Chapter 5

Semigroups and evolution equations

In this chapter we discuss the properties of (strongly continuous) semigroups. This is motivated by the analysis of (linear but also non-linear) evolution (time-dependant) problems.

More precisely, given a Banach space E, an operator A on E and $\varphi_0 \in E$, we consider the linear Cauchy problem

$$\begin{cases} \varphi'(t) = A\varphi(t), & \forall t \ge 0, \\ \varphi(0) = \varphi_0. \end{cases}$$
(5.1)

Definition 5.1. Let I be an interval of \mathbb{R} which contains 0. A (strong) solution of (5.1) on I is a function $\varphi \in C^1(I; \mathsf{E}) \cap C^0(I; \mathsf{Dom}(A))$ which satisfies (5.1) in the natural sense.

5.1 Exponential of a bounded operator

If A is a bounded operator on E, we can set for all $t \in \mathbb{R}$

$$e^{tA} = \sum_{k=0}^{+\infty} \frac{t^k A^k}{k!}$$
(5.2)

The following results are consequencies of the properties of power series in a Banach space.

Proposition 5.2. (i) For $t \in \mathbb{R}$ we have $e^{tA} \in \mathcal{L}(\mathsf{E})$ and $\|e^{tA}\|_{\mathcal{L}(\mathsf{E})} \leq e^{|t|\|A\|_{\mathcal{L}(\mathsf{E})}}$.

- (ii) We have $e^{0A} = \mathrm{Id}_{\mathsf{E}}$.
- (iii) For $s, t \in \mathbb{R}$ we have $e^{tA}e^{sA} = e^{(t+s)A} = e^{sA}e^{tA}$.
- (iv) If $B \in \mathcal{L}(\mathsf{E})$ commutes with A, then it commutes with e^{tA} for all $t \ge 0$.
- (v) The map

$$\begin{cases} \mathbb{R} \to \mathcal{L}(\mathsf{E}) \\ t \mapsto e^{tA} \end{cases}$$

is of class C^{∞} and

$$\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A.$$

In particular, for $\varphi_0 \in \mathsf{E}$ the function $t \mapsto e^{tA}\varphi_0$ is a strong solution of (5.1) on \mathbb{R} .

The purpose of this chapter is to generalize these properties for an unbounded operator \mathscr{B} Ex. 5.1-5.2 A on E (in this case the exponential cannot be defined by the power series (5.2)).

5.2 Strongly continuous semigroups

When A is bounded, the solution of the problem (5.1) is given by a family of operators (e^{tA}) with good properties given in Proposition 5.2. The notion of strongly continuous semigroup generalizes these properties and will be at the heart of the discussion.

Definition 5.3. We say that the family $(S_t)_{t\geq 0}$ of operators in $\mathcal{L}(\mathsf{E})$ is a C^0 -semigroup (or strongly continuous semigroup) if

(i)
$$S_0 = \mathrm{Id}_{\mathsf{E}}$$
,

- (*ii*) $S_{t_1} \circ S_{t_2} = S_{t_1+t_2}$ for all $s, t \ge 0$;
- (iii) the map $t \mapsto S_t$ is strongly continuous on \mathbb{R}_+ (for all $\varphi \in \mathsf{E}$ the map $t \mapsto S_t \varphi \in \mathsf{E}$ is continuous on \mathbb{R}_+).

Remark 5.4. The second property implies that S_{t_1} commutes with S_{t_2} for all $t_1, t_2 \ge 0$. Remark 5.5. Notice that we do not require the continuity of the map $t \mapsto S_t$ for the topology of $\mathcal{L}(\mathsf{E})$.

Proposition 5.6. Let $(S_t)_{t\geq 0}$ be a C^0 -semigroup. There exist $M \geq 0$ and $\omega \in \mathbb{R}$ such that for all $t \in \mathbb{R}_+$ we have

$$\|S_t\|_{\mathcal{L}(\mathsf{E})} \leqslant M e^{\omega t}.$$
(5.3)

Moreover, if for some $t_0 \in \mathbb{R}_+$ we have $\|S_{t_0}\|_{\mathcal{L}(\mathsf{E})} < 1$ then (5.3) holds for some $\omega < 0$.

Proof. • Let $\varphi \in \mathsf{E}$. By continuity, there exists $C_{\varphi} > 0$ such that

$$t \in [0, 1], \quad \|S_t \varphi\|_{\mathsf{E}} \leq C_{\varphi} \|\varphi\|_{\mathsf{E}}$$

By the uniform boundedness principle, there exists $C \ge 1$ such that

$$\forall t \in [0,1], \quad \|S_t\|_{\mathcal{L}(\mathsf{E})} \leq C.$$

Then, for all $N \in \mathbb{N}^*$ and $t \in [N-1, N]$ we get

$$\|S_t\|_{\mathcal{L}(\mathsf{F})} \leqslant C^N \leqslant C^{t+1} = Ce^{t\ln(C)}.$$

This gives the first statement with M = C and $\omega = \ln(C)$.

• Now assume that $\alpha = \|S_{t_0}\|_{\mathcal{L}(\mathsf{E})} \in]0, 1[$ for some $t_0 > 0$. Let $C = \sup_{t \in [0, t_0]} \|S_t\|_{\mathcal{L}(\mathsf{E})}$. Then for $N \in \mathbb{N}^*$ and $t \in [(N-1)t_0, Nt_0]$ we have

$$\|S_t\|_{\mathcal{L}(\mathsf{E})} \leq \|S_{t_0}\|_{\mathcal{L}(\mathsf{E})}^{N-1} \|S_{t-(N-1)t_0}\| \leq C\alpha^{N-1} \leq \frac{M}{\alpha} \alpha^{\frac{t}{t_0}} = \frac{C}{\alpha} e^{t^{\frac{\ln(\alpha)}{t_0}}}.$$

Then (5.3) holds with $M = \frac{C}{\alpha}$ and $\omega = \frac{\ln(\alpha)}{t_0} < 0$.

Remark 5.7. To prove the continuity of $\varphi \mapsto S_t \varphi$ it is enough to prove that $S_t \varphi \to \varphi$ in E as $t \to 0^+$. Indeed, let $\varphi \in \mathsf{E}$ and $t_0 > 0$. For the right-continuity we simply write, for h > 0,

$$S_{t_0+h}\varphi - S_{t_0}\varphi = S_{t_0} \left(S_h\varphi - \varphi\right) \xrightarrow[h \to 0^+]{} 0.$$

On the other hand, by Proposition 5.6 S_{t_0-h} is bounded uniformly in $h \in [0, t_0]$, so

$$S_{t_0-h}\varphi - S_{t_0}\varphi = S_{t_0-h}(\varphi - S_h\varphi) \xrightarrow[h \to 0^+]{} 0.$$

Remark 5.8. Let $(S_t)_{t\geq 0}$ be a strongly continuous semigroup. The map

$$\begin{cases} \mathbb{R}_+ \times \mathsf{E} & \to & \mathsf{E} \\ (t,\varphi) & \mapsto & S_t\varphi \end{cases}$$

is continous. Let $(t, \varphi) \in \mathbb{R}_+ \times \mathsf{E}$. For $(\tau, \psi) \in \mathbb{R}_+ \times \mathsf{E}$ we have

$$\|S_{\tau}\psi - S_{t}\varphi\|_{\mathsf{E}} \leq \|S_{\tau}\psi - S_{\tau}\varphi\|_{\mathsf{E}} + \|S_{\tau}\varphi - S_{t}\varphi\|_{\mathsf{E}}$$

The first term is smaller than $||S_{\tau}||_{\mathcal{L}(\mathsf{E})} ||\psi - \varphi||_{\mathsf{E}}$, and $||S_{\tau}||_{\mathcal{L}(\mathsf{E})}$ is uniformly bounded for $\tau \in [t-1, t+1]$ by Proposition 5.6. The second term goes to 0 as $\tau \to t$ by strong continuity. This proves that

$$\|S_{\tau}\psi - S_t\varphi\|_{\mathsf{E}} \xrightarrow[(\tau,\psi)\to(t,\varphi)]{} 0.$$

Definition 5.9. We say that the family $(S_t)_{t \in \mathbb{R}}$ of operators in $\mathcal{L}(\mathsf{E})$ is a C^0 -group (or strongly continuous group) if

- (i) $S_0 = \mathrm{Id}_{\mathsf{E}}$,
- (ii) $S_{t_1} \circ S_{t_2} = S_{t_1+t_2}$ for all $s, t \in \mathbb{R}$,
- (iii) the map $t \mapsto S_t$ is strongly continuous on \mathbb{R} .

Remark 5.10. If $(S_t)_{t\in\mathbb{R}}$ is a strongly continuous group then $S_{-t} = S_t^{-1}$ for all $t \in \mathbb{R}$. Moreover, $(S_t)_{t\geq 0}$ and $(S_{-t})_{t\geq 0}$ are strongly continuous semigroups.

- **Definition 5.11.** A unitary group on \mathcal{H} is a strongly continuous group $(U_t)_{t \in \mathbb{R}}$ such that U_t is unitary on \mathcal{H} for all $t \in \mathbb{R}$.
 - A contractions semigroup on E is a strongly continuous semigroup $(S_t)_{t\geq 0}$ such that $\|S_t\|_{\mathcal{L}(\mathsf{E})} \leq 1$ for all $t \geq 0$.

Example 5.12 (Translation). For $t \in \mathbb{R}$ we consider on $L^2(\mathbb{R})$ the operator S_t such that for $u \in L^2(\mathbb{R})$ and $x \in \mathbb{R}$ we have

$$(S_t u)(x) = u(x+t)$$

This defines a unitary group on $L^2(\mathbb{R})$.

Example 5.13 (Dilation). For $t \in \mathbb{R}$ we consider on $L^2(\mathbb{R})$ the operator S_t such that for $u \in L^2(\mathbb{R})$ and $x \in \mathbb{R}$ we have

$$(S_t u)(x) = e^{2t} u(e^t x).$$

This defines a unitary group on $L^2(\mathbb{R})$.

Example 5.14 (Heat semigroup). We set $S_0 = \mathrm{Id}_{L^2(\mathbb{R})}$. For t > 00, $u \in L^2(\mathbb{R})$ and $x \in \mathbb{R}$ we set

$$(S_t u)(x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4t}} u(y) \, \mathrm{d}y.$$

Then we have $S_t u = G_t * u$ with

$$G(s) = \frac{e^{-\frac{s^2}{4t}}}{\sqrt{4\pi t}}.$$

We have $||G_t||_{L^1(\mathbb{R})} = 1$, $G_{t_1} * G_{t_2} = G_{t_1+t_2}$ and G_t is an approximation of δ when $t \to 0$. Thus from the properties of the convolution product we deduce that $(S_t)_{t\geq 0}$ is a contractions semigroup on $L^2(\mathbb{R})$.

5.3 Dissipative operators

We set

$$\mathbb{C}_+ = \left\{ z \in \mathbb{C} : \operatorname{Re}(z) > 0 \right\}.$$

Definition 5.15. Let A be an operator on E. We say that A is dissipative if

$$\forall \varphi \in \mathsf{Dom}(A), \forall z \in \mathbb{C}_+, \quad ||(A-z)\varphi||_{\mathsf{F}} \ge \operatorname{Re}(z) ||u||_{\mathsf{F}}$$

Remark 5.16. In particular, if A is dissipative then any $z \in \mathbb{C}_+$ is a regular point of A. Example 5.17. A skew-symmetric operator on the Hilbert space \mathcal{H} is dissipative (see Proposition 3.7).

Proposition 5.18. Let A be an operator on \mathcal{H} . Then A is dissipative if and only if

$$\forall \varphi \in \mathsf{Dom}(A), \quad \operatorname{Re}\langle A\varphi, \varphi \rangle \leqslant 0. \tag{5.4}$$

Proof. Let $\varphi \in \mathsf{Dom}(A)$. For $z = \tau + i\mu \in \mathbb{C}_+$ with $\tau > 0$ and $\mu \in \mathbb{R}$ we have

$$\|(A-z)\varphi\|_{\mathcal{H}}^{2} = \|(A-i\mu)\varphi\|_{\mathcal{H}}^{2} - 2\operatorname{Re}\langle (A-i\mu)\varphi, \tau\varphi\rangle_{\mathcal{H}} + \tau^{2} \|u\|_{\mathcal{H}}^{2}$$
$$= \|(A-i\mu)\varphi\|_{\mathcal{H}}^{2} - 2\tau\operatorname{Re}\langle A\varphi, \varphi\rangle_{\mathcal{H}} + \tau^{2} \|u\|_{\mathcal{H}}^{2}.$$
(5.5)

If (5.4) holds, this gives

$$\|(A-z)\varphi\|_{\mathcal{H}}^2 \ge \tau^2 \|u\|_{\mathcal{H}}^2,$$

so A is dissipative. Conversely, if A is dissipative then (5.5) gives

$$2\tau \operatorname{Re} \langle A\varphi, \varphi \rangle_{\mathcal{H}} - \left\| (A - i\mu)\varphi \right\|_{\mathcal{H}}^2 = \tau^2 \left\| u \right\|_{\mathcal{H}}^2 - \left\| (A - z)\varphi \right\|_{\mathcal{H}}^2 \leq 0.$$

We divide by τ and let τ go to $+\infty$. This gives (5.4).

Definition 5.19. Let A be a dissipative operator on E. We say that A is maximal dissipative if it is dissipative and any $z \in \mathbb{C}_+$ belongs to its resolvent set.

Example 5.20. If A is a skew-adjoint operator on the Hilbert space \mathcal{H} , then A and -A are maximal dissipative. In particular, if A is selfadjoint then iA and -iA are maximal dissipative.

Example 5.21. The Laplacian Δ with domain $\mathsf{Dom}(\Delta) = H^2(\mathbb{R}^d)$ is maximal dissipative on $L^2(\mathbb{R}^d)$. More generally, a selfadjoint and non-positive operator is maximal dissipative.

Remark 5.22. • If A is maximal dissipative then for all $z \in \mathbb{C}_+$ we have

$$\|(A-z)^{-1}\|_{\mathcal{L}(\mathsf{E})} \le \frac{1}{\operatorname{Re}(z)}.$$
 (5.6)

 If A is an operator such that C₊ ⊂ ρ(A) and (5.6) holds, then A is maximal dissipative. However, we may have C₊ ⊂ ρ(A) even if A is not maximal dissipative.

Proposition 5.23. Let A be a dissipative operator on E. Assume that A is closed and that $\operatorname{Ran}(A - z_0)$ is dense in E for some $z_0 \in \mathbb{C}_+$. Then A is maximal dissipative. In particular, if $\rho(A) \cap \mathbb{C}_+ \neq \emptyset$, then A is maximal dissipative.

Proof. Since A is closed and dissipative, $(A - z_0)$ is injective with closed range by Proposition 1.36. By assumption $(A - z_0)$ is then bijective, and $z_0 \in \rho(A)$.

Let $(z_n)_{n\in\mathbb{N}}$ be a sequence in $\rho(A) \cap \mathbb{C}_+$ which goes to some $z \in \mathbb{C}_+$. We have

$$\limsup_{n \in \mathbb{N}} \left\| (A - z)^{-1} \right\| \leq \frac{1}{\operatorname{Re}(z)} < +\infty.$$

This implies that $z \in \rho(A)$. Then $\rho(A)$ is closed in \mathbb{C}_+ . Since it is also open and \mathbb{C}_+ is connected, we have $\mathbb{C}_+ \subset \rho(A)$.

Proposition 5.24. Let A be a densely defined and closed operator on the Hilbert space \mathcal{H} . Assume that A and A^* are dissipative. Then A is maximal dissipative.

Proof. By Proposition 5.23, it is enough to show that $\operatorname{Ran}(A-1)$ is dense in \mathcal{H} . Since A^* is dissipative, (A^*-1) is injective and $\overline{\operatorname{Ran}(A-1)} = \ker(A^*-1)^{\perp} = \mathcal{H}$.

Proposition 5.25. Let A be a maximal dissipative operator on the Hilbert space \mathcal{H} . Then A is densely defined.

Proof. Let $\varphi \in \mathsf{Dom}(A)^{\perp}$ and $\psi = (A-1)^{-1}\varphi \in \mathsf{Dom}(A)$. We have

$$0 = \langle \varphi, \psi \rangle_{\mathcal{H}} = \langle A\psi - \psi, \psi \rangle_{\mathcal{H}},$$

 \mathbf{SO}

$$\|\psi\|_{\mathcal{H}}^2 = \operatorname{Re} \|\psi\|_{\mathcal{H}}^2 = \operatorname{Re} \langle A\psi, \psi \rangle_{\mathcal{H}} \leq 0.$$

This implies that $\psi = 0$ and hence $\varphi = 0$.

Proposition 5.26. Let A be a maximal dissipative operator. Let B be a dissipative operator. Assume that B is A-bounded with bound smaller than 1. Then A + B is maximal dissipative.

Proof. The proof is similar to the proof of Theorem 3.44.

Example 5.27. Let $V \in L^{\infty}(\mathbb{R}^d, \mathbb{C})$ be such that $\operatorname{Im}(V(x)) \leq 0$. We consider the Schrödinger operator $H = H_0 + V(x)$, where H_0 is the free Laplacian. Then -iH is a maximal dissipative operator. Indeed $-iH_0$ is skew-adjoint and -iV is dissipative and bounded, so -iH is maximal dissipative by Proposition 5.26.

Example 5.28. Let m > 0. We consider on $\mathscr{H} = H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ the norm defined by

$$\|(u,v)\|_{\mathscr{H}}^2 = \|\nabla u\|_{L^2(\mathbb{R}^d)}^2 + m \|u\|_{L^2(\mathbb{R}^d)}^2 + \|v\|_{L^2(\mathbb{R}^d)}^2.$$

Then we define on \mathscr{H} the operator

$$\mathcal{W}_a = \begin{pmatrix} 0 & 1\\ \Delta - m & -a \end{pmatrix},$$

with domain

$$\mathsf{Dom}(\mathcal{W}) = H^2(\mathbb{R}^d) \times H^1(\mathbb{R}^d).$$

We know by Exercise 3.5 that \mathcal{W}_0 is skew-adjoint on \mathcal{H} . Since the operator

$$\begin{pmatrix} 0 & 0 \\ 0 & -a \end{pmatrix}$$

is bounded and dissipative on \mathscr{H} , we get by Proposition 5.26 that \mathcal{W}_a is maximal dissipative on \mathscr{H} .

🖉 Ex. 5.5

Proposition 5.29. Let A be an operator on \mathcal{H} . Then A is skew-adjoint if and only if A and -A are maximal dissipative.

Proof. • Assume that A is skew-adjoint. By Proposition 5.18, A and -A are dissipative. Moreover 1 belongs to the resolvent set of A and -A, so they are both maximal dissipative by Proposition 5.23.

• Conversely, assume that A and -A are maximal dissipative. By Proposition 5.18 we have $\operatorname{Re}\langle A\varphi,\varphi\rangle = 0$ for all $\varphi \in \operatorname{Dom}(A)$, so A is skew-symmetric by Remark 3.2. By definition, 1 belongs to the resolvent sets of A and -A, so A is skew-adjoint by Proposition 3.22.

5.4 Generators of C^0 -semigroups

Definition 5.30. Let $(S_t)_{t\geq 0}$ be a C^0 -semigroup on E . We denote by $\mathsf{Dom}(A)$ the set of $\varphi \in \mathsf{E}$ such that the limit

$$\lim_{t \to 0^+} \frac{S_t \varphi - \varphi}{t}$$

exists in E. In this case, we denote by $A\varphi$ this limit. This defines an operator A on E with domain Dom(A). We say that A is the generator of $(S_t)_{t \ge 0}$.

Example 5.31. Let $A \in \mathcal{L}(\mathsf{E})$. For $t \ge 0$ we set $S_t = e^{tA}$, as defined by (5.2). Then the generator of (S_t) is... A.

In general, if A is the generator of the semigroup $(S_t)_{t \ge 0}$ then for all $t \ge 0$ we can write $S_t = e^{tA}$.

Proposition 5.32. Let $(S_t)_{t\geq 0}$ be a C^0 -semigroup on E . Let A be its generator.

(i) Let $\varphi \in \text{Dom}(A)$. The map $t \mapsto S_t \varphi$ is differentiable from \mathbb{R}_+ to E , we have $S_t \varphi \in \text{Dom}(A)$ for all $t \in \mathbb{R}_+$ and

$$\frac{d}{dt}(S_t\varphi) = S_tA\varphi = AS_t\varphi.$$

(ii) Let $\varphi \in \mathsf{E}$. For $t \ge 0$ we have

$$\int_0^t S_\tau \varphi \, \mathrm{d}\tau \quad \in \mathsf{Dom}(A)$$

and

$$S_t \varphi - \varphi = A \int_0^t S_\tau \varphi \, \mathrm{d}\tau.$$

If $\varphi \in \mathsf{Dom}(A)$ we also have

$$S_t \varphi - \varphi = A \int_0^t S_\tau \varphi \, \mathrm{d}\tau = \int_0^t S_\tau A \varphi \, \mathrm{d}\tau.$$

Proof. • Let $t \ge 0$. For $\tau > 0$ we have

$$\frac{S_{\tau} - \mathrm{Id}}{\tau} S_t \varphi = S_t \frac{S_{\tau} - \mathrm{Id}}{\tau} \varphi \xrightarrow[\tau \to 0^+]{} S_t A \varphi.$$

This proves that $S_t \varphi \in \mathsf{Dom}(A)$ and $AS_t \varphi = S_t A \varphi$. Now let t > 0. For $\tau > 0$ we have

$$\frac{S_{t+\tau}\varphi - S_t\varphi}{\tau} \xrightarrow[\tau \to 0]{} S_t A\varphi.$$

and, for $\tau \in]0, t]$,

$$\frac{S_{t-\tau}\varphi - S_t\varphi}{-\tau} = S_{t-\tau} \frac{S_\tau\varphi - \varphi}{\tau} \xrightarrow[\tau \to 0]{} S_t A\varphi.$$

This proves that the map $t \mapsto S_t \varphi$ is differentiable and

$$\frac{d}{dt}(S_t\varphi) = S_t A\varphi.$$

• For h > 0 we have

$$\begin{aligned} \frac{1}{h} \left(S_h \int_0^t S_\tau \varphi \, \mathrm{d}\tau - \int_0^t S_\tau \varphi \, \mathrm{d}\tau \right) &= \frac{1}{h} \left(\int_0^t S_{\tau+h} \varphi \, \mathrm{d}\tau - \int_0^t S_\tau \varphi \, \mathrm{d}\tau \right) \\ &= \frac{1}{h} \left(\int_h^{t+h} S_\tau \varphi \, \mathrm{d}\tau - \int_0^t S_\tau \varphi \, \mathrm{d}\tau \right) \\ &= \frac{1}{h} \left(\int_t^{t+h} S_\tau \varphi \, \mathrm{d}\tau - \int_0^h S_\tau \varphi \, \mathrm{d}\tau \right) \\ &\xrightarrow[h \to 0]{} S_t \varphi - \varphi. \end{aligned}$$

This proves the first part of the second statement. Now assume that $\varphi \in \mathsf{Dom}(A)$. Since

$$S_{\tau} \frac{S_h \varphi - \varphi}{h} \xrightarrow[h \to 0]{} S_{\tau} A \varphi$$

uniformly in $\tau \in [0, t]$ (by Proposition 5.6), we have

$$\frac{S_h - \mathrm{Id}}{h} \int_0^t S_\tau \varphi \,\mathrm{d}\tau = \int_0^t S_\tau \frac{S_h \varphi - \varphi}{h} \,\mathrm{d}\tau \xrightarrow[h \to 0]{} \int_0^t S_\tau A \varphi \,\mathrm{d}\tau,$$

and the proof is complete.

Remark 5.33. If A is not closed we cannot just write $A \int_0^t S_\tau \varphi \, d\tau = \int_0^t A S_\tau \varphi \, d\tau$ to prove the last statement of the proposition. We are actually going to use this property to prove that A is closed.

Proposition 5.34. The generator of a C^0 -semigroup is a closed and densely defined operator that determines the semigroup uniquely.

Proof. • Let $\varphi \in \mathsf{E}$. By Proposition 5.32, we have for all h > 0

$$\frac{1}{h} \int_0^h S_\tau \varphi \, \mathrm{d}\tau \in \mathsf{Dom}(A).$$

Since this goes to φ as $h \to 0$, this proves that $\mathsf{Dom}(A)$ is dense in E.

• Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence in $\mathsf{Dom}(A)$ such that φ_n goes to some φ and $A\varphi_n$ goes to some ψ in E. For $n \in \mathbb{N}$ and h > 0 we have by Proposition 5.32

$$S_h \varphi_n - \varphi_n = \int_0^h S_\tau A \varphi_n \, \mathrm{d}\tau.$$

Taking the limit $n \to +\infty$ and dividing by h, and then taking the limit $h \to 0$, we get

$$\frac{S_h \varphi - \varphi}{h} = \frac{1}{h} \int_0^h S_\tau \psi \, \mathrm{d}\tau \xrightarrow[h \to 0]{} \psi.$$

This proves that $\varphi \in \mathsf{Dom}(A)$ with $A\varphi = \psi$. Thus A is closed.

• Assume that $(\tilde{S}_t)_{t\geq 0}$ is a C^0 -semigroup whose generator is A. Let $\varphi \in \mathsf{Dom}(A)$ and t > 0. For $\theta \in [0, t]$ we set

$$\psi(\theta) = \tilde{S}_{t-\theta} S_{\theta} \varphi \in \mathsf{E}.$$

For $\theta \in [0, t]$ and $h \in \mathbb{R}^*$ such that $\theta + h \in [0, t]$ we have

$$\frac{\psi(\theta+h)-\psi(\theta)}{h} = \tilde{S}_{t-\theta-h} \left(\frac{S_{\theta+h}\varphi - S_{\theta}\varphi}{h} - AS_{\theta}\varphi\right) + \tilde{S}_{t-\theta-h}AS_{\theta}\varphi + \frac{\tilde{S}_{t-\theta-h} - \tilde{S}_{t-\theta}}{h}S_{\theta}\varphi.$$

Since $\tilde{S}_{t-\theta-h}$ is bounded uniformly in $h \in [-1,1] \setminus \{0\}$ by Proposition 5.6, this gives by Proposition 5.32

$$\frac{\psi(\theta+h)-\psi(\theta)}{h} \xrightarrow[h\to 0]{} \tilde{S}_{t-\theta}AS_{\theta}\varphi - A\tilde{S}_{t-\theta}S_{\theta}\varphi = 0.$$

Then $S_t \varphi = \psi(t) = \psi(0) = \tilde{S}_t \varphi$. Since $\mathsf{Dom}(A)$ is dense in E , this proves that $\tilde{S}_t = S_t$ for all $t \ge 0$.

Proposition 5.35. Let A be the generator of a C^0 -semigroup $(e^{tA})_{t\geq 0}$. If D is a subspace of Dom(A) dense in E and invariant by S_t for all $t \geq 0$, then it is a core of A.

Proof. We have to prove that D is dense in Dom(A) (for the graph norm). Let $\varphi \in Dom(A)$ and $\varepsilon > 0$. Let (φ_n) be a sequence in D which goes to φ in E. By Proposition 5.32 there exists t > 0 such that

$$\left\|\frac{1}{t}\int_0^t e^{sA}\varphi\,\mathrm{d}s - \varphi\right\|_{\mathsf{Dom}(A)} = \left\|\frac{1}{t}\int_0^t e^{sA}\varphi\,\mathrm{d}s - \varphi\right\|_\mathsf{E} + \left\|\frac{1}{t}\int_0^t e^{sA}A\varphi\,\mathrm{d}s - A\varphi\right\|_\mathsf{E} \leqslant \frac{\varepsilon}{3}.$$

Again by Proposition 5.32 we have

$$A\left(\frac{1}{t}\int_0^t e^{sA}(\varphi_n-\varphi)\,\mathrm{d}s\right) = \frac{S_t-\mathrm{Id}}{t}(\varphi_n-\varphi)\xrightarrow[n\to\infty]{}0,$$

so there exists $n \in \mathbb{N}$ such that

$$\left\|\frac{1}{t}\int_0^t e^{sA}\varphi_n\,\mathrm{d}s - \frac{1}{t}\int_0^t e^{sA}\varphi\,\mathrm{d}s\right\|_{\mathsf{Dom}(A)} \leqslant \frac{\varepsilon}{3}.$$

We see the integral $\frac{1}{t} \int_0^t e^{sA} \varphi_n \, ds$ as a Riemann integral. In particular, there exists $n \in \mathbb{N}^*$ such that

$$\left\|\frac{1}{t}\int_0^t e^{sA}\varphi_n \,\mathrm{d}s - \frac{1}{N}\sum_{k=1}^N e^{\frac{tkA}{N}}\varphi_n\right\|_{\mathsf{Dom}(A)} \leqslant \frac{\varepsilon}{3}.$$

Since D is invariant by $e^{\frac{tkA}{N}}$ for all k, we have $\frac{1}{N}\sum_{k=1}^{N}e^{\frac{tkA}{N}}\varphi_n \in D$ and the conclusion follows.

Example 5.36. Let A be the generator of the translation semigroup (Example 5.12). Let $u \in C_0^{\infty}(\mathbb{R})$. Then we have

$$\left\|\frac{u(\cdot+h)-u(\cdot)}{h}-u'(\cdot)\right\|_{L^2(\mathbb{R})}\xrightarrow[h\to 0]{} 0,$$

so $u \in \mathsf{Dom}(A)$ and Au = u'. Since $C_0^{\infty}(\mathbb{R})$ is left invariant by translations and is dense in $L^2(\mathbb{R})$, it is a core of A by Proposition 5.35. This implies that A is the derivative operator, set on $\mathsf{Dom}(A) = H^1(\mathbb{R})$.

Theorem 5.37. Let A be the generator of a C^0 -semigroup $(S_t)_{t\geq 0}$. Let $M \geq 1$ and $\omega \in \mathbb{R}$ be given by Proposition 5.6. Let $z \in \mathbb{C}$ with $\operatorname{Re}(z) > \omega$. Then $z \in \rho(A)$ and for $\varphi \in \mathsf{E}$ we have

$$(A-z)^{-1}\varphi = -\int_0^{+\infty} e^{-tz} S_t \varphi \,\mathrm{d}t = -\int_0^{+\infty} e^{t(A-z)} \varphi \,\mathrm{d}t.$$

Moreover,

$$\left\| (A-z)^{-1} \right\|_{\mathcal{L}(\mathsf{E})} \leqslant \frac{M}{\operatorname{Re}(z) - \omega}.$$

In particular, if $(S_t)_{t\geq 0}$ is a contractions semigroup, then A is maximal dissipative.

The integrals have to be understood in the sense of Riemann integrals for continuous functions

$$\int_0^{+\infty} e^{t(A-z)} \varphi \, \mathrm{d}t = \lim_{T \to +\infty} \int_0^T e^{t(A-z)} \varphi \, \mathrm{d}t.$$

It is well defined since for all $t \ge 0$ we have $\|e^{t(A-z)}\|_{\mathcal{L}(\mathsf{E})} \le M e^{t(\omega - \operatorname{Re}(z))}$.

Proof. • We consider $R \in \mathcal{L}(\mathsf{E})$ defined by

$$\forall \varphi \in \mathsf{E}, \quad R\varphi = \int_0^{+\infty} e^{t(A-z)} \varphi \, \mathrm{d}t.$$

In particular,

$$\|R\|_{\mathcal{L}(\mathsf{E})} \leqslant \int_0^{+\infty} e^{-t\operatorname{Re}(z)} \|e^{tA}\|_{\mathcal{L}(\mathsf{E})} \, \mathrm{d}t \leqslant M \int_0^{+\infty} e^{t(\omega - \operatorname{Re}(z))} \, \mathrm{d}t = \frac{M}{\operatorname{Re}(z) - \omega}.$$

• We have

$$\begin{aligned} \frac{e^{hA} - \mathrm{Id}}{h} R\varphi &= \frac{1}{h} \left(\int_{0}^{+\infty} e^{-tz} e^{(t+h)A} \varphi \, \mathrm{d}t - \int_{0}^{+\infty} e^{-tz} e^{tA} \varphi \, \mathrm{d}t \right) \\ &= \frac{1}{h} \left(e^{hz} \int_{h}^{+\infty} e^{t(A-z)} \varphi \, \mathrm{d}t - \int_{0}^{+\infty} e^{t(A-z)} \varphi \, \mathrm{d}t \right) \\ &= -\frac{e^{hz}}{h} \int_{0}^{h} e^{t(A-z)} \varphi \, \mathrm{d}t + \frac{e^{hz} - 1}{h} \int_{0}^{+\infty} e^{t(A-z)} \varphi \, \mathrm{d}t \\ \xrightarrow{h \to 0} -\varphi + zR\varphi. \end{aligned}$$

This proves that $\operatorname{Ran}(R) \subset \operatorname{Dom}(A)$ and

$$(A-z)R = -\operatorname{Id}.$$

• Now let $\psi \in \mathsf{Dom}(A)$. We have

$$\int_0^T e^{t(A-z)} \psi \, \mathrm{d}t \xrightarrow[T \to +\infty]{} R \psi,$$

and

$$(A-z)\int_0^T e^{t(A-z)}\varphi \,\mathrm{d}t = \int_0^T e^{t(A-z)}(A-z)\varphi \,\mathrm{d}t \xrightarrow[T \to +\infty]{} R(A-z)\psi.$$

Since (A - z) is closed this proves that $R(A - z)\psi = (A - z)R\psi = -\psi$. Thus (A - z) is invertible and its inverse is given by $(A - z)^{-1} = -R$.

• Finally, the fact that the generator of a contractions semigroup $(M = 1 \text{ and } \omega = 0)$ is maximal dissipative follows from Remark 5.22.

Definition 5.38. Let $(S_t)_{t\geq 0}$ a strongly continuous group. Then we denote by $\mathsf{Dom}(A)$ the set of $\varphi \in \mathsf{E}$ such that the map $t \mapsto S_t \varphi$ is differentiable at t = 0, and for $\varphi \in \mathsf{Dom}(A)$ we denote by $A\varphi$ the derivative at 0.

Theorem 5.39. The generator of a unitary group on the Hilbert space \mathcal{H} is skew-adjoint.

Proof. Let $(U_t)_{t\in\mathbb{R}}$ be a unitary group and let A be its generator. A is in particular the generator of the contractions semigroup $(U_t)_{t\geq 0}$, so it is maximal dissipative. On the other hand, the generator of the contractions semigroup $(U_{-t})_{t\geq 0}$ is -A, which is also maximal dissipative. Then A is skew-adjoint by Proposition 5.29.

5.5 Hille-Yosida Theorem

Our question in this section is the following. Given an operator A on E, is there a strongly continuous semigroup on E whose generator is A?

Lemma 5.40. Let A be a densely defined operator. Assume that there exist $\omega \in \mathbb{R}$ and M > 0 such that $[\omega, +\infty[\subset \rho(A) \text{ and } \| (A-\lambda)^{-1} \|_{\mathcal{L}(\mathsf{E})} \leq \frac{M}{\lambda}$ for all $\lambda \geq \omega$.

- (i) For $\varphi \in \mathsf{E}$ we have $-\lambda(A-\lambda)^{-1}\varphi \to \varphi$ as $\lambda \to +\infty$.
- (ii) For $\varphi \in \mathsf{Dom}(A)$ we have $-\lambda A(A-\lambda)^{-1}\varphi = -\lambda(A-\lambda)^{-1}A\varphi \to A\varphi$ as $\lambda \to +\infty$.

Proof. For $\varphi \in \mathsf{Dom}(A)$ we have

$$\left\|-\lambda(A-\lambda)^{-1}\varphi-\varphi\right\|_{\mathsf{E}} = \left\|(A-\lambda)^{-1}A\varphi\right\| \leqslant \frac{M\left\|A\varphi\right\|_{\mathsf{E}}}{\lambda} \xrightarrow[\lambda \to +\infty]{} 0.$$

Since $\lambda(A - \lambda)^{-1}$ is bounded uniformly in $\lambda \ge \omega$, we deduce the first statement for all $\varphi \in \mathsf{E}$. Then for $\varphi \in \mathsf{Dom}(A)$ we apply the first statement to $A\varphi$ to get the second.

Theorem 5.41 (Hille-Yosida). Let A be a densely defined operator. Assume that $]0, +\infty[\subset \rho(A) \text{ and }]$

$$\forall \lambda > 0, \quad \left\| (A - \lambda)^{-1} \right\|_{\mathcal{L}(\mathsf{E})} \leq \frac{1}{\lambda}.$$

Then A generates a contractions semigroup. In particular, a densely defined and maximal dissipative operator generates a contractions semigroup.

Proof. For $n \in \mathbb{N}^*$ we consider the bounded operator

$$A_n = -nA(A-n)^{-1} = -n - n^2(A-n)^{-1}.$$

• For $t \ge 0$ we have

$$\|e^{tA_n}\|_{\mathcal{L}(\mathsf{E})} = e^{-nt} e^{tn^2 \|(A-n)^{-1}\|_{\mathcal{L}(\mathsf{E})}} \leqslant e^{-nt} e^{nt} = 1.$$

Let $\varphi \in \mathsf{Dom}(A)$ and $t \ge 0$. A_n commutes with A_m and hence with e^{sA_m} for all $s \ge 0$, so

$$e^{tA_n}\varphi - e^{tA_m}\varphi = \int_0^t \frac{d}{ds} \left(e^{(t-s)A_m} e^{sA_n}\varphi \right) \mathrm{d}s = \int_0^t e^{(t-s)A_m} e^{sA_n} (A_n\varphi - A_m\varphi) \,\mathrm{d}s.$$

This gives

$$\left\| e^{tA_n} \varphi - e^{tA_m} \varphi \right\|_{\mathsf{E}} \leqslant t \left\| A_n \varphi - A_m \varphi \right\|_{\mathsf{E}}.$$

Since $(A_n\varphi)$ is a Cauchy sequence (by Lemma 5.40), the sequence $(e^{tA_n}\varphi)$ converges uniformly on $t \in [0, t_0]$ for any $t_0 > 0$. Since $||e^{tA_n}|| \leq 1$, the same conclusion holds for any $\varphi \in \mathsf{E}$. We denote by $S_t\varphi$ the limit of $e^{tA_n}\varphi$.

• Let $\varphi \in \mathsf{E}$. Since the sequence of continuous maps $(e^{tA_n}\varphi)$ converges locally uniformly, the map $t \mapsto S_t\varphi$ is continuous on \mathbb{R}_+ . Let $t, t_1, t_2 \ge 0$. For $n \in \mathbb{N}$ we have

$$\left\|e^{tA_n}\varphi\right\|_{\mathsf{E}} \leqslant \left\|\varphi\right\|_{\mathsf{E}} \quad \text{and} \quad e^{t_1A_n}e^{t_2A_n}\varphi = e^{(t_1+t_2)A_n}\varphi.$$

Taking the limit $n \to +\infty$ gives

$$\|S_t\varphi\|_{\mathsf{E}} \leq \|\varphi\|_{\mathsf{E}} \quad \text{and} \quad S_{t_1}S_{t_2}\varphi = S_{t_1+t_2}\varphi.$$

This proves that (S_t) is a C^0 -semigroup on E.

• We denote by B (with domain $\mathsf{Dom}(B)$) the generator of the semigroup (S_t) . Let $\varphi \in \mathsf{Dom}(A)$ and $t_0 > 0$. On $[0, t_0]$ the map $t \mapsto e^{tA_n}\varphi$ and its derivative $t \mapsto e^{tA_n}A_n\varphi$ converge uniformly to $t \mapsto S_t\varphi$ and $S_tA\varphi$. This implies that $S_t\varphi$ is differentiable at time 0 with derivative $A\varphi$. Thus $\varphi \in \mathsf{Dom}(B)$ and $B\varphi = A\varphi$. Now let $\varphi \in \mathsf{Dom}(B)$. Since (A-1) is surjective, there exists $\psi \in \mathsf{Dom}(A)$ such that $(B-1)\varphi = (A-1)\psi = (B-1)\psi$. Since (B-1) is injective, we have $\varphi = \psi \in \mathsf{Dom}(A)$ so $\mathsf{Dom}(B) \subset \mathsf{Dom}(A)$. This proves that A = B is the generator of (S_t) .

Theorem 5.42. A skew-adjoint operator A on \mathcal{H} generates a unitary group.

Proof. Since A are -A are maximal dissipative, they generate two contractions semigroups $(S_t^+)_{t\geq 0}$ and $(S_t^-)_{t\geq 0}$.

Let $\varphi \in \mathsf{Dom}(A) = \mathsf{Dom}(-A)$. Let $t \in \mathbb{R}$. For $\tau \in \mathbb{R} \setminus \{t\}$ we have

$$\frac{S_\tau^- S_\tau^+ \varphi - S_t^- S_t^+ \varphi}{t - \tau} = S_\tau^- \frac{S_\tau^+ \varphi - S_t^+ \varphi}{t - \tau} + \frac{(S_\tau^- - S_t^-) S_t^+ \varphi}{t - \tau}$$

Since $||S_{\tau}^{-}|| \leq 1$ and $S_{t}^{+}\varphi \in \mathsf{Dom}(A)$ we get

$$\frac{S_{\tau}^{-}S_{\tau}^{+}\varphi - S_{t}^{-}S_{t}^{+}\varphi}{t - \tau} \xrightarrow[\tau \to t]{} S_{t}^{-}AS_{t}^{+}\varphi - S_{t}^{-}AS_{t}^{+} = 0.$$

This proves that for all $t \in \mathbb{R}$ we have

$$S_t^- S_t^+ \varphi = \varphi.$$

Similarly, $S_t^+ S_t^- \varphi = \varphi$ for all $\varphi \in \mathsf{Dom}(A)$. By continuity of S_t^+ and S_t^- and by density of $\mathsf{Dom}(A)$, these equalities hold for all $\varphi \in \mathcal{H}$, so $S_t^- = (S_t^+)^{-1}$ for all $t \ge 0$. For $t \in \mathbb{R}$ we set

$$U_t = \begin{cases} S_t^+ & \text{if } t \ge 0, \\ S_{-t}^- & \text{if } t \le 0. \end{cases}$$

This defines a strongly continuous group $(U_t)_{t\in\mathbb{R}}$ on \mathcal{H} . Finally for $t\in\mathbb{R}$ and $\varphi\in\mathcal{H}$ we have

$$\|\varphi\| = \|U_{-t}U_t\varphi\| \leqslant \|U_t\varphi\| \leqslant \varphi,$$

so U_t is an isometry. Since it is surjective, it is unitary and the proof is complete.

5.6 Inversion formula and application to exponential decay

Let A be a maximal dissipative operator on \mathcal{H} . Theorem 5.37 gives an expression of the resolvent of A in terms of its propagator. We would like to write conversely the propagator in terms of the resolvent.

Let $\varphi \in \mathcal{H}$ and $\mu > 0$. By Theorem 5.37 we can write for all $\tau \in \mathbb{R}$

$$\left(A - (\mu + i\tau)\right)^{-1} \varphi = -\int_0^{+\infty} e^{-it\tau} e^{t(A-\mu)} \varphi \,\mathrm{d}t.$$

This means that the map $\tau \mapsto (A - (\mu + i\tau))^{-1}\varphi$ is the Fourier transform of the map $t \mapsto -\mathbb{1}_{\mathbb{R}_+}(t)e^{t(A-\mu)}\varphi$. We would like to inverse this relation. However, in general, these functions are not in $L^2(\mathbb{R}; \mathcal{H})$ and the map $\tau \mapsto (A - (\mu + i\tau))^{-1}\varphi$ is not integrable. The idea is to apply the inverse Fourier formula at least for "regular" vectors.

Lemma 5.43. Let A be an operator on E with non-empty resolvent set and $z_0 \in \rho(A)$. Let $k \in \mathbb{N}^*$, $z \in \rho(A)$ and $\varphi \in \mathcal{H}$. If $\varphi \in \mathsf{Dom}(A^k)$ then we have

$$(A-z)^{-k}\varphi = \frac{1}{(z-z_0)^k} \sum_{j=0}^k C_k^j (-1)^{k-j} (A-z)^{-j} (A-z_0)^j \varphi.$$

Proof. For $\varphi \in \mathsf{Dom}(A)$ we have

 $(A-z)\varphi - (A-z_0)\varphi = (z_0 - z)\varphi.$

After composition by $(z_0 - z)^{-1}(A - z)^{-1}$ on the left, we get on $\mathsf{Dom}(A)$

$$(A-z)^{-1} = \frac{1}{z-z_0} ((A-z)^{-1}(A-z_0) - \mathrm{Id}).$$

This gives the case k = 1. The general case follows by induction.

Proposition 5.44. Let A be the generator of a semigroup on E. Let $\mu \in \mathbb{R}$. Assume that $\mu + i\mathbb{R} \subset \rho(A)$ and

$$\sup_{\operatorname{Re}(z)=\mu} \left\| (A-z)^{-1} \right\|_{\mathcal{L}(\mathcal{H})} < +\infty.$$

For $k \in \mathbb{N}^*$, $\varphi \in \mathsf{Dom}(A^k)$ and t > 0 we have

$$e^{tA}\varphi = \frac{(-1)^{k+1}k!}{2i\pi t^k} \int_{\Gamma_{\mu}} e^{tz} (A-z)^{-(k+1)}\varphi \,\mathrm{d}z,$$

where $\Gamma_{\mu} : \tau \in \mathbb{R} \mapsto \mu + i\tau$.

Proof. Differentiating k times the equality of Theorem 5.37 we get

$$k!(A-z)^{-(k+1)}\varphi = (-1)^{k+1} \int_0^{+\infty} t^k e^{t(A-z)}\varphi \,\mathrm{d}t.$$

Then the map $\tau \mapsto k! (A - (\mu + i\tau))^{-(k+1)} \varphi$ is the Fourier transform of $t \mapsto (-1)^{k+1} \mathbb{1}_{\mathbb{R}_+}(t) t^k e^{t(A-\mu)} \varphi$. Since these functions are integrable we can apply the Inverse Fourier Formula, which gives

$$\forall t \in \mathbb{R}, \quad (-1)^{k+1} \mathbb{1}_{\mathbb{R}_+}(t) t^k e^{t(A-\mu)} \varphi = \frac{k!}{2\pi} \int_{\mathbb{R}} e^{it\tau} (A - (\mu + i\tau))^{-(k+1)} \varphi \,\mathrm{d}\tau$$

or

$$\forall t \ge 0, \quad e^{tA}\varphi = \frac{(-1)^{k+1}k!}{2i\pi t^k} \int_{\Gamma_{\mu}} e^{tz} (A-z)^{-(k+1)}\varphi \,\mathrm{d}z.$$

Proposition 5.45. Let A be the generator of a C^0 -semigroup on \mathcal{H} . Let M and ω be given by Proposition 5.6. Let $\mu > \omega$. Then there exists C > 0 such that for $\varphi \in \mathcal{H}$ we have

$$\int_{\tau \in \mathbb{R}} \left\| \left(A - (\mu + i\tau) \right)^{-1} \varphi \right\|_{\mathcal{H}}^2 \, \mathrm{d}\tau \leqslant C \, \|\varphi\|_{\mathcal{H}}^2 \, .$$

Proof. Let $\varphi \in \mathcal{H}$. For $\tau \in \mathbb{R}$ we have by Theorem 5.37

$$(A - (\mu + i\tau))^{-1}\varphi = -\int_0^{+\infty} e^{t(A - (\mu + i\tau))}\varphi \,dt = -\int_{\mathbb{R}} e^{-it\tau} \mathbb{1}_{\mathbb{R}_+}(t)e^{-t\mu}e^{tA}\varphi \,dt.$$
(5.7)

The function $t \mapsto -\mathbb{1}_{\mathbb{R}_+}(t)e^{-t\mu}e^{tA}\varphi$ is in $L^2(\mathbb{R};\mathcal{H})$ and, by (5.7), its Fourier transform is $\tau \mapsto (A - (\mu + i\tau))^{-1}\varphi$. Then by the Plancherel inequality (which holds for a function with values in a Hilbert space) we have

$$\int_{\mathbb{R}} \left\| (A - (\mu + i\tau))^{-1} \varphi \right\|_{\mathcal{H}}^{2} d\tau = 2\pi \int_{0}^{+\infty} e^{-2t\mu} \left\| e^{tA} \varphi \right\|_{\mathcal{H}}^{2} dt \leq C \left\| \varphi \right\|_{\mathcal{H}}^{2},$$
with $C = \frac{\pi M^{2}}{\mu - \omega}.$

Theorem 5.46 (Gearhart-Prüss). Let A be the generator of a C^0 -semigroup on the Hilbert space \mathcal{H} . Assume that $\mathbb{C}_+ \subset \rho(A)$ and that

$$\beta = \sup_{z \in \mathbb{C}_+} \left\| (A - z)^{-1} \right\|_{\mathcal{L}(\mathcal{H})} < +\infty.$$

Let $\gamma < \frac{1}{\beta}$. Then there exists $C_{\gamma} > 0$ such that for $t \ge 0$ we have

$$\left\|e^{tA}\right\|_{\mathcal{L}(\mathcal{H})} \leqslant C_{\gamma} e^{-\gamma t}.$$

Proof. • Let $\tilde{\gamma} \in]\gamma, \beta^{-1}[$. Let $z \in \mathbb{C}$ with $\operatorname{Re}(z) \geq -\gamma$. There exists $z_0 \in \mathbb{C}_+$ such that $z \in D(z_0, \tilde{\gamma})$. Since $\operatorname{dist}(z_0, \sigma(A)) \geq ||(A - z_0)^{-1}||^{-1} > |z - z_0|$ we have $z \in \rho(A)$. Then by the resolvent identity we have

$$(A-z)^{-1} (1 - (z - z_0)(A - z_0)^{-1}) = (A - z_0)^{-1}.$$

Since

$$||(z-z_0)(A-z_0)^{-1}|| \leq \tilde{\gamma}\beta < 1,$$

this gives

$$\|(A-z)^{-1}\| \leq \|(A-z_0)^{-1}\| \left\| \left(1 - (z-z_0)(A-z_0)^{-1}\right)^{-1} \right\| \leq C_1 := \frac{\beta}{1 - \tilde{\gamma}\beta}.$$
 (5.8)

• For $\tau \in \mathbb{R}$ we have by the resolvent identity

$$(A - (-\gamma + i\tau))^{-1} = (1 - (\gamma + \mu)(A - (-\gamma + i\tau))^{-1})(A - (\mu + i\tau))^{-1},$$

so with (5.8)

$$\left\| \left(A - (-\gamma + i\tau) \right)^{-1} \right\|^2 \le \left(1 + (\gamma + \mu)C_1 \right)^2 \left\| \left(A - (\mu + i\tau) \right)^{-1} \right\|^2.$$

We denote by C_2 the constant given by Proposition 5.45. Then we have

$$\int_{\mathbb{R}} \left\| \left(A - \left(-\gamma + i\tau \right) \right)^{-1} \varphi \right\|_{\mathcal{H}}^{2} \, \mathrm{d}\tau \leqslant C_{3} \left\| \varphi \right\|_{\mathcal{H}}^{2}, \quad C_{3} = C_{2} \left(1 + (\gamma + \mu)C_{1} \right)^{2}. \tag{5.9}$$

• Since A^* also satisfies the assumptions of the theorem, we also have for all $\psi \in \mathcal{H}$

$$\int_{\mathbb{R}} \left\| \left(A^* - \left(-\gamma + i\tau \right) \right)^{-1} \psi \right\|_{\mathcal{H}}^2 \, \mathrm{d}\tau \leqslant C_3 \left\| \psi \right\|_{\mathcal{H}}^2.$$
(5.10)

• Let $\varphi \in \mathsf{Dom}(A^2)$ and $\psi \in \mathcal{H}$. By Proposition 5.44 we have

$$\left\langle te^{tA}\varphi,\psi\right\rangle = \frac{1}{2i\pi} \int_{\Gamma_{\mu}} e^{tz} \left\langle (A-z)^{-2}\varphi,\psi\right\rangle \mathrm{d}z.$$

Since the map $z \mapsto e^{tz} \langle (A-z)^{-2}\varphi, \psi \rangle$ is holomorphic on $\{\operatorname{Re}(z) > -\tilde{\gamma}\}$ and decays like $\operatorname{Im}(z)^{-2}$ as $|\operatorname{Im}(z)| \to +\infty$ (see Lemma 5.43), we can change the contour of integration from Γ_{μ} to $\Gamma_{-\gamma}$. This gives

$$\begin{split} \left\langle t e^{tA} \varphi, \psi \right\rangle &= \frac{1}{2i\pi} \int_{\Gamma_{-\gamma}} e^{tz} \left\langle (A-z)^{-2} \varphi, \psi \right\rangle \, \mathrm{d}z \\ &= \frac{1}{2i\pi} \int_{\Gamma_{-\gamma}} e^{tz} \left\langle (A-z)^{-1} \varphi, (A^*-\overline{z})^{-1} \psi \right\rangle \, \mathrm{d}z. \end{split}$$

Then, by the Cauchy-Schwarz inequality and (5.9)-(5.10) we get, for all $\varphi \in \mathsf{Dom}(A^2)$ and $\psi \in \mathcal{H}$,

$$\begin{split} \left| \left\langle t e^{tA} \varphi, \psi \right\rangle \right| &\leq \frac{e^{-\gamma t}}{2\pi} \left(\int_{\mathbb{R}} \left\| \left(A - \left(-\gamma + i\tau \right) \right)^{-1} \varphi \right\|^2 \, \mathrm{d}\tau \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} \left\| \left(A^* - \left(-\gamma - i\tau \right) \right)^{-1} \psi \right\|^2 \, \mathrm{d}\tau \right)^{\frac{1}{2}} \\ &\leq \frac{C_3 e^{-\gamma t}}{2\pi} \left\| \varphi \right\| \left\| \psi \right\|. \end{split}$$

Since $\mathsf{Dom}(A^2)$ is dense in \mathcal{H} (see Exercise 5.10), we have the same estimate for all $\varphi \in \mathcal{H}$, and

$$t \left\| e^{tA} \right\|_{\mathcal{L}(\mathcal{H})} \leqslant \frac{C_3 e^{-\gamma t}}{2\pi}.$$

This gives the estimate for $t \ge 1$. Since e^{tA} is bounded uniformly in $t \in [0, 1]$, we get the result by choosing a larger constant if necessary.

5.7 Exercises

Exercise 5.1. Compute e^{tA_j} , $t \in \mathbb{R}$, for the following matrices:

$$A_1 = \begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}, \quad A_2 = \begin{pmatrix} \lambda & 1 & 0 & 0\\ 0 & \lambda & 1 & 0\\ 0 & 0 & \lambda & 1\\ 0 & 0 & 0 & \lambda \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}.$$

Exercise 5.2. Prove Proposition 5.2.

Exercise 5.3. 1. Let A be a maximal dissipative operator on E. Assume that B is a dissipative extension of A. Prove that A = B.

2. Let A be a closed and dissipative operator on \mathcal{H} . Assume that A has no other dissipative extension than itself. Prove that A is maximal dissipative.

Exercise 5.4. Let A be a densely defined and dissipative operator on \mathcal{H} . We define the operator T on $\mathsf{Dom}(T) = \mathsf{Ran}(A-1)$ by $T = (A+1)(A-1)^{-1}$ (since (A-1) is injective, we can define $(A-1)^{-1}$ as an unbounded operator defined on $\mathsf{Ran}(A-1)^{-1}$, see Remark 1.26). T is called the Cayley transform of A.

1. Prove that $||T\varphi|| \leq ||\varphi||$ for all $\varphi \in \mathsf{Dom}(T)$. Deduce that we can extend T to a bounded operator \tilde{T} on \mathcal{H} .

2. Prove that 1 is not an eigenvalue of T.

3. Prove that $A = (T+1)(T-1)^{-1}$ (where $(T-1)^{-1}$ is defined on $\operatorname{Ran}(T-1) = \operatorname{Dom}(A)$). **4.** Let $\varphi \in \operatorname{Dom}(\tilde{T})$ such that $\tilde{T}\varphi = \varphi$.

a. Prove that $\tilde{T}^*\varphi - \varphi = 0$.

b. Prove that for all $\psi \in \mathsf{Dom}(A)$ we have $\langle \varphi, (A-1)\psi \rangle = \langle \varphi, (A+1)\psi \rangle$.

c. Prove that 1 is not an eigenvalue of \tilde{T} .

5. Prove that $B = (\tilde{T}+1)(\tilde{T}-1)^{-1}$ (defined on $\mathsf{Dom}(B) = \mathsf{Ran}(\tilde{T}-1)$) is a maximal dissipative extension of A.

Exercise 5.5. Let $\alpha \in \mathbb{C}$. We consider on $L^2(0,1)$ the Schrödinger operator with Robin condition, defined by

$$A_{\alpha} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}, \quad \mathsf{Dom}(A_{\alpha}) = \left\{ u \in H^2(0,1) \, : \, u'(0) = \alpha u(0), u'(1) = -\alpha u(1) \right\}.$$

Prove that if $\text{Im}(\alpha) \ge 0$ then iA_{α} is maximal dissipative.

Exercise 5.6. Let A be a maximal dissipative operator on E. Let B be a bounded operator. Prove that A + B (defined on Dom(A + B) = Dom(A)) generates a C^0 -semigroup on E and that, for all $t \ge 0$,

$$\left\| e^{t(A+B)} \right\|_{\mathcal{L}(\mathsf{E})} \leqslant e^{t \|B\|_{\mathcal{L}(\mathsf{E})}}.$$

Exercise 5.7 (Generator of dilations). For $t \in \mathbb{R}$ and $u \in L^2(\mathbb{R})$ we define the function $S_t u$ by

$$(S_t u)(x) = e^{\frac{t}{2}} u(e^t x).$$

1. Prove that this defines a unitary group $(S_t)_{t \in \mathbb{R}}$ on $L^2(\mathbb{R})$. We denote by A the generator of S_t .

2. Let $u \in C_0^{\infty}(\mathbb{R})$. Prove that $u \in \text{Dom}(A)$ and that $Au = \frac{u}{2} + xu'$ (where we denote by xv the function $x \mapsto xv(x)$).

3. Prove that $C_0^{\infty}(\mathbb{R})$ is a core of A.

4. We set

$$\mathcal{D} = \left\{ u \in L^2(\mathbb{R}) : xu' \in L^2(\mathbb{R}) \right\}.$$

It is endowed with the norm defined by $\|u\|_{\mathcal{D}} = \|u\|_{L^2(\mathbb{R})} + \|xu'\|_{L^2(\mathbb{R})}$. Prove that $C_0^{\infty}(\mathbb{R})$ is dense in \mathcal{D} .

5. Prove that $\mathsf{Dom}(A) = \mathcal{D}$.

Exercise 5.8. Let A be the generator of a C^0 -semigroup. Let $\varphi \in \text{Dom}(A)$ and $\lambda \in \mathbb{C}$ such that $A\varphi = \lambda\varphi$. Prove that for all $t \ge 0$ we have $e^{tA}\varphi = e^{t\lambda}\varphi$.

Exercise 5.9 (Dilation by a general vector field). Let X be a Lipschitzian vector field on \mathbb{R}^d . For $x_0 \in \mathbb{R}^d$ on note $t \mapsto \varphi(t; x_0)$ the solution on \mathbb{R} of the problem

$$\begin{cases} y'_{x_0}(t) = X(y_{x_0}(t)), & \forall t \in \mathbb{R}, \\ y'_{x_0}(0) = x_0. \end{cases}$$

Then for $t \in \mathbb{R}$ and $x_0 \in \mathbb{R}$ we set $\varphi^t(x_0) = y_{x_0}(t)$. Then we have $\varphi^0 = \mathrm{Id}_{\mathbb{R}^d}$ and $\varphi^{t+s} = \varphi^t \circ \varphi^s$ for all $s, t \in \mathbb{R}$. For $t \in \mathbb{R}$ and $u \in L^2(\mathbb{R}^d)$ we set

$$S_t u(x) = \det(d_x \varphi^t)^{\frac{1}{2}} u(\varphi^t x).$$

1. Prove that $(S_t)_{t \in \mathbb{R}}$ is a unitary group on $L^2(\mathbb{R}^d)$. **2.** What is the generator of $(S_t)_{t \in \mathbb{R}}$?

Exercise **5.10.** Let A be the generator of a strongly continuous semigroup. We set

$$\mathsf{Dom}(A^\infty) = \bigcap_{n \in \mathbb{N}^*} \mathsf{Dom}(A^n)$$

(where, by induction, $\mathsf{Dom}(A^n) = \{\varphi \in \mathsf{Dom}(A^{n-1}) : A^{n-1}\varphi \in \mathsf{Dom}(A)\}$).

1. Prove that $\mathsf{Dom}(A^{\infty})$ is a subspace of $\mathsf{Dom}(A)$, invariant by e^{tA} for all $t \ge 0$. **2.** We denote by \mathcal{C} the set of smooth functions on \mathbb{R} compactly supported in $]0, +\infty[$. Let $\phi \in \mathcal{C}$ and $\psi \in \mathsf{E}$. We set

$$\psi_{\phi} = \int_0^{+\infty} \phi(s) e^{sA} \psi \, \mathrm{d}s.$$

Prove that $\psi_{\phi} \in \mathsf{Dom}(A)$ with

$$A\psi_{\phi} = -\int_0^{+\infty} \phi'(s) e^{sA} \psi \,\mathrm{d}s.$$

3. Prove that $\psi_{\phi} \in \mathsf{Dom}(A^{\infty})$.

4. We set $D = \text{span} \{ \psi_{\phi}, \psi \in \mathsf{E}, \phi \in \mathcal{C} \}$. Assume by contradiction that D is not dense in E and consider $\ell \in \mathsf{E}'$ such that $\langle \ell, \psi \rangle_{\mathsf{E}',\mathsf{E}} = 0$ for all $\psi \in D$ (as given by the Hahn-Banach theorem).

- a. Prove that $\langle \ell, e^{sA}\psi \rangle_{\mathsf{E}',\mathsf{E}} = 0$ for all $s \ge 0$ and all $\psi \in \mathsf{E}$.
- b. Deduce that D is dense in E .
- **5.** Prove that $\mathsf{Dom}(A^{\infty})$ is a core for A.
- **6.** Prove that $\mathsf{Dom}(A^n)$ is a core for A for all $n \in \mathbb{N}^*$.