
Chapter 1

Linear Operators

1.1 Unbounded operators
Let E and F be two Banach spaces.

1.1.1 Remainder about bounded operators
We denote by LpE, Fq the set of bounded (continuous) linear maps from E to F, and for
A P LpE, Fq we set

}A}LpE,Fq “ sup
φPEzt0u

}Aφ}F
}φ}E

.

We write LpEq for LpE, Eq.
If G is a third Banach space then for A P LpE, Fq and B P LpF, Gq we have

}BA}LpE,Gq ď }A}LpE,Fq }B}LpF,Gq . (1.1)

Example 1.1. If E has finite dimension then all the linear maps from E to F are continuous.
Example 1.2. We consider on ℓ2pNq the operators Sr and Sℓ defined by

Srpu0, u1, . . . , un, . . . q “ p0, u0, . . . , un´1, . . . q
and

Sℓpu0, u1, . . . , un, . . . q “ pu1, u2, . . . , un`1, . . . q.
Then Sr and Sℓ are bounded operators on ℓ2pNq with }Sr}Lpℓ2pNqq “ }Sℓ}Lpℓ2pNqq “ 1.

Example 1.3. Let a “ panqnPN be a bounded sequence in C. For u “ punqnPN P ℓ2pNq we
define Mau P ℓ2pNq by

@n P N, pMauqn “ anun.

We have Ma P Lpℓ2pNqq with }Ma}Lpℓ2pNqq “ supnPN |an|.
Example 1.4. Let Ω be an open subset of Rd, endowed with the Lebesgue measure Leb. We
work on the Banach (Hilbert) space L2pΩq “ L2pΩ;Cq. Let w P L8pΩq. We consider on
L2pΩq the multiplication operator Mw : u ÞÑ uw. Then Mw P LpL2pΩqq and

}Mw}LpL2pΩqq “ }w}L8pΩq .

Definition 1.5. We say that A P LpE, Fq is invertible if there exists B P LpF, Eq such that
BA “ IdE and AB “ IdF.

The following result is a consequence of the open mapping theorem (see for instance
[Bre11, Cor. 2.7]).

Proposition 1.6. Let A P LpE, Fq. Assume that A is bijective. Then its inverse is necessarily
continuous, so A is invertible.
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Example 1.7. • Sr is not surjective and Sℓ is not injective, so these two operators are not
invertible.

• Given a “ panq P ℓ8pNq, the operator Ma is invertible if and only if

0 R tan, n P Nu.

• Given w P L8pΩq, the operator Mw is invertible in L2pΩq if and only if there exists
ε ą 0 such that

Leb
` tx P Ω : |wpxq| ď εu ˘ “ 0. (1.2)

Assume that (1.2) holds. Then w´1 is well defined almost everywhere and
››w´1››

L8pΩq ď
1
ε . Then Mw´1 P LpL2pΩqq is an inverse for Mw. Conversely, assume that Mw is in-
vertible. Assume by contradiction that (1.2) does not hold. Then for all n P N˚ we can
consider An P BpOq such that LebpAnq Ps0, `8r and

@x P An, |wpxq| ď 1
n

.

Then we set

un “ 1An

LebpAnq 1
2

,

so that }un}L2pΩq “ 1 and

}Mwun}2
L2pΩq “ 1

LebpAnq
ż

An

|wpxq|2 dx ď 1
n2 .

Then
}un}L2pΩq “ ››M´1

w Mwun

››
L2pΩq ď 1

n
}M´1

w }LpL2pΩqq ÝÝÝÝÝÑ
nÑ`8 0,

which gives a contradiction.

Proposition 1.8. Let A P LpEq with }A}LpEq ă 1. Then IdE ´A is invertible and

pIdE ´Aq´1 “
`8ÿ

n“0
An.

Proof. We first observe that

`8ÿ

n“0
}An}LpEq ď

`8ÿ

n“0
}A}n

LpEq ă 8,

so the sum
ř`8

n“0 An is convergent in LpEq. Then for all N P N we have

pIdE ´Aq
Nÿ

n“0
An “ IdE ´AN`1.

Taking the limit N Ñ `8 gives

pIdE ´Aq
`8ÿ

n“0
An “ IdE .

We similarly see that
ř`8

n“0 AnpIdE ´Aq “ IdE, and the conclusion follows.l Ex. 1.1
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1.1.2 Unbounded operators
Definition 1.9. A linear operator (or unbounded operator) from E to F is a linear map A
from a linear subspace DompAq of E (the domain of A) to F. An operator on E is an operator
from E to itself.
Definition 1.10. We say that the operator A is densely defined if DompAq is dense in E.
Example 1.11. A bounded operator A P LpE, Fq is a particular case of an unbounded operator
with DompAq “ E.
Example 1.12. Let Ω be an open subset of Rd, endowed with the Lebesgue measure Leb. Let
w be a measurable function on Ω. We consider on L2pΩq the multiplication operator

Mw : u ÞÑ wu,

defined on the domain
DompMwq “ ␣

u P L2pΩq : wu P L2pΩq(
. (1.3)

Example 1.13. Let w be a measurable function on Rd. We consider on L2pRdq the operator
Pw “ F´1MwF (where Fu “ û is the Fourier transform of u) defined on the domain

DompAq “ ␣
u P L2pRdq : wû P L2pRdq(

.

Then for u P DompAq and ξ P Rd we have
xAupξq “ wpξqûpξq.

Remark 1.14. One has to be careful when dealing with unbounded operators. For instance,
if A1 and A2 are two operators on E, then the sum A1 ` A2 is only defined on the do-
main DompA1q X DompA2q (which can be t0u) and the composition A2 ˝ A1 is defined on
tφ P DompA1q : A1φ P DompA2qu.
Definition 1.15. Let A and B be two linear operators from E to F. We say that A is an
extension of B and we write B Ă A if DompBq Ă DompAq and Aφ “ Bφ for all φ P DompBq.
Example 1.16. Let w be a continuous function on Ω and let Mw be the multiplication operator
by w as in Example 1.12. We can define M0

w by M0
wu “ wu for u P DompM0

wq “ C8
0 pΩq.

Then we have M0
w Ă Mw.

Example 1.17. Let Ω be an open subset of class C2 in Rd. We denote by H0, H̃, HD and
HN the operators on L2pΩq which all act as u ÞÑ ´∆u, but defined on different domains:

• DompH0q “ C8
0 pΩq,

• DompH̃q “ H2pΩq,
• DompHDq “ H2pΩq X H1

0 pΩq,
• DompHN q “ ␣

u P H2pΩq : Bνu “ 0 on BΩ
(
.

These four operators are densely defined. Moreover we have H0 Ă HD Ă H̃ and H0 Ă HN Ă
H̃.
Definition 1.18. Let A be an operator from E to F. The graph of A is

GrpAq “ tpφ, Aφq, φ P DompAqu Ă E ˆ F.

Remark 1.19. If A and T are two linear operators from E to F then T Ă A (in the sense of
Definition 1.15 if and only if GrpT q Ă GrpAq (in the usual sense of inclusion for subsets of
E ˆ F).
Definition 1.20. Let A be an operator on E. We define on DompAq the graph norm by

}φ}2
A :“ }pφ, Aφq}2

EˆF “ }Aφ}2
F ` }φ}2

E .

Remark 1.21. If A P LpEq then the graph norm is equivalent to the original norm on E.
Example 1.22. We consider on L2pRdq the Laplace operator H “ ´∆, with domain DompHq “
H2pRdq. Then the graph norm of H is equivalent to the usual Sobolev norm:

}´∆u}2
L2pRdq ` }u}2

L2pRdq » }u}2
H2pRdq .

This is not the case on a general open subset Ω of Rd.
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1.1.3 Boundedly invertible operators
Definition 1.23. Let A be a linear operator from E to F. We say that A is invertible (or
that it is boundedly invertible, or that it has a bounded inverse) if there exists B P LpF, Eq
such that RanpBq Ă DompAq, BA “ IdDompAq and AB “ IdF. In this case we write B “ A´1.

Remark 1.24. Let A P LpE, Fq. Then A is boundedly invertible (in the sense of Definition
1.23) if and only if it is invertible in the sense of Definition 1.5, and in this case the two
definitions of A´1 coincide.
Remark 1.25. Notice that if A is invertible then it is a bijective map from DompAq to F. But
if DompAq ‰ E then A´1 is only a right inverse of A.
Remark 1.26. If A is injective we can always define an (unbounded) inverse A´1, even if A is
not surjective. We define A´1 as an operator from F to E with domain DompA´1q “ RanpAq
and we have A´1A “ IdDompAq, AA´1 “ IdRanpAq. Unless explicitely mentioned, we will
not consider unbounded inverses in this course. Notice however that in many references an
operator is said to be invertible as soon as it has an unbounded inverse.
Example 1.27. Let Mw be the multiplication operatoron L2pΩq defined in Example 1.12.
Then, as in the bounded case, Mw is invertible if and only if

Dε ą 0, Leb
` tx P Ω : |wpxq| ď εu ˘ “ 0,

and in this case we have M ´1
w “ Mw´1 . Moreover Mw is injective if and only if

Leb
` tx P Ω : wpxq “ 0u ˘ “ 0,

In particular, it may happen that Mw is injective but does not have a bounded inverse.
Notice also that the operator M 0

w as defined in Example 1.16 is not invertible since its range
is never equal to L2pΩq.
Example 1.28. We consider on L2pRdq the operator A “ ´∆ ` 1 with domain DompAq “
H2pRdq. Then A has a bounded inverse A´1. For f P L2pRdq the function u “ A´1f satisfies,
for almost all ξ P Rd,

ûpξq “ f̂pξq
|ξ|2 ` 1

.l Ex. 1.2

1.1.4 Closed operators
The notion of bounded operator is too restrictive for the applications. On the other hand,
we will see that we cannot say much with spectral theory for general unbounded operators.
It turns out that a good intermediate choice is to consider the class of closed operators.
Roughly speaking, if φn Ñ φ then we do not require that Aφn Ñ Aφ, but if Aφn has a limit
then it must be Aφ (in particular, this implies that Aφ should be defined).

Proposition-Definition 1.29. Let A be an operator from E to F. We say that A is closed
if the following equivalent assertions are satisfied.

(i) If a sequence pφnqnPN P DompAqN is such that φn goes to some φ in E and Aφn goes to
some ψ in F, then φ belongs to DompAq and Aφ “ ψ;

(ii) GrpAq is closed in E ˆ F;

(iii) DompAq, endowed with the norm }¨}A, is complete (hence a Banach space).

l Ex. 1.3
Remark 1.30. Let A be a closed operator on E. Then A defines a bounded operator from
the Banach space DompAq to E.
Example 1.31. A bounded operator is closed.
Example 1.32. • We consider on L2pRq the operator A defined on the domain DompAq “

C8
0 pRq by pAuqpxq “ x2upxq, x P R. We define v : R Ñ R by vpxq “ e´x2 . Let

χ P C8
0 pR, r0, 1sq be equal to 1 on r´1, 1s. For n P N˚ and x P R we set χnpxq “ χpx{nq.

Then χnv goes to v in L2pRq, χnv P DompAq for all n P N˚ and Apχnvq has a limit in
L2pRq. However v does not belong to DompAq. This proves that A is not closed.
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• We now consider the operator A : u ÞÑ x2u on the domain

DompAq “ ␣
u P L2pRq : x2u P L2pRq(

.

Assume that punqnPN is a sequence in DompAq which goes to some u in L2pRq and
such that Aun has a limit v P L2pRq. The function x2u belongs to L2

locpRq and for all
ϕ P C8

0 pRq we have
ż

R
x2upxqϕpxq dx “ lim

nÑ`8

ż

R
x2unpxqϕpxq dx “

ż

R
vpxqϕpxq dx.

This proves that x2upxq “ vpxq for almost all x P R. In particular, u P DompAq and
Au “ v. This proves that A is closed.

l Ex. 1.4

Example 1.33. The Laplace operator ´∆ with domain C8
0 pRdq is not closed in L2pRdq. Let

u P H2pRdqzC8
0 pRdq and let punqnPN be a sequence in C8

0 pRdq which goes to u in H2pRdq.
Then un goes to u in L2pRdq, the sequence p´∆unqnPN has a limit in L2pRdq but u R C8

0 pRdq.
This proves that the Laplace operator is not closed if the domain is C8

0 pRdq. However it is
closed with domain H2pRdq.
Example 1.34. This example generalizes Examples 1.32 and 1.33. Let Ω be an open subset
of Rd. Let m P N and consider smooth functions bα on Ω for all α P Nd such that |α| ď m.
Then we consider the differential operator

P “
ÿ

|α|ďm

bαpxqBα
x . (1.4)

We denote by P ˚ the formal adjoint of P . It is defined for ϕ P C8
0 pΩq by

P ˚ϕ “
ÿ

|α|ďm

p´1q|α|Bα
x pbαϕq “

ÿ

|α|ďm

p´1q|α| ÿ

βďα

ˆ
α
β

˙
pBα´β

x bαqBβϕ. (1.5)

Given u P L2pΩq, we have Pu P L2pΩq (in the sense of distributions) if and only if there
exists v P L2pΩq such that

@ϕ P C8
0 pΩq,

ż

Ω
uP ˚ϕ dx “

ż

Ω
vϕ dx,

and in this case we write Pu “ v.
We define an unbounded operator A on L2pΩq by setting Au “ Pu for any u in the

domain
DompAq “ ␣

u P L2pΩq : Pu P L2pΩq(
,

where Pu is understood in the sense of distributions. This operator A is closed. Indeed, let
punq be a sequence in DompAq such that un goes to some u and Aun goes to some v in L2pΩq.
For ϕ P C8

0 pΩq we have
ż

Ω
upxqpP ˚ϕqpxq dx “ lim

nÑ8

ż

Ω
unpxqpP ˚ϕqpxq dx “ lim

nÑ8

ż

Ω
pPunqpxqϕpxq dx

“ lim
nÑ8

ż

Ω
pAunqpxqϕpxq dx “

ż

Ω
vpxqϕpxq dx.

This proves that in the sense of distributions we have Pu “ v P L2pΩq. Therefore u P DompAq
and Au “ v. This proves that A is closed.

The reason why we are interested in closed operators is the following result.

Proposition 1.35. Let A be an operator from E to F.

(i) If A is not closed then it does not have a bounded inverse.

(ii) If A is closed and defines a bijection from DompAq to F then it has a bounded inverse.
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Proof. ‚ Assume that A has a bounded inverse A´1 P LpF, Eq. Then A´1 is closed, which
implies that A is closed (GrpAq is closed in E ˆ F if and only if GrpA´1q is closed in F ˆ E).
We can also give a direct proof. Assume that pφnq is a sequence in E such that φn has
a limit φ in E and Aφn has a limit ψ in F. Then Aφn Ñ ψ and A´1pAφnq Ñ φ. Since
A´1 is closed, this implies that ψ P DompA´1q “ F (nothing new here) and φ “ A´1ψ, so
φ P RanpA´1q “ DompAq and Aφ “ ψ. This proves that A is closed.
‚ Now assume that A is closed and bijective from DompAq to F. Then DompAq is a Banach
space for the graph norm and A P LpDompAq, Fq. By Proposition 1.6, its inverse is continuous
from F to DompAq, hence from F to E, so A is boundedly invertible.

Proposition 1.36. Let A be an operator from E to F. Assume that there exists α ą 0 such
that

@φ P DompAq, }Aφ}F ě α }φ}E . (1.6)
Then

(i) A is injective ;

(ii) If A is closed, then A has closed range ;

(iii) If A is boundedly invertible then
››A´1››

LpF,Eq ď 1
α .

Proof. We prove the second statement. Let pψnq be a sequence in RanpAq which converges
to some ψ in F. For n P N we consider φn P DompAq such that Aφn “ ψn. Since pAφnq is
a Cauchy sequence in F, pφnq is a Cauchy sequence in E by (2.1). Since E is complete, φn

converges to some φ in E. Finally, since A is closed, φ P DompAq and ψ “ Aφ P RanpAq.
This proves that RanpAq is closed in F.

1.1.5 Closable operators
We have seen in Examples 1.32 and 1.33 that an operator which is not closed can be extended
to a closed operator on a bigger domain.

Definition 1.37. We say that on operator A is closable if it has a closed extension.

Of course, a closed operator is closable.

Proposition 1.38. Let A be an operator from E to F. The following assertions are equivalent.

(i) A is closable;

(ii) For any sequence pφnqnPN in DompAq such that φn Ñ 0 in E and Aφn has a limit ψ in
F, then ψ “ 0;

(iii) GrpAq is the graph of a closed operator A from E to F.

Definition 1.39. If the assertions of Proposition 1.38 are satisfied, then the closure of A is
the operator A such that GrpAq “ GrpAq.
Proof. ‚ Assume (i) and let Ã be a closed extension of A. Let pφnq be a sequence in DompAq
such that φn Ñ 0 in E and Aφn Ñ ψ in F. Then pφnq is also a sequence in DompÃq going to
0 and Ãφn Ñ ψ. Since Ã is closed we necessarily have ψ “ 0, which proves (ii).
‚ Now assume (ii). We denote by D the closure of DompAq for the graph norm. Let φ P D
and let pφnq be a sequence in DompAq which goes to φ for the graph norm. Then pAφnq
is a Cauchy sequence in F, and we denote by Aφ its limit. This definition does not depend
on the choice of the sequence pφnq, since if pζnq is another sequence which goes to φ for the
graph norm, we have φn ´ ζn Ñ 0 and Aφn ´ Aζn has a limit, so this limit is 0. This defines
a linear map A from D to F, and A is an extension of A with DompAq “ D.

By definition we have GrpAq Ă GrpAq. Now let pφ, ψq P GrpAq. There exists a sequence
pφn, ψnq in GrpAq such that φn Ñ φ in E and ψn “ Aφn Ñ ψ in F. By definition of A we
have φ P DompAq and ψ “ Aφ, so pφ, ψq P GrpAq. This proves that GrpAq “ GrpAq. Since A
has a closed graph, this is a closed operator and (iii) is proved.
‚ Finally, assume (iii). Since GrpAq Ă GrpAq, A is an extension of A. Since A is closed, (i)
is proved.
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We have already seen examples of operators which are not closed but closable.
Example 1.40. We consider on L2pRdq the operators H0 and H which acts as ´∆ on the
domains

DompH0q “ C8
0 pRdq DompHq “ H2pRdq.

Then H “ H0.
l Ex. 1.5Here is an example of operator which is not closable.

Example 1.41. We consider the operator A from L2pRq to C defined on DompAq “ C8
0 pRq

by Au “ up0q. Then there exists a sequence punqnPN in C8
0 pRq such that un Ñ 0 in L2pRq

but unp0q Ñ 1 in R, so A is not closable.

Proposition 1.42. If A is a closable operator, then A is the smallest closed extension of A
(if B is a closed extension of A we have A Ă B or, equivalently, GrpAq Ă GrpBq).
Proof. Let B be a closed extension. Then GrpBq is closed and contains GrpAq, so it contains
GrpAq “ GrpAq.
Definition 1.43. Let A be a closed operator from E to F. Let D be a linear subspace of
DompAq. We say that D is a core of A if A|D “ A. Equivalently, D is dense in DompAq for
the graph norm, or for any φ P DompAq there exists a sequence pφnq in D such that φn Ñ φ
in E and Aφn Ñ Aφ in F.

Example 1.44. We consider on L2pRdq the Laplacian A “ ´∆, DompAq “ H2pRdq. Any
subspace D of H2pRdq which contains C8

0 pRdq is a core of A.

1.1.6 Reducing subspaces
Proposition 1.45. Let A be an operator on E. Let Π be a projection of E such that

ΠA Ă AΠ

(for all φ P DompAq we have Πφ P DompAq and AΠφ “ ΠAφ). Let F “ RanpΠq “ kerp1´Πq
and G “ kerpΠq.

(i) F and G are closed subspaces of E and E “ F ‘ G.

(ii) A maps DompAqXF to F and DompAqXG to G. We denote by AF and AG the restrictions
of A to F and G, with DompAFq “ DompAq X F and DompAGq “ DompAq X G (then for
φ P E and pφF, φGq P FˆG (unique) such that φ “ φF`φG we have Aφ “ AFφF`AGφGq.
We can write A “ AF ‘ AG.

(iii) If DompAq is dense in E then DompAFq is dense in F and DompAGq is dense in G.

(iv) If A is closed then AF and AG are closed.

(v) A is boundedly invertible if and only if both AF and AG are. In this case F and G are
left invariant by A´1 and the restrictions of A´1 to F and G are given by pAFq´1 and
pAGq´1. In other words, A´1 “ A´1

F ‘ A´1
G .

Proof. ‚ G is closed since it is the kernel of the bounded operator Π, and F is closed since
it is the kernel of p1 ´ Πq. Let φ P F X G. We have φ “ Πφ “ 0, so F X G “ t0u. On the other
hand, for φ P E we have φ “ Πφ ` pφ ´ Πφq with Πφ P F and φ ´ Πφ P G, so F ` G “ E.
‚ For φ P DompAq X F we have ΠAφ “ AΠφ “ Aφ, so Aφ P kerp1 ´ Πq “ F. Similarly, for
φ P DompAq X G we have ΠAφ “ AΠφ “ 0, so Aφ P G.
‚ Assume that DompAq is dense in E. Let φ P E. There exists a sequence pφnq in DompAq
which converges to φ in E. Since DompAq is left invariant by Π, Πφn and p1 ´ Πqφn belong
to DompAq for all n P N. Then Πφn P DompAq X F and p1 ´ Πqφn P DompAq X G. Finally,
Πφn Ñ Πφ (this is φ if φ P F) and p1 ´ Πqφn Ñ p1 ´ Πqφ (this is φ if φ P G).
‚ Assume that A is closed. Let pφnq be a sequence in DompAFq such that φn Ñ φ and
AFφn Ñ ψ in F. Then φn Ñ φ and Aφ Ñ ψ in E. Since A is closed, this proves that
φ P DompAq and Aφ “ ψ. Since φ P F we also have φ P DompAFq and AF φ “ ψ. This proves
that AF is closed.
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‚ Assume that A is invertible. Let ψ P F. Let pφF, φGq P pDompAqXFqˆpDompAqXGq such
that A´1ψ “ φF `φG. Then ψ “ AφF `AφG. We necessarily have AφG “ 0, so φG “ 0. Thus
A´1 maps F into itself, and pA´1q|F is a bounded inverse for AF. Similarly, AG is invertible.
Conversely, if AF and AG are invertible then A´1

F ‘ A´1
G defines a bounded inverse for A.

Example 1.46. Let Ω be an open subset of Rd and let ω be a Borel subset of Ω. The
multiplication by 1Ω defines a projection Π of L2pΩq and for any measurable function w on
Ω we have ΠMw Ă MwΠ (where Mw is as defined in Example 1.12). Moreover we have

RanpΠq “ ␣
u P L2pΩq : upxq “ 0 for almost all x P Ωzω

(

and
kerpΠq “ ␣

u P L2pΩq : upxq “ 0 for almost all x P ω
(

.

Notice that Π is an orthogonal projection in this case, which is not necessarily the case in
Proposition 1.45.
Example 1.47. Let ω be an open subset of Rd. The operator F´11ωF defines a projection
Π of L2pRdq. Then for a measurable function w and Pw “ F´1MwF (see Example 1.13) we
have ΠPw Ă PwΠ.

1.2 Adjoint of an operator
Let H1 and H2 be two Hilbert spaces.

1.2.1 Definition
Definition 1.48. Let A be a densely defined operator from H1 to H2. Let ψ P H2. We say
that ψ belongs to DompA˚q if there exists ψ˚ P H1 such that

@φ P DompAq, xAφ, ψyH2
“ xφ, ψ˚yH1

.

In this case ψ˚ is unique and we set A˚ψ “ ψ˚. This defines an operator A˚ from H2 to H1
with domain DompA˚q. We say that A˚ is the adjoint of A.l Ex. 1.6

Notice that if A is not densely defined, then A˚ψ is not uniquely defined. We will never
consider this situation.
Remark 1.49. By definition, we have

@φ P DompAq, @ψ P DompA˚q, xAφ, ψyH2
“ xφ, A˚ψyH1

.

Remark 1.50. Let ψ P H2. By the Riesz representation theorem, ψ belongs to DompA˚q if
and only if there exists C ą 0 such that

@φ P DompAq, ˇ̌xAφ, ψyH2

ˇ̌ ď C }φ}H1
.

Moreover, in this case we have }A˚ψ}H1
ď C.

l Ex. 1.10-1.11

1.2.2 Adjoint of a bounded operator
We begin with examples and properties for the adjoint of bounded operators.
Example 1.51. Assume that H1 and H2 are of finite dimensions n1, n2 P N˚. Let β1 and β2
be orthonormal bases of H1 and H2, and let M “ pmj,kq1ďjďn2

1ďkďn1

be the matrix of A in β1 and

β2. Then the matrix of A˚ in β2 and β1 is

M˚ “ M
T “ pmk,jq1ďjďn2

1ďkďn1

.

Example 1.52. Let w P L8pΩq and let Mw be the multiplication operator as in Example 1.4.
Then the adjoint of Mw is Mẘ “ Mw.
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Example 1.53. The shift operators Sr and Sℓ (see Example 1.2) are adjoint of each other on
ℓ2pNq.
Proposition 1.54. Let A P LpH1, H2q.

(i) A˚ P LpH2, H1q ;

(ii) pA˚q˚ “ A ;

(iii) }A˚}LpH2,H1q “ }A}LpH1,H2q.

l Ex. 1.7

Proof. ‚ Let ψ P H2. Then for all φ P H1 we have

|xAφ, ψy| ď }A}LpH1,H2q }φ}H1
}ψ}H2

,

so ψ P DompA˚q and
}A˚ψ}H1

ď }A}LpH1,H2q }ψ}H2
.

This proves that A˚ P LpH2, H1q and

}A˚}LpH2,H1q ď }A}LpH1,H2q

‚ Let φ P H1. For all ψ P H2 we have

xA˚ψ, φyH1
“ xφ, A˚ψyH1

“ xAφ, ψyH2
“ xψ, AφyH2

This proves that A˚˚φ “ Aφ.
‚ Then

}A}LpH1,H2q “ }A˚˚}LpH1,H2q ď }A˚}LpH2,H1q ,

and finally, }A˚}LpH2,H1q “ }A}LpH1,H2q.

Proposition 1.55. For A1 P LpH1, H2q and A2 P LpH2, H3q we have pA2A1q˚ “ A1̊ A2̊ .

Proof. Let φ P H1 and ψ P H3. We have

xA2A1φ, ψyH3
“ xA1φ, A2̊ ψyH2

“ xφ, A1̊ A2̊ ψyH1
,

and the conclusion follows.

l Ex. 1.9

Proposition 1.56. Let U be a closed and densely defined operator from H1 to H2 which has
a bounded inverse given by U ´1 “ U˚. Then DompUq “ H1 and }Uφ}H2

“ }φ}H1
for all

φ P H1. We say that U is unitary.

Proof. Let φ P DompUq. Since U ˚ P LpH2, H1q we have

}Uφ}2
H2

“ xUφ, UφyH2
“ xU˚Uφ, φyH1

“ }φ}2
H1

.

Since U is closed, this proves that U P LpH1, H2q (see Exercise 1.3).

1.2.3 Main properties of the adjoint
In this paragraph we give general properties for the adjoint of a linear operator.

Proposition 1.57. Let A and T be two densely defined operators from H1 to H2 such that
T Ă A. Then A˚ Ă T ˚.

Proof. Let ψ P DompA˚q. For all φ P DompT q we have

xTφ, ψyH2
“ xAφ, ψyH2

“ xφ, A˚ψyH1
.

This proves that ψ P DompT ˚q and T ˚ψ “ A˚ψ.
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Proposition 1.58. Let A be a densely defined operator from H1 to H2. Then we have

kerpA˚q “ RanpAqK, kerpA˚qK “ RanpAq.
Proof. Let φ P kerpA˚q. Then for all ψ P DompAq we have

xAψ, φyH2
“ xψ, A˚φyH1

“ 0,

so φ P RanpAqK. Conversely, if φ P RanpAqK then the same computation shows that φ P
kerpA˚q. This gives the first inequality. Then1 we have

kerpA˚qK “ pRanpAqKqK “ RanpAq,
and the proof is complete.

Proposition 1.59. Let A be a densely defined operator from H1 to H2. Then A˚ is closed.

Proof. Let pψnq be a sequence in DompA˚q such that ψn goes to some ψ in H2 and A˚ψn

goes to some ζ in H1. For φ P DompAq we have

xAφ, ψyH2
“ lim

nÑ`8 xAφ, ψnyH2
“ lim

nÑ8 xφ, A˚ψnyH1
“ xφ, ζyH1

.

This proves that ψ P DompA˚q and A˚ψ “ ζ. Thus A˚ is closed.

Proposition 1.60. Let A be a densely defined operator from H1 to H2. Then A is closable
if and only if DompA˚q is dense in H2. Moreover, in this case we have pAq˚ “ A˚ and
A “ pA˚q˚. In particular, A is closed if and only if A “ pA˚q˚.

We can write A˚˚ instead of pA˚q˚.

Proof. ‚ We define
Θ :

"
H1 ˆ H2 Ñ H2 ˆ H1,
px1, x2q ÞÑ p´x2, x1q.

Then Θ˚ “ Θ´1 “ ´Θ : py2, y1q ÞÑ py1, ´y2q.
‚ Let pψ, ψ̃q P H2 ˆ H1. We have

pψ, ψ̃q P GrpA˚q ðñ @φ P DompAq, ´ xAφ, ψyH2
` @

φ, ψ̃
D

H1
“ 0

ðñ @φ P DompAq, xΘpφ, Aφq, pψ, ψ̃qyH2ˆH1 “ 0
ðñ pψ, ψ̃q P pΘGrpAqqK,

so
GrpA˚q “ `

ΘGrpAq˘K “ Θ
`
GrpAqK˘

. (1.7)
Then

GrpA˚qK “ ΘGrpAq “ ΘGrpAq.
After composition by Θ˚ we get

GrpAq “ Θ˚`
GrpA˚qK˘ “ Θ

`
GrpA˚qK˘

. (1.8)

‚ Assume that DompA˚q is dense in H2. Then we can define A˚˚ “ pA˚q˚. By Proposition
1.59, this defines a closed operator from H1 to H2. Let φ P DompAq. For all ψ P DompA˚q
we have

xA˚ψ, φy “ xψ, Aφy ,

1

Proposition. Let H be a Hilbert space and let F be a subspace of H. Then we have

pF KqK “ F .

(see Proposition 1.9 in [Bre11] for the version in normed vector spaces)

Proof. ‚ We have F Ă F KK and F KK is closed, so F Ă F KK

‚ We have F K “ F
K and H “ F ‘ F

K. Let φ P F KK. There exist φ P F and φK P F
K “ F K such that

φ “ φ ` φK. Then 0 “ @
φ, φKD “ ››φK››2

, so φ “ φ P F .
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so φ P DompA˚˚q and A˚˚φ “ Aφ. This proves that A˚˚ is an extension of A, and in
particular A is closable.
‚ Now assume that A is closable and let ψ P DompA˚qK. Then, by (1.8),

p0, ψq “ Θ˚p´ψ, 0q P Θ˚pGrpA˚qKq “ GrpAq “ GrpAq.
so ψ “ 0. Thus DompA˚q is dense in H2. Moreover, by (1.7) applied with A we have

GrppAq˚q “ Θ
`
GrpAqK˘ “ Θ

`
GrpAqK˘ “ Θ

`
GrpAqK˘ “ GrpA˚q.

This proves that pAq˚ “ A˚. Since A˚ is densely defined, we can consider its adjoint A˚˚.
By (1.7) applied first to A˚ (with Θ replaced by ´Θ˚) and then to A, we have

GrpA˚˚q “ Θ˚`
GrpA˚qK˘ “ Θ˚``

ΘGrpAqK˘K˘ “ `
GrpAqK˘K “ GrpAq “ GrpAq.

This proves that A˚˚ “ A.

Proposition 1.61. Let A be a closed and densely defined operator from H1 to H2. Then
A˚ : DompA˚q Ñ H1 is boundedly invertible if and only if A : DompAq Ñ H2 is, and in this
case we have pA˚q´1 “ pA´1q˚.

Proof. Assume that A has a bounded inverse. Then the adjoint pA´1q˚ of A´1 is a bounded
operator from H1 to H2. Let φ P DompA˚q. For all ψ P H2 we have

@pA´1q˚A˚φ, ψ
D

H2
“ @

A˚φ, A´1ψ
D

H1
“ @

φ, AA´1ψ
D

H2
“ xφ, ψyH2

.

This proves that pA´1q˚A´1φ “ φ, and we deduce that pA´1q˚A´1 “ IdDompAq. Now let
ψ P H1. For all φ P DompAq we have

@
Aφ, pA´1q˚ψ

D “ @
A´1Aφ, ψ

D “ xφ, ψy ,

so pA´1q˚ψ P DompA˚q and A˚pA´1q˚ψ “ ψ. This proves that A˚pA´1q˚ “ IdH1 . Finally
we have proved that A˚ is boundedly invertible and pA˚q´1 “ pA´1q˚.

Now assume that A˚ is boundedly invertible. Then A “ A˚˚ is boundedly invertible, and
the proof is complete.

Remark 1.62. If A is bounded and boundedly invertible, then by Proposition 1.55 we can
simply write

A˚pA´1q˚ “ pA´1Aq˚ “ Id˚ “ Id,

and similarly pA´1q˚A˚ “ Id, so A˚ is invertible and pA˚q´1 “ pA´1q˚.

1.2.4 Examples: adjoints of some differential operators
General differential operators with smooth and bounded coefficients

Let Ω be an open subset of Rd. We define on H “ L2pΩq the operator A0 which acts as
the differential operator P (see (1.4)) on the domain DompA0q “ C8

0 pΩq. Then v P L2pΩq
belongs to DompA0̊ q if and only if there exists w P L2pΩq such that

@ϕ P C8
0 pΩq,

ż

Ω
Pϕpxqvpxq dx “

ż

Ω
ϕpxqwpxq dx.

By definition, this means that P ˚v “ w (see (1.5)) in the sense of distributions. Then A0̊
acts as P ˚ on the domain

DompA0̊ q “ ␣
v P L2pΩq : P ˚v P L2pΩq(

.

Then A0 is closed by Proposition 1.59 or by Example 1.34. The domain of A0̊ contains
C8

0 pΩq, so it is dense. By Proposition 1.60 this implies that A0 is closable. This is consistent
with the fact that we already know by Example 1.34 that A0 has a closed extension. Notice
that A0 may have several closed extensions (see for instance the discussion of Section 3.1.5).
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The Laplace operator

As a particular case, we consider the Laplace operator. We define the operators H0 and H
which act as ´∆ on the domains

DompH0q “ C8
0 pΩq and DompHq “ ␣

u P L2pΩq : ∆u P L2pΩq(
.

When Ω “ Rd, the domain of H is just H2pRdq. We recall that this is not true for a general
Ω (it can happen that u P L2pΩq and ∆u P L2pΩq but u is not in H2pΩq).

Since the formal adjoint of the Laplacian is the Laplacian itself we have in general H0̊ “
H. Since H0 Ă H we have H˚ Ă H0̊ “ H by Proposition 1.57.

When Ω “ Rd we actually have H˚ “ H0̊ “ H. Several proofs are possible.
We can directly prove that H Ă H˚. Let ψ P DompHq “ H2pRdq. For φ P DompHq we

have by the Green formula

xHφ, ψy “ x´∆φ, ψy “ xφ, ´∆ψy “ xφ, Hψy ,

so ψ P DompH˚q and H˚ψ “ Hψ. Alternatively, we can use the fact that H “ H0 (see
Example 1.33) and Proposition 1.60 which gives H˚ “ H0

˚ “ H0̊ .
In general, since functions in DompHq or DompH0̊ q are not necessarily in H2pΩq, we

cannot apply the usual Green formula.
In dimension 1, it is still true that DompH0̊ q “ DompHq “ H2pΩq. And we can see

that in general we do not necessarily have H˚ “ H0̊ . We consider the case Ω “s0, 1r. Let
v P DompH˚q and w “ H˚v. For all u P DompHq “ H2p0, 1q we have

´
ż 1

0
u2pxqvpxq dx “ xHu, vyL2p0,1q “ xu, wyL2p0,1q “

ż 1

0
upxqwpxq dx.

On the other hand, we also have v P DompH0̊ q “ H2p0, 1q, so by the Green formula

´
ż 1

0
upxq2vpxq dx “ ´u1p1qvp1q ` u1p0qvp1q `

ż 1

0
u1pxqv1pxq dx

“ ´u1p1qvp1q ` u1p0qvp1q ` up1qv1p1q ´ up0qv1p0q ´
ż 1

0
upxqv2pxq dx.

This implies that w “ ´v2 and vp0q “ vp1q “ v1p0q “ v1p1q “ 0. Thus, a function in H2p0, 1q
which does not vanish at 0 or 1 belongs to DompH0̊ q but not to DompH˚q. Then DompH0̊ q
is not included in DompH˚q.

Creation and annihilation operators

We consider on H “ L2pRq the creation and annihilation operators defined on the domain
C8

0 pRq by

@u P C8
0 pRq, a0u “ u1 ` xu?

2
and c0u “ ´u1 ` xu?

2
.

Then we set
a “ a0 and c “ c0.

We have

Dompaq “ ␣
u P L2pRq : u1 ` xu P L2pRq(

, Dompcq “ ␣
u P L2pRq : ´u1 ` xu P L2pRq(

.

Finally we have
a˚ “ c and c˚ “ a.

1.3 Operators and quadratic forms
1.3.1 Lax-Milgram Theorem
Let V be a Hilbert space. We denote by V 1 the space of semilinear forms on V.
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Definition 1.63. (i) A sesquilinear form q on V is a map q : V ˆ V Ñ C such that

• for all ψ P V the map φ ÞÑ qpφ, ψq is linear ;
• for all φ P V the map ψ ÞÑ qpφ, ψq is semilinear.

(ii) The quadratic form associated to q is the map φ ÞÑ qpφ, φq. It is usually also denoted
by q.

(iii) We say that q is continuous if there exists C ě 0 such that, for all φ, ψ P V,

|qpφ, ψq| ď C }φ}V }ψ}V . (1.9)

(iv) We say that q is coercive if there exists α ą 0 such that for all φ P V we have

|qpφ, φq| ě α }φ}2
V . (1.10)

(v) The adjoint q˚ of the form q is the sesquilinear form defined by

@φ, ψ P V, q˚pφ, ψq “ qpψ, φq.
Remark 1.64. Coercivity is often defined by

qpφ, φq ě α }φ}2
V .

We use a weaker property here.

Proposition 1.65 (Representation Theorem - Bounded case). Let q be a continuous sesquilin-
ear form on V. There exists a unique operator T P LpVq such that

@φ, ψ P V, qpφ, ψq “ xTφ, ψyV ,

and we have
}T }LpVq “ sup

φ,ψPVzt0u
|qpφ, ψq|

}φ}V }ψ}V
.

Moreover,

(i) the operator associated with the adjoint form q˚ is T ˚ ;

(ii) if q is α-coercive then T is invertible and
››T ´1››

LpVq ď α.

Proof. ‚ Let φ P V. The map ψ ÞÑ qpφ, ψq is a continuous semilinear form on V, so by the
Riesz representation theorem there exists a unique element of V, which we denote by Tφ,
such that

@ψ P V, qpφ, ψq “ xTφ, ψyV .

This defines a unique map T : V Ñ V.
‚ Let φ1, φ2 P V and λ P R. For all ψ P V we have

xT pφ1 ` λφ2q, ψyV “ qpφ1 ` λφ2, ψq “ qpφ1, ψq ` λqpφ2, ψq “ xTφ1, ψyV ` λ xTφ2, ψyV
“ xTφ1 ` λTφ2, ψy .

This proves that T pφ1 ` λφ2q “ Tφ1 ` λTφ2, so T is linear.
‚ For φ P V we have

}Tφ}2
V “ xTφ, TφyV “ qpφ, Tφq ď C }φ}V }Tφ}V ,

where C “ supφ,ψPVzt0u
|qpφ,ψq|

}φ}V }ψ}V
, so }Tφ}V ď C }φ}V . This proves that T P LpVq and

}T }LpVq ď C. Conversely, for φ, ψ P Vz t0u we have

|qpφ, ψq| “ |xTφ, ψy| ď }T } }φ} }ψ} .
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‚ Finally, let T̃ P LpVq be the operator associated to the adjoint form q˚. Let ψ P V. For
all φ P V we have

xTφ, ψy “ qpφ, ψq “ q˚pψ, φq “ @
T̃ψ, φ

D “ @
φ, T̃ψ

D
.

This proves that T ˚ψ “ T̃φ.
‚ Now we assume that q is coercive. For φ P V we have

α }φ}2
V ď |qpφ, φq| “ |xTφ, φyV | ď }Tφ}V }φ}V ,

so
}Tφ}V ě α }φ}V . (1.11)

By Proposition 1.36, T is injective with closed range. Now let ψ P RanpT qK. We have

0 “ |xTψ, ψyV | “ |qpψ, ψq| ě α }ψ}2
V ,

so ψ “ 0. Since RanpT q is closed, this implies that RanpT q “ V. Thus T is bijective and by
(1.11) we have

››T ´1››
LpVq ď α´1.

Example 1.66. The map φ ÞÑ }φ}2
V is a (coercive) quadratic form on V, and in this case the

operator T in Proposition 1.65 is T “ IdV .l Ex. 1.12

Theorem 1.67 (Lax-Milgram). Let V be a Hilbert space. Let q be a continuous and coercive
sesquilinear form on V. Let ℓ be a bounded semilinear form on V. Then there exists a unique
φℓ P V such that

@ψ P V, qpφℓ, ψq “ xTφℓ, ψy “ ℓpψq.
Proof. Let T be given by Proposition 1.65. By the Riesz theorem there exists ζ P V such
that xζ, ψy “ ℓpψq for all ψ P V. Then we set φℓ “ T ´1ζ.

Example 1.68. Let f P L2pRdq. Then there exists a unique u P H1pRdq such that

@v P H1pRdq,
ż

Rd

`
u1pxqv1pxq ` upxqvpxq˘

dx “
ż

Rd

fpxqvpxq dx.

To see this we apply the Lax-Milgram Theorem to the quadratic form pu, vq ÞÑ xu, vyH1pRdq
(continuous and coercive on H1pRdq) and the linear form v ÞÑ xf, vyL2pRdq (continuous on
H1pRdq).
Example 1.69. Let f P L2p0, 1q. Then there exists a unique u P H1p0, 1q such that

@v P H1p0, 1q,
ż 1

0

`
u1pxqv1pxq ` upxqvpxq˘

dx “
ż 1

0
fpxqvpxq dx.

and there exists a unique u0 P H1
0 p0, 1q such that

@v P H1
0 p0, 1q,

ż 1

0

`
u1

0pxqv1pxq ` u0pxqvpxq˘
dx “

ż 1

0
fpxqvpxq dx.

By the Poincaré inequality, the quadratic form u ÞÑ }u1}2
L2p0,1q is also coercive, so there also

exists a unique ũ0 P H1
0 p0, 1q such that

@v P H1
0 p0, 1q,

ż 1

0
ũ1

0pxqv1pxq dx “
ż 1

0
fpxqvpxq dx.

Remark 1.70. It can be useful to see the quadratic forms in terms of operators in LpV, V 1q.
More precisely, we can define a natural bijection between continuous sequilinear forms on V
and operators in LpV, V 1q. Given a continuous sesquilinear form q on V we define Q P LpV, V 1q
by

@φ P V, @ψ P V, pQφqpψq “ qpφ, ψq. (1.12)

14 J. Royer - Université Toulouse 3



Linear Operators

Conversely, given Q P LpV, V 1q, we similarly define a corresponding continuous sesquilinear
form q by (1.12).

Proposition 1.65 gives a link between quadratic forms and bounded operators on V. We
can directly define the natural bijection between LpV, V 1q and LpVq given by the Riesz rep-
resentation theorem. Let

I :
"

V Ñ V 1
φ ÞÑ ψ ÞÑ xφ, ψyV

be the usual bijective isometry given by the Riesz theorem. Then the map
"

LpVq Ñ LpV, V 1q
T ÞÑ I ˝ T

is also a bijective isometry. Moreover T P LpVq is invertible if and only if pI ˝ T q P LpV, V 1q
is.

Notice that we can use I to identify V 1 with V. It is on purpose that we do not use this
possibility here.

1.3.2 A representation theorem
Let H be a Hilbert space. Let V be another Hilbert space, continuously embedded in H.
There exists CV,H such that

@φ P V, }φ}H ď CV,H }φ}V .

We identify H with its dual H1. Then we have

V Ă H » H1 Ă V 1.

Notice that since we have already identified H with H1 we cannot identify V with V 1.
Given a continuous and coercive form q on V, we have associated in Proposition 1.65 an

operator on V. However, here our main space is H and our purpose is to define an operator
corresponding to q on H. For the typical examples 1.68-1.69, we have a quadratic form on
H1 and we want to define a corresponding operator on L2.

Theorem 1.71 (Representation theorem). Let H and V be two Hilbert spaces such that V
is densely and continuously embedded in H. Let q be a continuous and coercive sesquilinear
form on V. We set

DompAq “ tφ P V : DCφ ą 0, @ψ P V, |qpφ, ψq| ď Cφ }ψ}Hu ,

and for φ P DompAq we define Aφ P H by

@ψ P V, qpφ, ψq “ xAφ, ψyH .

This defines on H an operator A with domain DompAq such that

(i) DompAq is dense in V and in H ;

(ii) A is closed ;

(iii) A is invertible.

Moreover, the operator on H associated to the form q˚ is A˚.

Proof. ‚ Let φ P DompAq. The map ψ ÞÑ qpφ, ψq extends to a bounded semilinear form on
H. Then, by the Riesz theorem, there exists a vector Aφ P H such that qpφ, ψq “ xAφ, ψyH
for all ψ P V. This defines on H an operator A with domain DompAq (the linearity of A is
left as an exercise).
‚ Let ζ P H. The map ψ P V ÞÑ xζ, ψyH is a continuous semilinear map on V so, by the
Lax-Milgram theorem, there exists φ P V such that

@ψ P V, xζ, ψyH “ qpφ, ψq.
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Then we have φ P DompAq and Aφ “ ζ. This proves that A is surjective.
‚ For φ P DompAq we have

}Aφ}H }φ}H ě |xAφ, φyH| “ |qpφ, φq| ě α }φ}2
V ě αC´2

V,H }φ}2
H .

Thus,
}Aφ}H ě αC´2

V,H }φ}H . (1.13)

This proves in particular that A is injective. Since A is surjective, it is bijective. This
inequality also implies that the inverse is bounded and

››A´1››
LpHq ď α´1C2

V,H. This implies
that A is closed by Proposition 1.35.
‚ Let ψ P V be in the orthogonal of DompAq in V. Let T P LpVq be given by Proposition
1.65. Since T ˚ is bijective (by Proposition 1.61), there exists ζ P V such that T ˚ζ “ ψ. Then
for all φ P DompAq we have

0 “ xφ, ψyV “ xφ, T ˚ζyV “ xTφ, ζyV “ qpφ, ψq “ xAφ, ζyH .

Since A is surjective, this implies that ζ “ 0, and hence ψ “ 0. Then DompAq is dense in V
for the topology of V, and hence for the topology of H. Since V is dense in H, DompAq is
also dense in H.
‚ We denote by Ã the operator associated to q˚. Since q˚ is continuous and coercive, Ã
is also a densely defined, closed and invertible operator on H. Let ψ P DompÃq. For all
φ P DompAq we have

xAφ, ψy “ qpφ, ψq “ q˚pψ, φq “ @
Ãψ, φ

D “ @
φ, Ãψ

D
.

This proves that Ã Ă A˚. Conversely, if ψ P DompA˚q then for all φ P DompAq we have

|q˚pψ, φq| “ |qpφ, ψq| “ |xAφ, ψy| “ |xφ, A˚ψy| ď }A˚ψ}H }φ}H .

Since DompAq is dense in V and H, we deduce that for all φ P V we have

|q˚pψ, φq| ď }A˚ψ}H }φ}H ,

so ψ P DompÃq. This proves that DompA˚q Ă DompÃq, so Ã “ A˚.

Remark 1.72. Let q be a continuous quadratic form on V. Assume that there exists β P C
such that the form qβ : φ ÞÑ qpφq ` β }φ}H is coercive on V. Let Aβ be the operator on H
given by Theorem 1.71 and A “ Aβ ´ β with DompAq “ DompAβq. Then A is closed and
densely defined, and pA ` βq is invertible. Notice that this definition of A does not depend
on the choice of β.
Remark 1.73. Let q be a continuous coercive quadratic form on V and Q P LpV, V 1q defined
by (1.12) (invertible by Theorem 1.67). Let A the operator on H be given by Theorem 1.71.
Then for all φ P H Ă V 1 we have Q´1φ “ A´1φ.

1.3.3 Examples: Laplacian, Dirichlet and Neumann boundary con-
ditions

Example 1.74. We consider on H1pRq the quadratic form

q : u ÞÑ }u}2
H1pRq .

We apply Theorem 1.71 with V “ H1pRq and H “ L2pRq. We have

DompAq “ ␣
u P H1pRq : u2 P L2pRq( “ H2pRq.

Indeed, if u P H2pRq then for all v P H1pRq we have

|qpu, vq| “
ˇ̌
ˇ̌´

ż

R
u2v dx `

ż

R
uv dx

ˇ̌
ˇ̌ ď p››u2›› ` }u}q }v} ,
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so u P DompAq. Conversely, assume that u P DompAq. Then for all v P H1pRq we have
ˇ̌
ˇ̌
ż

R
u1v1 dx

ˇ̌
ˇ̌ ď |qpu, vq| ` }u} }v} ď pCu ` }u}q }v} .

This proves that u2 P L2, and hence u P H2pRq. Finally, for u P DompAq we have

@v P H1pRq, xAu, vy “ qpu, vq “ @´u2 ` u, v
D

,

so
Au “ ´u2 ` u.

Example 1.75. We consider on H1p0, 1q the quadratic form

qN : u ÞÑ }u}2
H1p0,1q .

We apply Theorem 1.71 with V “ H1p0, 1q and H “ L2p0, 1q. We denote by AN the
corresponding operator. Let u P DompAN q. For all ϕ P C8

0 ps0, 1rq Ă H1p0, 1q we have as
above ˇ̌

ˇ̌
ż 1

0
u1ϕ1 dx

ˇ̌
ˇ̌ ď pCu ` }u}q }ϕ} .

This implies that u2 P L2p0, 1q. Then for all ϕ P C8
0 ps0, 1rq we have

xAN u, ϕy “ qN pu, ϕq “
ż 1

0
u1ϕ1 dx `

ż 1

0
uϕ dx “ @´u2 ` u, ϕ

D
.

This proves that AN u “ ´u2 ` u. Then for all v P H1p0, 1q we have

xAN u, vy “ qN pu, vq “
ż 1

0
u1v1 dx `

ż 1

0
uv dx “ u1p1qvp1q ´ u1p0qvp0q ` @´u2 ` u, v

D

This proves that for all v P H1p0, 1q
u1p1qvp1q ´ u1p0qvp0q “ 0.

This implies that
u1p0q “ u1p1q “ 0. (1.14)

Conversely, assume that u P H2p0, 1q satisfies (1.14). Then we can compute as above that

@v P H1p0, 1q, qpu, vq “ @´u2 ` u, v
D

.

Then u P DompAN q. Finally we have

DompAN q “ ␣
u P H2p0, 1q : u1p0q “ u1p1q “ 0

(

and, for all u P DompAN q,
AN u “ ´u2 ` u.

Example 1.76. We consider on H1
0 p0, 1q the quadratic form

qD : u ÞÑ }u}2
H1p0,1q .

We apply Theorem 1.71 with V “ H1
0 p0, 1q and H “ L2p0, 1q. We denote by AD the

corresponding operator. Let u P DompADq. As above we see that u P H2p0, 1q and ADu “
´u2 ` u. On the other hand, if u P H2p0, 1q X H1

0 p0, 1q we have qpu, vq “ x´u2 ` u, vy for all
v P H1

0 p0, 1q (there are no boundary terms since u and v vanish at the boundary). Finally
we have

DompADq “ H2p0, 1q X H1
0 p0, 1q,

and for all u P DompADq
ADu “ ´u2 ` u.

Example 1.77. By Remark 1.72 we can define the operators associated to the form

u ÞÑ
ż 1

0
|upxq|2 dx

defined on H1pRq and H1p0, 1q (note that this form is already coercive on H1
0 p0, 1q). l Ex. 1.13
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1.4 Exercises
Exercise 1.1. Let A, B P LpEq. Assume that A is invertible and

}B ´ A}LpEq ď 1
2 }A´1}LpEq

.

Prove that B is invertible and
››B´1››

LpEq ď 2
››A´1››

LpEq .

Exercise 1.2. We consider on L2pRdq the Laplace operator H0 “ ´∆ defined on the domain
DompH0q “ H2pRdq.
1. Prove that H0 is injective.
2. Prove that the range of H0 is dense in L2pRdq.
3. Prove that H0 does not have a bounded inverse.
Exercise 1.3. Let A be a densely defined operator from E to F. Assume that there exists
C ą 0 such that }Aφ}F ď C }φ}E for all φ P DompAq.
1. Prove that A extends uniquely to a bounded operator Ã P LpE, Fq and that }Ã}LpE,Fq ď C.
2. Assume that A is closed. Prove that we already have DompAq “ E and A P LpE, Fq.
Exercise 1.4. Prove that the multiplication operator Mw of Example 1.12 is closed. What
about the operator M0

w of Example 1.16 ?
Exercise 1.5. Let H be a Hilbert space. Assume that the family pβnqnPN is an orthonormal
basis of H. Let pλnqnPN be a complex sequence. We consider on H the unique operator A0
such that

DompA0q “
#

Nÿ

n“0
φnβn, N P N and φ0, . . . , φN P C

+

and
@n P N, Aβn “ λnβn.

Prove that A0 is closable and give its closure.
Exercise 1.6. Let A be an operator from H1 to H2 with domain DompAq. Prove that A˚
is a linear operator.
Exercise 1.7. Prove that the map

"
LpH1, H2q Ñ LpH2, H1q

A ÞÑ A˚

is semi-linear.
Exercise 1.8. Let A P LpHq. Prove that }A˚A}LpHq “ }A}2

LpHq.

Exercise 1.9. Let A P LpHq. Let F be a subspace of H such that ApFq Ă F. Prove that
A˚pFKq Ă FK.
Exercise 1.10. Let Ω be an open subset of Rd. Let w : Ω Ñ C be a continuous function.
We consider on L2pΩq the multiplication operator Mw as in Example 1.12.
1. Prove that Mw is densely defined.
2. What is the adjoint of Mw ?
Exercise 1.11. We consider the operator T from L2pRq to C defined by DompT q “ C8

0 pRq
and Tϕ “ ϕp0q for all ϕ P DompT q. Compute the adjoint T ˚ of T .
Exercise 1.12. For u, v P H1pRq we set δpu, vq “ up0qvp0q.
1. Prove that this defines a sesquilinear form δ on H1pRq.
2. Is δ coercive ?
3. By Proposition 1.65 there exists T P LpH1pRqq such that

@u, v P H1pRq,
ż

R

`pTuq1pxqv1pxq ` pTuqpxqvpxq˘
dx “ xTu, vyH1pRq “ δpu, vq.

Give an explicit expression of Tu for all u P H1pRq. Is T injective ? Surjective ?
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Exercise 1.13. Let α P C. For u P H1p0, 1q we set

qαpuq “
ż 1

0

ˇ̌
u1pxqˇ̌2 dx ` α |up0q|2 .

1. Prove that the quadratic form qα is continuous on H1p0, 1q.
2. Prove that there exists β ě 0 such that the form qα ` β : u ÞÑ qαpuq ` β }u}2

L2p0,1q is
coercive.
3. We denote by Aα the operator on L2p0, 1q associated with the form qα by the representation
theorem (see Remark 1.72). Describe Aα (domain and action on an element of this domain).
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