
Chapter 4

Compact operators, compact
resolvents

[Draft version, November 16, 2022]

4.1 Compact operators
4.1.1 Definition and properties
Let E and F be two Banach spaces.

Definition 4.1. Let A be a linear map from E to F. We say that A is compact if one of the
following equivalent assertions is satisfied.

(i) For any bounded sequence pϕnqnPN in E, the sequence pAϕnqnPN has a convergent sub-
sequence in F.

(ii) ApBEq is compact in F (we have denoted by BE the unit ball in E).

(iii) ApBq is compact in F for any bounded subset B of E.

We denote by KpE, Fq the set of compact operators from E to F. We also write KpEq for
KpE, Eq.

For the proof of the equivalences we recall that a subset Ω of a metric space is compact
if and only if any sequence in Ω has a convergent subsequence in Ω.
Example 4.2. Finite rank operators are compact.
Example 4.3. The identity operator on E is compact if and only if E has finite dimension.

Proposition 4.4. Let E and F be two Banach spaces.

(i) A compact operator is a bounded operator (KpE, Fq Ă LpE, Fq)
(ii) KpE, Fq is a closed subspace of LpE, Fq.
(iii) For A P KpE, Fq, B1 P BpE1, Eq and B2 P BpF, F2q we have A ˝ B1 P KpE1, Fq and

B2 ˝ A P KpE, F2q.
(iv) For A P KpE, Fq we have A˚ P KpF˚, E˚q.
Proof. ‚ Let A P KpE, Fq and assume by contradiction that A is not bounded. Then there
exists a sequence pϕnq in E such that }ϕn}E “ 1 for all n and }Aϕn}F Ñ 8 as n Ñ 8. Then
pAϕnq cannot have a convergent subsequence in F, which gives a contradiction.
‚ The fact that KpE, Fq is a subspace of LpE, Fq is clear. Let pAnq be a sequence in KpE, Fq
which converges to some A in LpE, Fq. Let pϕnq be a bounded sequence in E. Let M ą 0
such that }ϕn} ď M for all n P N. There exists a subsequence pϕnp1,kqqkPN such that
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pA1ϕnp1,kqq is convergent in F. From this subsequence we can extract a subsequence pϕnp2,kqq
such that pA2ϕnp2,kqq is convergent (and pA1ϕnp2,kqq is also convergent). By induction on m,
we construct a subsequence pϕnpm,kqq of pϕnpm´1,kqq such that pAmϕnpm,kqqkPN is convergent.
Then by the Cantor diagonal argument, if we set nk “ npk, kq for all k P N, then the sequence
pAjϕnk

qkPN is convergent for all j P N.
Let ε ą 0. Let j P N such that }Aj ´ A}LpE,Fq ď ε

3M . Let N P N such that
››Ajpϕnk1

´ ϕnk2
q››

F ď
ε
3 for all k1, k2 ě N . Then for k1, k2 ě N we have

››Aϕnk1
´ Aϕnk2

››
F ď ››pA ´ Ajqϕnk1

››
F ` ››Ajpϕnk1

´ ϕnk2
q››

F ` ››pAj ´ Aqϕnk2

››
F ď ε.

This proves that pAϕnpkqq is a Cauchy sequence, and hence convergent in F.
‚ The third statement is left as an exercice.
‚ Let pϕnqnPN be a bounded sequence in F˚. Since A is compact, ApBEq is a compact
metric space, and the functions ϕn, n P N, are equicontinuous thereon. Then, by the Ascoli-
Arzelà Theorem, there exists a subsequence pϕnk

qkPN convergent in C0pApBEqq. We denote
by ϕ P C0pApBEqq the limit. In particular we have

sup
}x}Eď1

|ϕnk
pApxqq ´ ϕpApxqq| ÝÝÝÝÑ

kÑ`8 0.

We deduce that pϕnk
˝ Aq “ pA˚ ˝ ϕnk

q is a Cauchy sequence in E˚. Since E˚ is a Banach
space, it has a limit in E˚. This proves that A˚ P KpF˚, E˚q.
Example 4.5. Let a “ panqnPN be a sequence which converges to 0. We consider on �2pNq the
multiplication operator Ma by a (see Example 1.5). Then Ma is compact on �2pNq. Indeed,
for N P N we denote by aN the sequence defined by

αN “
#

an if n ď N,

0 if n ą N.

Then the multiplication MαN
by αN is of finite rank, hence compact, for all N P N. Moreover

}Ma ´ MαN
}Lp�2pNqq ď sup

nąN
|an| ÝÝÝÝÑ

NÑ8 0.

Since Kp�2pNqq is closed, this proves that Ma is compact.
Proposition 4.6. Let A P KpE, Fq and let pϕnqnPN be a sequence in E which converges weakly
to some ϕ P E (i.e. for any � P E˚ we have �pϕnq Ñ �pϕq). Then Aϕn converges (in norm)
to Aϕ.
Proof. Assume by contradiction that Aϕn does not converges to Aϕ. There exists ε ą 0
and a subsequence ϕnk

such that }Aϕnk
´ Aϕ}F ě ε for all k. The sequence pϕkq has a

weak limit so it is bounded (see Proposition 3.5.(iii) in [Brézis]). Since A is compact, after
extracting another subsequence if necessary, we can assume that pAϕnk

q has a limit w in F.
Since Aϕnk

goes weakly to Aϕ (if � P F1 then � ˝ A P E1), this implies that w “ Aϕ and gives
a contradiction.

Proposition 4.7. Let H be a separable Hilbert space. Then any compact operator A is the
limit in LpHq of a sequence of operators of finite ranks.
Proof. Let pϕnqnPN be a Hilbert basis of H. For n P N we set Fn “ spanpϕ0, . . . , ϕnq and
we denote by Πn the orthogonal projection on Fn. Then we set An “ AΠn. Assume by
contradiction that

ρ “ lim inf }A ´ An} ą 0.

Then for all n P N large enough (in fact for all n since the sequence p}A ´ An}q is non-
increasing) there exists ψn P FK

n such that }ψn} “ 1 and }Aψn} “ }pA ´ Anqψn} ě ρ
2 . For

ψ P H we have

|xψ, ψny| ď }p1 ´ Πnqψ} ď
˜ 8ÿ

k“n`1
|xϕk, ψy|2

¸ 1
2

ÝÝÝÑ
nÑ8 0.

This proves that the sequence pϕnq goes weakly to 0. This gives a contradiction with Propo-
sition 4.6 since pAϕnq does not go to 0.
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4.1.2 Examples of compact operators and compact embeddings
We finish this paragraph with more examples of compact operators. Here we discuss the sets
of regular functions.

Let Ω be a bounded open subset of Rd and k P N. We recall that CkpΩq is the set of
restrictions to Ω of functions in CkpRdq. It is endowed with the norm defined by

}u}CkpΩq “
ÿ

|α|ďk

}Bαu}L8pΩq .

Proposition 4.8. Let Ω be a bounded open subset of Rd and k P N. Then Ck`1pΩq is
compactly embedded in CkpΩq.
Proof. Let punqnPN be a bounded sequence in Ck`1pΩq. Let M be such that }un}Ck`1pΩq ď M .

Let α P Nd with |α| ď k. Since }∇Bαun}L8pΩq is uniformly bounded, the sequence pBαunq
is uniformly Lipschitz (in particular equicontinuous) on Ω. By the Ascoli-Arzelà Theorem,
it has a subsequence which converges uniformly to some vα in C0pΩq. Then there exists an
increasing sequence pnkq such that Bαunk

goes to vα when n Ñ 8 for all |α| ď k.
Let α P Nd with |α| ď k and j P �1, d�. Let x P Ω. For t P R small enough we have

vαpx ` tejq ´ vαpxq “ lim
kÑ`8 Bαunk

px ` tejq ´ Bαunk
pxq

“ lim
kÑ`8

ż t

0
Bα`ej unk

px ` sejq ds.

Since the map s ÞÑ Bα`ej unk
px ` sejq converges uniformly to s ÞÑ vα`ej

px ` sejq on r0, ts we
get

vαpx ` tejq ´ vαpxq “
ż t

0
vα`ej px ` sejq ds.

This proves that Bjvα “ vα`ej
. Finally for all |α| ď k we have Bαv0 “ vα, so

}unk
´ v0}CkpΩq ÝÝÝÝÑ

kÑ`8 0.

� Ex. 4.2
Example 4.9. Let K P C0pr0, 1s2q. For u P C0pr0, 1sq and x P r0, 1s we set

pAuqpxq “
ż 1

0
Kpx, yqupuq dy.

Let M ą 0 and let punqnPN be a sequence in C0pr0, 1sq such that }un}8 ď M for all n P N.
Let x P r0, 1s and ε ą 0. Since K is uniformly continuous there exists δ ą 0 such that for all
px1, y1q, px2, y2q P r0, 1s2 we have

|x1 ´ x2| ` |y1 ´ y2| ď δ ùñ |Kpx1, y1q ´ Kpx2, y2q| ď ε

M
.

Then for n P N and x1 P r0, 1s such that |x ´ x1| ď δ we have

ˇ̌pAunqpxq ´ pAunqpx1qˇ̌ ď
ż 1

0

ˇ̌
Kpx, yq ´ Kpx1, yqˇ̌ |unpyq| dy ď ε.

This proves that the family pAunqnPN is equicontinuous on r0, 1s. By the Ascoli-Arzelà
Theorem it has a convergent subsequence in C0pr0, 1sq, which proves that A is compact on
C0pr0, 1sq.

It is not the purpose of this course to study Sobolev spaces in details. Here we are going
to use the following result.

Theorem 4.10 (Rellich). Let Ω be an open subset of Rd.

(i) H1
0 pΩq is compactly embedded in L2pΩq ;

(ii) if Ω is of class C1 then H1pΩq is compactly embedded in L2pΩq.
� Ex. 4.3
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4.1.3 Fredholm alternative
Let E and F be two Banach spaces. Let H be a Hilbert space.

We recall that if G is a subspace of F then the codimension codimpGq of G (in F) is
the dimension of the quotient F{G. It is the dimension of any subspace G̃ of F such that
F “ G ‘ G̃.

Definition 4.11. A bounded operator A P LpE, Fq is said to be Fredholm if dimpkerpAqq ă
`8, RanpAq is closed in F and codimpRanpAqq ă `8. In this case, we define the index of
A by

indpAq “ dimpkerpAqq ´ codimpRanpAqq P Z.

We denote by FredpE, Fq the set of Fredholm operators from E to F.

Remark 4.12. In fact it is not necessary to assume that RanpAq since it can be deduced from
the other assumptions.
Remark 4.13. If F is a Hilbert space then codimpRanpAqq “ RanpAqK.
Example 4.14. A bijective bounded operator is Fredholm of index 0.
Example 4.15. If E and F have finite dimensions then any A P LpE, Fq is Fredholm with index
indpAq “ dimpEq ´ dimpFq.
Example 4.16. We consider the shift operators of Example 1.4. Then Sr is Fredholm of index
-1 and S� is Fredholm of index 1.

Proposition 4.17. Let A P LpHq. Assume that kerpAq and kerpA˚q have finite dimensions
and that RanpAq is closed. Then A is a Fredholm operator.

Proof. Since RanpAq is closed we have by Proposition 1.33

codimpRanpAqq “ dimpRanpAqKq “ dimpkerpA˚qq ă `8.

This proves that A is Fredholm.

Proposition 4.18. Let A P LpHq be a compact operator. Then Id ´A P FredpHq and
indpId ´Aq “ 0. In particular, pId ´Aq is invertible if and only if it is injective.

Proof. ‚ Since the restriction of A to kerpId ´Aq is compact and is equal to Id, kerpId ´Aq
has finite dimension.
‚ Since A˚ is also a compact operator, kerppId ´Aq˚q “ kerpId ´A˚q is also of finite dimen-
sion.
‚ We prove that RanpId ´Aq is closed. Let ψn be a sequence in RanpId ´Aq which has a
limit ψ in H. For n P N there exists ϕn P kerpId ´AqK such that ϕn ´ Aϕn “ ψn.

Assume by contradiction that pϕnq is not bounded. After extracting a subsequence if
necessary, we can assume that }ϕn}H Ñ `8. For n P N large enough we set ϕ̃n “ ϕn{ }ϕn}.
Then ϕ̃n ´ Aϕ̃n Ñ 0. On the other hand the sequence pϕ̃nq is bounded so, after extracting
a new subsequence, we can assume that Aϕ̃n goes to some ζ in H. Then ϕ̃n Ñ ζ and

ζ ´ Aζ “ lim
nÑ8 ϕ̃n ´ Aϕ̃n “ 0.

This proves that ζ P kerpId ´Aq. Since ϕ̃n P kerpId ´AqK for all n, we have ζ “ 0. Thus
ϕ̃n Ñ 0, which gives a contradiction, so pϕnq is bounded.

After extracting a subsequence if necessary, we can assume that Aϕn goes to some θ in
H. Then ϕn Ñ ψ ` θ and

ψ “ lim
nÑ8

`
ϕn ´ Aϕnq “ pψ ` θq ´ Apψ ` θq P RanpId ´Aq.

This proves that RanpId ´Aq is closed.
‚ Now assume that pId ´Aq is injective, and assume by contradiction that H1 “ pId ´AqpHq
is not equal to H. Since H1 is closed, it is a Hilbert space with the structure inherited from
H, and by restriction, A defines a compact operator on H1. We set H2 “ pId ´AqpH1q. Then
H2 is closed, and since pId ´Aq is injective, we have H2 Ł H1 (take ϕ P HzH1, then pId ´Aqu
belongs to H1zH2). By induction we set Hk “ pId ´AqpHk´1q for all k ě 2. Then Hk is
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closed and Hk`1 Ł Hk for all k P N˚. In particular, for all k P N˚ we can find ϕk P Hk such
that }ϕk}H “ 1 and ϕk P HK

k`1. Then for k P N˚ and j ą k we have

Aϕj ´ Aϕk “ ´pϕj ´ Aϕjq ` pϕk ´ Aϕkq ` ϕj ´ ϕk.

Since ´pϕj ´ Aϕjq ` pϕk ´ Aϕkq ` ϕj P Hk`1 this yields

}Aϕj ´ Aϕk} ě 1.

This gives a contradiction since A is compact. Thus, if pId ´Aq is injective, then it is also
surjective.
‚ It remains to prove that KerpId ´Aq and KerpId ´A˚q have the same dimension. Assume
by contradiction that dimpKerpId ´Aqq ă dimpRanpId ´AqKq. There exists a bounded op-
erator T : KerpId ´Aq Ñ RanpId ´AqK injective but not surjective. We extend T by 0 on
KerpId ´AqK. This defines an operator T on H which has a finite dimensional range included
in RanpId ´AqK. In particular it is compact, and so is Ã “ A ` T . Let ϕ P KerpId ´Ãq.
We have ϕ ´ Aϕ “ Tϕ. Since ϕ ´ Aϕ P RanpId ´Aq and Tϕ P RanpId ´AqK, we have
ϕ ´ Aϕ “ Tϕ “ 0. Therefore ϕ “ 0 since T is injective on KerpId ´Aq. Then pId ´Ãq is
injective, and hence surjective. However for ψ P RanpId ´AqKzRanpT q the equation

ϕ ´ pAϕ ` Tϕq “ ψ

cannot have a solution. This gives a contradiction and proves that

dimpKerpId ´Aqq ě dimpRanpId ´AqKq “ dimpKerpId ´A˚qq.
We get the opposite inequality by interchanging the roles of A and A˚, and the proof is
complete.

4.2 Spectrum of compact operators
4.2.1 General properties
Theorem 4.19. Let H be a separable Hilbert space of infinite dimension. Let A be a compact
operator on H. Then σesspAq “ t0u.

Remark 4.20. • 0 always belongs to the spectrum of A. With examples of the form given
in Example 1.5 (see Example 4.5), we see that 0 is not necessarily an eigenvalue, it can
be an eigenvalue of infinite multiplicity or an eigenvalue of finite multiplicity.

• A non-zero element of the spectrum is necessarily an isolated eigenvalue of finite alge-
braic multiplicity. The non-zero spectrum if finite or is given by a sequence going to
0.

Proof. ‚ Assume that 0 belongs to the resolvent set of A. Then Id is the composition of
the compact operator A with the bounded operator A´1, so Id is a compact operator, which
gives a contradiction since dimpHq “ `8.
‚ Let λ P Cz t0u. Then we have A´λ “ λpλ´1A´ Idq. Since λ´1A is compact, Proposition
4.18 shows that pA´λq is invertible if and only if it is injective, so λ P σpAq if and only if it is
an eigenvalue. Moreover, in this case we have dimpKerpA´λqq “ dimpKerpλ´1A´Idqq ă `8.
‚ Since A is a bounded operator, the set of eigenvalues of A is bounded in C. Assume that
pλnqnPN is a sequence of distinct non-zero eigenvalues of A converging to some λ P C. We
prove that λ “ 0. For n P N we consider wn P kerpA ´ λnqz t0u. Then for n P N we set
Hn “ spanpw0, . . . , wn´1q and we consider un P Hn such that }un} “ 1 and un P HK

n´1 if
n ě 1. Then for j P N and k ą j we have

››››
Auk

λk
´ Auj

λj

››››
H

“
››››
Auk ´ λkuk

λk
´ Auj ´ λjuj

λj
` uk ´ uj

››››
H

ě 1,

since Auk ´ λkuk, Auj ´ λjuj , uj P Hk´1. If λ ‰ 0 we obtain a contradiction with the
compactness of A.
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‚ Assume that λ P Cz t0u is an eigenvalue of A. Let r ą 0 such that Dpλ, 2rqz tλu Ă ρpAq.
Let

M “ 1 ` sup
|z´λ|“r

››pA ´ zq´1›› .

By Proposition 4.7 there exists a finite rank operator T such that }A ´ T }LpHq ď 1
2M2 . Then

for z P Cpλ, rq we have

T ´ z “ pA ´ zq`
1 ´ pA ´ zq´1pA ´ T q˘

,

so z P ρpF q and

››pA ´ zq´1 ´ pT ´ zq´1››
LpHq ď

8ÿ

j“1

›››
`pA ´ zq´pj`1qpA ´ T q˘j

››› ď M
8ÿ

j“1
p2Mq´j

ď 2M

4M ´ 2 ă 1.

We set

ΠA “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ and ΠT “ ´ 1

2iπ

ż

Cpλ,rq
pT ´ ζq´1 dζ.

Then we have
}ΠApλq ´ ΠF pλq} ă 1.

This implies that

kerpΠF q X RanpΠAq “ kerpΠRq X kerpId ´ΠAq “ t0u ,

so the retriction of ΠF to RanpΠAq defines an injective map from RanpΠAq to RanpΠF q.
On the other hand, by Proposition 2.66 we have RanpΠF q X kerpF q “ t0u, so F defines

by restriction an injective map on RanpΠF q and hence ΠF has finite rank.
Finally, ΠA has finite rank and λ has finite algebraic multiplicity, so λ P σdiscpAq.

4.2.2 Spectral theorem for compact normal operators
Theorem 4.21. Assume that dimpHq “ 8. Let A be a compact and normal operator on H.
Let pλkq1ďkďN,kPN˚ with N P N Y t8u be the sequence of non-zero eigenvalues of A. We set
λ0 “ 0. Then we have

H “
Nà

k“0
kerpA ´ λkq

and

A “
Nÿ

k“1
λkΠk,

where Πk is the orthogonal projection on kerpA ´ λkq. If moreover H is separable, then there
exists a Hilbert basis of eigenvectors of A.

Notice that the sum for A is convergent in LpHq if N “ 8. Indeed, we set An “řn
k“1 λkΠk then

}A ´ An} “ rpA ´ Anq “ sup
kąn

|λk| ÝÝÝÑ
nÑ8 0.

In particular the sum does not depend on the order of summation.

Proof. We set F “ ÀN
k“1 kerpA ´ λkq. By Proposition 1.39, we have F “ ÀN

k“1 kerpA˚ ´ λkq.
We have A˚pF q Ă F , so ApF Kq Ă F K. The restriction A0 of A to F K is a compact normal
operator without non-zero eigenvalues, so A0 “ 0. Thus F K Ă kerpAq. Since kerpAq Ă FK
by Proposition 1.39, we have F K “ kerpAq and the conclusion follows.
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4.3 Operators with compact resolvents
Definition 4.22. Let A be an operator on E. We say that A has compact resolvent if
ρpAq ‰ H and for some (hence any) z P ρpAq the resolvent pA ´ zq´1 is a compact operator
on E.

We have to check that the compactness of pA ´ zq´1 does not depend on z P ρpAq.
Proof. Assume that there exists z0 P ρpAq such that pA ´ z0q´1 is compact. Let z P ρpAq.
By the resolvent identity we have

pA ´ zq´1 “ pA ´ z0q´1 ´ pz ´ z0qpA ´ z0q´1pA ´ zq´1.

Both terms of the right-hand side are compact, so pA ´ zq´1 is compact.

Example 4.23. Let Ω be an open bounded subset of Rd of class C2. Then the Dirichlet
Laplacian on Ω (A “ ´Δ, DompAq “ H2pΩq X H1

0 pΩq) has compact resolvent. Indeed, it
is a selfadjoint operator so its resolvent set is not empty. Then for z P ρpAq the resolvent
pA ´ zq´1 defines a bounded operator from L2pΩq to H2pΩq. Since H2pΩq is compactly
embedded in L2pΩq, then pA ´ zq´1 is a compact operator on L2pΩq.
Example 4.24. We can prove that the domain of the harmonic oscillator on R (see (2.7)-(2.8))
is given by

DompHq “ �
u P H2pRq : x2u P L2(

. (4.1)

Note that it is not clear that this is equal to (2.8). From this we can deduce that DompHq is
compactly embedded in L2pRq (see Exercise 4.4) and hence that H has a compact resolvent.

� Ex. 4.4

If A has compact resolvent, we can deduce good spectral properties from the good spectral
properties of its resolvent.

Proposition 4.25. Let A be a closed operator with non-empty resolvent set. Let z0 P ρpAq.
Let R “ pA ´ z0q´1 P LpEq. Let z P Cz t0u. Then z belongs to σpRq (σdiscpRq, σesspRq,
respectively) if and only if z0 ` 1

z belongs to σpAq (σdiscpAq, σesspAq, respectively).

Proof. ‚ It is clear that the map z ÞÑ z ´z0 is a bijection between σpAq and σpA´z0q which
preserves the discrete and essential parts of the spectrum. Thus we can assume without loss
of generality that z0 “ 0.
‚ We have

A´1 ´ z´1 “ ´z´1pA ´ zqA´1.

Then z´1 P σpA´1q if and only if pA ´ zq : DompAq Ñ E is invertible, hence if and only if
z P σpAq. Moreover, if z P ρpAq then

pA´1 ´ z´1q´1 “ ´zApA ´ zq´1 “ ´z ´ z2pA ´ zq´1.

‚ It remains to prove that λ P σdiscpAq if and only if λ´1 P σdiscpA´1q. The map z ÞÑ z´1

maps isolated points of σpAq to isolated points of σpA´1q. Let λ be an isolated point in σpAq.
Let r Ps0, |λ| r be such that Dpλ, 2rq X σpAq “ tλu. We have

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA´ζq´1 dζ “ 1

2iπ

ż

Cpλ,rq
1
ζ2 pA´1´ζ´1q´1 dζ “ ´ 1

2iπ

ż

Cpλ,rq´1
pA´1´zq dz,

where Cpλ, rq´1 “ �
ζ´1, ζ P Cpλ, rq(

. For r ą 0 small, Cpλ, rq is close to Cpλ´1, r{ ˇ̌
λ2 ˇ̌q and

is also oriented in the direct sense. Thus the Riesz projections of λ for the operator A and
of λ´1 for A´1 coincide. In particular, λ P σdiscpAq if and only if λ´1 P σdiscpA´1q.
Theorem 4.26. Let A be an operator on H with compact resolvent. Then σesspAq “ H.

Proof. Let z0 P ρpAq. Since pA ´ z0q´1 is compact, we have σessppA ´ z0q´1q X C˚ “ H by
Then by Proposition 4.25, we have σesspA ´ z0q X C˚ “ H, which implies that σesspA ´ z0q
and then σesspAq are empty.
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Remark 4.27. If dimpEq “ `8, emptyness of σesspAq implies that the spectrum of A consists
of a sequence pλnqnPN of eigenvalues of finite multiplicities and such that

|λn| ÝÝÝÑ
nÑ8 `8.

We rewrite the theorem is the important particular case of a selfadjoint operator.

Theorem 4.28. Let A be a selfadjoint operator with compact resolvent on H. Then the
spectrum of A consists of a sequence pλkqkPN˚ of eigenvalues with finite multiplicities and
such that |λk| Ñ `8, and there is a Hilbert basis of H made with eigenvectors of A. If
moreover A is semibounded from below, then λk Ñ `8.

4.4 Relatively compact operators - Weyl’s Theorem
Definition 4.29. Let A be a closed operator on E with non-empty resolvent set. Let B be
an operator on E. We say that B is A-compact (or relatively compact with respect to A) if
DompAq Ă DompBq and one of the following equivalent assertions is satisfied.

(i) There exists z0 P ρpAq such that BpA ´ z0q´1 is compact.

(ii) For all z P ρpAq, the operator BpA ´ zq´1 is compact.

(iii) For any sequence pϕnq bounded in DompAq (i.e. pϕnq and pAϕnq are bounded in E) then
pBϕnq has a convergent subsequence.

Proof. ‚ We prove that (iii) implies (ii). Let z P ρpAq. Let pψnq be a bounded sequence in
E. Then ppA ´ zq´1ψnq is bounded in DompAq, and hence pBpA ´ z0q´1ψnq has a convergent
subsequence in E. This proves that BpA ´ z0q´1 is compact.
‚ Conversely, assume that BpA ´ z0q´1 is compact for some z0 P ρpAq and consider pψnq
bounded in DompAq. Then pA ´ z0qψn is bounded in E. Then pBψnq “ pBpA ´ z0q´1pA ´
z0qψnq has a convergent subsequence in E. This proves (iii).

Proposition 4.30. Assume that B is closed and A-compact. Then it is relatively bounded
with A-bound 0.

Proof. Assume by contradiction that there exists ε ą 0 and a sequence pϕnq in DompAq Ă
DompBq such that

@n P N, }Bϕn} ą ε }Aϕn} ` n }ϕn} .

After extracting a subsequence if necessary, we can assume that }Aϕn} ą }ϕn} for all n, or
that }Aϕn} ď }ϕn} for all n. In the first case we set ψn “ ϕn{ }Aϕn}, so that

}Bψn} ą ε ` n }ψn} , }ψn} ď 1.

After extracting a subsequence, Bψn has a limit. In particular p}Bϕn}q is bounded, so
ψn Ñ 0. Since B is closed, we have Bψn Ñ 0, which gives a contradiction. In the second
case we similarly get a contradiction by setting ψn “ ϕn{ }ϕn}.

Lemma 4.31. Let A0 and A1 be two operators such that ρpA0q X ρpA1q ‰ H. Let B “
A1 ´ A0. Then B is A0-compact if and only if it is A1-compact.

Proof. Let z0 P ρpA0q X ρpA1q. Assume that B is A0-compact. We have

pA1 ´ z0q´1 “ pA0 ´ z0q´1 ´ pA1 ´ z0q´1BpA0 ´ z0q´1

so
pA1 ´ z0q´1`

1 ` BpA0 ´ z0q´1˘ “ pA0 ´ z0q´1.

Let ϕ P E such that ϕ ` BpA0 ´ z0q´1ϕ “ 0. Then ψ “ pA0 ´ z0q´1ϕ satisfies

pA1 ´ z0qψ “ pA0 ´ z0qψ ` Bψ “ 0.
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This implies that ψ “ 0 and then ϕ “ 0, so 1`BpA0 ´z0q´1 is injective. Since BpA0 ´z0q´1

is compact, we deduce by the Fredholm alternative that 1 ` BpA0 ´ z0q´1 is invertible. Then

BpA1 ´ z0q´1 “ BpA0 ´ z0q´1`
1 ` BpA0 ´ z0q´1˘´1

is the composition of a compact and a bounded opertor, so it is compact. This proves that
B is A1-compact. We prove the converse by changing the roles of A0 and A1.

Theorem 4.32 (Weyl’s Theorem for selfadjoint operators). Let A0 and A1 be two selfadjoint
operators. Let B “ A1 ´ A0 and assume that B is A0-compact. Then

σesspA1q “ σesspA0q.

Proof. Let λ P σesspA0q. Let pϕnqnPN be a sequence in DompA0q such that }ϕn} “ 1 for all
n P N, ϕn goes weakly to 0 and }pA0 ´ λqϕn} Ñ 0 as n Ñ 8 (see Proposition 3.50). Then

pA0 ´ iqϕn “ pA0 ´ λqϕn ` pλ ´ iqϕn á 0.

We have
pA1 ´ λqϕn “ pA0 ´ λqϕn ` BpA0 ´ iq´1pA0 ´ iqϕn.

Since pA0 ´ iqϕn goes weakly to 0 and BpA0 ´ iq´1 is compact, the second term in the right-
hand side goes strongly to 0 by Proposition 4.6. Then pA1 ´ λqϕn goes to 0 and λ P σesspA1q
by Proposition 3.50. This proves that σesspA0q Ă σesspA1q. Since B is also A1-compact by
Proposition 4.31, we can prove the reverse inclusion by changing the roles of A0 and A1.

Example 4.33. Let V P L8pRd,Rq such that V pxq Ñ 0 as |x| Ñ 0. We set H0 “ ´Δ and
H1 “ ´Δ ` V , with DompH0q “ DompH1q “ H2pRdq. Then we have

σesspH1q “ σesspH0q “ r0, `8r.

For this we prove that the multiplication by V is H0-compact.

With our definition of the essential spectrum, Theorem 4.32 is not true in general.

Example 4.34. We consider on �2pZq the operators A and B defined by

Ap. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, u0, u1, u2, u3, . . . q

and
Bp. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , 0, ´u0, 0, 0, 0, . . . q,

so that
pA ` Bqp. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, 0, u1, u2, u3, . . . q

The spectrum of A is the unit circle Cp0, 1q (see Exercise 1.5) and B is compact (it is of rank
1). On the other hand, as for the shift on the left in �2pNq (see Example 1.36), we can check
that σpA ` Bq “ Dp0, 1q.

However, we can prove the following result.

Theorem 4.35. Let A be a closed operator. Let B be a A-compact operator. Let U be a
connected component of CzσesspAq. Then we have

U Ă CzσesspA ` Bq or U Ă σesspA ` Bq.

In particular, if U X ρpA ` Bq ‰ H then U X σesspA ` Bq “ H.
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4.5 Exercises
Exercise 4.1. Let pαnq be a sequence in R˚̀ such that αn Ñ `8 as n Ñ `8. We set

V “
#

punqnPN :
ÿ

nPN
αn |un|2 ă `8

+
Ă �2pNq.

V is a Hilbert space for the inner product defined by

xu, vyV “
ÿ

nPN
αnunvn, u “ punq, v “ pvnq.

Prove that V is compactly embedded in �2pNq.
Exercise 4.2. Let Ω be a bounded open subset of Rd. Let k P N and θ Ps0, 1r. We recall that
Ck,θpΩq is the set of functions u P CkpΩq whose derivatives of order k are Hölder-continuous
of exponent θ. It is endowed with the norm defined by

}u}Ck,θpΩq “
ÿ

αďk

}Bαu}L8pΩq `
ÿ

|α|“k

sup
x,yPΩ
x‰y

|Bαupxq ´ Bαupyq|
|x ´ y|θ .

Prove that Ck,θpΩq is compactly embedded in Ck
b pΩq.

Exercise 4.3. Let V P L8pRq. We assume that V pxq ÝÝÝÝÝÑ
|x|Ñ`8

0. Prove that the map

"
H1pRq Ñ L2pRq

u ÞÑ V u

is compact.

Exercise 4.4. 1. Give an exemple of sequence punq bounded in H2pRq which has no limit
in L2pRq.
2. We consider a sequence punq in H2pRq such that x2un belongs to L2pRq for all n P N. We
assume that there exists M ě 0 such that

@n P N, }un}H2pRq ` ››x2un

››
L2pRq ď M.

3. Prove that we can construct for all m P N˚ an extraction pnkpmqq and vm P L2pr´m, msq
such that

•
››unkpmq ´ vm

››
L2pr´m,msq Ñ 0,

• vm and vν coincide on r´m, ms whenever ν ě m.

4. Prove that there exists a subsequence punj
q and v P L2

locpRq such that
››unj

´ v
››

L2pr´R,Rsq Ñ
0 for all R ą 0.
5. Prove that unj

goes to v in L2pRq.
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