
Chapter 5

Semigroups and evolution
equations

In this chapter we discuss the properties of (strongly continuous) semigroups. This is moti-
vated by the analysis of (linear but also non-linear) evolution (time-dependant) problems.

More precisely, given a Banach space E, an operator A on E and φ0 P E, we consider the
linear Cauchy problem #

φ1ptq “ Aφptq, @t ě 0,

φp0q “ φ0.
(5.1)

Definition 5.1. Let I be an interval of R which contains 0. A (strong) solution of (5.1) on
I is a function φ P C1pI; Eq X C0pI; DompAqq which satisfies (5.1) in the natural sense.

5.1 Exponential of a bounded operator
If A is a bounded operator on E, we can set for all t P R

etA “
`8ÿ

k“0

tkAk

k! (5.2)

The following results are consequencies of the properties of power series in a Banach
space.

Proposition 5.2. (i) For t P R we have etA P LpEq and
››etA

››
LpEq ď e|t|}A}LpEq .

(ii) We have e0A “ IdE.

(iii) For s, t P R we have etAesA “ ept`sqA “ esAetA.

(iv) If B P LpEq commutes with A, then it commutes with etA for all t ě 0.

(v) The map "
R Ñ LpEq
t ÞÑ etA

is of class C8 and
d

dt
etA “ AetA “ etAA.

In particular, for φ0 P E the function t ÞÑ etAφ0 is a strong solution of (5.1) on R.

l Ex. 5.1-5.2The purpose of this chapter is to generalize these properties for an unbounded operator
A on E (in this case the exponential cannot be defined by the power series (5.2)).
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5.2 Strongly continuous semigroups
When A is bounded, the solution of the problem (5.1) is given by a family of operators petAq
with good properties given in Proposition 5.2. The notion of strongly continuous semigroup
generalizes these properties and will be at the heart of the discussion.
Definition 5.3. We say that the family pStqtě0 of operators in LpEq is a C0-semigroup (or
strongly continuous semigroup) if

(i) S0 “ IdE ;

(ii) St1 ˝ St2 “ St1`t2 for all s, t ě 0 ;

(iii) the map t ÞÑ St is strongly continuous on R` (for all φ P E the map t ÞÑ Stφ P E is
continuous on R`).

Remark 5.4. The second property implies that St1 commutes with St2 for all t1, t2 ě 0.
Remark 5.5. Notice that we do not require the continuity of the map t ÞÑ St for the topology
of LpEq.
Proposition 5.6. Let pStqtě0 be a C0-semigroup. There exist M ě 0 and ω P R such that
for all t P R` we have

}St}LpEq ď Meωt. (5.3)
Moreover, if for some t0 P R` we have }St0 }LpEq ă 1 then (5.3) holds for some ω ă 0.
Proof. ‚ Let φ P E. By continuity, there exists Cφ ą 0 such that

@t P r0, 1s, }Stφ}E ď Cφ }φ}E .

By the uniform boundedness principle, there exists C ě 1 such that

@t P r0, 1s, }St}LpEq ď C.

Then, for all N P N˚ and t P rN ´ 1, N s we get

}St}LpEq ď CN ď Ct`1 “ Cet lnpCq.

This gives the first statement with M “ C and ω “ lnpCq.
‚ Now assume that α “ }St0 }LpEq Ps0, 1r for some t0 ą 0. Let C “ suptPr0,t0s }St}LpEq. Then
for N P N˚ and t P rpN ´ 1qt0, Nt0s we have

}St}LpEq ď }St0 }N´1
LpEq

››St´pN´1qt0

›› ď CαN´1 ď M

α
α

t
t0 “ C

α
et

lnpαq
t0 .

Then (5.3) holds with M “ C
α and ω “ lnpαq

t0
ă 0.

Remark 5.7. To prove the continuity of φ ÞÑ Stφ it is enough to prove that Stφ Ñ φ in E as
t Ñ 0`. Indeed, let φ P E and t0 ą 0. For the right-continuity we simply write, for h ą 0,

St0`hφ ´ St0φ “ St0

`
Shφ ´ φ

˘ ÝÝÝÝÑ
hÑ0`

0.

On the other hand, by Proposition 5.6 St0´h is bounded uniformly in h Ps0, t0s, so

St0´hφ ´ St0φ “ St0´h

`
φ ´ Shφ

˘ ÝÝÝÝÑ
hÑ0`

0.

Remark 5.8. Let pStqtě0 be a strongly continuous semigroup. The map
"

R` ˆ E Ñ E
pt, φq ÞÑ Stφ

is continous. Let pt, φq P R` ˆ E. For pτ, ψq P R` ˆ E we have

}Sτ ψ ´ Stφ}E ď }Sτ ψ ´ Sτ φ}E ` }Sτ φ ´ Stφ}E

The first term is smaller than }Sτ }LpEq }ψ ´ φ}E, and }Sτ }LpEq is uniformly bounded for
τ P rt ´ 1, t ` 1s by Proposition 5.6. The second term goes to 0 as τ Ñ t by strong continuity.
This proves that

}Sτ ψ ´ Stφ}E ÝÝÝÝÝÝÝÝÑ
pτ,ψqÑpt,φq

0.
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Definition 5.9. We say that the family pStqtPR of operators in LpEq is a C0-group (or
strongly continuous group) if

(i) S0 “ IdE,

(ii) St1 ˝ St2 “ St1`t2 for all s, t P R,

(iii) the map t ÞÑ St is strongly continuous on R.

Remark 5.10. If pStqtPR is a strongly continuous group then S´t “ S´1
t for all t P R. More-

over, pStqtě0 and pS´tqtě0 are strongly continuous semigroups.

Definition 5.11. • A unitary group on H is a strongly continuous group pUtqtPR such
that Ut is unitary on H for all t P R.

• A contractions semigroup on E is a strongly continuous semigroup pStqtě0 such that
}St}LpEq ď 1 for all t ě 0.

Example 5.12 (Translation). For t P R we consider on L2pRq the operator St such that for
u P L2pRq and x P R we have

pStuqpxq “ upx ` tq.
This defines a unitary group on L2pRq.
Example 5.13 (Dilation). For t P R we consider on L2pRq the operator St such that for
u P L2pRq and x P R we have

pStuqpxq “ e2tupetxq.
This defines a unitary group on L2pRq.
Example 5.14 (Heat semigroup). We set S0 “ IdL2pRq. For t ą 00, u P L2pRq and x P R we
set

pStuqpxq “ 1?
4πt

ż

R
e´ px´yq2

4t upyq dy.

Then we have Stu “ Gt ˚ u with

Gpsq “ e´ s2
4t?

4πt
.

We have }Gt}L1pRq “ 1, Gt1 ˚ Gt2 “ Gt1`t2 and Gt is an approximation of δ when t Ñ 0.
Thus from the properties of the convolution product we deduce that pStqtě0 is a contractions
semigroup on L2pRq.

5.3 Dissipative operators
We set

C` “ tz P C : Repzq ą 0u .

Definition 5.15. Let A be an operator on E. We say that A is dissipative if

@φ P DompAq, @z P C`, }pA ´ zqφ}E ě Repzq }u}E .

Remark 5.16. In particular, if A is dissipative then any z P C` is a regular point of A.
Example 5.17. A skew-symmetric operator on the Hilbert space H is dissipative (see Propo-
sition 3.7).

Proposition 5.18. Let A be an operator on H. Then A is dissipative if and only if

@φ P DompAq, Re xAφ, φy ď 0. (5.4)

Proof. Let φ P DompAq. For z “ τ ` iµ P C` with τ ą 0 and µ P R we have

}pA ´ zqφ}2
H “ }pA ´ iµqφ}2

H ´ 2 Re xpA ´ iµqφ, τφyH ` τ2 }u}2
H

“ }pA ´ iµqφ}2
H ´ 2τ Re xAφ, φyH ` τ2 }u}2

H .
(5.5)
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If (5.4) holds, this gives
}pA ´ zqφ}2

H ě τ2 }u}2
H ,

so A is dissipative. Conversely, if A is dissipative then (5.5) gives

2τ Re xAφ, φyH ´ }pA ´ iµqφ}2
H “ τ2 }u}2

H ´ }pA ´ zqφ}2
H ď 0.

We divide by τ and let τ go to `8. This gives (5.4).

Definition 5.19. Let A be a dissipative operator on E. We say that A is maximal dissipative
if it is dissipative and any z P C` belongs to its resolvent set.

l Ex. 5.3

Example 5.20. If A is a skew-adjoint operator on the Hilbert space H, then A and ´A
are maximal dissipative. In particular, if A is selfadjoint then iA and ´iA are maximal
dissipative.
Example 5.21. The Laplacian ∆ with domain Domp∆q “ H2pRdq is maximal dissipative on
L2pRdq. More generally, a selfadjoint and non-positive operator is maximal dissipative.
Remark 5.22. • If A is maximal dissipative then for all z P C` we have

››pA ´ zq´1››
LpEq ď 1

Repzq . (5.6)

• If A is an operator such that C` Ă ρpAq and (5.6) holds, then A is maximal dissipative.
However, we may have C` Ă ρpAq even if A is not maximal dissipative.

Proposition 5.23. Let A be a dissipative operator on E. Assume that A is closed and that
RanpA ´ z0q is dense in E for some z0 P C`. Then A is maximal dissipative.

In particular, if ρpAq X C` ‰ H, then A is maximal dissipative.

Proof. Since A is closed and dissipative, pA´z0q is injective with closed range by Proposition
1.36. By assumption pA ´ z0q is then bijective, and z0 P ρpAq.

Let pznqnPN be a sequence in ρpAq X C` which goes to some z P C`. We have

lim sup
nPN

››pA ´ zq´1›› ď 1
Repzq ă `8.

This implies that z P ρpAq. Then ρpAq is closed in C`. Since it is also open and C` is
connected, we have C` Ă ρpAq.
Proposition 5.24. Let A be a densely defined and closed operator on the Hilbert space H.
Assume that A and A˚ are dissipative. Then A is maximal dissipative.

Proof. By Proposition 5.23, it is enough to show that RanpA ´ 1q is dense in H. Since A˚ is
dissipative, pA˚ ´ 1q is injective and RanpA ´ 1q “ kerpA˚ ´ 1qK “ H.

Proposition 5.25. Let A be a maximal dissipative operator on the Hilbert space H. Then
A is densely defined.

Proof. Let φ P DompAqK and ψ “ pA ´ 1q´1φ P DompAq. We have

0 “ xφ, ψyH “ xAψ ´ ψ, ψyH ,

so
}ψ}2

H “ Re }ψ}2
H “ Re xAψ, ψyH ď 0.

This implies that ψ “ 0 and hence φ “ 0.

Proposition 5.26. Let A be a maximal dissipative operator. Let B be a dissipative operator.
Assume that B is A-bounded with bound smaller than 1. Then A ` B is maximal dissipative.

Proof. The proof is similar to the proof of Theorem 3.44.
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Example 5.27. Let V P L8pRd,Cq be such that ImpV pxqq ď 0. We consider the Schrödinger
operator H “ H0 `V pxq, where H0 is the free Laplacian. Then ´iH is a maximal dissipative
operator. Indeed ´iH0 is skew-adjoint and ´iV is dissipative and bounded, so ´iH is
maximal dissipative by Proposition 5.26.
Example 5.28. Let m ą 0. We consider on H “ H1pRdq ˆ L2pRdq the norm defined by

}pu, vq}2
H “ }∇u}2

L2pRdq ` m }u}2
L2pRdq ` }v}2

L2pRdq .

Then we define on H the operator

Wa “
ˆ

0 1
∆ ´ m ´a

˙
,

with domain
DompWq “ H2pRdq ˆ H1pRdq.

We know by Exercise 3.5 that W0 is skew-adjoint on H . Since the operator
ˆ

0 0
0 ´a

˙

is bounded and dissipative on H , we get by Proposition 5.26 that Wa is maximal dissipative
on H .

l Ex. 5.5

Proposition 5.29. Let A be an operator on H. Then A is skew-adjoint if and only if A and
´A are maximal dissipative.

Proof. ‚ Assume that A is skew-adjoint. By Proposition 5.18, A and ´A are dissipative.
Moreover 1 belongs to the resolvent set of A and ´A, so they are both maximal dissipative
by Proposition 5.23.
‚ Conversely, assume that A and ´A are maximal dissipative. By Proposition 5.18 we have
Re xAφ, φy “ 0 for all φ P DompAq, so A is skew-symmetric by Remark 3.2. By definition, 1
belongs to the resolvent sets of A and ´A, so A is skew-adjoint by Proposition 3.22.

5.4 Generators of C0-semigroups
Definition 5.30. Let pStqtě0 be a C0-semigroup on E. We denote by DompAq the set of
φ P E such that the limit

lim
tÑ0`

Stφ ´ φ

t

exists in E. In this case, we denote by Aφ this limit. This defines an operator A on E with
domain DompAq. We say that A is the generator of pStqtě0.

Example 5.31. Let A P LpEq. For t ě 0 we set St “ etA, as defined by (5.2). Then the
generator of pStq is. . . A.

In general, if A is the generator of the semigroup pStqtě0 then for all t ě 0 we can write
St “ etA.

Proposition 5.32. Let pStqtě0 be a C0-semigroup on E. Let A be its generator.

(i) Let φ P DompAq. The map t ÞÑ Stφ is differentiable from R` to E, we have Stφ P
DompAq for all t P R` and

d

dt

`
Stφ

˘ “ StAφ “ AStφ.

(ii) Let φ P E. For t ě 0 we have
ż t

0
Sτ φ dτ P DompAq
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and
Stφ ´ φ “ A

ż t

0
Sτ φ dτ.

If φ P DompAq we also have

Stφ ´ φ “ A

ż t

0
Sτ φ dτ “

ż t

0
Sτ Aφ dτ.

Proof. ‚ Let t ě 0. For τ ą 0 we have

Sτ ´ Id
τ

Stφ “ St
Sτ ´ Id

τ
φ ÝÝÝÝÑ

τÑ0`
StAφ.

This proves that Stφ P DompAq and AStφ “ StAφ. Now let t ą 0. For τ ą 0 we have

St`τ φ ´ Stφ

τ
ÝÝÝÑ
τÑ0

StAφ.

and, for τ Ps0, ts,
St´τ φ ´ Stφ

´τ
“ St´τ

Sτ φ ´ φ

τ
ÝÝÝÑ
τÑ0

StAφ.

This proves that the map t ÞÑ Stφ is differentiable and

d

dt

`
Stφ

˘ “ StAφ.

‚ For h ą 0 we have

1
h

ˆ
Sh

ż t

0
Sτ φ dτ ´

ż t

0
Sτ φ dτ

˙
“ 1

h

ˆż t

0
Sτ`hφ dτ ´

ż t

0
Sτ φ dτ

˙

“ 1
h

˜ż t`h

h

Sτ φ dτ ´
ż t

0
Sτ φ dτ

¸

“ 1
h

˜ż t`h

t

Sτ φ dτ ´
ż h

0
Sτ φ dτ

¸

ÝÝÝÑ
hÑ0

Stφ ´ φ.

This proves the first part of the second statement. Now assume that φ P DompAq. Since

Sτ
Shφ ´ φ

h
ÝÝÝÑ
hÑ0

Sτ Aφ

uniformly in τ P r0, ts (by Proposition 5.6), we have

Sh ´ Id
h

ż t

0
Sτ φ dτ “

ż t

0
Sτ

Shφ ´ φ

h
dτ ÝÝÝÑ

hÑ0

ż t

0
Sτ Aφ dτ,

and the proof is complete.

Remark 5.33. If A is not closed we cannot just write A
şt

0 Sτ φ dτ “ şt

0 ASτ φ dτ to prove the
last statement of the proposition. We are actually going to use this property to prove that
A is closed.

Proposition 5.34. The generator of a C0-semigroup is a closed and densely defined operator
that determines the semigroup uniquely.

Proof. ‚ Let φ P E. By Proposition 5.32, we have for all h ą 0

1
h

ż h

0
Sτ φ dτ P DompAq.

Since this goes to φ as h Ñ 0, this proves that DompAq is dense in E.
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‚ Let pφnqnPN be a sequence in DompAq such that φn goes to some φ and Aφn goes to some
ψ in E. For n P N and h ą 0 we have by Proposition 5.32

Shφn ´ φn “
ż h

0
Sτ Aφn dτ.

Taking the limit n Ñ `8 and dividing by h, and then taking the limit h Ñ 0, we get

Shφ ´ φ

h
“ 1

h

ż h

0
Sτ ψ dτ ÝÝÝÑ

hÑ0
ψ.

This proves that φ P DompAq with Aφ “ ψ. Thus A is closed.
‚ Assume that pS̃tqtě0 is a C0-semigroup whose generator is A. Let φ P DompAq and t ą 0.
For θ P r0, ts we set

ψpθq “ S̃t´θSθφ P E.

For θ P r0, ts and h P R˚ such that θ ` h P r0, ts we have

ψpθ ` hq ´ ψpθq
h

“ S̃t´θ´h

ˆ
Sθ`hφ ´ Sθφ

h
´ ASθφ

˙

` S̃t´θ´hASθφ

` S̃t´θ´h ´ S̃t´θ

h
Sθφ.

Since S̃t´θ´h is bounded uniformly in h P r´1, 1sz t0u by Proposition 5.6, this gives by
Proposition 5.32

ψpθ ` hq ´ ψpθq
h

ÝÝÝÑ
hÑ0

S̃t´θASθφ ´ AS̃t´θSθφ “ 0.

Then Stφ “ ψptq “ ψp0q “ S̃tφ. Since DompAq is dense in E, this proves that S̃t “ St for all
t ě 0.

Proposition 5.35. Let A be the generator of a C0-semigroup petAqtě0. If D is a subspace
of DompAq dense in E and invariant by St for all t ě 0, then it is a core of A.

Proof. We have to prove that D is dense in DompAq (for the graph norm). Let φ P DompAq
and ε ą 0. Let pφnq be a sequence in D which goes to φ in E. By Proposition 5.32 there
exists t ą 0 such that

››››
1
t

ż t

0
esAφ ds ´ φ

››››
DompAq

“
››››
1
t

ż t

0
esAφ ds ´ φ

››››
E

`
››››
1
t

ż t

0
esAAφ ds ´ Aφ

››››
E

ď ε

3 .

Again by Proposition 5.32 we have

A

ˆ
1
t

ż t

0
esApφn ´ φq ds

˙
“ St ´ Id

t
pφn ´ φq ÝÝÝÑ

nÑ8 0,

so there exists n P N such that
››››
1
t

ż t

0
esAφn ds ´ 1

t

ż t

0
esAφ ds

››››
DompAq

ď ε

3 .

We see the integral 1
t

şt

0 esAφn ds as a Riemann integral. In particular, there exists n P N˚
such that ›››››

1
t

ż t

0
esAφn ds ´ 1

N

Nÿ

k“1
e

tkA
N φn

›››››
DompAq

ď ε

3 .

Since D is invariant by e
tkA

N for all k, we have 1
N

řN
k“1 e

tkA
N φn P D and the conclusion

follows.

2023-2024 (November 21, 2023) 71



M2RI - Spectral Theory and Evolution Equations

Example 5.36. Let A be the generator of the translation semigroup (Example 5.12). Let
u P C8

0 pRq. Then we have
››››
up¨ ` hq ´ up¨q

h
´ u1p¨q

››››
L2pRq

ÝÝÝÑ
hÑ0

0,

so u P DompAq and Au “ u1. Since C8
0 pRq is left invariant by translations and is dense in

L2pRq, it is a core of A by Proposition 5.35. This implies that A is the derivative operator,
set on DompAq “ H1pRq.
Theorem 5.37. Let A be the generator of a C0-semigroup pStqtě0. Let M ě 1 and ω P R
be given by Proposition 5.6. Let z P C with Repzq ą ω. Then z P ρpAq and for φ P E we have

pA ´ zq´1φ “ ´
ż `8

0
e´tzStφ dt “ ´

ż `8

0
etpA´zqφ dt.

Moreover,
››pA ´ zq´1››

LpEq ď M

Repzq ´ ω
.

In particular, if pStqtě0 is a contractions semigroup, then A is maximal dissipative.

The integrals have to be understood in the sense of Riemann integrals for continuous
functions ż `8

0
etpA´zqφ dt “ lim

T Ñ`8

ż T

0
etpA´zqφ dt.

It is well defined since for all t ě 0 we have
››etpA´zq››

LpEq ď Metpω´Repzqq.

Proof. ‚ We consider R P LpEq defined by

@φ P E, Rφ “
ż `8

0
etpA´zqφ dt.

In particular,

}R}LpEq ď
ż `8

0
e´t Repzq ››etA

››
LpEq dt ď M

ż `8

0
etpω´Repzqq dt “ M

Repzq ´ ω
.

‚ We have
ehA ´ Id

h
Rφ “ 1

h

ˆż `8

0
e´tzept`hqAφ dt ´

ż `8

0
e´tzetAφ dt

˙

“ 1
h

ˆ
ehz

ż `8

h

etpA´zqφ dt ´
ż `8

0
etpA´zqφ dt

˙

“ ´ehz

h

ż h

0
etpA´zqφ dt ` ehz ´ 1

h

ż `8

0
etpA´zqφ dt

ÝÝÝÑ
hÑ0

´φ ` zRφ.

This proves that RanpRq Ă DompAq and

pA ´ zqR “ ´ Id .

‚ Now let ψ P DompAq. We have
ż T

0
etpA´zqψ dt ÝÝÝÝÝÑ

T Ñ`8 Rψ,

and
pA ´ zq

ż T

0
etpA´zqφ dt “

ż T

0
etpA´zqpA ´ zqφ dt ÝÝÝÝÝÑ

T Ñ`8 RpA ´ zqψ.

Since pA ´ zq is closed this proves that RpA ´ zqψ “ pA ´ zqRψ “ ´ψ. Thus pA ´ zq is
invertible and its inverse is given by pA ´ zq´1 “ ´R.
‚ Finally, the fact that the generator of a contractions semigroup (M “ 1 and ω “ 0) is
maximal dissipative follows from Remark 5.22.
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Definition 5.38. Let pStqtě0 a strongly continuous group. Then we denote by DompAq the
set of φ P E such that the map t ÞÑ Stφ is differentiable at t “ 0, and for φ P DompAq we
denote by Aφ the derivative at 0.

Theorem 5.39. The generator of a unitary group on the Hilbert space H is skew-adjoint.

Proof. Let pUtqtPR be a unitary group and let A be its generator. A is in particular the
generator of the contractions semigroup pUtqtě0, so it is maximal dissipative. On the other
hand, the generator of the contractions semigroup pU´tqtě0 is ´A, which is also maximal
dissipative. Then A is skew-adjoint by Proposition 5.29.

5.5 Hille-Yosida Theorem
Our question in this section is the following. Given an operator A on E, is there a strongly
continuous semigroup on E whose generator is A ?

Lemma 5.40. Let A be a densely defined operator. Assume that there exist ω P R and
M ą 0 such that rω, `8rĂ ρpAq and

››pA ´ λq´1››
LpEq ď M

λ for all λ ě ω.

(i) For φ P E we have ´λpA ´ λq´1φ Ñ φ as λ Ñ `8.

(ii) For φ P DompAq we have ´λApA ´ λq´1φ “ ´λpA ´ λq´1Aφ Ñ Aφ as λ Ñ `8.

Proof. For φ P DompAq we have

››´λpA ´ λq´1φ ´ φ
››

E “ ››pA ´ λq´1Aφ
›› ď M }Aφ}E

λ
ÝÝÝÝÑ
λÑ`8 0.

Since λpA ´ λq´1 is bounded uniformly in λ ě ω, we deduce the first statement for all φ P E.
Then for φ P DompAq we apply the first statement to Aφ to get the second.

Theorem 5.41 (Hille-Yosida). Let A be a densely defined operator. Assume that s0, `8rĂ
ρpAq and

@λ ą 0,
››pA ´ λq´1››

LpEq ď 1
λ

.

Then A generates a contractions semigroup. In particular, a densely defined and maximal
dissipative operator generates a contractions semigroup.

Proof. For n P N˚ we consider the bounded operator

An “ ´nApA ´ nq´1 “ ´n ´ n2pA ´ nq´1.

‚ For t ě 0 we have
››etAn

››
LpEq “ e´ntetn2}pA´nq´1}LpEq ď e´ntent “ 1.

Let φ P DompAq and t ě 0. An commutes with Am and hence with esAm for all s ě 0, so

etAnφ ´ etAmφ “
ż t

0

d

ds

`
ept´sqAmesAnφ

˘
ds “

ż t

0
ept´sqAmesAn pAnφ ´ Amφq ds.

This gives ››etAnφ ´ etAmφ
››

E ď t }Anφ ´ Amφ}E .

Since pAnφq is a Cauchy sequence (by Lemma 5.40), the sequence petAnφq converges uniformly
on t P r0, t0s for any t0 ą 0. Since

››etAn
›› ď 1, the same conclusion holds for any φ P E. We

denote by Stφ the limit of etAnφ.
‚ Let φ P E. Since the sequence of continuous maps petAnφq converges locally uniformly,
the map t ÞÑ Stφ is continuous on R`. Let t, t1, t2 ě 0. For n P N we have

››etAnφ
››

E ď }φ}E and et1Anet2Anφ “ ept1`t2qAnφ.
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Taking the limit n Ñ `8 gives

}Stφ}E ď }φ}E and St1St2φ “ St1`t2φ.

This proves that pStq is a C0-semigroup on E.
‚ We denote by B (with domain DompBq) the generator of the semigroup pStq. Let φ P
DompAq and t0 ą 0. On r0, t0s the map t ÞÑ etAnφ and its derivative t ÞÑ etAnAnφ converge
uniformly to t ÞÑ Stφ and StAφ. This implies that Stφ is differentiable at time 0 with
derivative Aφ. Thus φ P DompBq and Bφ “ Aφ. Now let φ P DompBq. Since pA ´ 1q is
surjective, there exists ψ P DompAq such that pB ´1qφ “ pA´1qψ “ pB ´1qψ. Since pB ´1q
is injective, we have φ “ ψ P DompAq so DompBq Ă DompAq. This proves that A “ B is the
generator of pStq.
Theorem 5.42. A skew-adjoint operator A on H generates a unitary group.

Proof. Since A are ´A are maximal dissipative, they generate two contractions semigroups
pS`

t qtě0 and pS´
t qtě0.

Let φ P DompAq “ Domp´Aq. Let t P R. For τ P Rz ttu we have

Sτ́ Sτ̀ φ ´ S´
t S`

t φ

t ´ τ
“ Sτ́

Sτ̀ φ ´ S`
t φ

t ´ τ
` pSτ́ ´ S´

t qS`
t φ

t ´ τ
.

Since }Sτ́ } ď 1 and S`
t φ P DompAq we get

Sτ́ Sτ̀ φ ´ S´
t S`

t φ

t ´ τ
ÝÝÝÑ
τÑt

S´
t AS`

t φ ´ S´
t AS`

t “ 0.

This proves that for all t P R we have

S´
t S`

t φ “ φ.

Similarly, S`
t S´

t φ “ φ for all φ P DompAq. By continuity of S`
t and S´

t and by density of
DompAq, these equalities hold for all φ P H, so S´

t “ pS`
t q´1 for all t ě 0. Fot t P R we set

Ut “
#

S`
t if t ě 0,

S´
´t if t ď 0.

This defines a strongly continuous group pUtqtPR on H. Finally for t P R and φ P H we have

}φ} “ }U´tUtφ} ď }Utφ} ď φ,

so Ut is an isometry. Since it is surjective, it is unitary and the proof is complete.

5.6 Inversion formula and application to exponential de-
cay

Let A be a maximal dissipative operator on H. Theorem 5.37 gives an expression of the
resolvent of A in terms of its propagator. We would like to write conversely the propagator
in terms of the resolvent.

Let φ P H and µ ą 0. By Theorem 5.37 we can write for all τ P R

`
A ´ pµ ` iτq˘´1

φ “ ´
ż `8

0
e´itτ etpA´µqφ dt.

This means that the map τ ÞÑ `
A ´ pµ ` iτq˘´1

φ is the Fourier transform of the map
t ÞÑ ´1R` ptqetpA´µqφ. We would like to inverse this relation. However, in general, these
functions are not in L2pR; Hq and the map τ ÞÑ `

A ´ pµ ` iτq˘´1
φ is not integrable. The

idea is to apply the inverse Fourier formula at least for “regular” vectors.
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Lemma 5.43. Let A be an operator on E with non-empty resolvent set and z0 P ρpAq. Let
k P N˚, z P ρpAq and φ P H. If φ P DompAkq then we have

pA ´ zq´kφ “ 1
pz ´ z0qk

kÿ

j“0
Cj

kp´1qk´jpA ´ zq´jpA ´ z0qjφ.

Proof. For φ P DompAq we have

pA ´ zqφ ´ pA ´ z0qφ “ pz0 ´ zqφ.

After composition by pz0 ´ zq´1pA ´ zq´1 on the left, we get on DompAq

pA ´ zq´1 “ 1
z ´ z0

`pA ´ zq´1pA ´ z0q ´ Id
˘
.

This gives the case k “ 1. The general case follows by induction.

Proposition 5.44. Let A be the generator of a semigroup on E. Let µ P R. Assume that
µ ` iR Ă ρpAq and

sup
Repzq“µ

››pA ´ zq´1››
LpHq ă `8.

For k P N˚, φ P DompAkq and t ą 0 we have

etAφ “ p´1qk`1k!
2iπ tk

ż

Γµ

etzpA ´ zq´pk`1qφ dz,

where Γµ : τ P R ÞÑ µ ` iτ .

Proof. Differentiating k times the equality of Theorem 5.37 we get

k!pA ´ zq´pk`1qφ “ p´1qk`1
ż `8

0
tketpA´zqφ dt.

Then the map τ ÞÑ k!pA´pµ`iτqq´pk`1qφ is the Fourier transform of t ÞÑ p´1qk`11R` ptqtketpA´µqφ.
Since these functions are integrable we can apply the Inverse Fourier Formula, which gives

@t P R, p´1qk`11R` ptqtketpA´µqφ “ k!
2π

ż

R
eitτ pA ´ pµ ` iτqq´pk`1qφ dτ,

or
@t ě 0, etAφ “ p´1qk`1k!

2iπ tk

ż

Γµ

etzpA ´ zq´pk`1qφ dz.

Proposition 5.45. Let A be the generator of a C0-semigroup on H. Let M and ω be given
by Proposition 5.6. Let µ ą ω. Then there exists C ą 0 such that for φ P H we have

ż

τPR

››`
A ´ pµ ` iτq˘´1

φ
››2

H dτ ď C }φ}2
H .

Proof. Let φ P H. For τ P R we have by Theorem 5.37

pA ´ pµ ` iτqq´1φ “ ´
ż `8

0
etpA´pµ`iτqqφ dt “ ´

ż

R
e´itτ1R` ptqe´tµetAφ dt. (5.7)

The function t ÞÑ ´1R` ptqe´tµetAφ is in L2pR; Hq and, by (5.7), its Fourier transform is
τ ÞÑ pA ´ pµ ` iτqq´1φ. Then by the Plancherel inequality (which holds for a function with
values in a Hilbert space) we have

ż

R

››pA ´ pµ ` iτqq´1φ
››2

H dτ “ 2π

ż `8

0
e´2tµ

››etAφ
››2

H dt ď C }φ}2
H ,

with C “ πM2

µ´ω .
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Theorem 5.46 (Gearhart-Prüss). Let A be the generator of a C0-semigroup on the Hilbert
space H. Assume that C` Ă ρpAq and that

β “ sup
zPC`

››pA ´ zq´1››
LpHq ă `8.

Let γ ă 1
β . Then there exists Cγ ą 0 such that for t ě 0 we have

››etA
››

LpHq ď Cγe´γt.

Proof. ‚ Let γ̃ Psγ, β´1r. Let z P C with Repzq ě ´γ. There exists z0 P C` such that
z P Dpz0, γ̃q. Since distpz0, σpAqq ě ››pA ´ z0q´1››´1 ą |z ´ z0| we have z P ρpAq. Then by
the resolvent identity we have

pA ´ zq´1`
1 ´ pz ´ z0qpA ´ z0q´1˘ “ pA ´ z0q´1.

Since ››pz ´ z0qpA ´ z0q´1›› ď γ̃β ă 1,

this gives
››pA ´ zq´1›› ď ››pA ´ z0q´1››

›››
`
1 ´ pz ´ z0qpA ´ z0q´1˘´1

››› ď C1 :“ β

1 ´ γ̃β
. (5.8)

‚ For τ P R we have by the resolvent identity
`
A ´ p´γ ` iτq˘´1 “ `

1 ´ pγ ` µq`
A ´ p´γ ` iτq˘´1˘`

A ´ pµ ` iτq˘´1
,

so with (5.8)
›››
`
A ´ p´γ ` iτq˘´1

›››
2 ď `

1 ` pγ ` µqC1
˘2

›››
`
A ´ pµ ` iτq˘´1

›››
2

.

We denote by C2 the constant given by Proposition 5.45. Then we have
ż

R

›››
`
A ´ p´γ ` iτq˘´1

φ
›››

2

H
dτ ď C3 }φ}2

H , C3 “ C2
`
1 ` pγ ` µqC1

˘2
. (5.9)

‚ Since A˚ also satisfies the assumptions of the theorem, we also have for all ψ P H
ż

R

›››
`
A˚ ´ p´γ ` iτq˘´1

ψ
›››

2

H
dτ ď C3 }ψ}2

H . (5.10)

‚ Let φ P DompA2q and ψ P H. By Proposition 5.44 we have
@
tetAφ, ψ

D “ 1
2iπ

ż

Γµ

etz
@pA ´ zq´2φ, ψ

D
dz.

Since the map z ÞÑ etz
@pA ´ zq´2φ, ψ

D
is holomorphic on tRepzq ą ´γ̃u and decays like

Impzq´2 as |Impzq| Ñ `8 (see Lemma 5.43), we can change the contour of integration from
Γµ to Γ´γ . This gives

@
tetAφ, ψ

D “ 1
2iπ

ż

Γ´γ

etz
@pA ´ zq´2φ, ψ

D
dz

“ 1
2iπ

ż

Γ´γ

etz
@pA ´ zq´1φ, pA˚ ´ zq´1ψ

D
dz.

Then, by the Cauchy-Schwarz inequality and (5.9)-(5.10) we get, for all φ P DompA2q and
ψ P H,
ˇ̌@

tetAφ, ψ
Dˇ̌ ď e´γt

2π

ˆż

R

›››
`
A ´ p´γ ` iτq˘´1

φ
›››

2
dτ

˙ 1
2

ˆż

R

›››
`
A˚ ´ p´γ ´ iτq˘´1

ψ
›››

2
dτ

˙ 1
2

ď C3e´γt

2π
}φ} }ψ} .

Since DompA2q is dense in H (see Exercise 5.10), we have the same estimate for all φ P H,
and

t
››etA

››
LpHq ď C3e´γt

2π
.

This gives the estimate for t ě 1. Since etA is bounded uniformly in t P r0, 1s, we get the
result by choosing a larger constant if necessary.
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5.7 Exercises
Exercise 5.1. Compute etAj , t P R, for the following matrices:

A1 “
¨
˝

λ1 0 0
0 λ2 0
0 0 λ3

˛
‚, A2 “

¨
˚̊
˝

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

˛
‹‹‚, A3 “

ˆ
0 ´1
1 0

˙
.

Exercise 5.2. Prove Proposition 5.2.

Exercise 5.3. 1. Let A be a maximal dissipative operator on E. Assume that B is a dissi-
pative extension of A. Prove that A “ B.
2. Let A be a closed and dissipative operator on H. Assume that A has no other dissipative
extension than itself. Prove that A is maximal dissipative.

Exercise 5.4. Let A be a densely defined and dissipative operator on H. We define the
operator T on DompT q “ RanpA ´ 1q by T “ pA ` 1qpA ´ 1q´1 (since pA ´ 1q is injective, we
can define pA ´ 1q´1 as an unbounded operator defined on RanpA ´ 1q´1, see Remark 1.26).
T is called the Cayley transform of A.
1. Prove that }Tφ} ď }φ} for all φ P DompT q. Deduce that we can extend T to a bounded
operator T̃ on H.
2. Prove that 1 is not an eigenvalue of T .
3. Prove that A “ pT ` 1qpT ´ 1q´1 (where pT ´ 1q´1 is defined on RanpT ´ 1q “ DompAq).
4. Let φ P DompT̃ q such that T̃φ “ φ.

a. Prove that T̃ ˚φ ´ φ “ 0.
b. Prove that for all ψ P DompAq we have xφ, pA ´ 1qψy “ xφ, pA ` 1qψy.
c. Prove that 1 is not an eigenvalue of T̃ .

5. Prove that B “ pT̃ `1qpT̃ ´1q´1 (defined on DompBq “ RanpT̃ ´1q) is a maximal dissipative
extension of A.

Exercise 5.5. Let α P C. We consider on L2p0, 1q the Schrödinger operator with Robin
condition, defined by

Aα “ ´ d2

dx2 , DompAαq “ ␣
u P H2p0, 1q : u1p0q “ αup0q, u1p1q “ ´αup1q(

.

Prove that if Impαq ě 0 then iAα is maximal dissipative.

Exercise 5.6. Let A be a maximal dissipative operator on E. Let B be a bounded operator.
Prove that A ` B (defined on DompA ` Bq “ DompAq) generates a C0-semigroup on E and
that, for all t ě 0, ›››etpA`Bq

›››
LpEq

ď et}B}LpEq .

Exercise 5.7 (Generator of dilations). For t P R and u P L2pRq we define the function Stu
by

pStuqpxq “ e
t
2 upetxq.

1. Prove that this defines a unitary group pStqtPR on L2pRq. We denote by A the generator
of St.
2. Let u P C8

0 pRq. Prove that u P DompAq and that Au “ u
2 ` xu1 (where we denote by xv

the function x ÞÑ xvpxq).
3. Prove that C8

0 pRq is a core of A.
4. We set

D “ ␣
u P L2pRq : xu1 P L2pRq(

.

It is endowed with the norm defined by }u}D “ }u}L2pRq ` }xu1}L2pRq. Prove that C8
0 pRq is

dense in D.
5. Prove that DompAq “ D.

Exercise 5.8. Let A be the generator of a C0-semigroup. Let φ P DompAq and λ P C such
that Aφ “ λφ. Prove that for all t ě 0 we have etAφ “ etλφ.
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Exercise 5.9 (Dilation by a general vector field). Let X be a Lipschitzian vector field on
Rd. For x0 P Rd on note t ÞÑ φpt; x0q the solution on R of the problem

#
y1

x0 ptq “ Xpyx0 ptqq, @t P R,

y1
x0 p0q “ x0.

Then for t P R and x0 P R we set φtpx0q “ yx0 ptq. Then we have φ0 “ IdRd and φt`s “ φt˝φs

for all s, t P R. For t P R and u P L2pRdq we set

Stupxq “ detpdxφtq 1
2 upφtxq.

1. Prove that pStqtPR is a unitary group on L2pRdq.
2. What is the generator of pStqtPR ?

Exercise 5.10. Let A be the generator of a strongly continuous semigroup. We set

DompA8q “
č

nPN˚
DompAnq

(where, by induction, DompAnq “ ␣
φ P DompAn´1q : An´1φ P DompAq(

).
1. Prove that DompA8q is a subspace of DompAq, invariant by etA for all t ě 0.
2. We denote by C the set of smooth functions on R compactly supported in s0, `8r. Let
ϕ P C and ψ P E. We set

ψϕ “
ż `8

0
ϕpsqesAψ ds.

Prove that ψϕ P DompAq with

Aψϕ “ ´
ż `8

0
ϕ1psqesAψ ds.

3. Prove that ψϕ P DompA8q.
4. We set D “ span tψϕ, ψ P E, ϕ P Cu. Assume by contradiction that D is not dense in E and
consider ℓ P E1 such that xℓ, ψyE1,E “ 0 for all ψ P D (as given by the Hahn-Banach theorem).

a. Prove that
@
ℓ, esAψ

D
E1,E “ 0 for all s ě 0 and all ψ P E.

b. Deduce that D is dense in E.
5. Prove that DompA8q is a core for A.
6. Prove that DompAnq is a core for A for all n P N˚.
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