Chapter 1

Linear Operators

1.1 Unbounded operators

Let E and F be two Banach spaces.

1.1.1 Remainder about bounded operators

We denote by L(E,F) the set of bounded (continuous) linear maps from E to F, and for
A€ L(E,F) we set
| Al

peE\{0} lele .

HA||£(E,F) =

We write L(E) for L(E,E).
If G is a third Banach space then for A € L(E,F) and B € L(F,G) we have

1BAl 26y < Al 2 1Bl 2k ) - (1.1)

Ezample 1.1. If E has finite dimension then all the linear maps from E to F are continuous.

Ezample 1.2. We consider on ¢?(N) the operators S, and S, defined by
ST(UO,’U,l,...,’U,n,...) = (O,uo,...,un_l,...)

and
Se(uo, Uty vy Upy o) = (U1, U,y ooy Uptd, .- )

Then S, and S, are bounded operators on £2(N) with 15| o2y = 1Sel ez oy = 1-

Ezample 1.3. Let a = (an)neny be a bounded sequence in C. For u = (uy,)nen € £2(N) we
define M,u € /2(N) by
VneN, (Mau)n = GplUn.

We have M, € L(¢*(N)) with |Mall £ge2(rv)) = SUPpen |anl.

Example 1.4. Let Q be an open subset of R¢, endowed with the Lebesgue measure Leb. We
work on the Banach (Hilbert) space L?(Q) = L?(Q;C). Let w € L®(2). We consider on
L?(Q) the multiplication operator M,, : u — uw. Then M,, € L(L*(Q)) and

Ml 22y = 1wl -

Definition 1.5. We say that A € L(E,F) is invertible if there exists B € L(F,E) such that
BA = Idg and AB = Idg.

The following result is a consequence of the open mapping theorem (see for instance
[Brell, Cor. 2.7]).

Proposition 1.6. Let A € L(E,F). Assume that A is bijective. Then its inverse is necessarily
continuous, so A is invertible.
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Ezxample 1.7. e S, is not surjective and Sy is not injective, so these two operators are not
invertible.

o Given a = (a,) € {*°(N), the operator M, is invertible if and only if

0¢{an,n e N}

o Given w € L*(Q), the operator M,, is invertible in L?(2) if and only if there exists
€ > 0 such that

Leb({z € Q : |w(z)| <e}) =0. (1.2)

Assume that (1.2) holds. Then w~! is well defined almost everywhere and Hw‘l ||LOG(Q) <

1. Then M,-1 € L(L*(Q)) is an inverse for M,,. Conversely, assume that M, is in-
vertible. Assume by contradiction that (1.2) does not hold. Then for all n € N* we can
consider A,, € B(O) such that Leb(4,) €]0, + o[ and

1
Ve e A,, |wz)<-—.

n

Then we set
14,
u = 7’
" Leb(A,)?
so that [un|2(q) =1 and
2 1 2 1
|Mowtin72 0y = Leb(A,) Ln lw(z)|” do < -
Then
HUTLHLQ(Q) HM 1MwU7LHL2(Q H HE (L2(Q)) —:; O7

which gives a contradiction.

Proposition 1.8. Let A€ L(E) with [Af gy <1. Then Ide —A is invertible and
+00
(Idg —A)™ = ) A"
n=0
Proof. We first observe that
Z 1A™ ] 2y < Z HAH£(E) < 0,
so the sum > 7% A™ is convergent in £(E). Then for all N e N we have
N
(Ide — 2 = Idg —AVHL
Taking the limit N — +o00 gives
(Ide — Z A" = Ide.

We similarly see that Y"° A"(Idg —A) = Idg, and the conclusion follows. O
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1.1.2 Unbounded operators

Definition 1.9. A linear operator (or unbounded operator) from E to F is a linear map A
from a linear subspace Dom(A) of E (the domain of A) to F. An operator on E is an operator
from E to itself.

Definition 1.10. We say that the operator A is densely defined if Dom(A) is dense in E.

Ezample 1.11. A bounded operator A € L(E, F) is a particular case of an unbounded operator
with Dom(A4) = E.

Example 1.12. Let Q be an open subset of R?, endowed with the Lebesgue measure Leb. Let
w be a measurable function on . We consider on L?(Q) the multiplication operator

My, : u— wu,
defined on the domain
Dom(M,,) = {ue L*(Q) : wue L*(Q)}. (1.3)

Ezample 1.13. Let w be a measurable function on R%. We consider on L?(R%) the operator
P, = F1M,F (where Fu = 4 is the Fourier transform of u) defined on the domain

Dom(A) = {ue L*(R?) : wi e L*(R%)}.
Then for u € Dom(A) and ¢ € R? we have
Au(§) = w(&)a(§).
Remark 1.14. One has to be careful when dealing with unbounded operators. For instance,
if A; and A, are two operators on E, then the sum A; + A, is only defined on the do-

main Dom(A;) n Dom(A3) (which can be {0}) and the composition A5 o A; is defined on
{¢o € Dom(A;) : A1 € Dom(Az)}.

Definition 1.15. Let A and B be two linear operators from E to F. We say that A is an
extension of B and we write B < A if Dom(B) c Dom(A) and Agp = By for all p € Dom(B).

FEzxzample 1.16. Let w be a continuous function on 2 and let M, be the multiplication operator
by w as in Example 1.12. We can define M2 by M%u = wu for u € Dom(M?2) = CF ().
Then we have M < M,,.

Ezample 1.17. Let Q be an open subset of class C? in R%. We denote by Hy, H, Hp and
Hy the operators on L?(Q) which all act as u — —Auwu, but defined on different domains:

o Dom(Hy) = C(Q),

« Dom(H) = H?(Q),

e Dom(Hp) = H%(Q2) n H(Q),

« Dom(Hy) = {ue H*(Q) : d,u =0 on 0Q}.

rl:hese four operators are densely defined. Moreover we have Hy ¢ Hp < H and Hyc Hy <
H.

Definition 1.18. Let A be an operator from E to F. The graph of A is
Gr(A) = {(¢, Ap), o € Dom(A)} c E x F.

Remark 1.19. If A and T are two linear operators from E to F then 7' c A (in the sense of
Definition 1.15 if and only if Gr(7T') = Gr(A) (in the usual sense of inclusion for subsets of
E xF).

Definition 1.20. Let A be an operator on E. We define on Dom(A) the graph norm by
2 2 2 2
lela == I(e, Ap)lexr = [A¢lr + el -

Remark 1.21. If A e L(E) then the graph norm is equivalent to the original norm on E.

Ezxample 1.22. We consider on L?(R?) the Laplace operator H = —A, with domain Dom(H) =
H?(R?). Then the graph norm of H is equivalent to the usual Sobolev norm:

2 2 2
I=Aullz2gay + [ulr2ray > [ulfe@a -

This is not the case on a general open subset  of R?.
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1.1.3 Boundedly invertible operators

Definition 1.23. Let A be a linear operator from E to F. We say that A is invertible (or
that it is boundedly invertible, or that it has a bounded inverse) if there exists B € L(F,E)
such that Ran(B) < Dom(A), BA = Idpom(a) and AB = Idg. In this case we write B = AL

Remark 1.24. Let A € L(E,F). Then A is boundedly invertible (in the sense of Definition
1.23) if and only if it is invertible in the sense of Definition 1.5, and in this case the two
definitions of A~! coincide.

Remark 1.25. Notice that if A is invertible then it is a bijective map from Dom(A) to F. But
if Dom(A) # E then A~! is only a right inverse of A.

Remark 1.26. If A is injective we can always define an (unbounded) inverse A~!, even if A is
not surjective. We define A~! as an operator from F to E with domain Dom(A~!) = Ran(A)
and we have A7'4A = Idpom(ay, AATT = Idran(a)- Unless explicitely mentioned, we will
not consider unbounded inverses in this course. Notice however that in many references an
operator is said to be invertible as soon as it has an unbounded inverse.

Ezample 1.27. Let M, be the multiplication operatoron L?({)) defined in Example 1.12.
Then, as in the bounded case, M, is invertible if and only if

Je >0, Leb({zeQ: |w(x) <e})=0,
and in this case we have M, ! = M,,—1. Moreover M,, is injective if and only if
Leb({z € Q : w(z) =0}) =0,

In particular, it may happen that M,, is injective but does not have a bounded inverse.
Notice also that the operator M as defined in Example 1.16 is not invertible since its range
is never equal to L2(2).

Ezample 1.28. We consider on L?(R%) the operator A = —A + 1 with domain Dom(A) =
H?(R%). Then A has a bounded inverse A~!. For f € L(R?) the function u = A~!f satisfies,
for almost all £ € R?,

1.1.4 Closed operators

The notion of bounded operator is too restrictive for the applications. On the other hand,
we will see that we cannot say much with spectral theory for general unbounded operators.
It turns out that a good intermediate choice is to consider the class of closed operators.
Roughly speaking, if ¢,, — ¢ then we do not require that Ay,, — Ay, but if Ap,, has a limit
then it must be Ay (in particular, this implies that Ay should be defined).

Proposition-Definition 1.29. Let A be an operator from E to F. We say that A is closed
if the following equivalent assertions are satisfied.

(1) If a sequence (y,), .y € Dom(A)N is such that ¢, goes to some ¢ in E and Ap, goes to

some 1 in F, then ¢ belongs to Dom(A) and Ap = 1);
(ii) Gr(A) is closed in E x F;

(iii) Dom(A), endowed with the norm |-|| 4, is complete (hence a Banach space).

Remark 1.30. Let A be a closed operator on . Then A defines a bounded operator from
the Banach space Dom(A) to E.

Example 1.31. A bounded operator is closed.

Ezample 1.32. o We consider on L?(R) the operator A defined on the domain Dom(A) =
CP(R) by (Au)(z) = z%u(z), z € R. We define v : R — R by v(z) = e~ . Let
X € CF (R, [0,1]) be equal to 1 on [—1,1]. For n € N* and = € R we set x,(x) = x(x/n).
Then x,v goes to v in L?(R), x,v € Dom(A) for all n € N* and A(x,v) has a limit in
L?(R). However v does not belong to Dom(A). This proves that A is not closed.
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e We now consider the operator A : u — z“u on the domain

Dom(A) = {ue L*(R) : z°ue L*(R)}.

Assume that (u,)nen is a sequence in Dom(A) which goes to some u in L?(R) and
such that Au, has a limit v € L*(R). The function z?u belongs to L (R) and for all
¢ € CP(R) we have

f 2?u(z)p(x)dr = lim 22u, (2)¢(x) dz = f v(x)o(x) dx.

R n—=+90 Jg R

This proves that z2u(z) = v(z) for almost all x € R. In particular, u € Dom(A4) and
Awu = v. This proves that A is closed.

Ezample 1.33. The Laplace operator —A with domain C§°(R?) is not closed in L?(R?). Let
u e H2(RH\CEL(RY) and let (un)nen be a sequence in CF (R?) which goes to u in H?(RY).
Then u,, goes to u in L?(R?), the sequence (—Au,, )nen has a limit in L2(R?) but u ¢ C°(R9).
This proves that the Laplace operator is not closed if the domain is C(R%). However it is
closed with domain H?(R%).

Example 1.34. This example generalizes Examples 1.32 and 1.33. Let €2 be an open subset
of R%. Let m € N and consider smooth functions b, on € for all a € N¢ such that |a| < m.
Then we consider the differential operator

P= > bal(x)ds. (1.4)
We denote by P* the formal adjoint of P. It is defined for ¢ € C(€2) by

o= 3 C0REGe - 3 0 Y (§) @i 0

lal<m lal<m B<a

Given u € L?(Q), we have Pu € L?(Q) (in the sense of distributions) if and only if there
exists v € L?(Q) such that

Vo e CP (), Jgumdx:fﬂvadx,

and in this case we write Pu = v.
We define an unbounded operator A on L?(Q) by setting Au = Pu for any u in the
domain

Dom(A) = {ue L*(Q) : Pue L*(Q)},

where Pu is understood in the sense of distributions. This operator A is closed. Indeed, let
(un) be a sequence in Dom(A) such that u,, goes to some u and Au,, goes to some v in L?(12).
For ¢ € C3°(§2) we have

JQ u(z)(P*¢)(z) dz = lim | w,(z)(P*¢)(x)dz = lim | (Puy)(z)d(z)dz

n—o0 0 n—0o0 Q

“lim [ (Aun)(2)0@) de — L o(2)9(@) da.

n—o0 O

This proves that in the sense of distributions we have Pu = v € L?(Q). Therefore u € Dom(A)
and Au = v. This proves that A is closed.

The reason why we are interested in closed operators is the following result.
Proposition 1.35. Let A be an operator from E to F.
(i) If A is not closed then it does not have a bounded inverse.

(ii) If A is closed and defines a bijection from Dom(A) to F then it has a bounded inverse.
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Proof. e Assume that A has a bounded inverse A~ € £(F,E). Then A~ is closed, which
implies that A is closed (Gr(A) is closed in E x F if and only if Gr(A™!) is closed in F x E).
We can also give a direct proof. Assume that (¢,) is a sequence in E such that ¢, has
a limit ¢ in E and Ay, has a limit ¢ in F. Then Ay, — 1 and A~!(Agp,) — ¢. Since
A=Y is closed, this implies that ¢ € Dom(A~!) = F (nothing new here) and ¢ = A~1%, so
¢ € Ran(A™1) = Dom(A) and Ap = +. This proves that A is closed.

e Now assume that A is closed and bijective from Dom(A) to F. Then Dom(A) is a Banach
space for the graph norm and A € £(Dom(A), F). By Proposition 1.6, its inverse is continuous
from F to Dom(A), hence from F to E, so A is boundedly invertible. O

Proposition 1.36. Let A be an operator from E to F. Assume that there exists a > 0 such
that
Vi€ Dom(A), [Aple = afele. (1.6)

Then
(i) A is injective ;
(if) If A is closed, then A has closed range ;

1

(iii) If A is boundedly invertible then HAleL(F B <o

Proof. We prove the second statement. Let (¢,) be a sequence in Ran(A) which converges
to some v in F. For n € N we consider ¢,, € Dom(A) such that Ay, = 1,. Since (Ap,) is
a Cauchy sequence in F, (¢,) is a Cauchy sequence in E by (2.1). Since E is complete, @,
converges to some ¢ in E. Finally, since A is closed, ¢ € Dom(A) and p = Ap € Ran(A).
This proves that Ran(A) is closed in F. O

1.1.5 Closable operators

We have seen in Examples 1.32 and 1.33 that an operator which is not closed can be extended
to a closed operator on a bigger domain.

Definition 1.37. We say that on operator A is closable if it has a closed extension.
Of course, a closed operator is closable.
Proposition 1.38. Let A be an operator from E to F. The following assertions are equivalent.
(i) A is closable;

(ii) For any sequence (pn)nen in Dom(A) such that ¢, — 0 in E and Ap, has a limit ¢ in
F, then ¢ = 0;

(iii) Gr(A) is the graph of a closed operator A from E to F.

Definition 1.39. If the assertions of Proposition 1.38 are satisfied, then the closure of A is
the operator A such that Gr(A) = Gr(A).

Proof. » Assume (i) and let A be a closed extension of A. Let (,,) be a sequence in Dom(A)
such that ¢, — 01in E and Ay, — 9 in F. Then (g,,) is also a sequence in Dom(A) going to
0 and Ap,, — 9. Since A is closed we necessarily have 1) = 0, which proves (ii).

e Now assume (ii). We denote by D the closure of Dom(A) for the graph norm. Let ¢ € D
and let (¢,) be a sequence in Dom(A) which goes to ¢ for the graph norm. Then (Agp,,)
is a Cauchy sequence in F, and we denote by Ay its limit. This definition does not depend
on the choice of the sequence (p,,), since if (¢,) is another sequence which goes to ¢ for the
graph norm, we have ¢, — (, — 0 and Ap,, — A(, has a limit, so this limit is 0. This defines
a linear map A from D to F, and A is an extension of A with Dom(A4) = D.

By definition we have Gr(A) < Gr(A). Now let (p,1) € Gr(A). There exists a sequence
(@n,¥n) in Gr(A) such that ¢, — ¢ in E and v,, = Ap,, — @ in F. By definition of A we
have ¢ € Dom(A) and ¢ = Ay, so (p,1) € Gr(A). This proves that Gr(A) = Gr(A). Since 4
has a closed graph, this is a closed operator and (iii) is proved.

e Finally, assume (iii). Since Gr(A) < Gr(A), A is an extension of A. Since A is closed, (i)
is proved. O
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We have already seen examples of operators which are not closed but closable.

Ezample 1.40. We consider on L?(R?) the operators Hy and H which acts as —A on the
domains
Dom(Hp) = CL(RY) Dom(H) = H?(R?).
Then H = H,.
Here is an example of operator which is not closable.
Ezample 1.41. We consider the operator A from L?(R) to C defined on Dom(A) = CZ°(R)

by Au = u(0). Then there exists a sequence (uy)nen in C(R) such that u,, — 0 in L?(R)
but u,(0) — 1 in R, so A is not closable.

Proposition 1.42. If A is a closable operator, then A is the smallest closed extension of A
(if B is a closed extension of A we have A c B or, equivalently, Gr(A) < Gr(B)).

Proof. Let B be a closed extension. Then Gr(B) is closed and contains Gr(A), so it contains

Gr(A) = Gr(A). O

Definition 1.43. Let A be a closed operator from E to F. Let D be a linear subspace of
Dom(A). We say that D is a core of A z'fATD = A. FEquivalently, D is dense in Dom(A) for
the graph norm, or for any ¢ € Dom(A) there exists a sequence (@) in D such that ¢, — ¢
in E and Ap, — Ap in F.

Ezample 1.44. We consider on L?(R%) the Laplacian A = —A, Dom(A) = H?(RY). Any
subspace D of H2(R?) which contains Ci°(R?) is a core of A.

1.1.6 Reducing subspaces
Proposition 1.45. Let A be an operator on E. Let II be a projection of E such that

IIA ¢ AII

(for all p € Dom(A) we have Il € Dom(A) and Allp = ITAp). Let F = Ran(Il) = ker(1 —1I)
and G = ker(II).

(i) F and G are closed subspaces of E and E = F®G.

(ii) A maps Dom(A)nF to F and Dom(A)NG to G. We denote by Ar and Ag the restrictions
of A to F and G, with Dom(Ag) = Dom(A) nF and Dom(Ag) = Dom(A) n G (then for
v € E and (pr, pc) € FxG (unique) such that p = pe+¢g we have Ap = Arppr+Agpg)-
We can write A = A ® Ag.

(iii) If Dom(A) is dense in E then Dom(Ag) is dense in F and Dom(Ag) is dense in G.
(iv) If A is closed then Ap and Ag are closed.

(v) A is boundedly invertible if and only if both Ap and Ag are. In this case F and G are
left invariant by A=' and the restrictions of A~! to F and G are given by (Ag)~! and
(Ag)™!. In other words, At = A-' @ A"

Proof. « G is closed since it is the kernel of the bounded operator II, and F is closed since
it is the kernel of (1 —1II). Let ¢ € Fn G. We have ¢ = IIp = 0, so Fn G = {0}. On the other
hand, for ¢ € E we have ¢ = Ilp + (p — IIp) with [Ip € F and ¢ —IIp € G, s0 F+ G = E.

e For ¢ € Dom(A) n F we have ITAp = Allp = Ap, so Ap € ker(1 —II) = F. Similarly, for
¢ € Dom(A) n G we have TAp = Allp = 0, so Ay € G.

e Assume that Dom(A) is dense in E. Let ¢ € E. There exists a sequence (¢,,) in Dom(A)
which converges to ¢ in E. Since Dom(A) is left invariant by II, Ilp,, and (1 — II)y, belong
to Dom(A) for all n € N. Then Iy, € Dom(A) n F and (1 — II)p, € Dom(A) n G. Finally,
Iy, — Iy (thisis ¢ if ¢ € F) and (1 — ), — (1 — II)p (this is ¢ if p € G).

e Assume that A is closed. Let (p,) be a sequence in Dom(Ag) such that ¢, — ¢ and
Arpn, — ¢ in F. Then ¢, — ¢ and Ap — 9 in E. Since A is closed, this proves that
© € Dom(A) and Ap = 9. Since ¢ € F we also have ¢ € Dom(Af) and App = 1. This proves
that Af is closed.
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e Assume that A is invertible. Let ¢ € F. Let (¢F, ¢g) € (Dom(A) nF) x (Dom(A) nG) such
that A='9) = ¢ +¢g. Then ¥ = Apf + Apg. We necessarily have Apg = 0, so g = 0. Thus
A~! maps F into itself, and (A~")r is a bounded inverse for Af. Similarly, Ag is invertible.
Conversely, if Ar and Ag are invertible then AEl DA; ! defines a bounded inverse for A. O

Ezxample 1.46. Let Q be an open subset of R? and let w be a Borel subset of Q. The
multiplication by 1 defines a projection II of L?(f2) and for any measurable function w on
Q we have I[IM,, ¢ M, II (where M,, is as defined in Example 1.12). Moreover we have

Ran(Il) = {u e L*() : u(z) = 0 for almost all z € Q\w}

and
ker(IT) = {u e L*(€) : u(z) = 0 for almost all z € w} .

Notice that IT is an orthogonal projection in this case, which is not necessarily the case in
Proposition 1.45.

Example 1.47. Let w be an open subset of R?. The operator F~!1,F defines a projection
II of L?>(R?). Then for a measurable function w and P,, = F~!M,,F (see Example 1.13) we
have IIP,, c P,II.

1.2 Adjoint of an operator

Let H1 and Hs be two Hilbert spaces.

1.2.1 Definition

Definition 1.48. Let A be a densely defined operator from Hi to Ho. Let ¢ € Hy. We say
that ¢ belongs to Dom(A*) if there exists * € Hy such that

Yo e Dom(A), <AS0a w>7-[2 = <30’w*>7{1 :

In this case ¥* is unique and we set A*¥y = *. This defines an operator A* from Ho to Hy
with domain Dom(A*). We say that A* is the adjoint of A.

Notice that if A is not densely defined, then A*1 is not uniquely defined. We will never
consider this situation.

Remark 1.49. By definition, we have

Vo € Dom(A), Vi) € Dom(A*),  {(Ap, i)y, = (p, A%y,

Remark 1.50. Let ¢ € Ho. By the Riesz representation theorem, ¢ belongs to Dom(A*) if
and only if there exists C' > 0 such that

Y € Dom(A), |<A<P,1/J>H2| < Ceply, -

Moreover, in this case we have |A*y|,, <C.

1.2.2 Adjoint of a bounded operator

We begin with examples and properties for the adjoint of bounded operators.

Ezample 1.51. Assume that H; and H, are of finite dimensions ni,ns € N*. Let 8; and 35
be orthonormal bases of H; and Ho, and let M = (m; 1) 1<j<n, be the matrix of A in ;1 and

1<k<ng
B>. Then the matrix of A* in B85 and 37 is
v —
M = M = (mhj)lgjgnr
1<k<ng

Ezample 1.52. Let w € L*(Q) and let M,, be the multiplication operator as in Example 1.4.
Then the adjoint of M, is M} = M.

8 J. Royer - Université Toulouse 3
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Ezample 1.53. The shift operators S, and Sy (see Example 1.2) are adjoint of each other on
2(N).
Proposition 1.54. Let A€ L(H1,H2).

(i) A* e L(Hz, Ha) ;

(ii) (A*)* = A ;

(i) A% 2302009 = 1Al 2342340

Proof. e Let 1) € Ho. Then for all p € H; we have

[<Ae, V)| < Al 2034 200 [2ll30, €154, 5

so ¢ € Dom(A*) and
1A%l 30, < 1Al 23y 200) 1% ]34, -
This proves that A* € £L(Hz,H1) and

”A*H[,(Hz,?'ll) < HAH;C(Hqu)
e Let ¢ e H;y. For all ¢ € Hy we have
(A, o)y, = oy A%y, = (A )y, = (U Ap)yy,

This proves that A**p = Agp.
e Then

Al 2341 200y = 1A | 230 200) < IA™ | 230,240 »

and finally, HA*HE(Hz,Hl) = HA|£(7—L1,H2)' O
Proposition 1.55. For Ay € L(H1,H2) and Ay € L(Ha, H3) we have (A2A;)* = AFA%.

Proof. Let p € Hy and ¥ € H3. We have

(A2 Arp,1)5y, = (Arp, A5t )y, = (o, ATAZY)y,,

and the conclusion follows. O

Proposition 1.56. Let U be a closed and densely defined operator from Hy to Ho which has
a bounded inverse given by U~ = U*. Then Dom(U) = Hy and U, = |¢l,, for all
p € Hy. We say that U is unitary.

Proof. Let ¢ € Dom(U). Since U* € L(H2,H1) we have

Ul = U, U, = U*U, o), = lolay, -

Since U is closed, this proves that U € L(H1,H2) (see Exercise 1.3). O

1.2.3 Main properties of the adjoint
In this paragraph we give general properties for the adjoint of a linear operator.

Proposition 1.57. Let A and T be two densely defined operators from Hi to Ho such that
T c A. Then A* c T*.

Proof. Let ) € Dom(A*). For all ¢ € Dom(T) we have
(T, b)p, = AP, by, = (o, A%y,
This proves that ¢ € Dom(T*) and T*¢ = A*9. O
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Proposition 1.58. Let A be a densely defined operator from Hi to Ho. Then we have
ker(A*) = Ran(A4)*, ker(4*)* = Ran(A).
Proof. Let ¢ € ker(A*). Then for all ¢ € Dom(A) we have
(A, gy, = (U, A% )y, = 0,

so ¢ € Ran(A)t. Conversely, if ¢ € Ran(A)* then the same computation shows that ¢ €
ker(A*). This gives the first inequality. Then® we have

ker(A*)* = (Ran(4)1)* = Ran(4),
and the proof is complete. O
Proposition 1.59. Let A be a densely defined operator from Hi to Ha. Then A* is closed.

Proof. Let (v,) be a sequence in Dom(A*) such that ,, goes to some 9 in Hy and A*1,
goes to some (¢ in H;. For ¢ € Dom(A) we have

(Apy )y, = T (Ap,n)yy, = lm (o, A% )y = (0, Oy, -
This proves that ¢ € Dom(A*) and A*y = ¢. Thus A* is closed. O

Proposition 1.60. Let A be a densely defined operator from Hy to Ha. Then A is closable
if and only if Dom(A*) is dense in Hz. Moreover, in this case we have (A)* = A* and

A = (A*)*. In particular, A is closed if and only if A = (A*)*.
We can write A** instead of (A*)*.

Proof. ¢ We define
@_{ HixHy —  HoxHu,

(11?17962) — (—5827331)-
Then ©%* :~@’1 =—0:(y2, 1) — (y1,—Y2)-
e Let (¢,v) € Ha x Hi. We have
(¥,9) € Gr(A*) <= Vp e Dom(A),  —{Ap,¥)y, + (P, =0
— Ve Dom(A), (O(p, Ap), (¥, V) rsxpy =0
— (¥,9) € (BGr(A)*,

" Gr(A*) = (OGr(A))" = O(Gr(A)%). (1.7)

Then

Gr(A*)L = OGr(A) = OGr(A).
After composition by ©* we get
Gr(A) = ©*(Gr(4*)') = 0(Gr(4*)"h). (1.8)

e Assume that Dom(A*) is dense in Hy. Then we can define A** = (A*)*. By Proposition
1.59, this defines a closed operator from H; to Hz. Let ¢ € Dom(A). For all ¢ € Dom(A*)
we have

(A%, ) = (Y, Ap),

1

Proposition. Let H be a Hilbert space and let F' be a subspace of H. Then we have
(FHt =F.
(see Proposition 1.9 in [Brell] for the version in normed vector spaces)
Proof. ¢ We have F  F++ and F++ is closed, so F < F++

e We have FL = F- and H :F@Fl. Let ¢ € FL. There exist € F and @+ e F' = FL such that
_ _ 12 —
o =P+pr. Then0=<<p,goi>=H<pLH ,80 p=p€F. |
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so ¢ € Dom(A**) and A**p = Ap. This proves that A** is an extension of A, and in
particular A is closable.
e Now assume that A is closable and let 1) € Dom(A*)*. Then, by (1.8),

(0,7) = ©%(=1,0) € ©*(Gr(A*)1) = Gr(A4) = Gr(A).

s0 1 = 0. Thus Dom(A*) is dense in Hy. Moreover, by (1.7) applied with A we have

Gr((A)*) = O(Gr(A)*) = O(Gr(A) ) = O(Gr(A)Y) = Gr(A*),
This proves that (A)* = A*. Since A* is densely defined, we can consider its adjoint A**.
By (1.7) applied first to A* (with © replaced by —©*) and then to A, we have

1

Gr(A**) = ©* (Gr(A*)*) = 0*((0Gr(A) )") = (Gr(A)

)" = Gr(4) = Gr(A).
This proves that A** = A. O

Proposition 1.61. Let A be a closed and densely defined operator from Hy to Ho. Then
A* : Dom(A*) — H; is boundedly invertible if and only if A : Dom(A) — Ha is, and in this
case we have (A*)~1 = (A=1)*.

Proof. Assume that A has a bounded inverse. Then the adjoint (A~1)* of A~! is a bounded
operator from H; to Ha. Let o € Dom(A*). For all ¢ € Hy we have
<(A71)*A*907w>7{2 = <A*§07 A71¢>H1 = <S03 AA711/1>H2 = <S071/J>7-12 .

This proves that (A™1)*A™ ¢y = ¢, and we deduce that (A~')*A~! = Idpem(a). Now let
1 € Hy. For all ¢ € Dom(A) we have

(Ap, (AN *yy = (A7 Ap, ¥y = o, ¥),

so (A71)*1) € Dom(A*) and A*(A~1)*y = ¢). This proves that A*(A~1)* = Idy,. Finally
we have proved that A* is boundedly invertible and (A*)~! = (A=1)*.

Now assume that A* is boundedly invertible. Then A = A** is boundedly invertible, and
the proof is complete. O

Remark 1.62. If A is bounded and boundedly invertible, then by Proposition 1.55 we can
simply write
A¥(ATH* = (AT A)* = 1d* =1d,

and similarly (A=1)*A* =1d, so A* is invertible and (A*)~1 = (A71)*.

1.2.4 Examples: adjoints of some differential operators
General differential operators with smooth and bounded coefficients

Let © be an open subset of R?. We define on % = L?(Q) the operator Ay which acts as
the differential operator P (see (1.4)) on the domain Dom(4g) = CF(2). Then v € L%(Q)
belongs to Dom(A{) if and only if there exists w € L?(£2) such that

VoECTW). | Poleil@ds - | olauleds.

By definition, this means that P*v = w (see (1.5)) in the sense of distributions. Then Af
acts as P* on the domain

Dom(A}) = {ve L*(Q) : P*ve L*(Q)}.

Then A is closed by Proposition 1.59 or by Example 1.34. The domain of A} contains
C§(92), so it is dense. By Proposition 1.60 this implies that Ay is closable. This is consistent
with the fact that we already know by Example 1.34 that A has a closed extension. Notice
that Ag may have several closed extensions (see for instance the discussion of Section 3.1.5).
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M2RI - Spectral Theory and Evolution Equations

The Laplace operator

As a particular case, we consider the Laplace operator. We define the operators Hy and H
which act as —A on the domains

Dom(Hy) = CF () and Dom(H) = {ue L*(Q) : Aue L*(Q)}.

When Q = R¢, the domain of H is just H2(R%). We recall that this is not true for a general
Q (it can happen that u € L*(2) and Au € L?(Q) but u is not in H?(Q)).

Since the formal adjoint of the Laplacian is the Laplacian itself we have in general H} =
H. Since Hy < H we have H* < H = H by Proposition 1.57.

When Q = R? we actually have H* = H¥ = H. Several proofs are possible.

We can directly prove that H < H*. Let 1) € Dom(H) = H?(R?). For ¢ € Dom(H) we
have by the Green formula

<H(p7 ¢> = <_A<p7 ¢> = <<)07 _A¢> = <<)07 H¢> ’

so 1 € Dom(H*) and H*y = Ht. Alternatively, we can use the fact that H = Hy (see
Example 1.33) and Proposition 1.60 which gives H* = H" = HE.

In general, since functions in Dom(H) or Dom(H{) are not necessarily in H?(f2), we
cannot apply the usual Green formula.

In dimension 1, it is still true that Dom(H{) = Dom(H) = H?(2). And we can see
that in general we do not necessarily have H* = HF. We consider the case  =]0,1[. Let
v e Dom(H*) and w = H*v. For all u e Dom(H) = H?(0,1) we have

_J:) o (z)v(z) de = CHu,v) 201y = (U W) 2.1y :Jo uw(z)w(z) dz.

On the other hand, we also have v € Dom(Hg) = H?(0,1), so by the Green formula

This implies that w = —v” and v(0) = v(1) = v(0) = v’(1) = 0. Thus, a function in H?(0,1)
which does not vanish at 0 or 1 belongs to Dom(H{) but not to Dom(H*). Then Dom(HE)
is not included in Dom(H*).

Creation and annihilation operators

We consider on H = L?(R) the creation and annihilation operators defined on the domain
Ci(R) by
u + zu —u' + zu
Vue CP(R), au= ——— and cou= ———
0 ( ) 0 \/§ 0 \/5
Then we set
a=3a and c=¢g.

We have
Dom(a) = {ue L*(R) : v + zue L*(R)}, Dom(c) = {ue L*(R) : —u’ + zue L*(R)}.

Finally we have

a* =c and c*=a.

1.3 Operators and quadratic forms

1.3.1 Lax-Milgram Theorem
Let V be a Hilbert space. We denote by V'’ the space of semilinear forms on V.
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Definition 1.63. (i) A sesquilinear form q onV is a map q:V x V — C such that

o forally eV the map ¢ — q(p, ) is linear ;
o for all p €V the map ¢ — q(p,v) is semilinear.

(ii) The quadratic form associated to q is the map ¢ — q(p, ). It is usually also denoted
by q.

(iii) We say that q is continuous if there exists C = 0 such that, for all ¢,¢ €V,
la(e, )| < Clely ¥y, - (1.9)

(iv) We say that q is coercive if there exists o > 0 such that for all ¢ € V we have
2
la(e, ©)l = el - (1.10)

(v) The adjoint q* of the form q is the sesquilinear form defined by

Vo, eV, q*(p,v) = q(¢, ¢).

Remark 1.64. Coercivity is often defined by

2
alp, ) = afely .
We use a weaker property here.

Proposition 1.65 (Representation Theorem - Bounded case). Let q be a continuous sesquilin-
ear form on V. There exists a unique operator T € L(V) such that

VSD7 ¢ € Vv Q(% 1/’) = <TSD7 1Z)>V 9

and we have

(s, ¥
1T )= sup .
£V) 0, peV\{0} H‘P”v WHV

Moreover,
(i) the operator associated with the adjoint form q* is T* ;

< a.

(ii) if q is a-coercive then T is invertible and HT’lHL(V) <

Proof. e Let p €V. The map ¥ — q(p, ) is a continuous semilinear form on V), so by the
Riesz representation theorem there exists a unique element of V, which we denote by Ty,
such that

VeV, q(e,) ={Te,¥), .

This defines a unique map 7' : V — V.
o Let 1,02 €V and A € R. For all » € V we have

(T(p1+ Ap2), ¥y, = a1 + A2, ¥) = q(e1, V) + Ad(w2, ) = (Tp1,9),, + X{Tp2,1),,
= <T(p1 + AT@23¢>

This proves that T(p1 + Ap2) = Tw1 + AT, so T is linear.
e For ¢ € V we have

2
ITely, = T, Ty, = ale, Te) < Clely [Tely, ,

where C' = sup,, e\ (o} m, so [T¢|,, < C|¢|,. This proves that 7" € L(V) and

T £y < C. Conversely, for ¢, € V\ {0} we have

la(e, )| = KT, )l < Tl el ]
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e Finally, let T e L(V) be the operator associated to the adjoint form q*. Let ¢ € V. For
all p € V we have

(T, ¥y =q(p, ) = q* (¥, ) = (T, 0y = {p, T}

This proves that T*¢ = Tp.
e Now we assume that q is coercive. For ¢ € V we have

2
allely < lale, o)l = KT, oppl < [Tely ey,

0
ITely = alely - (1.11)
By Proposition 1.36, T is injective with closed range. Now let ¥ € Ran(T)+. We have

0 = KT, )| = la(, )] = a |y},

so 1 = 0. Since Ran(T) is closed, this implies that Ran(T) = V. Thus T is bijective and by

(1.11) we have HT_luz:(v) <ah

O

Ezample 1.66. The map ¢ — ngHi is a (coercive) quadratic form on V, and in this case the
operator 71" in Proposition 1.65 is T = Idy.

Theorem 1.67 (Lax-Milgram). Let V be a Hilbert space. Let q be a continuous and coercive
sesquilinear form on V. Let £ be a bounded semilinear form on V. Then there exists a unique
we €V such that

VeV, q(ee, ) ={To, ) = L)

Proof. Let T be given by Proposition 1.65. By the Riesz theorem there exists ¢ € V such
that (¢,%) = £(3) for all 1 € V. Then we set o, = T~1(. O

Ezample 1.68. Let f e L?(R?). Then there exists a unique v € H*(R?) such that
Vv e HY(R?), J (v ()V' () + u(z)v(z)) do = | f(z)v(z)dw.
R R4

To see this we apply the Lax-Milgram Theorem to the quadratic form (u,v) — (u,v) 1 (ga)
(continuous and coercive on H'(R%)) and the linear form v — {(f,v) r2(ra)y (continuous on
H(RY)).

Example 1.69. Let f € L?(0,1). Then there exists a unique v € H'(0,1) such that

1

Yve HY(0,1), f (v (2)0' () + u(z)v(x)) do = L f(x)v(z)dz.

0
and there exists a unique ug € Hg (0, 1) such that

1

Yve H}(0,1), J (up(@)V' () + ug(z)v(2)) do = L f(z)v(x)dx.

0
By the Poincaré inequality, the quadratic form u — |u’|3, (0,1) Is also coercive, so there also
exists a unique g € Hg(0,1) such that

1 1
Yve Hy(0,1), L ag(z)v' (z) do = L f(x)v(x) da.

Remark 1.70. Tt can be useful to see the quadratic forms in terms of operators in £L(V,)’).
More precisely, we can define a natural bijection between continuous sequilinear forms on V
and operators in £(V,V’). Given a continuous sesquilinear form q on V we define Q € L(V,V’)
by

VoeV, VeV, (Qu)¥)=ale,v). (1.12)
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Conversely, given Q € L(V,V’), we similarly define a corresponding continuous sesquilinear
form q by (1.12).

Proposition 1.65 gives a link between quadratic forms and bounded operators on V. We
can directly define the natural bijection between £(V,V’) and L(V) given by the Riesz rep-
resentation theorem. Let

7. { y — V'

© = Yo,

be the usual bijective isometry given by the Riesz theorem. Then the map

{E(V) - LW,V
T — ZoT

is also a bijective isometry. Moreover T € L(V) is invertible if and only if (ZoT) e L(V,V')
is.

Notice that we can use Z to identify V' with V. It is on purpose that we do not use this
possibility here.
1.3.2 A representation theorem

Let H be a Hilbert space. Let V be another Hilbert space, continuously embedded in H.
There exists C'y % such that

VoeV, el <Cvalely, -
We identify ‘H with its dual H’. Then we have
VcH~H V.

Notice that since we have already identified H with H’ we cannot identify ¥ with V'.

Given a continuous and coercive form q on V, we have associated in Proposition 1.65 an
operator on V. However, here our main space is H and our purpose is to define an operator
corresponding to g on H. For the typical examples 1.68-1.69, we have a quadratic form on
H' and we want to define a corresponding operator on L2.

Theorem 1.71 (Representation theorem). Let H and V be two Hilbert spaces such that V
is densely and continuously embedded in H. Let q be a continuous and coercive sesquilinear
form on V. We set

Dom(A) = {peV : 3C, > 0,V € V,|a(p, ¥)| < Cy [}
and for ¢ € Dom(A) we define Ap € H by

VeV, a(p,¥) = (Ap, ¥y,
This defines on H an operator A with domain Dom(A) such that
(i) Dom(A) is dense inV and in H ;
(ii) A is closed ;
(iii) A s invertible.
Moreover, the operator on H associated to the form q* is A*.

Proof. o Let ¢ € Dom(A). The map ¥ — q(p, ) extends to a bounded semilinear form on
H. Then, by the Riesz theorem, there exists a vector Ap € H such that q(p,1) = (Ap, ),
for all ¢» € V. This defines on H an operator A with domain Dom(A) (the linearity of A is
left as an exercise).

e Let ¢ € H. The map ¢ € V ~— ((,v),, is a continuous semilinear map on V so, by the
Lax-Milgram theorem, there exists ¢ € V such that

Vw € Va <<, ¢>’H = q(<)0, 1/})
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Then we have ¢ € Dom(A) and Ap = {. This proves that A is surjective.
e For ¢ € Dom(A) we have

2 — 2
[Aels 2l = KA, 033 ] = lale, @)l = allely, = aly3, el -

Thus,
[Aply = aCy3y ol - (1.13)

This proves in particular that A is injective. Since A is surjective, it is bijective. This
inequality also implies that the inverse is bounded and HA‘ < a‘lC\%ﬂ. This implies
that A is closed by Proposition 1.35.

e Let ¢ € V be in the orthogonal of Dom(A) in V. Let T € L(V) be given by Proposition
1.65. Since T* is bijective (by Proposition 1.61), there exists ¢ € V such that T#( = 1. Then
for all ¢ € Dom(A) we have

0= <<Pv¢>v = <<)O7T*C>V = <T<p7 C>V = q(@a ¢) = <A<)03 <>H .

Since A is surjective, this implies that ¢ = 0, and hence 1) = 0. Then Dom(A) is dense in V
for the topology of V, and hence for the topology of H. Since V is dense in H, Dom(A) is
also dense in H.

e We denote by A the operator associated to q*. Since q* is continuous and coercive, A

is also a densely defined, closed and invertible operator on H. Let ¢ € Dom(A). For all
@ € Dom(A) we have

e

(Ap, ¥y = alp, ¥) = a* (W, ¢) = (Ap, ) = (p, AV).
This proves that A c A*. Conversely, if ¢» € Dom(A*) then for all ¢ € Dom(A) we have

|a* (¥, 0)| = la(e, )| = KAp, )] = [{p, A*P)| < APl el -

Since Dom(A) is dense in V and H, we deduce that for all ¢ € V we have

9% (¢, )| < A%l el »
so 1) € Dom(A). This proves that Dom(A*) c Dom(A4), so A = A*. O

Remark 1.72. Let q be a continuous quadratic form on V. Assume that there exists § € C
such that the form qg : ¢ — q(¢) + B¢ is coercive on V. Let Ag be the operator on H
given by Theorem 1.71 and A = Ag — § with Dom(A) = Dom(Ag). Then A is closed and
densely defined, and (A + () is invertible. Notice that this definition of A does not depend
on the choice of 5.

Remark 1.73. Let q be a continuous coercive quadratic form on V and @ € £(V, V') defined
by (1.12) (invertible by Theorem 1.67). Let A the operator on H be given by Theorem 1.71.
Then for all o € H < V' we have QLo = A7 1.

1.3.3 Examples: Laplacian, Dirichlet and Neumann boundary con-
ditions
Example 1.74. We consider on H!(R) the quadratic form
q:ru— HuHill(lR) :
We apply Theorem 1.71 with V = H*(R) and H = L?(R). We have
Dom(A) = {ue H'(R) : v" € L*(R)} = H*(R).

Indeed, if u € H?(R) then for all v € H*(R) we have

< ("] + Jul) o]

lg(u,v)| = ’—f u”@dx+J wo dz
R R
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so u € Dom(A). Conversely, assume that u € Dom(A). Then for all v € H*(R) we have

J W7 dz
R

This proves that «” € L?, and hence u € H*(R). Finally, for u € Dom(A) we have
Voe H'Y(R), {Au,v) = q(u,v) ={(—u" +u,v),

< la(w, o) + ul o] < (Cu + Jul)) o] -

SO
Au = —u" +u.

Ezample 1.75. We consider on H'(0, 1) the quadratic form
2
qn *u— HU”HI(O,l) :

We apply Theorem 1.71 with V = H'(0,1) and H = L?(0,1). We denote by Ay the
corresponding operator. Let u € Dom(Ay). For all ¢ € C(]0,1[) = H'(0,1) we have as

above )
f '3 dz
0

This implies that v” € L2(0,1). Then for all ¢ € C°(]0, 1[) we have

< (Cu A [ul) o] -

o 1
(Anu, ) = qn (u, ¢) = Jo u'¢ dz —|—JO updr = (—u" + u,p).

This proves that Ayu = —u” + u. Then for all v € H'(0,1) we have

1 1

u'v' dz + fo wodz = v’ (1)5(1) — ' (0)9(0) + {—u" + u,v)

(Anu,v) = gy (u,v) = f

0
This proves that for all v e H1(0,1)
o' (1)9(1) — ' (0)v(0) = 0.

This implies that

v (0) = /(1) = 0. (1.14)
Conversely, assume that u € H?(0,1) satisfies (1.14). Then we can compute as above that

Yoe H'(0,1), q(u,v) ={—u" +u,v).
Then u € Dom(Ay). Finally we have
Dom(Ay) = {ue H*(0,1) : v/(0) = /(1) = 0}

and, for all u € Dom(Ay),
Anu = —u” + u.

Example 1.76. We consider on H{(0,1) the quadratic form
2
dp U — HuHHl(O,l) .

We apply Theorem 1.71 with V = H}(0,1) and H = L?(0,1). We denote by Ap the
corresponding operator. Let u € Dom(Ap). As above we see that u € H2(0,1) and Apu =
—u” +u. On the other hand, if u e H?(0,1) n H}(0, 1) we have q(u,v) = {(—u" + u,v) for all
v € HE(0,1) (there are no boundary terms since u and v vanish at the boundary). Finally
we have
Dom(Ap) = H?(0,1) n H3(0,1),
and for all u € Dom(Ap)
Apu=—u" +u.

Ezample 1.77. By Remark 1.72 we can define the operators associated to the form

1
u— | |u(@)]? dz
0

defined on H*(R) and H'(0,1) (note that this form is already coercive on Hg(0,1)). & Ex. 1.13
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1.4 Exercises

Ezxercise 1.1. Let A, B € L(E). Assume that A is invertible and

1

1B = Al < 57—
LB 2147 o g

Prove that B is invertible and

B oy <24

e e

Exercise 1.2. We consider on L?(R?) the Laplace operator Hy = —A defined on the domain
Dom(Hy) = H?(R?).

1. Prove that Hy is injective.

2. Prove that the range of Hy is dense in L?(R?).

3. Prove that Hy does not have a bounded inverse.

Ezxercise 1.3. Let A be a densely defined operator from E to F. Assume that there exists
C > 0 such that |Ag| < C|¢|g for all ¢ € Dom(A).

1. Prove that A extends uniquely to a bounded operator A € £(E,F) and that | Az r) < C.
2. Assume that A is closed. Prove that we already have Dom(A) = E and A € L(E,F).

Ezxercise 1.4. Prove that the multiplication operator M,, of Example 1.12 is closed. What
about the operator MY of Example 1.16 ?

Ezxercise 1.5. Let H be a Hilbert space. Assume that the family (53,),,cy is an orthonormal
basis of H. Let (\,) be a complex sequence. We consider on H the unique operator Ay
such that

neN

N
Dom(Ag) = {Z ©nBn, N € Nand ¢o,...,poN € (C}
n=0

and
VneN, AB, = A\.bn.

Prove that Ag is closable and give its closure.

Ezercise 1.6. Let A be an operator from #H; to Ho with domain Dom(A4). Prove that A*
is a linear operator.

Exercise 1.7. Prove that the map

‘C(HLHQ) g E(H27Hl)
A — A*

is semi-linear.

Ezercise 1.8. Let A€ L(H). Prove that [A*A|, 4, = HAHQL(H).

Ezxercise 1.9. Let A € L(H). Let F be a subspace of H such that A(F) < F. Prove that
A*(FH) < FL.

Ezercise 1.10. Let © be an open subset of R, Let w : Q — C be a continuous function.
We consider on L?(Q2) the multiplication operator M,, as in Example 1.12.

1. Prove that M, is densely defined.

2. What is the adjoint of M,, ?

Ezercise 1.11. We consider the operator T" from L?(R) to C defined by Dom(T) = CZ(R)
and T'¢ = ¢(0) for all ¢ € Dom(T'). Compute the adjoint T* of T.

Exercise 1.12. For u,v € H'(R) we set d(u,v) = u(0)v(0).
1. Prove that this defines a sesquilinear form § on H!(R).
2.1s § coercive ?

3. By Proposition 1.65 there exists T' e £(H*(R)) such that

Vu,v e H(R), fR ((Tu) (z)v'(z) + (Tw)(z)v(z)) dz = (T, v) gy = 6(u,v).

Give an explicit expression of Tu for all u € H*(R). Is T injective ? Surjective ?
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LINEAR OPERATORS

Ezercise 1.13. Let a e C. For ue H'(0,1) we set

Qo (u) = L |u’(x)}2 dr + o \u(0)|2 )

1. Prove that the quadratic form q is continuous on H'(0,1).

2. Prove that there exists 8 > 0 such that the form qo + 5 : u — qq(u) + 3 HUHQH(OJ) is
coercive.

3. We denote by A, the operator on L?(0, 1) associated with the form q,, by the representation
theorem (see Remark 1.72). Describe A, (domain and action on an element of this domain).
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