Chapter 4

Compact operators, compact
resolvents

[Draft version, November 16, 2022]

4.1 Compact operators

4.1.1 Definition and properties
Let E and F be two Banach spaces.

Definition 4.1. Let A be a linear map from E to F. We say that A is compact if one of the
following equivalent assertions is satisfied.

(i) For any bounded sequence (pn)nen in E, the sequence (Apy)nen has a convergent sub-
sequence in F.

(ii) A(Bg) is compact in F (we have denoted by Bg the unit ball in E).
(iii) A(B) is compact in F for any bounded subset B of E.

We denote by IC(E,F) the set of compact operators from E to F. We also write K(E) for
K(E,E).

For the proof of the equivalences we recall that a subset 2 of a metric space is compact
if and only if any sequence in 2 has a convergent subsequence in ).

FEzxzample 4.2. Finite rank operators are compact.

Ezample 4.3. The identity operator on E is compact if and only if E has finite dimension.
Proposition 4.4. Let E and F be two Banach spaces.

(i) A compact operator is a bounded operator (KK(E,F) < L(E,F))

(ii) IC(E,F) is a closed subspace of L(E,F).

(iii) For A € K(E,F), By € B(E1,E) and By € B(F,F2) we have Ao By € K(E1,F) and
By o Ae K(E,F2).

(iv) For Ae K(E,F) we have A* e K(F*, E*).

Proof. e Let A € K(E,F) and assume by contradiction that A is not bounded. Then there
exists a sequence (g,,) in E such that ||, g = 1 for all n and ||Ap, | — o as n — 00. Then
(Ap,) cannot have a convergent subsequence in F, which gives a contradiction.

e The fact that K(E, F) is a subspace of L(E,F) is clear. Let (A,) be a sequence in I(E, F)
which converges to some A in L(E,F). Let (¢,) be a bounded sequence in E. Let M > 0
such that [, < M for all n € N. There exists a subsequence (¢,(1,k))ren such that
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(A1¢y1,k)) is convergent in F. From this subsequence we can extract a subsequence (¢, (2,x))
such that (Aa@y,(2,k)) is convergent (and (A1@,(2,k)) is also convergent). By induction on m,
we construct a subsequence (¢p,(m,k)) Of (Pn(m—1,k)) such that (A, @n(m,k))ken is convergent.
Then by the Cantor diagonal argument, if we set ny = n(k, k) for all k € N, then the sequence
(Aj¥n, )ken is convergent for all j € N.

Let e > 0. Let j € Nsuch that |A; — Al ;¢ ¢y < 557 Let N € Nsuch that |45 (e, — gonkQ)HF <
5 for all k1, ke > N. Then for ki, k2 > N we have

HA<Pnk1 - Awnkz HF < H (A - Aj)‘Pmcl HF + HAJ(@nkl - @nkg)HF + H(Aj - A)‘PnkQ HF < €.

This proves that (Awn(k)) is a Cauchy sequence, and hence convergent in F.

e The third statement is left as an exercice.

o Let (¢n),ey be a bounded sequence in F*. Since A is compact, A(Bg) is a compact
metric space, and the functions ¢,,, n € N, are equicontinuous thereon. Then, by the Ascoli-

Arzeld Theorem, there exists a subsequence (¢, )ren convergent in C°(A(Bg)). We denote
by ¢ € CY(A(Bg)) the limit. In particular we have

sup [on, (A(2)) — p(A(2))|

Jzfe<1 k=

0.
o

We deduce that (¢, o A) = (A* o ¢, ) is a Cauchy sequence in E*. Since E* is a Banach
space, it has a limit in E*. This proves that A* € K(F*, E*). O

Ezample 4.5. Let a = (a,)nen be a sequence which converges to 0. We consider on £2(N) the
multiplication operator M, by a (see Example 1.5). Then M, is compact on ¢2(N). Indeed,
for N € N we denote by an the sequence defined by

a, ifn <N,
anN =
0 ifn>N.

Then the multiplication M, , by ay is of finite rank, hence compact, for all N € N. Moreover

Mo = May | £e2qvy) < sup lan] === 0.

Since K(¢2(N)) is closed, this proves that M, is compact.

Proposition 4.6. Let A€ K(E,F) and let (pn),,on be a sequence in E which converges weakly
to some p € E (i.e. for any € € E* we have {(py) — (v)). Then Ay, converges (in norm)
to Ap.

Proof. Assume by contradiction that Ap, does not converges to Ay. There exists ¢ > 0
and a subsequence ¢, such that |Ap,, — Ag|g = ¢ for all k. The sequence (¢) has a
weak limit so it is bounded (see Proposition 3.5.(iii) in [Brézis]). Since A is compact, after
extracting another subsequence if necessary, we can assume that (Ay,, ) has a limit w in F.
Since Apy,, goes weakly to Ag (if £ € F then o A € E'), this implies that w = Ay and gives
a contradiction. O

Proposition 4.7. Let H be a separable Hilbert space. Then any compact operator A is the
limit in L(H) of a sequence of operators of finite ranks.

Proof. Let (¢n), oy be a Hilbert basis of H. For n € N we set F,, = span(o,...,¢n) and
we denote by II,, the orthogonal projection on F,,. Then we set A, = All,. Assume by
contradiction that

p =liminf||A — A,| > 0.
Then for all n € N large enough (in fact for all n since the sequence (|4 — A,|) is non-
increasing) there exists ¥, € F5 such that [¢,]| = 1 and [A¢y, | = [(A — A,)Y,| = 5. For
1 € H we have

|<w,wn>|<|<1—nn>w<< > l<%¢>l2> el

e 0]
k=n+1

This proves that the sequence (¢, ) goes weakly to 0. This gives a contradiction with Propo-
sition 4.6 since (Apy) does not go to 0. O
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4.1.2 Examples of compact operators and compact embeddings

We finish this paragraph with more examples of compact operators. Here we discuss the sets
of regular functions.

Let ©2 be a bounded open subset of R? and k£ € N. We recall that C*(Q) is the set of
restrictions to 2 of functions in C*¥(R?). It is endowed with the norm defined by

[l ey = 3 16%ul oo

la|<k
Proposition 4.8. Let Q be a bounded open subset of R? and k € N. Then C*T1(Q) is
compactly embedded in C* ().

Proof. Let (uy), . be a bounded sequence in C**+1(Q). Let M be such that lunl crss @y < M.
Let a € N with |a| < k. Since IV 0%un | 1 (g is uniformly bounded, the sequence (0%uy)

neN

is uniformly Lipschitz (in particular equicontinuous) on Q. By the Ascoli-Arzela Theorem,
it has a subsequence which converges uniformly to some v, in C°(€2). Then there exists an
increasing sequence (ny) such that 0%u,, goes to v, when n — oo for all |a] < k.

Let o € N? with || < %k and j € [1,d]. Let x € Q. For t € R small enough we have

Vo (x +tej) — vo(z) = kli)rfoo 0%Up, (T + te;) — 0%Uup, ()

¢
= lim 0ty (x + se;)ds.
k—+o0 Jg e 3)
Since the map s — 0% % u,, (x + se;) converges uniformly to s — vq ¢, (z + se;) on [0,1] we

get
t

vo(x +tej) — va(z) = f Varte; (T + sej) ds.
0

This proves that d;va = Vaqe,. Finally for all |a| < k we have 0%vg = vq, s0
”Un,\ — UOHCk(ﬁ) m 0 D

Ezample 4.9. Let K € C°([0,1]?). For u e C°([0,1]) and = € [0, 1] we set

Jny u) dy.

Let M > 0 and let (u,),y be a sequence in C°([0,1]) such that ||ju,|.,, < M for all n € N.
Let z € [0,1] and € > 0. Since K is uniformly continuous there exists ¢ > 0 such that for all
(x1,51), (w2, 92) € [0,1]* we have

5
1 =22 1 —g2| <0 = |K(z1,31) — K(z2,32)| < 57
Then for n € N and 2’ € [0, 1] such that |z — 2’| < § we have
(o)~ ()@ < [ | Ge,) ~ K]l ay < <

This proves that the family (Au,)neny is equicontinuous on [0,1]. By the Ascoli-Arzela
Theorem it has a convergent subsequence in C°([0, 1]), which proves that A is compact on

([0, 1]).

It is not the purpose of this course to study Sobolev spaces in details. Here we are going
to use the following result.

Theorem 4.10 (Rellich). Let © be an open subset of R?.
(i) HE() is compactly embedded in L*(Q) ;
(i) if Q is of class C' then H'(Q) is compactly embedded in L*(12).
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4.1.3 Fredholm alternative

Let E and F be two Banach spaces. Let H be a Hilbert space.
We recall that if G is a subspace of F' then the codimension codim(G) of G (in F) is

the dimension of the quotient F/G. It is the dimension of any subspace G of F such that
F=Gaa.

Definition 4.11. A bounded operator A € L(E,F) is said to be Fredholm if dim(ker(A4)) <
+0, Ran(A) is closed in F and codim(Ran(A)) < +o. In this case, we define the index of
A by

ind(A) = dim(ker(A)) — codim(Ran(A)) € Z.

We denote by Fred(E, F) the set of Fredholm operators from E to F.

Remark 4.12. In fact it is not necessary to assume that Ran(A) since it can be deduced from
the other assumptions.

Remark 4.13. If F is a Hilbert space then codim(Ran(A4)) = Ran(A4)*.
Example 4.14. A bijective bounded operator is Fredholm of index 0.

Ezample 4.15. If E and F have finite dimensions then any A € L(E, F) is Fredholm with index
ind(A) = dim(E) — dim(F).

Example 4.16. We consider the shift operators of Example 1.4. Then S, is Fredholm of index
-1 and Sy is Fredholm of index 1.

Proposition 4.17. Let A e L(H). Assume that ker(A) and ker(A*) have finite dimensions
and that Ran(A) is closed. Then A is a Fredholm operator.

Proof. Since Ran(A) is closed we have by Proposition 1.33
codim(Ran(A)) = dim(Ran(A)*) = dim(ker(4*)) < +oo.
This proves that A is Fredholm. O

Proposition 4.18. Let A € L(H) be a compact operator. Then Id—A € Fred(H) and
ind(Id —A) = 0. In particular, (Id —A) is invertible if and only if it is injective.

Proof. e Since the restriction of A to ker(Id —A) is compact and is equal to Id, ker(Id —A)
has finite dimension.

e Since A* is also a compact operator, ker((Id —A)*) = ker(Id —A*) is also of finite dimen-
sion.

e We prove that Ran(Id —A) is closed. Let 1, be a sequence in Ran(Id —A) which has a
limit ¢ in H. For n € N there exists ,, € ker(Id —A)* such that ¢, — Ap, = ¥,.

Assume by contradiction that (¢,,) is not bounded. After extracting a subsequence if
necessary, we can assume that [, |,, — +co. For n € N large enough we set @, = @n/ [@n|.
Then @, — A@, — 0. On the other hand the sequence (¢,) is bounded so, after extracting
a new subsequence, we can assume that Ag, goes to some ¢ in ‘H. Then ¢, — ¢ and

¢—AC= lim @, — A@, = 0.
n—o0

This proves that ¢ € ker(Id —A). Since @,, € ker(Id —A)* for all n, we have ¢ = 0. Thus
@n — 0, which gives a contradiction, so (¢,) is bounded.

After extracting a subsequence if necessary, we can assume that Ay, goes to some 6 in
‘H. Then ¢, — 1 + 0 and

P = nlgrgo (on — App) = (¥ + 60) — A(¢) + 0) € Ran(Id —A).
This proves that Ran(Id —A) is closed.
e Now assume that (Id —A) is injective, and assume by contradiction that #; = (Id —A)(H)
is not equal to H. Since H; is closed, it is a Hilbert space with the structure inherited from
‘H, and by restriction, A defines a compact operator on H,. We set Ha = (Id —A)(H1). Then
Ho is closed, and since (Id —A) is injective, we have Ha & H1 (take ¢ € H\H1, then (Id —A)u
belongs to Hi\H2). By induction we set Hj = (Id —A)(Hp—1) for all k > 2. Then H; is
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closed and Hyy1 & Hy for all k € N*. In particular, for all kK € N* we can find ¢ € Hy, such
that ¢kl =1 and ¢ € Hj,,. Then for k € N* and j > k we have

Apj — Apr, = —(p5 — Apj) + (o1 — Apr) + 05 — Q-
Since —(¢; — Ap;) + (ox — Apr) + ¢, € Hi41 this yields
|Ap; — Apr| = 1.

This gives a contradiction since A is compact. Thus, if (Id —A) is injective, then it is also
surjective.

e It remains to prove that Ker(Id —A) and Ker(Id —A*) have the same dimension. Assume
by contradiction that dim(Ker(Id —A)) < dim(Ran(Id —A)*). There exists a bounded op-
erator T : Ker(Id —A) — Ran(Id —A)! injective but not surjective. We extend T by 0 on
Ker(Id —A)~*. This defines an operator 7' on H which has a finite dimensional range included
in Ran(Id —A)*. In particular it is compact, and so is A = A + T. Let ¢ € Ker(Id —A).
We have ¢ — Ap = Tp. Since ¢ — Ap € Ran(Id—A) and Ty € Ran(Id —A)*, we have
¢ — Ap = Ty = 0. Therefore ¢ = 0 since T is injective on Ker(Id —A). Then (Id —A) is
injective, and hence surjective. However for ¢ € Ran(Id —A)*\Ran(T') the equation

o—(Ap+Tp) =7
cannot have a solution. This gives a contradiction and proves that
dim(Ker(Id —A)) > dim(Ran(Id —A)*) = dim(Ker(Id —A*)).

We get the opposite inequality by interchanging the roles of A and A*, and the proof is
complete. 0

4.2 Spectrum of compact operators

4.2.1 General properties

Theorem 4.19. Let H be a separable Hilbert space of infinite dimension. Let A be a compact
operator on H. Then oess(A) = {0}.

Remark 4.20. o 0 always belongs to the spectrum of A. With examples of the form given
in Example 1.5 (see Example 4.5), we see that 0 is not necessarily an eigenvalue, it can
be an eigenvalue of infinite multiplicity or an eigenvalue of finite multiplicity.

e A non-zero element of the spectrum is necessarily an isolated eigenvalue of finite alge-
braic multiplicity. The non-zero spectrum if finite or is given by a sequence going to
0.

Proof. e Assume that 0 belongs to the resolvent set of A. Then Id is the composition of
the compact operator A with the bounded operator A~!, so Id is a compact operator, which
gives a contradiction since dim(H) = +oo.

e Let Ae C\{0}. Then we have A—\ = A(A"1A—1d). Since A"' 4 is compact, Proposition
4.18 shows that (A — \) is invertible if and only if it is injective, so A € o(A) if and only if it is
an eigenvalue. Moreover, in this case we have dim(Ker(A—\)) = dim(Ker(A"'A—Id)) < +oo0.
e Since A is a bounded operator, the set of eigenvalues of A is bounded in C. Assume that
(An),en 18 a sequence of distinct non-zero eigenvalues of A converging to some A € C. We
prove that A = 0. For n € N we consider w,, € ker(A — X\,;)\{0}. Then for n € N we set
H,, = span(wy, ..., w,_1) and we consider u,, € H, such that |u,| = 1 and u, € H}_, if
n = 1. Then for j € N and k£ > j we have

Aug, — Mgup Auj — Ajuy

- + Uk — uy
e X b

=1
H

)

Aug _ Auy
Y RDY

H I
since Aup — Apuk, Au; — Ajuj,u; € Hp—1. If A # 0 we obtain a contradiction with the
compactness of A.
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e Assume that A € C\ {0} is an eigenvalue of A. Let r > 0 such that D(X,2r)\ {A\} < p(A).
Let

M=1+ sup [(A—2)"".

|z—A|=r

By Proposition 4.7 there exists a finite rank operator T such that [A — T -5, < 5i7z- Then
for z € C(A\,7) we have

T—z=(A—2)(1—(A-2)"A-T)),

so z € p(F) and

0 0
(4 =27 = (T =) gy < X [ (A= 0DA-T)) | <M 3207
=1 j=1
< 2M <1
T AM -2 '
We set
1 1 -1
My=—— (A—=¢7'd¢ and Iy =—-— (T'—¢)~ d¢.
29T c(hr) 2im c(\r)

Then we have
ITTA(N) = TTE(A)] < 1.

This implies that
ker(Ilg) m Ran(I14) = ker(Ilg) n ker(Id —I14) = {0},

so the retriction of IIr to Ran(Il4) defines an injective map from Ran(II4) to Ran(Ilp).

On the other hand, by Proposition 2.66 we have Ran(Ilp) n ker(F') = {0}, so F' defines
by restriction an injective map on Ran(IIr) and hence IIr has finite rank.

Finally, IT4 has finite rank and A has finite algebraic multiplicity, so A € ggisc(A). O

4.2.2 Spectral theorem for compact normal operators

Theorem 4.21. Assume that dim(H) = 00. Let A be a compact and normal operator on H.
Let (Ar)1<k<n kens with N € N U {0} be the sequence of non-zero eigenvalues of A. We set
Ao = 0. Then we have

N
H = @ ker(A - >\k)
k=0
and
N
A= NI,
k=1

where 1y, is the orthogonal projection on ker(A — Ag). If moreover H is separable, then there
exists a Hilbert basis of eigenvectors of A.

Notice that the sum for A is convergent in £L(H) if N = . Indeed, we set A, =
Z:Zl >\ka then
A= A = (A= A4,) = sup | \u| — 0.

k>n

In particular the sum does not depend on the order of summation.

Proof. Weset F' = @]k\;l ker(A — A). By Proposition 1.39, we have F = @2]:1 ker(A* — \p).
We have A*(F) c F, so A(F+) ¢ F*. The restriction Ay of A to F* is a compact normal
operator without non-zero eigenvalues, so Ag = 0. Thus F* < ker(A). Since ker(A) = F+
by Proposition 1.39, we have F'- = ker(A) and the conclusion follows. O
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4.3 Operators with compact resolvents

Definition 4.22. Let A be an operator on E. We say that A has compact resolvent if
p(A) # & and for some (hence any) z € p(A) the resolvent (A — 2)~! is a compact operator
on E.

We have to check that the compactness of (4 — z)~! does not depend on z € p(A).

Proof. Assume that there exists zg € p(A) such that (A — 29)~! is compact. Let z € p(A).
By the resolvent identity we have

(A=2)" = (A—2)" = (2= 20)(A—20) " (A—2)"L.
Both terms of the right-hand side are compact, so (4 — z)~! is compact. O

Ezample 4.23. Let © be an open bounded subset of R? of class C2. Then the Dirichlet
Laplacian on Q (A = —A, Dom(4) = H?(Q) n H(2)) has compact resolvent. Indeed, it
is a selfadjoint operator so its resolvent set is not empty. Then for z € p(A) the resolvent
(A — 2)~! defines a bounded operator from L?(Q2) to H?(2). Since H?(f) is compactly
embedded in L?(Q), then (A — z)~! is a compact operator on L?(£2).

Ezample 4.24. We can prove that the domain of the harmonic oscillator on R (see (2.7)-(2.8))
is given by
Dom(H) = {ue H*R) : z*ue L*}. (4.1)

Note that it is not clear that this is equal to (2.8). From this we can deduce that Dom(H) is
compactly embedded in L?(R) (see Exercise 4.4) and hence that H has a compact resolvent.
& Ex. 4.4

If A has compact resolvent, we can deduce good spectral properties from the good spectral
properties of its resolvent.

Proposition 4.25. Let A be a closed operator with non-empty resolvent set. Let zg € p(A).
Let R = (A — 2))"' € L(E). Let z € C\{0}. Then z belongs to o(R) (0gisc(R), Oess(R),
respectively) if and only if zo + % belongs to o(A) (0disc(A), Tess(A), respectively).

Proof. e 1t is clear that the map z — z— 2 is a bijection between o (A4) and o(A — zp) which
preserves the discrete and essential parts of the spectrum. Thus we can assume without loss
of generality that zg = 0.
e We have

A7l 27l = 27N A—2)A7h

Then 27! € o(A~1) if and only if (A — 2) : Dom(A) — E is invertible, hence if and only if
z € o(A). Moreover, if z € p(A) then

(At =2 )= 2AA-2) =2 —2%2(A—2)" L

e It remains to prove that \ € ogisc(4) if and only if A=t € gisc(A™!). The map z — 271
maps isolated points of o(A) to isolated points of o(A~1). Let A be an isolated point in o(A).
Let r €]0, |\| [ be such that D(A,2r) no(A) = {A}. We have

1 1 1 1
M= g | (A0dC= g | G A= o A1z ds,
’ 2im C(/\,r)( ¢ 2im Je(ar C2( )& 2im C()\J’)’l( )

where C(A,r)™t = {¢71,( € C(\,7)}. For r > 0 small, C(A,r) is close to C(A™*,7/|A?|) and
is also oriented in the direct sense. Thus the Riesz projections of A for the operator A and
of A=t for A~! coincide. In particular, A € ogisc(A) if and only if A~! € ogisc(A71). O

Theorem 4.26. Let A be an operator on H with compact resolvent. Then oess(A) = &.

Proof. Let zy € p(A). Since (A — z9)~! is compact, we have oess((A — 29) 1) n C* = & by
Then by Proposition 4.25, we have gess(A — 29) N C* = &, which implies that gess(A — 20)
and then oess(A) are empty. O
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Remark 4.27. If dim(E) = 400, emptyness of 0ess(A) implies that the spectrum of A consists
of a sequence (A, )nen of eigenvalues of finite multiplicities and such that

M| ——> +o0.
n—0o0

We rewrite the theorem is the important particular case of a selfadjoint operator.

Theorem 4.28. Let A be a selfadjoint operator with compact resolvent on H. Then the
spectrum of A consists of a sequence (Ag)genx of eigenvalues with finite multiplicities and
such that |\x| — +00, and there is a Hilbert basis of H made with eigenvectors of A. If
moreover A is semibounded from below, them A\ — +00.

4.4 Relatively compact operators - Weyl’s Theorem

Definition 4.29. Let A be a closed operator on E with non-empty resolvent set. Let B be
an operator on E. We say that B is A-compact (or relatively compact with respect to A) if
Dom(A) € Dom(B) and one of the following equivalent assertions is satisfied.

(i) There exists zg € p(A) such that B(A — z9)~! is compact.
(ii) For all z € p(A), the operator B(A — z)~! is compact.

(iii) For any sequence (vy,) bounded in Dom(A) (i.e. (vn) and (Ap,) are bounded in E) then
(Ben) has a convergent subsequence.

Proof. e 'We prove that (iii) implies (ii). Let z € p(A). Let (¢,,) be a bounded sequence in
E. Then ((A —2)~'4,) is bounded in Dom(A), and hence (B(A — z9)~!1,) has a convergent
subsequence in E. This proves that B(A — z) ™! is compact.

e Conversely, assume that B(A — zg)~! is compact for some zy € p(A) and consider ()
bounded in Dom(A). Then (A — zg)t, is bounded in E. Then (Bt,) = (B(A — 29) (A —
20)%r) has a convergent subsequence in E. This proves (iii). O

Proposition 4.30. Assume that B is closed and A-compact. Then it is relatively bounded
with A-bound 0.

Proof. Assume by contradiction that there exists € > 0 and a sequence (¢,) in Dom(4) c
Dom(B) such that
VneN, [Ben| >e|Apn| +nen].

After extracting a subsequence if necessary, we can assume that |Ag,| > |¢n| for all n, or
that |Ap,| < |@n| for all n. In the first case we set ¥, = ¢,/ ||Aenll, so that

[Bionll > €+ nlin], v <1.

After extracting a subsequence, B, has a limit. In particular (|By,|) is bounded, so
¥, — 0. Since B is closed, we have B, — 0, which gives a contradiction. In the second
case we similarly get a contradiction by setting ¥,, = ¢,/ ||@n|- O

Lemma 4.31. Let Ay and A; be two operators such that p(Ag) n p(A1) # . Let B =
Ay — Ay. Then B is Ag-compact if and only if it is Ai-compact.

Proof. Let zg € p(Ag) n p(A1). Assume that B is Ag-compact. We have
(A1 — Zo)_l = (AO — Zo)_l — (Al — ZQ)_lB(Ao — Zo)_l

SO
(A1 — Zo)_l(l + B(AU - Zo)_l) = (AO — Zo)_l.

Let ¢ € E such that ¢ + B(Ap — 20) "' = 0. Then ¢ = (Ag — z0) "Ly satisfies

(A1 —20)1 = (Ao — 20)¢) + BY = 0.

60 J. Royer - Université Toulouse 3



COMPACT OPERATORS, COMPACT RESOLVENTS

This implies that ¢ = 0 and then ¢ = 0, so 1+ B(Ag — 29) ! is injective. Since B(Ag—z)~!
is compact, we deduce by the Fredholm alternative that 1+ B(Ag— 2¢)~! is invertible. Then

B(Al — Zo)_l = B(Ao — 20)_1(1 + B(AO - Zo)_l)il

is the composition of a compact and a bounded opertor, so it is compact. This proves that
B is Aj-compact. We prove the converse by changing the roles of Ag and A;. O

Theorem 4.32 (Weyl’s Theorem for selfadjoint operators). Let Ag and Ay be two selfadjoint
operators. Let B = Ay — Ay and assume that B is Ag-compact. Then

Uess(Al) = Jess(AO)~

Proof. Let A € 0ess(Ap). Let (n),cn be a sequence in Dom(Ag) such that ||, | = 1 for all
n €N, ¢, goes weakly to 0 and ||[(Ag — A\)¢n|| — 0 as n — oo (see Proposition 3.50). Then

(AO - i)‘Pn = (AO - >‘)§0n + (>‘ - i)‘Pn — 0.
We have

(A1 = An = (Ao — Non + B(Ag — i)' (Ao — i) pn.

Since (Ao — i)y, goes weakly to 0 and B(Ag—i)~! is compact, the second term in the right-

hand side goes strongly to 0 by Proposition 4.6. Then (41 — A)p,, goes to 0 and A € gess(A47)
by Proposition 3.50. This proves that cess(Ap) © Tess(A1). Since B is also Aj-compact by
Proposition 4.31, we can prove the reverse inclusion by changing the roles of Ag and A;. O

Ezample 4.33. Let V € L®(R% R) such that V(z) — 0 as |z| — 0. We set Hy = —A and
Hy = —A +V, with Dom(Hy) = Dom(H;) = H?(R?). Then we have

Jess(Hl) = Uess(HO) = [07+OO['

For this we prove that the multiplication by V is Hy-compact.
With our definition of the essential spectrum, Theorem 4.32 is not true in general.

Ezample 4.34. We consider on ¢2(Z) the operators A and B defined by
A('"7u—23u—17u0;u17u27"') = ("'7“—13’“’07’“17“27”37'")
and
B(...,’LL,Q,’U,,l,UQ,Ul,’U,Q,...) = (...,0,—”0,0,070,...),

so that

(A-l—B)(...,u,g,u,l,uo,ul,u%...) = (...,u,l,O,ul,UQ,u&...)

The spectrum of A is the unit circle C(0,1) (see Exercise 1.5) and B is compact (it is of rank
1). On the other hand, as for the shift on the left in £2(N) (see Example 1.36), we can check

that o(A + B) = D(0,1).

However, we can prove the following result.

Theorem 4.35. Let A be a closed operator. Let B be a A-compact operator. Let U be a
connected component of C\oess(A). Then we have

Uc C\oess(A+ B) or UC oes(A+ B).

In particular, if U N p(A+ B) # & thenU N oes(A+ B) = .
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4.5 Exercises

Ezercise 4.1. Let (o) be a sequence in R¥ such that o, — 400 as n — +00. We set

V= {(un)nEN : Z (779 |Un|2 < +OO} c 62(N)

neN

V is a Hilbert space for the inner product defined by

{u,v),, = 2 QpUnUn, U= (up),v = (vp).
neN

Prove that V is compactly embedded in ¢?(N).

Ezercise 4.2. Let Q be a bounded open subset of R%. Let k& € N and 6 €]0, 1[. We recall that
C*9(Q) is the set of functions u € C*(2) whose derivatives of order k are Holder-continuous
of exponent 6. It is endowed with the norm defined by

" |[0%u(z) — 0%u(y)|
lulcroy = D) 10%ulpwiy + D) sup CEmat
a<k laf=k Ig;gff |z =yl

Prove that C*?(Q) is compactly embedded in CF(Q).

Ezercise 4.3. Let V e L*(R). We assume that V()

0. Prove that the map

|z|—>+00
H'(R) — L*R)
U — Vu
is compact.

Ezxercise 4.4. 1. Give an exemple of sequence (u,,) bounded in H?(R) which has no limit
in L2(R).

2. We consider a sequence (u,,) in H?(R) such that x%u,, belongs to L?(R) for all n € N. We
assume that there exists M > 0 such that

Vn € N, Hun”Hz(R) + Hx2u”HL2(R) < M.
3. Prove that we can construct for all m € N* an extraction (ng(m)) and v,, € L*([-m,m])
such that

* Juneim = vl gy = O

e v, and v, coincide on [—m, m] whenever v = m.

4. Prove that there exists a subsequence (uy,) and v € L (R) such that |[u,, —v] . 0
0 for all R > 0.
5. Prove that u,, goes to v in L*(R).
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