
M2 RI Spectral Theory

Final Exam

Monday, November 28 (3h)

Five pages of notes are allowed. French or English can be used for the answers. Unless
otherwise specified, all the answers have to be justified and the clarity of the writing will be
taken into account.

Exercise 1. We consider on ℓ2pNq the operator A defined on the domain

DompAq “
#

u “ punqnPN P ℓ2pNq :
8ÿ

n“0
n2 |un|2 ă `8

+

by
@u “ punqnPN P DompAq, Au “ pneinunqnPN.

1. Prove that A is densely defined.
2. Prove that A is closed.
3. What is the adjoint of A ?

Correction : 1. Let u “ punq P ℓ2pNq and ε ą 0. Let N P N such that
ř`8

n“N`1 |un|2 ď ε. We define
v “ pvnqnPN P ℓ2pNq by

vn “
#

un if n ď N,

0 if n ą N.

Then v P DompAq and }u ´ v}2
ℓ2pNq ď ε, which proves that DompAq is dense in ℓ2pNq.

2. Assume that we have a family pukq of sequences in DompAq such that uk Ñ u and Auk Ñ v for
some u and v in ℓ2pNq. Then for all n P N we have

ˇ̌
ˇuk

n ´ un

ˇ̌
ˇ
2 ď

›››u
k ´ u

›››
2

ℓ2pNq
ÝÝÝÝÑ
kÑ8

0 and
ˇ̌
ˇne

in
u

k
n ´ vn

ˇ̌
ˇ
2 ď

›››Au
k ´ v

›››
2

ℓ2pNq
ÝÝÝÝÑ
kÑ8

0.

This implies that vn “ neinun for all n P N. In particular,

ÿ

nPN
n

2 |un|2 “ ÿ

nPN
|vn|2 ă `8.

This proves that u P DompAq. We also have Au “ v, which proves that A is closed.
3. Let v “ pvnqnPN P DompA˚q. We set w “ pwnqnPN “ A˚v. Then for all u “ punqnPN P DompAq we
have

8ÿ

n“0

unwn “
A

u, A
˚
0 v

E
ℓ2pNq

“ xA0u, vy “
8ÿ

n“0

ne
in

unvn “
8ÿ

n“0

unne´invn.

Applied with the sequence ek “ pek,nqnPN defined by ek,k “ 1 and ek,n “ 0 if n ‰ k, this proves that

@n P N, wn “ ne
´in

vn.

In particular, ÿ

nPN
n

2 |vn|2 “ ÿ

nPN
|wn|2 ă `8,

so v P DompAq. Conversely, assume that v “ pvnqnPN belongs to DompAq. Then for all u “ punqnPN P
DompAq we have by the Cauchy-Schwarz inequality

|xAu, vy| ď ÿ

nPN
n |un| |vn| ď }u}ℓ2pNq

d ÿ

nPN
n2 |vn|2.

This proves that v P DompA˚q. Finally we have proved that DompA˚q “ DompAq and that for
v “ pvnqnPN we have

A
˚

v “ pne
´in

vnqnPN.

˝



Exercise 2. Let E1, E2 and E3 be three Banach spaces such that E1 Ă E2 Ă E3. We
assume that the embedding i : E1 Ñ E2 is compact and that the embedding j : E2 Ñ E3 is
continuous. Let ε ą 0. Prove that there exists Cε ą 0 such that for all φ P E1 we have

}φ}E2
ď ε }φ}E1

` Cε }φ}E3
.

Correction : Assume by contradiction that the statement is not true. Then for all n P N there exists
φn P E1 such that

}φn}E2
ą ε }φn}E1

` n }φn}E3
.

In particular }φn}E2
‰ 0, so }φn}E1

‰ 0. After dividing by }φn}E1
if necessary, we can assume

without loss of generality that }φn}E1
“ 1 for all n P N.

Then the sequence pφnq is bounded in E1, so it has a convergent subsequence in E2. After
extracting a subsequence if necessary, we can assume that φn goes to some φ P E2. And by continuity
of the injection of E2 in E3, φn also goes to φ in E3. Then

}φ}E3
“ lim

nÑ8
}φn}E3

ď lim
nÑ8

}φn}E2
n

“ 0.

This proves that φ “ 0. This gives a contradiction with

@n P N, }φn}E2
ą ε,

and concludes the proof by contradiction. ˝

Exercise 3. For u “ punqnPZ P ℓ2pZq we define H0u P ℓ2pZq by

@n P Z, pH0uqn “ 2un ´ un`1 ´ un´1.

1. Prove that this defines a bounded operator H0 on ℓ2pZq.
2. We denote by L2

per the space of 2π-periodic functions in L2
locpRq (this is equivalent to

considering L2pS1q, where S1 is the circle, or one dimensional torus). It is endowed with the
norm defined by

}v}2
L2

per
“ 1

2π

ż π

´π

|vpxq|2 dx.

For u “ punqnPZ P ℓ2pZq we define Fu P L2
per by

@x P R, pFuqpxq “
ÿ

nPZ
une´inx.

We recall that F : ℓ2pZq Ñ L2
per is a unitary operator. Prove that FH0F´1 is the operator

M of multiplication by 2p1 ´ cospxqq on L2
per.

3. Give without proof the spectrum of M .
4. Prove that σpH0q “ σpMq.
5. Prove that H0 has no eigenvalue.
6. Let pβnqnPZ be a real-valued sequence such that βn ą 0 for all n P Z and βn Ñ 0
as n Ñ ˘8. We denote by B the operator on ℓ2pZq which maps u “ punq P ℓ2pZq to
Bu “ pβnunqnPN. For α P R we set Hα “ H0 ` αB. Prove that Hα is selfadjoint for all
α P R.
7. Let α P R. What is the essential spectrum of Hα ?
8. Prove that there exists α P R such that Hα has at least one eigenvalue.
9. Let N P N˚. Prove that there exists α P R such that Hα has at least N eigenvalues
(counted with multiplicities).

Correction : 1. Let u “ punqnPZ P ℓ2pZq. We define u˘ by u˘,n “ un˘1. In particular we have
u˘ P ℓ2pZq and }u˘}ℓ2pZq “ }u}ℓ2pZq. Since H0u “ 2u ´ u´ ´ u` we have by the Cauchy-Schwarz
inequality

}H0u}ℓ2pZq ď 2 }u}ℓ2pZq ` }u`}ℓ2pZq ` }u´}ℓ2pZq ď 4 }u}ℓ2pZq .

This proves that H0 is bounded on ℓ2pZq and }H0}Lpℓ2pZqq ď 4.
2. Let u “ punq P ℓ2pZq. For x P R we have

pFH0uqpxq “ ÿ

nPZ
p2un ´ un´1 ´ un`1qe

´inx

“ ÿ

nPZ

`
2e

´inx ´ e
´ipn`1qx ´ e

´ipn´1qx˘
un

“ ÿ

nPZ
2p1 ´ cospxqqe

´inx
un

“ 2p1 ´ cospxqqpFuqpxq.



This proves that FH0 “ MF .
3. We know that the spectrum of the operator of multiplication by a function is the closure of the
image of this function. In this case, the spectrum of the multiplication M by 2p1 ´ cospxqq on r´π, πs
is r0, 4s.
4. Let z P C. We have

H0 ´ z Idℓ2pZq “ F´1
MF ´ z Idℓ2pZq “ F´1`

M ´ z IdL2
per

˘
F.

Then H0 ´ z Idℓ2pZq is invertible if and only if M ´ z IdL2
per

is, so σpH0q “ σpMq “ r0, 4s.
5. Similarly, λ is an eigenvalue of H0 if and only if it is an eigenvalue of M . However, for λ P r0, 4s
we have

λptx P r´π, πs : 2p1 ´ cospxqq “ λuq “ 0.

Then M has no eigenvalue, so H0 has no eigenvalue. We recall the proof of this fact. Assume that
v P L2

per and λ P C are such that Mv “ λv. Then for almost all x P R we have

`
2p1 ´ cospxqq ´ λ

˘
vpxq “ 0.

This implies that v “ 0 almost everywhere. Thus λ is not an eigenvalue of M .
6. The sequence pβnqnPZ goes to 0 at infinity, so it is bounded. For u “ punqnPN we have

ÿ

nPZ
|βnun|2 ď sup

nPZ
|βn|2 ÿ

nPZ
|un|2

.

This proves that B is bounded. Then for any α P R the operator Hα is bounded.
Let u “ punq and v “ pvnq in ℓ2pZq. We have

xHαu, vyℓ2pZq “ 2
ÿ

nPZ
unvn ´ ÿ

nPZ
un`1vn ´ ÿ

nPZ
un´1vn ` ÿ

nPZ
αβnunvn

“ 2
ÿ

nPZ
unvn ´ ÿ

nPZ
unvn´1 ´ ÿ

nPZ
unvn`1 ` ÿ

nPZ
unαβnvn

“ xu, Hαvyℓ2pZq .

This proves that Hα is symmetric. Then it is selfadjoint.
7. Let N P N. We denote by BN the operator which maps u “ punqnPZ to the sequence BN u such
that

pBN uqnPZ “
#

βnun if |n| ď N,

0 if |n| ą N.

Then BN is of finite rank, so it is a compact operator on ℓ2pZq. On the other hand we have

}B ´ BN }Lpℓ2pZqq “ sup
|n|ąN

|βn| ÝÝÝÝÑ
NÑ8

0,

so B is also a compact operator on ℓ2pZq.
In particular, it is H0-compact. By the Weyl Theorem, we have σesspHαq “ σesspH0qr0, 4s.

8. For α P R we set ηα “ min σpHαq. For k P Z we define the sequence ek “ pek
nqnPZ such that ek

k “ 1
and ek

n “ 0 if n ‰ k. We have }ek}ℓ2pZq “ 1 for all k P Z. We have

A
Hαe

0
, e

0
E

“
A

H0e
0
, e

0
E

` αβ0 ÝÝÝÝÝÑ
αÑ´8

´8.

In particular, there exists α P R such that
A

Hαek, ek
E

ă 0. By the Min-max Theorem we have
ηα ă 0. Then ηα P σpHαq but ηα R σesspHαq. This implies that ηα is an eigenvalue of Hα.
9. Let N P N. We set FN “ spanpe0, . . . , eN´1q. For u “ řN´1

n“0 unen and α ă 0 we have

xHαu, uyℓ2pZq “ ÿ

0ďj,kďN´1

ujuk

A
Hαe

j
, e

k
E

“ ÿ

0ďj,kďN´1

ujuk

A
H0e

j
, e

k
E

` α

N´1ÿ

k“0

βk |uk|2

ď pC ` p´αq inf
0ďkďN´1

βkq }u}2
ℓ2pZq ,

where C “ sup0ďj,kďN´1

ˇ̌
ˇ
A

H0ej , ek
Eˇ̌

ˇ. This proves that

sup
uPFN
}u}“1

xHαu, uy ÝÝÝÝÝÑ
αÑ´8

´8.

In particular, there exists α P R such that the left-hand side is negative, and in particular smaller
than inf σesspHαq. In this case, the Min-max Theorem ensures that Hα has at least N eigenvalues
(counted with multiplicities) under the essential spectrum.

˝



Exercise 4. We consider on H “ L2p0, 1q the operator A defined by

DompAq “ ␣
u P H2p0, 1q : up0q “ 0 and u1p1q “ 0

(

and Au “ ´u2 for all u P DompAq. We recall that if u P L2p0, 1q is such that u2 P L2p0, 1q
then u1 P L2p0, 1q, and moreover the graph norm on DompAq is equivalent to the norm
}¨}H2p0,1q.
1. Prove that A is selfadjoint.
2. Prove that A ě 0.
3. Prove that p´Aq generates a contractions semigroup on L2p0, 1q.
4. Prove that kerpAq “ t0u (we recall that if u P H2p0, 1q satisfies ´u2 “ 0 in the sense of
distributions, then it is of class C2).
5. Prove that min σpAq ą 0.
6. Prove that there exists γ ą 0 such that for all t ě 0 we have

››e´tA
››

LpL2p0,1qq ď e´tγ .

Correction :
1. For u, v P H2p0, 1q we have by the Green formula

´
ż 1

0
u

2pxqvpxq dx “ ´u
1p1qvp1q ` u

1p0qvp0q ` up1qv1p1q ´ up0qv1p0q ´
ż 1

0
upxqv2pxq dx.

In particular, for u, v P DompAq we have xAu, vy “ xu, Avy, so A is symmetric.
Let v P DompA˚q. For all ϕ P C8

0 p0, 1q we have

´
ż 1

0
ϕ

2pxqvpxq dx “
ż 1

0
ϕpxqpA˚vqpxq dx.

This proves that in the sense of distributions we have A˚v “ ´v2 P L2p0, 1q. We deduce in particular
that v P H2p0, 1q.

Then for all u P DompAq we have by the computation above

0 “ xAu, vy ´
A

u, A
˚

v
E

“ @´u
2

, v
D ´ @

u, ´v
2D “ u

1p0qvp0q ` up1qv1p1q.

Considering u P DompAq such that u1p0q “ 0 and up1q “ 1 we deduce that v1p1q “ 0. Similarly,
vp0q “ 0, and finally v P DompAq. This proves that A˚ Ă A, and hence A is selfadjoint.
2. For all u P DompAq we have by the Green Formula

xAu, uyH “ ´
ż 1

0
u

2pxqupxq dx “
ż 1

0

ˇ̌
u

1pxqˇ̌2 dx ě 0,

so A ě 0.
3. Since p´Aq is selfadjoint and non-positive, it is in particular maximal dissipative, and it generates
a contractions semigroup.
4. Assume that u P H2p0, 1q is such that u2 “ 0. There exist α, β P C such that upxq “ αx ` β for
almost all x Ps0, 1r. Since u P DompAq, the boundary conditions imply that α “ β “ 0, so u “ 0
almost everywhere on s0, 1r.
5. Since DompAq is continuously embedded in H2p0, 1q, it is compactly embedded in H, and hence the
operator A has compact resolvent (notice that the resolvent set is not empty since A is selfadjoint).
Its spectrum consists of a sequence of isolated eigenvalues of finite multiplicities (and going to `8
since A is non-negative), so the essential spectrum of A is empty.

We denote by pλkqkPN˚ the non-decreasing sequence of eigenvalues of A (counted with multi-
plicities, even if this is not important here). Since A is non-negative and kerpAq “ t0u, we have
min σpAq “ λ1 ą 0.
6. We set B “ A ´ λ1. Then B is selfadjoint and min σpBq “ 0. This implies that B ě 0. Then p´Bq
also generates a contractions semigroup. Moreover, for all t ě 0 we have

e
´tA “ e

´tpB`λ1q “ e
´tλ1 e

´tB
.

Indeed, pe´λ1 e´tBq defines a continuous semigroup on H. For φ P DompBq we have

d

dt
e

´tλ1 e
´tB “ ´pB ` λ1qe

´tλ1 e
´tB

φ,

so
e

´tλ1 e
´tB

φ “ e
´tpB`λ1 φ.

By density of DompBq and continuity of the semigroups, this equality holds for all φ P H and t ě 0.
We deduce ›››e

´tA
›››

LpHq
“ e

´tλ1
›››e

´tB
›››

LpHq
ď e

´tλ1 .

˝

Exercise 5. Let H be a Hilbert space. Let pStqtě0 be a strongly continuous semigroup on
H and let A be its generator. Prove that the generator of the semigroup pSt̊ qtě0 is A˚ (the
proof that pSt̊ qtě0 is a strongly continuous semigroup is not required).



Correction : We denote by B the generator of the semigroup pS˚
t qtě0.

‚ Let φ P DompBq. Let ψ P DompAq. We have

B
φ,

Stψ ´ ψ

t

F
ÝÝÝÑ
tÑ0

xφ, Aψy

and B
φ,

Stψ ´ ψ

t

F
“

C
S˚

t φ ´ φ

t
, ψ

G
ÝÝÝÑ
tÑ0

xBφ, ψy .

This proves that xφ, Aψy “ xBφ, ψy for all ψ P DompAq, so φ P DompA˚q and A˚φ “ Bφ.
‚ Let φ P DompA˚q. Let ψ P H. By Proposition 5.33 we have

A
S

˚
t φ ´ φ, ψ

E
“ xφ, Stψ ´ ψy “

B
φ, A

ż t

0
Sτ ψ dτ

F
“

B
A

˚
φ,

ż t

0
Sτ ψ dτ

F

“
ż t

0

A
A

˚
φ, Sτ ψ

E
dτ “

ż t

0

A
S

˚
τ A

˚
φ, ψ

E
dτ “

Bż t

0
S

˚
τ A

˚
φ dτ, ψ

F
.

This gives
S˚

t φ ´ φ

t
“ 1

t

ż t

0
Sτ A

˚
φ dτ ÝÝÝÑ

tÑ0
A

˚
φ.

Thus φ P DompBq (and Bφ “ A˚φ). ˝

Exercise 6. Let H “ L2pRq.
1. We set DompT q “ tu P C8

0 pRq : up0q “ 0u, and for u P DompT q we set Tu “ ´u2 ` u.
Prove that this defines a symmetric and non-negative operator T on H.
2. Prove that T is not selfadjoint.
3. We set VN “ H1pRq. For v P VN we set qN pvq “ }v}2

H1pRq “ }v1}2
L2pRq ` }v}2

L2pRq.
What is the operator AN (domain and action) associated with the quadratic form qN by the
representation theorem on H ? Prove that AN is a selfadjoint extension of T .
4. We set VD “ ␣

v P H1pRq : vp0q “ 0
(
. For v P VD we set qDpvq “ }v}2

H1pRq. What is the
operator AD (domain and action) associated with the quadratic form qD by the representation
theorem on H ? Prove that AD is a selfadjoint extension of T .
5. Give all the selfadjoint extensions of T on H.

Correction : 1. Let u, v P DompT q. By integrations by parts we have

xT u, vyH “ ´
ż

R
u

2pxqvpxq dx `
ż

R
upxqvpxq dx

“
ż

R
u

1pxqv1pxq dx `
ż

R
upxqvpxq dx

“ ´
ż

R
upxqv2pxq dx dx `

ż

R
upxqvpxq dx

“ xu, T vyH .

This proves that T is symmetric. Moreover the computation gives

xT u, uyH “
ż

R

ˇ̌
u

1pxqˇ̌2 dx ě 0,

which proves that T is non-negative.
2. Now let v P C8

0 pRq with vp0q ‰ 0. The same computation as above shows that for all u P DompT q
we have

xT u, vyH “ ´
ż

R
upxqv2pxq dx dx `

ż

R
upxqvpxq dx “ @

u, ´v
2 ` v

D
H .

This proves that v P DompT ˚q. Since v R DompT q, T cannot be selfadjoint.
3. Let u P DompAN q Ă VN . For all ϕ P C8

0 pRq Ă VN we have

´
ż

R
u

1pxqϕ1pxq dx “ ´qN pu, ϕq `
ż

R
upxqϕpxq dx “ x´AN u ` u, ϕy .

This proves that u1 has a derivative in L2pRq, and u2 “ ´AN u ` u. In particular, u P H2pRq.
Conversely, assume that u P H2pRq. Then for all v P H1pRq we have by the Green formula

qN pu, vq “
ż

R

`
u

1pxqv1pxq ` upxqvpxq˘
dx “ @´u

2 ` u, v
D

L2pRq .

This proves that u P DompAN q (and AN u “ ´u2 ` u). Finally we have DompAN q “ H2pRq and for
u P DompAN q we have AN “ ´u2 ` u.



4. Let u P DompADq. We denote by u˘ the restriction of u on R˚
˘. For ϕ P C8

0 pR˚
`q we have

´
ż `8

0
u

1
`pxqϕ1pxq dx “ ´qDpu, ϕq `

ż `8

0
upxqϕpxq dx “ x´ADu ` u, ϕy .

This proves that u` P H2pR˚
`q and u2

` “ ´ADu ` u on R˚
`. Similarly, u´ P H2pR˚

´q and u2
´ “

´ADu ` u on R˚
´. Conversely let u P VD such that the restrictions u` and u´ of u to R˚

` and R˚
´

belong to H2pR˚
`q and H2pR˚

´q. Then for all v P VD we have

qDpu, vq “
ż 0

´8

`
u

1
`pxqv1pxq ` upxqvpxq˘

dx `
ż `8

0

`
u

1
´pxqv1pxq ` upxqvpxq˘

dx

“ @´u
2
´ ` u´, v

D
L2pR˚

´q ` @´u
2
` ` u`, v

D
L2pR˚

`q .

This proves that u P DompADq. Finally, we have

DompADq “
"

u P VD : u|R˚
˘

P H
2pR˚

˘q
*

,

and for u P DompADq we have, with u˘ “ u|R˚
˘

,

ADu “
#

´u2
` ` u` on R˚

`,

´u2
´ ` u´ on R˚

´.

5. Let A be a selfadjoint extension of T . We have T Ă A “ A˚ Ă T ˚. Let v P DompAq Ă DompT ˚q.
As above we see that v` “ v|R˚

`
P H2pR˚

`q and v´ “ v|R˚
´

P H2pR˚
´q. Moreover,

Av “
#

´v2
` ` v` on R˚

`,

´v2
´ ` v´ on R˚

´.

For all u P DompT q we have

0 “ xT u, vy ´ xu, Avy

“
ż 0

´8

` ´ u
2pxqvpxq ` upxqv2pxq˘

dx `
ż `8

0

` ´ u
2pxqvpxq ` upxqv2pxq˘

dx

“ ´u
1p0qvp0´q ` u

1p0qvp0`q.

Choosing u P DompT q such that u1p0q ‰ 0, we deduce that vp0`q “ vp0´q, and hence v P H1pRq.
We already know that AD is a selfadjoint extension of T . We assume that A ‰ AD. Then there

exists u P DompAq such that up0q ‰ 0. Then for all v P DompAq we have

0 “ xAu, vy ´ xu, Avy

“
ż 0

´8

` ´ u
2pxqvpxq ` upxqv2pxq˘

dx `
ż `8

0

` ´ u
2pxqvpxq ` upxqv2pxq˘

dx

“ ´u
1p0´qvp0q ` up0qv1p0´q ` u

1p0`qvp0q ´ up0qv1p0`q.

We set

α “ u1p0`q ´ u1p0´q
up0q .

Then for all v P DompAq we have
v

1p0`q ´ v
1p0´q “ αvp0q.

Applied with v “ u, this proves in particular that α P R. Finally, there exists α P R such that DompAq
is included in

Dα “
"

u P H
1pRq : u|R˚

˘
P H

2pR˚
˘q and u

1p0`q ´ u
1p0´q “ αup0q

*
.

For α P R we denote by Aα the operator defined by DompAαq “ Dα and, for u P DompAαq and
u˘ “ u|R˚

˘
,

Aαu “
#

´u2
` ` u` on R˚

`,

´u2
´ ` u´ on R˚

´.

If A is a selfadjoint extension of T , then there exists α P R such that A Ă Aα, and hence A “ Aα.
Conversely, we prove that for any α P R the operator Aα is a selfadjoint extension of T .

Let α P R. We have T Ă Aα. We check by direct computation that Aα is symmetric. Then we
consider v P DompA˚

α q. We have v˘ P H2pR˚
˘q. Then for all u P DompAαq we have

u
1p0`qvp0`q ´ u

1p0´qvp0´q ´ up0qpv1p0`q ´ v1p0´qq.

With up0q “ 0 and u1p0`q “ u1p0´q ‰ 0 we see that vp0`q “ vp0´q, so v P H1pRq. Then

up0q`
αvp0q ´ pv1p0`q ´ v1p0´qq˘ “ 0.

This implies that pv1p0`q ´ v1p0´qq “ αvp0q and proves that v P DompAαq. Thus Aα is selfadjoint.
Finally, the selfadjoint extensions of T are the operators Aα for α P R.

˝


