ai = θtj.

Equation (59) becomes now

Uk =

∑k−1
n=0 θntnj /n!

θk
∑k

n=0 tnj /n!
. (60)

Now, we set, Sj(u) =
∑u

n=0 tnj /n! and

K(θ, k) = θk+1Sj(k)Sj(k + 1).

Then

(Uk+1 − Uk)K(θ, k) = Sj(k)

(

k
∑

n=0

θntnj
n!

)

− θSj(k + 1)

(

k−1
∑

n=0

tnj θn

n!

)

.

We will show that for θ ∈]0, 1[ and tj > 0,

P (θ) = Sj(k)

(

k
∑

n=0

θntnj
n!

)

− θSj(k + 1)

(

k−1
∑

n=0

tnj θn

n!

)
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is nonnegative. We have

P (θ) = Sj(k) +
k
∑

i=1

(

tij
i!

Sj(k) −
ti−1
j

(i − 1)!
Sj(k + 1)

)

θi. (61)

Let us first simplify the coefficient in front of θ

P (θ) = Sj(k) + θ (Sj(k)tj − Sj(k + 1))

+

k
∑

i=2

(

tij
i!

Sj(k) −
ti−1
j

(i − 1)!
Sj(k + 1)

)

θi. (62)

Now using the fact that θ < 1 and θ > θ2 we get

P (θ) ≥ θ

(

tjSj(k − 1) +
ktk+1

j

(k + 1)!

)

+

k
∑

i=2

(

tij
i!

Sj(k) −
ti−1
j

(i − 1)!
Sj(k + 1)

)

θi.

(63)

We can do the same thing for each power of θ, and we get that P (θ) ≥ 0 for

any θ ∈ [0, 1].

(ii) Let Pk =
∑k

n=1 tni /n! =
∑k

n=1 cn, then

Mi(k + 1)

Mi(k)
=

P 2
k

Pk+1Pk−1
=

P 2
k−1 + ck(2Pk−1 + ck)

P 2
k−1 + ck(Pk−1 + ck+1Pk−1/ck)

=
P 2

k−1 + ckPk−1 + ckPk

P 2
k−1 + ckPk−1 + ck+1Pk−1

.

Expanding the polynomial function

δk = ckPk − ck+1Pk−1 = ck(Pk −
ti

k + 1
Pk−1),

we see that δk > 0, which implies that Mi(k)is nondecreasing. �

4.3 3-ary search trees

An 3-ary search tree is a data structure that grows by the progressive inser-

tion of keys into a tree with branch factor 3. Each node contains 0, 1, 2 keys
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and gives rise to 3 branches as soon as it contains 2 keys. We call saturated

a node containing two keys.

For each i ∈ {1, 2, 3} let Xn(i) denote the number of nodes containing i − 1

keys after having introduced n − 1 keys in the tree. The purpose is to give

a binomial convex concentration inequality for X
(3)
n . In other words we have

the following theorem.

Theorem 6 . The number of saturated nodes in an 3− ary search tree satis-

fies a binomial convex concentration inequality, i.e. for any convex function

φ,

E
(

φ(X(3)
n )
)

≤ E (φ(Y )) , (64)

where Y is B(n, E(X
(3)
n )/n)−distributed.

4.3.1 Construction of an 3−ary tree

Let us first recall Chauvin and Pouyanne description of 3−ary search trees

(see [4] for a general description of m−ary search trees). One throws a se-

quence of numbers in [0, 1] named keys, uniformly in [0, 1]N
?

. The keys are

placed one after another in an 3-ary tree (one node root, from each node grow

3 branches). The following recursive rule describes the way a key named k

is inserted in the tree.

i) If the root contains strictly less than m − 1 keys, then k is inserted in the

root. One draws usually keys in a root from left to right in increasing order.

ii) If the root is already saturated, i.e. if it contains m − 1 keys named

k1, k2, ordered such that k1 < k2, then corresponds to each interval I1 =

] − ∞, k1[, I2 =]k1, k2[, I3 =]k2,∞[ a subtree being itself an 3-ary search

tree. one draws usually the branches corresponding to I1, I2, I3 from left to

right. In this situation, k is inserted in the subtree that corresponds to the

interval Ij such that k ∈ Ij. Let Fn, the σ−field generated up to time n.

For each i ∈ {1, 2, 3} and n ≥ 1, we define X
(i)
n as the number of node which

contains i − 1 keys after the insertion of the n − 1−th key; such nodes are

named nodes of type i. Nodes of type m are called saturated.
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4.3.2 Proof of theorem 6

We are interested in the saturated nodes. We recall the two following equa-

tions that can be found in [4].

n − 1 = 2X (3)
n + X(2)

n , (65)

n = X (1)
n + 2X (2)

n . (66)

Hence if X
(3)
n is known then X

(1)
n and X

(2)
n are also known. It is clear that

X
(3)
n+1 = X

(3)
n or X

(3)
n+1 = X

(3)
n + 1 (the number of saturated nodes is an

nondecreasing function). X
(3)
n increases only if the n-th keys is added in a

node of type 2, this is done with probability 2
n
X

(2)
n . Hence

P(X
(3)
n+1 = X(3)

n + 1 | X (3)
n ) = P(X

(3)
n+1 = X(3)

n + 1 | X (1)
n , X(2)

n )

=
2

n
X(2)

n =
2

n
(n − 1 − 2X (3)

n ).

The last equation implies that (X
(3)
n )n∈N satisfies Assumption 1. Theorem 6

follows. �

Remark 2 . We proved that for m = 3, the process of saturated nodes
(

X
(m)
n

)

n∈N

satisfies a binomial convex concentration inequality. The problem

to know if this concentration inequality holds for m > 3 is open.
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