Chapter 5

Semigroups and evolution
equations

In this chapter we discuss the properties of (strongly continuous) semigroups. This is moti-
vated by the analysis of (linear but also non-linear) evolution (time-dependant) problems.

More precisely, given a Banach space E, an operator A on E and g € E, we consider the
linear Cauchy problem

{gp'(t) = Ap(t), Vt=0, 51)

Definition 5.1. Let I be an interval of R which contains 0. A (strong) solution of (5.1) on
I is a function ¢ € C1(I;E) n C°(I;Dom(A)) which satisfies (5.1) in the natural sense.

5.1 Exponential of a bounded operator

If A is a bounded operator on E, we can set for all t € R

+0 Lk lk
tA _ t
et = kgo 1 (5.2)

The following results are consequencies of the properties of power series in a Banach
space.

Proposition 5.2. (i) Forte R we have ¢4 € L(E) and ||etAH£(E) < ellltlee

(ii) We have e*4 = IdE.

(iii) For s,t € R we have ettes = eltt9)A = esdeta,

(iv) If B € L(E) commutes with A, then it commutes with e for all t > 0.

(v) The map
R — L(E)
t —s etA
is of class C* and
iem = Aett = 1A,
dt

tA

In particular, for oo € E the function t — e*“pq is a strong solution of (5.1) on R.

The purpose of this chapter is to generalize these properties for an unbounded operator
A on E (in this case the exponential cannot be defined by the power series (5.2)).
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5.2 Strongly continuous semigroups

When A is bounded, the solution of the problem (5.1) is given by a family of operators (e*4)
with good properties given in Proposition 5.2. The notion of strongly continuous semigroup
generalizes these properties and will be at the heart of the discussion.

Definition 5.3. We say that the family (S;)i=o of operators in L(E) is a C°-semigroup (or
strongly continuous semigroup) if

(Z) SO = IdE 5
(ii) S, © Sty = Sty 41, for all s,t =0 ;

(iii) the map t — St is strongly continuous on Ry (for all ¢ € E the map t — Sip € E is
continuous on Ry ).

Remark 5.4. The second property implies that S;, commutes with Sy, for all t,t5 > 0.

Remark 5.5. Notice that we do not require the continuity of the map t — S; for the topology
of L(E).

Proposition 5.6. Let (S;)i>0 be a CY-semigroup. There exist M > 0 and w € R such that
for all t € Ry we have
1Stz ey < Me<". (5.3)

Moreover, if for some to € Ry we have |[S, | ;) <1 then (5.3) holds for some w < 0.
Proof. e Let ¢ € E. By continuity, there exists C', > 0 such that
vte[0,1], [Siplle < Cylelle -
By the uniform boundedness principle, there exists C' > 1 such that
Vte [07 1]a HStHL‘,(E) <C
Then, for all N € N* and t € [N — 1, N] we get
HSt”,C(E) < CN < Ct+1 _ Cetln(C).

This gives the first statement with M = C and w = In(C).
o Now assume that a = Sy, ||z g) €]0, 1[ for some to > 0. Let C' = supyefo 4] [/l z(g)- Then
for N e N* and t € [(N — 1)tg, Ntg] we have

N—-1 _ M C tM
IS¢l 2y < 115t ey [Se- vyt | < Ca™71 < e =0
Then (5.3) holds with M = € and w = &) <0, O

Remark 5.7. To prove the continuity of ¢ — Sy it is enough to prove that Sy — ¢ in E as
t — 07. Indeed, let ¢ € E and tq > 0. For the right-continuity we simply write, for A > 0,

Sto+hp — Step = St, (Shsﬁ - 90) m 0.

On the other hand, by Proposition 5.6 S;,_p, is bounded uniformly in h €]0, o], so
Sto—h# = Sto = Sto—n (¢ — Snp) P

Remark 5.8. Let (St)i=0 be a strongly continuous semigroup. The map

(tp) = Sip
is continous. Let (¢,¢) € Ry x E. For (1,9) € Ry x E we have

||ST¢ - StQOHE < HSHD - ST@HE + HSTSD - St@HE

The first term is smaller than [Sz|,g) ¢ — ¢[g, and [S-|,) is uniformly bounded for
T € [t—1,t+ 1] by Proposition 5.6. The second term goes to 0 as 7 — ¢ by strong continuity.
This proves that

Sy — 8, —F 0.
1726 = Sl ———
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Definition 5.9. We say that the family (Si)wr of operators in L(E) is a C°-group (or
strongly continuous group) if

(Z) SO = IdE;
(ii) Si, © Sty = St 1+, for all s,t € R,
(#ii) the map t — Sy is strongly continuous on R.

Remark 5.10. If (S¢)ser is a strongly continuous group then S_; = S{l for all t € R. More-
over, (S¢)t=0 and (S_¢)¢=0 are strongly continuous semigroups.

Definition 5.11. o A unitary group on H is a strongly continuous group (Up)ier such
that Uy is unitary on H for all t € R.

o A contractions semigroup on E is a strongly continuous semigroup (St)i=o such that
HStHL(E) <1 forallt = 0.

Ezample 5.12 (Translation). For ¢t € R we consider on L?(R) the operator S; such that for
u e L?(R) and = € R we have
(Stu)(z) = u(z +t).

This defines a unitary group on L?(R).

Example 5.13 (Dilation). For t € R we consider on L?(R) the operator S; such that for
u e L?(R) and = € R we have
(Siu)(z) = e*u(elz).

This defines a unitary group on L?(R).

Ezample 5.14 (Heat semigroup). We set So = Idp2(g). For t > 00, u € L?(R) and z € R we
set )
_(z—y)

1 (z=—y)?
(S)(@) = = f = u(y) dy.

Then we have S;u = G4 * u with

52

e 4t
Vart
We have |Gif 1) = 1, Gty * Gi, = Gy, 44, and Gy is an approximation of § when ¢ — 0.

Thus from the properties of the convolution product we deduce that (S;):>¢ is a contractions
semigroup on L?(R).

G(s) =

5.3 Dissipative operators

We set
C;y ={z€C : Re(z) > 0}.

Definition 5.15. Let A be an operator on E. We say that A is dissipative if
¥ € Dom(4), ¥z € Cs, (A= 2)ple > Re(:) Jull

Remark 5.16. In particular, if A is dissipative then any z € C is a regular point of A.

Ezample 5.17. A skew-symmetric operator on the Hilbert space H is dissipative (see Propo-
sition 3.7).

Proposition 5.18. Let A be an operator on H. Then A is dissipative if and only if
VYo € Dom(A), Re{Ap,p)<0. (5.4)
Proof. Let ¢ € Dom(A). For z =7+ ip € Cy with 7 > 0 and p € R we have

I(A = 2)@l3, = (A = im)el3, — 2Re (A — ip)p, 7o)y + 72 |ull3,

. (5.5)
= (A = in)pll3, — 27 Re(Ap, @)y + 7 [ul3, -
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If (5.4) holds, this gives
I(A = 2)ell3, = 7 Jull,

so A is dissipative. Conversely, if A is dissipative then (5.5) gives

2r Re(Ap, )y, — (A — ip)el, = 7 Jul3, — I(A = 2)¢[3, < 0.
We divide by 7 and let 7 go to +c0. This gives (5.4). O

Definition 5.19. Let A be a dissipative operator on E. We say that A is maximal dissipative
if it is dissipative and any z € Cy belongs to its resolvent set.

Ezxample 5.20. If A is a skew-adjoint operator on the Hilbert space H, then A and —A
are maximal dissipative. In particular, if A is selfadjoint then A and —iA are maximal
dissipative.

Ezample 5.21. The Laplacian A with domain Dom(A) = H2?(R?) is maximal dissipative on
L?(R%). More generally, a selfadjoint and non-positive operator is maximal dissipative.

Remark 5.22. e If A is maximal dissipative then for all z € C; we have
[ P ——— (5.6)
L(E) = Re(z)

o If Ais an operator such that C, < p(A) and (5.6) holds, then A is maximal dissipative.
However, we may have C. < p(A) even if A is not maximal dissipative.

Proposition 5.23. Let A be a dissipative operator on E. Assume that A is closed and that
Ran(A — zp) is dense in E for some zg € C4. Then A is mazimal dissipative.
In particular, if p(A) n Cy # &, then A is maximal dissipative.

Proof. Since A is closed and dissipative, (A — zg) is injective with closed range by Proposition
1.36. By assumption (A — zp) is then bijective, and 2y € p(A).
Let (zn)nen be a sequence in p(A) n C4 which goes to some z € C. We have

lim s A—2)"1 <
imsup | (4 —2)7 < g

< 400.
This implies that z € p(A). Then p(A) is closed in Cy. Since it is also open and C is
connected, we have C; < p(A). O

Proposition 5.24. Let A be a densely defined and closed operator on the Hilbert space H.
Assume that A and A* are dissipative. Then A is maximal dissipative.

Proof. By Proposition 5.23, it is enough to show that Ran(A — 1) is dense in #H. Since A* is
dissipative, (A* — 1) is injective and Ran(A — 1) = ker(A* — 1)+ = H. O

Proposition 5.25. Let A be a mazimal dissipative operator on the Hilbert space H. Then
A is densely defined.

Proof. Let ¢ € Dom(A)* and ¢ = (A — 1)~ € Dom(A). We have

0 =ps gy = CAY =,y

SO

[4]3 = Re ¥, = Re (Av, )y, <O0.
This implies that ¢ = 0 and hence ¢ = 0. U

Proposition 5.26. Let A be a mazximal dissipative operator. Let B be a dissipative operator.
Assume that B is A-bounded with bound smaller than 1. Then A+ B is mazimal dissipative.

Proof. The proof is similar to the proof of Theorem 3.44. O
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Ezxample 5.27. Let V e L®(R%, C) be such that Im(V (x)) < 0. We consider the Schrédinger
operator H = Hy+V(z), where Hj is the free Laplacian. Then —iH is a maximal dissipative
operator. Indeed —iHj is skew-adjoint and —iV is dissipative and bounded, so —iH is
maximal dissipative by Proposition 5.26.

Ezample 5.28. Let m > 0. We consider on 2 = H'(R?) x L?(R?) the norm defined by
[, 0) 3¢ = 1Vul72gga) +m [ul7zga) + 0] 72 )

Then we define on J# the operator
0 1
Wa = (A -m —a) ’

Dom(W) = H*(R%) x H'(R?).

with domain

We know by Exercise 3.5 that W) is skew-adjoint on . Since the operator

0 O
0 —a
is bounded and dissipative on ¢, we get by Proposition 5.26 that W, is maximal dissipative
on .
& Ex. 5.5

Proposition 5.29. Let A be an operator on H. Then A is skew-adjoint if and only if A and
—A are maximal dissipative.

Proof. e Assume that A is skew-adjoint. By Proposition 5.18, A and —A are dissipative.
Moreover 1 belongs to the resolvent set of A and —A, so they are both maximal dissipative
by Proposition 5.23.

e Conversely, assume that A and —A are maximal dissipative. By Proposition 5.18 we have
Re (A, p) = 0 for all ¢ € Dom(A), so A is skew-symmetric by Remark 3.2. By definition, 1
belongs to the resolvent sets of A and —A, so A is skew-adjoint by Proposition 3.22. O

5.4 Generators of C'-semigroups

Definition 5.30. Let (S;)i=0 be a C°-semigroup on E. We denote by Dom(A) the set of
o € E such that the limit
I Sip—
im —/————
t—0+ t
exists in E. In this case, we denote by Ay this limit. This defines an operator A on E with
domain Dom(A). We say that A is the generator of (St)i=o-
Ezample 5.31. Let A € L(E). For t > 0 we set S; = €', as defined by (5.2). Then the
generator of (S¢) is... A.
In general, if A is the generator of the semigroup (S¢):>o then for all ¢ = 0 we can write
St = €tA.
Proposition 5.32. Let (S;)i=0 be a C°-semigroup on E. Let A be its generator.

(i) Let ¢ € Dom(A). The map t — Spp is differentiable from Ry to E, we have Spp €
Dom(A) for allt e Ry and

d
(ii) Let ¢ € E. Fort = 0 we have

¢
J Srpdr € Dom(A)
0
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and .
Sip—p = AJ Srpdr.
0

If ¢ € Dom(A) we also have
t t
&w—w=AJSwMT=f5ﬂWdT
0 0

Proof. ¢ Let t > 0. For 7 > 0 we have

S —1d Sy —

This proves that Sy € Dom(A) and AS;p = S;Ap. Now let ¢t > 0. For 7 > 0 we have

Siiro — Sip

T T—0 StAQO
and, for 7 €]0, ¢],
St—rp — St Sro—p
_ =5 —— — SA
—T ¢ T T7—0 G

This proves that the map ¢ — S;¢ is differentiable and
d
— (Sp) = StAp.
d t( t@) tAP

e For h > 0 we have

1 t t 1 t t
- Shf STgodT—J Srodr | = J STchpdT—f Srodr
h 0 0 0 0
t+h t
(J Sredr —f S—,—(pdT)
h 0
1 t+h h
- f S’TgodT—f Srpdr
h\ J; 0

o S

This proves the first part of the second statement. Now assume that ¢ € Dom(A). Since

uniformly in 7 € [0, ¢] (by Proposition 5.6), we have

S, —1Id [* b Shp—¢ t
N L Srpdr = L S, A dr p— L S;Apdr,

and the proof is complete. O

Remark 5.33. If A is not closed we cannot just write A Sg Srpdr = SS AS-pdT to prove the
last statement of the proposition. We are actually going to use this property to prove that
A is closed.

Proposition 5.34. The generator of a C°-semigroup is a closed and densely defined operator
that determines the semigroup uniquely.

Proof. e Let ¢ € E. By Proposition 5.32, we have for all h > 0
1 rh
7.[ Srodr € Dom(A).
h Jo

Since this goes to ¢ as h — 0, this proves that Dom(A) is dense in E.

70 J. Royer - Université Toulouse 3



SEMIGROUPS AND EVOLUTION EQUATIONS

e Let (vn)nen be a sequence in Dom(A) such that ¢, goes to some ¢ and Ay, goes to some
1 in E. For n € N and h > 0 we have by Proposition 5.32

h
Shipn — Pn = J SrAp, dr.
0
Taking the limit n — 400 and dividing by &, and then taking the limit h — 0, we get

Shp—w 1Jh
h hl Srypdr h—0 ¥

This proves that ¢ € Dom(A4) with Ap = 1. Thus A is closed.
e Assume that (S;);>0 is a CY-semigroup whose generator is A. Let ¢ € Dom(A) and ¢ > 0.
For 6 € [0,t] we set

¥(0) = Si—pSpyp €E.
For 6 € [0,t] and h € R* such that § + h € [0, t] we have
0+h)—yp) 5 S -8
U( ) — () _ Gy gy [20nP =502 4g
h h
+ S _9_nASpp

n Si—o—n — Si—g

3 Sop.

Since S;_g_p is bounded uniformly in h € [—1,1]\ {0} by Proposition 5.6, this gives by
Proposition 5.32

b(@+h) —P(0)
h

0 StfeAS%O - AS”tfeSew =0.

Then Sy = (t) = ¥(0) = Syp. Since Dom(A) is dense in E, this proves that S; = S; for all
t=0. O

Proposition 5.35. Let A be the generator of a C°-semigroup (e*?);=o. If D is a subspace
of Dom(A) dense in E and invariant by S; for all t = 0, then it is a core of A.

Proof. We have to prove that D is dense in Dom(A) (for the graph norm). Let ¢ € Dom(A)
and € > 0. Let (p,) be a sequence in D which goes to ¢ in E. By Proposition 5.32 there
exists ¢t > 0 such that

1 t
ff eApds —

<
i

1 t
ff eApds — %
E

1 t
‘ - J e Apds — Ag
Dom(A) t Jo t

0

E

Again by Proposition 5.32 we have

Lt S, —1d
A(tj eA(sOn—w)d8> == (pn— ) — 0,
0

so there exists n € N such that

I 1t
‘J Ao, ds — ,f e*Aods
t Jo t Jo

We see the integral %S(t) e*4p, ds as a Riemann integral. In particular, there exists n € N*

€
Dom(A) 3

such that N
t
L dgonn] <t
0 k=1 Dom(A)
. .. . tkA 1 N tkA .
Since D is invariant by e~ for all k, we have + >, ;e ~ ¢, € D and the conclusion
follows. O
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Ezample 5.36. Let A be the generator of the translation semigroup (Example 5.12). Let
u € CP(R). Then we have

L2(R) h—0

so u € Dom(A4) and Au = «/. Since C§°(R) is left invariant by translations and is dense in
L?(R), it is a core of A by Proposition 5.35. This implies that A is the derivative operator,
set on Dom(A) = H'(R).

Theorem 5.37. Let A be the generator of a C°-semigroup (S¢)i=0. Let M =1 and w € R
be given by Proposition 5.6. Let z € C with Re(z) > w. Then z € p(A) and for ¢ € E we have

+oo +oo
(A—2)"tp=— J e S pdt = —J etA=2) 0y dt.
0 0

Moreover,
M

-1
27 o < Re(s) —w'

In particular, if (St)i=0 is a contractions semigroup, then A is mazimal dissipative.

(4~

The integrals have to be understood in the sense of Riemann integrals for continuous
functions

+00 T

f A=A udt = lim A2 dt.
0 T—+00 0

It is well defined since for all ¢ > 0 we have Het(A_Z)Hﬁ(E) < Metw—Re(2))

Proof. ¢ We consider R € L(E) defined by
+00
VoeE, Rp= J etA=2) 0y dt.
0

In particular,

e tRe(z) || tA o t(w—Re(2)) M
1Rl 2y < L e e HL(E) dt < ML € dt = Re(z) —w’
e  We have
hA __ 1d 1 +o0 +00
BTRQO = <f eftze(tJrh)Agp dt — J etzetAgOdt>
0 0
1 +0o0 +0o0
_ 1 ehzf HA=)dt — J eHA=2), gy
h h 0
ehz h . ehz -1 +00
_ - (A—=z) dt J t(A—z) dt
. J;) e pdt + W . e %)
7:0—> —p + zRp.
This proves that Ran(R) < Dom(A) and

(A—2)R=—1d.
e Now let ¢ € Dom(A). We have

T
J et A=)y dt Ry,
0 T+
and
T T
(A—2) f et A= dt = f A= (A = 2)pdt R(A — 2)4.
0 0 T—+00
Since (A — z) is closed this proves that R(A — 2)¢ = (A — z)RyY = —tp. Thus (A — 2) is
invertible and its inverse is given by (A — z)~! = —R.
e Finally, the fact that the generator of a contractions semigroup (M = 1 and w = 0) is
maximal dissipative follows from Remark 5.22. O
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Definition 5.38. Let (St)i>0 a strongly continuous group. Then we denote by Dom(A) the
set of p € E such that the map t — Sy is differentiable at t = 0, and for ¢ € Dom(A) we
denote by Ay the derivative at 0.

Theorem 5.39. The generator of a unitary group on the Hilbert space H is skew-adjoint.

Proof. Let (Uy)er be a unitary group and let A be its generator. A is in particular the
generator of the contractions semigroup (U;)¢=0, S0 it is maximal dissipative. On the other
hand, the generator of the contractions semigroup (U_;);>0 is —A, which is also maximal
dissipative. Then A is skew-adjoint by Proposition 5.29. O

5.5 Hille-Yosida Theorem

Our question in this section is the following. Given an operator A on E, is there a strongly
continuous semigroup on E whose generator is A 7

Lemma 5.40. Let A be a densely defined operator. Assume that there exist w € R and

M > 0 such that [w, +oo[= p(A) and (A — /\)_1HC(E) < AL forall A > w.

(i) For ¢ € E we have —\(A —X)"1p — ¢ as A — +o0.
(ii) For ¢ € Dom(A) we have —AA(A —\)"lo = —A(A - N)"1Ap — Ap as A — +o0.
Proof. For ¢ € Dom(A) we have

M HA<)OHE
A A—+00

[=AMA =N — e = [(A=2 A0] <

Since A(A — \)~! is bounded uniformly in A > w, we deduce the first statement for all € E.
Then for ¢ € Dom(A) we apply the first statement to Ay to get the second. O

Theorem 5.41 (Hille-Yosida). Let A be a densely defined operator. Assume that 0, 4+00[c
p(A) and
1
—1
VA0, (A= < 1

Then A generates a contractions semigroup. In particular, a densely defined and mazimal
dissipative operator generates a contractions semigroup.

Proof. For n € N* we consider the bounded operator
Ay =-nA(A—n)"t=—n—-n*(A—n)""
o For t > 0 we have

tA, __—nt tn2\|(A—n)71H£(E) —nt _nt __
He H[:(E)—e e <e e =1.

Let ¢ € Dom(A) and ¢ > 0. A,, commutes with A,, and hence with e54m for all s > 0, so

t

t

d .

etA”Lp _ etAm(p _ J I(e(t_é)Am’GSAnw) ds = J e(t_s)AT”GSA“’(AnQD _ Am‘P) ds.
0 @s 0

This gives
HetA”SD _ €tA"L90HE <t|Ane — Anplle-

Since (A, ) is a Cauchy sequence (by Lemma 5.40), the sequence (e ) converges uniformly

on t € [0, to] for any ¢ty > 0. Since HetA" H < 1, the same conclusion holds for any ¢ € E. We
denote by Sy the limit of et4n .

e Let ¢ € E. Since the sequence of continuous maps (e*“m¢) converges locally uniformly,
the map ¢ — Sip is continuous on R,. Let ¢,¢1,t2 = 0. For n € N we have

tA,

tAn t1An gtaAn , — o(t1+t2)As

le o)z < el and e © .
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Taking the limit n — 400 gives
ISeplle < llellg  and  Si Si, = Sty 4,0

This proves that (S;) is a C°-semigroup on E.

e We denote by B (with domain Dom(B)) the generator of the semigroup (S;). Let ¢ €
Dom(A) and ¢y > 0. On [0,ty] the map t +— e!4=( and its derivative ¢ — e*4n A, ¢ converge
uniformly to t — Sip and SiAe. This implies that Sy is differentiable at time 0 with
derivative Ap. Thus ¢ € Dom(B) and By = Ap. Now let ¢ € Dom(B). Since (4 —1) is
surjective, there exists ¢ € Dom(A) such that (B—1)¢ = (A—1)¢ = (B—1)t. Since (B—1)
is injective, we have ¢ = 1) € Dom(A) so Dom(B) < Dom(A). This proves that A = B is the
generator of (Sy). O

Theorem 5.42. A skew-adjoint operator A on H generates a unitary group.

Proof. Since A are —A are maximal dissipative, they generate two contractions semigroups
(87 )i=0 and (S; )i=0-
Let ¢ € Dom(A) = Dom(—A). Let ¢t € R. For 7 € R\ {¢} we have

SeSTe =SSl _ ¢ Ste—S'p (57 -57)S'¢

t—7 t—r t—71
Since | S| < 1 and S;" ¢ € Dom(A) we get

S;8te—S S

t—T1 T—t

S;AS p— S, ASE = 0.

This proves that for all ¢ € R we have
Sy S =e.

Similarly, S;"S; ¢ = ¢ for all ¢ € Dom(A). By continuity of S;* and S, and by density of
Dom(A), these equalities hold for all p € H, so S; = (S;7)~! for all t > 0. Fot t € R we set

This defines a strongly continuous group (U;)er on H. Finally for ¢ € R and ¢ € H we have
lell = [U-:Usp| < [Ueep| < o,

so U; is an isometry. Since it is surjective, it is unitary and the proof is complete. O

5.6 Inversion formula and application to exponential de-
cay

Let A be a maximal dissipative operator on H. Theorem 5.37 gives an expression of the
resolvent of A in terms of its propagator. We would like to write conversely the propagator
in terms of the resolvent.

Let ¢ € H and p > 0. By Theorem 5.37 we can write for all 7 € R

1 +0 ]
(A= (p+ir)) o=-— f e Tt A1 .
0

This means that the map 7 — (4 — (u + z'T))_lap is the Fourier transform of the map
t > —1g, (t)e!"Mp. We would like to inverse this relation. However, in general, these

functions are not in L?(R; ) and the map 7 — (4 — (u + iT))flgo is not integrable. The
idea is to apply the inverse Fourier formula at least for “regular” vectors.
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Lemma 5.43. Let A be an operator on E with non-empty resolvent set and zo € p(A). Let
keN* ze p(A) and p € H. If p € Dom(AF) then we have

k
(A=90 = = MO (A= 97 (A= 20
j=0

Proof. For ¢ € Dom(A) we have

(A= 2)p = (A= 20)p = (20 — 2).
After composition by (2o — 2)"1(A — 2)~! on the left, we get on Dom(A)

(A2 = L (A2 (A 2) —1d).

zZ— 20

This gives the case k = 1. The general case follows by induction. O

Proposition 5.44. Let A be the generator of a semigroup on E. Let p € R. Assume that
p+ iR < p(A) and
sup [(A—2)"" < +o0.
Re(z) = £

For ke N*, ¢ € Dom(A¥) and t > 0 we have

tA (‘DHIMJ tz —(k+1)
ST A— d
¥ 2im tk F“e ( ?) v

where L'y, : T € R — p +i7.
Proof. Differentiating & times the equality of Theorem 5.37 we get
+00
kA — Z)*(kﬂ)(p — (_1)k+1j tket(Afz)godt'
0

Then the map 7 +— k!(A—(u+i7)) =Yy is the Fourier transform of ¢ — (—1)511g, (£)tFetA=M .
Since these functions are integrable we can apply the Inverse Fourier Formula, which gives

Ko
Ve R, (—1)Fg, (t)thetAmp = %J e'T(A— (u+ir)”*Vodr,
R
ot ( )k+1
—1)kFgl
Vit > 0’ tA 7{ tz A— —(k+1) dz.
CET i ) © (4-2) v

O

Proposition 5.45. Let A be the generator of a C°-semigroup on H. Let M and w be given
by Proposition 5.6. Let u > w. Then there exists C' > 0 such that for ¢ € H we have

LER H (A —(u+ iT))_1<p|‘idT <C H(pH(iL

Proof. Let ¢ € H. For 7 € R we have by Theorem 5.37

+o
et A= (utin) o gt = _J e g, (t)e et dt. (5.7)
R

(A= (utin) o= - |

0

The function t — —1g, (t)e et is in L2(R;H) and, by (5.7), its Fourier transform is
7+ (A— (pu+1i7)) L. Then by the Plancherel inequality (which holds for a function with
values in a Hilbert space) we have

+0
jR H(A — (u+ iT))flgoui dr = 27TJ0 et HetAngj{ dt<C ||g0H§{,

with ¢ = =M O

p—w’
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Theorem 5.46 (Gearhart-Priiss). Let A be the generator of a C°-semigroup on the Hilbert
space H. Assume that C, < p(A) and that

= A— )7t .
f=sup [(A=2)" gy < +o0

Let v < % Then there exists Cy > 0 such that for t = 0 we have
tA —t
e HL(H) < Cye™?

Proof. o Let % €]y, 87[. Let z € C with Re(z) = —v. There exists zg € C such that
z € D(z,%). Since dist(zo,0 > (A - Zo)_lH_l

the resolvent identity we have

(A=2)"1 (1= (2= 20)(A—=20)"") = (A=2)"

> |z — zo| we have z € p(A). Then by

Since
I(z = 20)(A — 20) "' <98 < 1,
this gives
_ - 1y s
-7 <=0 |0--ma-0 ) [ <o= s 6
e For 7 € R we have by the resolvent identity
-1 .\l .\ —1
(A= (—y+ir) =0-(v+p(A=(—y+in) (A= (u+ir) ,
so with (5.8)
12 2 =12
(A= (r+in) 7| <+ G we) (A= m) ]
We denote by C5 the constant given by Proposition 5.45. Then we have
o2
J H —y +iT) IQDHH dr < Cs g%, Cs=Co(l+(v+pa1)°.  (5.9)
e Since A* also satisfies the assumptions of the theorem, we also have for all ¥ € H
o2
Ll = rvimy o] ar < catol. (5.10)
R
e Let ¢ € Dom(A?) and ¥ € H. By Proposition 5.44 we have
tA - tz /(A — d
oot = gz [ (A= w) s

Since the map z — €' (A —2)7%¢p, ) is holomorphic on {Re(z) > —7} and decays like
Im(z)~2 as |[Im(z)| — 4o (see Lemma 5.43), we can change the contour of integration from
I'y, to I'_,. This gives

<tetAg0,w> = 5 . e” ((A—2z) 2, V) dz
1
= 5 . et? <(A —2) L, (A* w> dz.

-
Then, by the Cauchy-Schwarz inequality and (5.9)-(5.10) we get, for all ¢ € Dom(A?) and
YeH,

(te Ao, )| < 27T (J H —y +i7)) _1ng2 d7>; (JR H (AF = (—y — i) wH dr)

C’ e~
! H<PH Il -

Since Dom(A?) is dense in H (see Exercise 5.10), we have the same estimate for all p € H,
and

; HetAH - Cge™
LH) ™ 9op
This gives the estimate for ¢ > 1. Since e is bounded uniformly in ¢ € [0, 1], we get the
result by choosing a larger constant if necessary. O
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5.7 Exercises

Ezercise 5.1. Compute e?i, t € R, for the following matrices:

A1 0 0
A 000 0 X1 0 0 —1
Av=10 X 0, A=|g g 3 1| 4=y o)
00 A 00 0 A\

Ezxercise 5.2. Prove Proposition 5.2.

Exercise 5.3. 1.Let A be a maximal dissipative operator on E. Assume that B is a dissi-
pative extension of A. Prove that A = B.

2. Let A be a closed and dissipative operator on H. Assume that A has no other dissipative
extension than itself. Prove that A is maximal dissipative.

Ezxercise 5.4. Let A be a densely defined and dissipative operator on H. We define the
operator T on Dom(T) = Ran(A—1) by T = (A+1)(A—1)~! (since (A — 1) is injective, we
can define (A — 1)~! as an unbounded operator defined on Ran(A —1)71, see Remark 1.26).
T is called the Cayley transform of A.
1. Prove that |T¢| < |¢| for all ¢ € Dom(T). Deduce that we can extend T to a bounded
operator T on H.
2. Prove that 1 is not an eigenvalue of T
3. Prove that A = (T + 1)(T — 1)~! (where (T — 1)~ is defined on Ran(T — 1) = Dom(A)).
4.Let ¢ € Dom(T) such that T = .

a. Prove that T*p — ¢ = 0.

b. Prove that for all ) € Dom(A) we have {p, (A — 1)) = (¢, (A + 1)).

c. Prove that 1 is not an eigenvalue of 7.
5. Prove that B = (T'+1)(T—1)~" (defined on Dom(B) = Ran(7T'—1)) is a maximal dissipative
extension of A.

Ezercise 5.5. Let a € C. We consider on L?(0,1) the Schrédinger operator with Robin
condition, defined by

d2

Aa = T 1 9
dz?

Dom(A,) = {ue H*(0,1) : v/(0) = au(0),u'(1) = —au(1)}.

Prove that if Im(a) > 0 then ¢4, is maximal dissipative.

Ezxercise 5.6. Let A be a maximal dissipative operator on E. Let B be a bounded operator.
Prove that A + B (defined on Dom(A + B) = Dom(A)) generates a C%-semigroup on E and
that, for all t > 0,

Het(A-i—B) H < !Bl
L(E)

Ezxercise 5.7 (Generator of dilations). For ¢t € R and u € L?(R) we define the function S;u
by
(Stu)(x) = e%u(etx).

1. Prove that this defines a unitary group (S;)wcr on L?(R). We denote by A the generator
of St.
2. Let u € C°(R). Prove that u € Dom(A) and that Au = § + zu’ (where we denote by 2v
the function z — zv(x)).
3. Prove that C°(R) is a core of A.
4. We set

D={ueL*R) : 2u' € L*(R)}.

It is endowed with the norm defined by [u]p = [ul2g) + |2v| ;2 (r). Prove that C3°(R) is
dense in D.
5. Prove that Dom(A) = D.

Ezercise 5.8. Let A be the generator of a C%-semigroup. Let ¢ € Dom(A) and ) € C such
that Ap = M. Prove that for all £ > 0 we have et = et*p.
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Ezxercise 5.9 (Dilation by a general vector field). Let X be a Lipschitzian vector field on
R?. For ¢ € R? on note t — ¢(t; z0) the solution on R of the problem

yéro (t) = X(yxo (t))7 vt e R,
Yo (0) = 0.

Then for t € R and 2o € R we set ¢! (20) = ¥, (t). Then we have p° = Idgs and !¢ = plop®
for all s,t € R. For t € R and u € L2(RY) we set

Syu(z) = det(dyt)2u(ptz).

1. Prove that (S;)er is a unitary group on L?(R9).
2. What is the generator of (S¢)ier ?

Ezxercise 5.10. Let A be the generator of a strongly continuous semigroup. We set

Dom(A%) = ﬂ Dom(A™)

neN*

(where, by induction, Dom(A™) = {¢ € Dom(A"~') : A"~ 1y e Dom(A)}).

1. Prove that Dom(A®) is a subspace of Dom(A), invariant by e‘4 for all ¢ > 0.

2. We denote by C the set of smooth functions on R compactly supported in ]0,+oo[. Let
¢ €C and 1 € E. We set

+00

Yy = (s)e*Aep ds.
0

Prove that 1, € Dom(A) with

+0

Athy = — ¢ (s)e* A ds.
0

3. Prove that ¢, € Dom(A%).
4. We set D = span {14,% € E, ¢ € C}. Assume by contradiction that D is not dense in E and
consider £ € E’ such that {¢,7))g, ¢ = 0 for all 1) € D (as given by the Hahn-Banach theorem).
a. Prove that <€,65A1/J>E/ g =0forall s >0andall ¢€E.
b. Deduce that D is dense in E.
5. Prove that Dom(A%) is a core for A.
6. Prove that Dom(A™) is a core for A for all n € N*.
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