
Chapter 3

Selfadjoint operators

[Draft version, November 16, 2022]

Let H be a Hilbert space.

3.1 Selfadjoint operators
3.1.1 Symmetric operators
Definition 3.1. Let A be an operator on H. We say that A is symmetric if

@ϕ, ψ P DompAq, xAϕ, ψyH “ xϕ, AψyH . � Ex. 3.1

Remark 3.2. If A is symmetric then xAϕ, ϕyH P R for all ϕ P DompAq. The converse is also
true, as can be seen from the polarization formula

@ϕ, ψ P DompAq, 4 xAϕ, ψy “ xApϕ ` ψq, ϕ ` ψy ´ xApϕ ´ ψq, ϕ ´ ψy
` i xApϕ ` iψq, ϕ ` iψy ´ i xApϕ ´ iψq, ϕ ´ iψy .

Definition 3.3. Let A be a symmetric operator on H.

(i) We say that A is non-negative (and we write A ě 0) if xAϕ, ϕyH ě 0 for all ϕ P DompAq.
(ii) We say that A is semi-bounded from below if there exists γ P R such that A ´ γ ě 0 (we

can write A ě γ). Equivalently, xAϕ, ϕyH ě γ }ϕ}2
H for all ϕ P DompAq. In this case

we say that γ is a lower bound for A.

Proposition 3.4. Let A be a symmetric and densely defined operator on H . Then A˚ is a
closed extension of A.

Proof. Let ψ P DompAq. For all ϕ P DompAq we have xAϕ, ψy “ xϕ, Aψy so ψ P DompA˚q and
A˚ϕ “ Aϕ. This proves that A˚ is an extension of A. Moreover A˚ is closed by Proposition
2.48.

Proposition 3.5. Let A be a symmetric operator on H. The eigenvalues of A (if any) are
real, and two eigenvectors of A associated to different eigenvalues are orthogonal.

Proof. ‚ Let λ P C and assume that for some ϕ P DompAqz t0u we have Aϕ “ λϕ. Then
λ }ϕ}2

H “ xAϕ, ϕyH P R. This implies that λ P R.
‚ Now let λ, µ be two distinct eigenvalues of A. Let ϕ P kerpA ´ λq and ψ P kerpA ´ µq.
Then

pµ ´ λq xψ, ϕyH “ xµψ, ϕyH ´ xψ, λϕyH “ xAψ, ϕyH ´ xψ, AϕyH “ 0.

Since µ ´ λ ‰ 0, this implies that xψ, ϕyH “ 0.

Proposition 3.6. Let A be a non-negative and densely defined operator. Let ϕ P DompAq
be such that xAϕ, ϕyH “ 0. Then Aϕ “ 0.
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Proof. Since A is non-negative, we can apply the Cauchy-Schwarz inequality to the sesquilin-
ear form pζ, ψq ÞÑ xAζ, ψyH on DompAq. Then for all ψ P DompAq we have

|xAϕ, ψyH| ď |xAϕ, ϕyH| |xAψ, ψyH| “ 0.

Since DompAq is dense in H, this proves that Aϕ “ 0.

Proposition 3.7. Let A be a symmetric operator on H.

(i) For z P CzR and ϕ P DompAq we have

}pA ´ zqϕ}H ě |Impzq| }ϕ}H .

(ii) Assume moreover that A is bounded from below and let γ P R be such that A ě γ. Then
for λ ă γ and ϕ P DompAq we have

}pA ´ zqϕ}H ě pγ ´ λq }ϕ}H .

Proof. Let ϕ P DompAq.
‚ Let z P CzR, λ “ Repzq and ε “ Impzq. We have

}pA ´ zqϕ}2 “ }pA ´ λqϕ}2 ` ε2 }ϕ}2 ` 2 Re xpA ´ λqϕ, ´iεϕy .

Since
xpA ´ λqϕ, ´iεϕy “ iε xAϕ, ϕy ´ iελ }ϕ}2 P iR,

this gives
}pA ´ zqϕ}2 “ }pA ´ λqϕ}2 ` ε2 }ϕ}2 ě ε2 }ϕ}2

.

‚ Similarly, if A ´ γ ě 0 then for λ Ps ´ 8, γr we have

}pA ´ λqϕ}2
H “ }pA ´ γqϕ}2

H ` pγ ´ λq2 }ϕ}2
H ` 2pγ ´ λq Re xpA ´ γqϕ, ϕyH

ě pγ ´ λq2 }ϕ}2
H ,

and the second statement follows.

3.1.2 Selfadjoint operators
Definition 3.8. An operator A on H is said to be selfadjoint if it is densely defined and
A˚ “ A.� Ex. 3.2

Definition 3.9. An operator A on H is said to be skew-adjoint if it is densely defined and
A˚ “ ´A.

Remark 3.10. An operator A is skew-adjoint if and only if iA is selfadjoint. Then one usually
only discusses the properties of selfadjoint operators, and we can deduce similar properties
for skew-adjoint operators.
Example 3.11. • The Laplacian H “ ´Δ on L2pRdq (with domain DompHq “ H2pRdq)

is selfadjoint. The Laplacian H0 “ ´Δ with domain C8
0 pRdq is symmetric but not self-

adjoint (in particular C8
0 pRdq Ĺ H2pRdq Ă DompH0̊ q). However, H0 has a selfadjoint

extension (H).
Example 3.12. The Dirichlet and Neumann Laplacians on s0, 1r (introduced in Section 2.5.2)
are selfadjoint.
Example 3.13. The harmonic oscillator introduced in Section 2.4 is selfadjoint.
Remark 3.14. A selfadjoint operator is closed by Proposition 2.47.

Proposition 3.15. Let A be a selfadjoint operator on H. Then

RanpAq “ kerpAqK.
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Definition 3.16. Let A be a selfadjoint operator on H. Let F be a subspace of H. We say
that F is reducing for the operator A (or that it reduces A) if it is closed and the orthogonal
projection Π on F satisfies ΠA Ă AΠ.
Remark 3.17. If F reduces A, then so does FK.
Proposition 3.18. Let A be a selfadjoint operator on H. Let F be a reducing subspace for
A. Then the restriction AF of A on F is a selfadjoint operator on F.
Proof. The restriction AF of the symmetric operator A is symmetric. Let ψ P DompA˚

Fq. For
all ϕ P DompAq X F we have

xAFϕ, ψy “ xϕ, A˚
Fψy

Then for all ϕ “ ϕF ` ϕK with ϕF P F and ϕK P FK we have

xAϕ, ψy “ xAFϕF, ψy “ xϕF , A˚
Fψy “ xϕ, A˚

Fψy .

This proves that ψ P DompA˚q “ DompAq, so ψ P DompAq X F “ DompAFq and A˚
Fψ “

A˚ψ “ Aψ “ AFψ. This proves that A˚
F Ă AF, and finally AF is selfadjoint by Proposition

3.4.

Proposition 3.19. Let A be a selfadjoint operator on H. Then kerpAq is reducing for A.
Proof. Since A is closed, kerpAq is closed in H. Let Π be the orthogonal projection on kerpAq.
For all ϕ P DompAq we have Aϕ P RanpAq Ă kerpAqK, so ΠAϕ “ 0. On the other hand we
have Πϕ P kerpAq Ă DompAq and AΠϕ “ 0. This proves that ΠA Ă AΠ.

Proposition 3.20. If A and B are two selfadjoint operators on H such that A Ă B then
A “ B.
Proof. We have A Ă B “ B˚ Ă A˚ “ A, so A “ B.

3.1.3 A criterion for self-adjointness
Proposition 3.21. Let A be a symmetric and densely defined operator on H and z P CzR.
Then the following assertions are equivalent.

(i) A is self-adjoint.

(ii) A is closed and z, z P ρpAq.
(iii) A is closed and kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u.

(iv) RanpA ´ zq “ RanpA ´ zq “ H.
Proof. ‚ piq ñ piiiq. Assume that A is self-adjoint. In particular, A is closed. Moreover,
kerpA˚ ´ zq “ kerpA ´ zq “ t0u by Proposition 3.7. Similarly, kerpA˚ ´ zq “ t0u.
‚ piiiq ñ pivq. By Proposition 2.46 we have RanpA ´ zq “ kerpA˚´zqK “ t0u, so RanpA´zq
is dense in H. On the other hand, pA ´ zq has closed range by Propositions 3.7 and 2.34, so
RanpA ´ zq “ H. Similarly, RanpA ´ zq “ H.
‚ pivq ñ piq. We already know by Proposition 3.4 that A˚ is an extension of A. Let ϕ P
DompA˚q. Since pA´zq is surjective, there exists ψ P DompAq such that pA˚´zqϕ “ pA´zqψ.
On the other hand, we have ψ P DompA˚q and A˚ψ “ Aψ so pA˚ ´ zqϕ “ pA˚ ´ zqψ. By
Proposition 2.46 we have kerpA˚ ´zq “ RanpA´zqK “ t0u, so ϕ “ ψ P DompAq. This proves
that DompAq “ DompA˚q, and hence A “ A˚.
‚ piiq ñ pivq is clear.
‚ piiiq ´ pivq ñ piiq. A is closed by piiiq. By Proposition 3.7 we already know that A ´ z
is injective. It is surjective by pivq so it is bijective and z P ρpAq. Similarly, z P ρpAq. � Ex. 3.3, 3.4

The proof of the implication pivq ùñ piq also holds if z P R. This gives the following
sufficient condition.
Corollary 3.22. Let A be a symmetric operator on H. Assume that there exists λ P R such
that RanpA ´ λq “ H. Then A is selfadjoint.

Combined with Proposition 3.7 this also gives the following result.
Corollary 3.23. Let A be a symmetric operator on H. Assume that A ě γ for some γ P R.
If there exists λ Ps ´ 8, γr such that RanpA ´ λq is dense in H, then A is selfadjoint.
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3.1.4 Essentially selfadjoint operators
We have seen that if A is symmetric then A Ă A˚. It may happen that A is not selfadjoint
because we have chosen the domain too small. Given a symmetric operator, the question is
then wether it has a selfadjoint extension.

We know from Proposition 3.4 that a densely defined and symmetric operator is always
closable, so the first try is to look at its closure.

Definition 3.24. Let A be a densely defined symmetric operator on H. We say that A is
essentially selfadjoint if its closure A is selfadjoint.

Proposition 3.25. Let A be a densely defined symmetric operator on H. Then A is essen-
tially selfadjoint if and only if A “ A˚.

Proof. ‚ By Proposition 2.48 we have A
˚ “ A˚. If A is essentially selfadjoint, we also have

A
˚ “ A, and hence A “ A˚.

‚ Conversely, assume that A “ A˚. By Proposition 2.48 again we have A˚˚ “ A, so
A

˚ “ A˚˚ “ A.

We will see below that a symmetric operator may have many selfadjoint extensions.
However, when it is essentially selfadjoint, the extension is unique.

Proposition 3.26. Let A be a densely defined symmetric operator on H. If A is essentially
selfadjoint then A is the unique selfadjoint extension of A.

Proof. Let B be a selfadjoint extension of A. Since it is a closed extension of A, it is an
extension of A. Since B and A are selfadjoint, we have B “ A by Proposition 3.20.

Proposition 3.27. Let A be a densely defined symmetric operator on H. Let z P CzR. The
following assertions are equivalent.

(i) A is essentially selfadjoint ;

(ii) kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u ;

(iii) RanpA ´ zq “ RanpA ´ zq “ H.

Proof. ‚ Assume that A is essentially selfadjoint. In particular, A is closable and A
˚ “ A˚

by Proposition 2.48. By Proposition 3.21 applied to the selfadjoint operator A, we have
kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u.
‚ Conversely, assume that (ii) holds. Since A

˚ Ă A˚ we have kerpA˚ ´ zq “ kerpA˚ ´ zq “
t0u. By Proposition 3.21, A is selfadjoint.
‚ Finally (ii) and (iii) are equivalent by Proposition 2.46.

3.1.5 Examples of closed symmetric operators which are not essen-
tially selfadjoint

We consider on L2p0, 1q the operator A which acts as

A “ i
d

dx

on the domain
DompAq “ H1

0 p0, 1q.
Then A is closed (by Example 2.29 and symmetric: for u, v P H1

0 p0, 1q we have by the
Green formula

xAu, vyL2p0,1q “ i

ż 1

0
u1pxqvpxq dx “ i

`
up1qvp1q ´ up0qvp0q˘ ´ i

ż 1

0
upxqv1pxq dx

“ xu, AvyL2p0,1q .

Notice that for the boundary terms it was not necessary that both u and v vanish.
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Now we compute A˚. Let v P DompA˚q. We have v P L2p0, 1q and for all φ P C8
0 ps0, 1rq

we have
ż

R
iφ1pxqvpxq dx “ xAφ, vyL2p0,1q “ xφ, A˚vyL2p0,1q “

ż

R
φpxqpA˚vqpxq dx.

This prove that in the sense of distributions we have v1 P L2p0, 1q and

A˚v “ iv1.

Conversely, if v P H1p0, 1q then the same computation as above shows that

@u P DompAq, @
iu1, v

D
L2p0,1q “ @

u, iv1D
L2p0,1q ,

so v P DompA˚q (and we recover A˚v “ iv1). This proves that DompA˚q “ H1p0, 1q ‰
DompAq. Thus A is not selfadjoint.

Notice that for z P C the function x ÞÑ e´izx belongs to kerpA˚ ´ zq. In particular,
kerpA˚ ´ zq ‰ t0u. By Proposition 3.21, this confirms that A cannot be selfadjoint. It is not
even essentially selfadjoint. Moreover, for z P C we have by Proposition 2.46

RanpA ´ zq “ kerpA˚ ´ zqK ‰ H.

This proves that σpAq “ C.
Now the question is: does A have a selfadjoint extension ? The answer is: yes, many !

Assume that Ã is a selfadjoint extension of A. Then Ã “ Ã˚ Ă A˚. Let v P DompÃqzDompAq.
For all u P DompÃq we have

0 “ @
Ãu, v

D ´ @
u, Ãv

D “ i
`
up1qvp1q ´ up0qvp0q˘

.

Assume that vp1q “ 0. Since v is not in DompAq we have vp0q ‰ 0. Then for all u P DompÃq
we have up0q “ 0. This gives a contradiction since vp0q ‰ 0. This proves that vp1q ‰ 0. We
set α “ vp0q{vp1q. Then for all u P DompÃq we have

up1q “ αup0q.
In particular we have vp1q “ αvp0q. Since by definition we have vp0q “ αvp1q, this proves
that |α| “ 1. This proves that there exists α P U such that DompÃq Ă Dα, where we have
set

Dα “ �
u P H1p0, 1q : up1q “ αup0q(

.

For α P U we denote by Aα the operator defined by Aαu “ iu1 for u in DompAαq “ Dα.
In particular, Aα is an extension of A and A˚ is an extension of Aα for all α.

We check that Aα is selfadjoint. For u, v P DompAαq we have

xAαu, vy “ i

ż

R
u1pxqvpxq dx

“ iup1qvp1q ´ iup0qvp0q ´ i

ż

R
upxqv1pxq dx

“ ip|α|2 ´ 1qup0qvp0q ´ i

ż

R
upxqv1pxq dx

“ xu, Aαvy .

Then Aα is symmetric, and hence Aα̊ is an extension of Aα. Now let v P DompAα̊q. The
same computation with u P C8

0 ps0, 1rq shows that v P H1p0, 1q and Aα̊v “ iv1. Then for all
u P DompAαq we have

0 “ xAαu, vy ´ xu, Aα̊vy “ ´iup0qpαvp1q ´ vp0qq.
This proves that vp1q “ αvp0q, so v P DompAαq, and finally Aα̊ “ Aα.

All this proves that the operators Aα for α P U are the selfadjoint extensions of A.
Moreover we have seen that if Ã is a selfadjoint extension of A then we have Ã Ă Aα

for some α P U, and hence Ã “ Aα. So finally, the operators Aα for α P U are exactly the
selfadjoint extensions of A.
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Example 3.28. We consider the previous example but on L2p0, `8q:

A “ i
d

dx
, DompAq “ H1

0 p0, `8q.

With the same proof we see that A is symmetric with DompA˚q “ H1p0, `8q. The difference
is that in this case A has no selfadjoint extension. Indeed, assume by contradiction that Ã is a
selfadjoint extension of A. We can check by direct computation that RanpA` iq “ L2p0, `8q
(or equivalently, that KerpA˚ ´ iq “ t0u), so A has no selfadjoint extension by Exercise 3.3.

3.1.6 Friedrichs extension
We have seen in the previous paragraph that a symmetric operator which is not selfadjoint
can have many selfadjoint extensions, and it is also possible that it does not have any.

In this paragraph we consider the case of lower semibounded symmetric operators and
choose in an abstract setting a selfadjoint extension. This ensures in particular that such an
operator has at least one selfadjoint extension.

Definition 3.29. Let A be a densely defined lower bounded symmetric operator on H. Let
α0 P R be such that A ` α0 ě 0. For α ą α0 we consider the quadratic form associated to
A ` α on DompA ` αq “ DompAq

qA`α : ϕ P DompAq ÞÑ xpA ` αqϕ, ϕyH “ xAϕ, ϕyH ` α }ϕ}2
H .

The closure of DompAq for the norm }ϕ}A “ a
qA`αpϕq is called the form domain of A.

The definition of the form domain does not depend on α ą α0.
Example 3.30. We consider on L2p0, 1q the Laplacian H0 “ ´B2 with domain DompH0q “
C8

0 ps0, 1rq. For all u P C8
0 ps0, 1rq we have

qH0`1pu, uq “ x´Δu, uyL2p0,1q ` }u}2
L2p0,1q “ }u}2

H1p0,1q .

The closure of C8
0 ps0, 1rq for the H1 norm is H1

0 p0, 1q. Then the form domain of H0 is
H1

0 p0, 1q.
Proposition 3.31. Let V be a Hilbert space densely and continuously embedded in H. Let q
be a continuous sesquilinear form on V such that, for some α0 ą 0,

@ϕ P V, qpϕq ě α0 }ϕ}2
H . (3.1)

Let A be the operator given by the representation theorem (Theorem 2.52). Then A is self-
adjoint on H and A ě α0. Then V is the form domain of A.

Proof. For all ϕ P DompAq we have xAϕ, ϕy “ qpϕ, ϕq by definition of A. By continuity of q
and (3.1), the norm ϕ ÞÑ a

qpϕ, ϕq is equivalent to the norm }¨}V . Since DompAq is dense in
V by Theorem 2.52, the closure of DompAq for }¨}V is V. Finally, as for Remark 3.2, since
the quadratic form takes real values it is symmetric. Then we deduce that A is selfajdjoint
by Theorem 2.52.

Example 3.32. The form domain of the Dirichlet Laplacian on s0, 1r (see Example 2.57) is
H1

0 p0, 1q and the form domain of the Neumann Laplacian (see Example 2.56) is H1p0, 1q.
Definition 3.33. Let A be a lower bounded symmetric operator on H and let V be the form
domain of A. Let α0 P R be such that A ` α0 ě 0. Let α ą 0. We denote by Aα the operator
associated to the coercive quadratic form qA`α by the representation theorem (Theorem 2.52).
Then we define the Friedrichs extension AF of A by AF “ Aα ´ α.

This definition does not depend on the choice of α.
Example 3.34. Let H0 be the operator of Example 3.30. Its Friedrichs extension is the
Dirichlet Laplacian on s0, 1r.
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Remark 3.35. If A is a non-negative selfadjoint operator, we have AF “ A. Indeed, we
consider the quadratic form q associated with A ` 1. For all ϕ, ψ P DompAq,

qpϕ, ψq “ xAϕ, ψyH ` xϕ, ψyH .

Then ϕ ÞÑ a
qpϕ, ϕq defines a norm on DompAq and we denote by V the closure. Then q

extends to a continuous and coercive form on V. We denote by T the corresponding operator
given by the representation theorem. Let ϕ P DompAq. For all ψ P DompAq we have

|qpϕ, ψq| ď ` }Aϕ}H ` }ϕ}H
˘ }ψ}H .

Then, by density of DompAq in V we obtain the same inequality for all ψ P V. Then
ϕ P DompT q and

Tϕ “ Aϕ ` ϕ.

Now let ϕ P DompT q. For all ψ P DompAq we have

|xAψ, ϕyH| “ |qpψ, ϕq| “ |qpϕ, ψq| ď Cϕ }ψ}H .

This proves that ϕ P DompA˚q “ DompAq. Finally we have T “ A ` 1 and AF “ T ´ 1 “ A.

3.1.7 Relatively bounded perturbations of self-adjoint operators
Definition 3.36. Let A and B be operators on E. We say that B is A-bounded if DompAq Ă
DompBq and there exist a, b ě 0 such that

@ϕ P DompAq, }Bϕ}E ď a }Aϕ}E ` b }ϕ}E . (3.2)

The A-bound of B is the infimum of all a ě 0 for which there exists b such that (3.2) holds.

Remark 3.37. B is A-bounded if and only if DompAq Ă DompBq and B is a continuous map
from pDompAq, }¨}DompAqq to E.
Remark 3.38. If B is bounded then it is A bounded with A-bound 0 (we can take α “ 0 and
b “ }B}LpEq in (3.2)).
Remark 3.39. The A-bound of B is defined as the infimum of all possible a in (3.2). This
infinimum is not necessarily atteined. In particular, B can be unbounded but A-bounded
with A-bound 0. For example, if B is a symmetric operator on H then B is B2-bounded
with bound 0. Indeed,

DompB2q “ tϕ P DompBq : Bϕ P DompBqu Ă DompBq
and for ε ą 0 and ϕ P DompB2q we have

0 ď ››pε2B2 ´ 1qϕ››2 “ ε4 ››B2ϕ
››2 ` }ϕ}2 ´ 2ε2 }Bϕ}2

,

so
}Bϕ}2 ď ε2

2
››B2ϕ

››2 ` ε´2

2 }ϕ}2 ď 1
4

`
ε

››B2ϕ
›› ` ε´1 }ϕ}˘2

.

Thus (3.2) holds with a “ ε{4 and b “ 1{p4εq for all ε ą 0 and B is B2-bounded with
B2-bound 0 (but (3.2) cannot hold with a “ 0 if B is not bounded).

We give examples of operators which are relatively bounded with respect to the usual
Laplacian on Rd. We denote by H0 the Laplacian ´Δ on L2pRdq, with domain H2pRdq.
Example 3.40. Let β, V P L8pRdq and j P �1, d�. Then βpxqBj and V are H0-bounded with
H0-bound equal to 0. Indeed for u P H2pRdq,

}Bju}2 “ xBju, Bjuy “ @´B2
j u, u

D ď x´Δu, uy ď }H0u} }u} ď ε }H0u}2 ` }u}2

4ε
.

Theorem 3.41 (Kato-Rellich). Let A be a selfadjoint operator on the Hilbert space H. Let
B be a symmetric operator on H. Assume that B is A-bounded with bound smaller than 1.
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(i) The operator A ` B, defined on the domain DompA ` Bq “ DompAq, is selfadjoint.

(ii) Let D Ă DompAq. If A is essentially selfadjoint on D, then so is A ` B.

Proof. The operator A `B is symmetric as the sum of two symmetric operators. There exist
a P r0, 1r and b ě 0 such that (3.2) holds. Let β ą 0. We recall that for ϕ P DompAq we have

}pA ´ iβqϕ}2 “ }Aϕ}2 ` β2 }ϕ}2
,

so
}Bϕ} ď a }Aϕ} ` b }ϕ} ď pa ` bβ´1q }pA ´ iβqϕ} .

Let ψ P H. Applied with ϕ “ pA ´ iβq´1ψ P DompAq, this inequality gives
››BpA ´ iβq´1ψ

›› ď pa ` bβ´1q }ψ} .

Assume that |β| ą b
1´a . Then T “ BpA ´ iβq´1 is bounded with bound smaller than 1, so

p1 ` T q has a bounded inverse on H. We deduce that

RanpA ` B ´ iβq “ Ran
`p1 ` T qpA ´ iβq˘ “ H.

We similarly prove that RanpA ` B ` iβq “ H. By Proposition 3.21, this proves that A ` B
is selfadjoint.

Proposition 3.42. Assume that d ď 3. Let V be a potential (Borel function) on Rd. We
assume that we can write V “ V2 ` V8 where V2 P L2pRdq and V8 P L8pRdq. Then
the Schrödinger operator H “ H0 ` V is selfadjoint on L2pRdq with domain DompHq “
DompH0q “ H2pRdq.

Proof. Let u P H2pRdq. For ε ą 0 we have

}u}L8pRdq ď }û}L1pRdq ď
›››p1 ` ε2 |ξ|2q´1

›››
L2pRdq

›››p1 ` ε2 |ξ|2qû
›››

L2pRdq
ď Cε

`
ε2 }Δu}L2pRdq ` }u}L2pRdq

˘
,

where

Cε “
dż

Rd

`
1 ` ε2 |ξ|2 ˘´2 dξ.

We have Cε “ ε´ d
2 C1, so

}V u}L2 ď }V2}L2 }u}L8 ` }V8} }u}L2

ď ε2´ d
2 C1 }V2} }Δu}L2 ` `

ε´ d
2 C1 }V2}L2 ` }V8}L8

˘ }u}L2 .

Applied with ε ą 0 small enough this proves that V is H0-bounded with H0-bound smaller
than 1. We conclude with Theorem 3.41.

Remark 3.43. We can prove that the same conclusion holds for V P LppRdq ` L8pRdq for
p ě 2 if d “ 4 and p P “

2, 2d
d´4

“
if d ě 5.

Example 3.44. Let d ď 3 and α P “
0, d

2
“
. Then for any c P R the operator

H “ H0 ` c

|x|α

is well-defined and selfadjoint on the domain DompHq “ H2pRdq.
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3.2 Spectrum of selfadjoint operators
3.2.1 Basic properties
Proposition 3.45. Let A be a selfadjoint operator on H. Then σpAq Ă R and for z P ρpAq
we have ››pA ´ zq´1››

LpHq “ 1
distpz, σpAqq . (3.3)

In particular, σpAq ‰ H.

Proof. The first statement follows from Proposition 3.21. Let z P ρpAq. By Proposition 2.49
we have

ppA ´ zq´1q˚ “ pA˚ ´ zq´1 “ pA ´ zq´1.

Since pA ´ zq´1 and pA ´ zq´1 commute, pA ´ zq´1 is a bounded normal operator on H.
Then, by Propositions 1.46 and 1.15,

››pA ´ zq´1››
LpHq “ sup

µPσppA´zq´1q
|µ| “ sup

λPσpAq
|λ ´ z|´1 “ 1

infλPσpAq |λ ´ z| .

The proposition follows.

Proposition 3.46. Let A be a selfadjoint operator on H and λ P R.

(i) Let ε ą 0. If there exists ϕ P DompAqz t0u such that }pA ´ λqϕ}H ď ε }ϕ}H then
σpAq X rλ ´ ε, λ ` εs ‰ H.

(ii) λ P σpAq if and only if there exists a sequence pϕnqnPN in DompAq such that }ϕn}H “ 1
for all n P N and

}pA ´ λqϕn}H ÝÝÝÝÝÑ
nÑ`8 0.

Such a sequence is called a Weyl sequence.

Proof. ‚ Assume that rρ ´ ε, ρ ` εs Ă ρpAq. Since ρpAq is open there exists ε1 ą ε such
that rρ ´ ε1, ρ ` ε1s Ă ρpAq. By Proposition 3.45 we have

››pA ´ λq´1››
LpHq ď ε´1

1 . Then for
ϕ P DompAqz t0u we have

}ϕ} ď ››pA ´ λq´1›› }pA ´ λqϕ} ď }pA ´ λqϕ}
ε1

,

so }pA ´ λqϕ} ě ε1 }ϕ} ą ε }ϕ}. This prove the first statement by contradiction.
‚ If a Weyl sequence exists then λ P σpAq by Proposition 2.21 (we can also use the first
statement). Now assume that there exists c ą 0 such that

@ϕ P DompAq, }pA ´ λqϕ}H ě c }ϕ}H .

Then A ´ λ is injective with closed range by Proposition 2.34. On the other hand, by
Proposition 2.46,

RanpA ´ λq “ kerppA ´ λq˚qK “ kerpA ´ λqK “ H.

This proves that λ P ρpAq. � Ex. 3.6

3.2.2 Discrete and essential spectra
Proposition 3.47. Let A be a selfadjoint operator on H. Assume that λ is an isolated
element of σpAq. Let Πλ be the corresponding Riesz projection. Then Πλ is the orthogonal
projection on kerpA ´ λq. In particular, λ is an eigenvalue of A and if dimpkerpA ´ λqq ă 8,
then its geometric and algebraic multiplicities coincide.
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Proof. Let r ą 0 be so small that σpAq X Dpλ, 2rq “ tλu. We have

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ.

Then
Π˚

λ “ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ “ Πλ,

so Πλ is an orthogonal projection. By Proposition 2.66 we have kerpA ´ λq Ă RanpΠλq.
For ϕ P H we have

pA ´ λqΠϕ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ λqpA ´ ζq´1ϕ dζ

“ ´ 1
2iπ

ż

Cpλ,rq

`
ϕ ` pζ ´ λqpA ´ ζq´1ϕ

˘
dζ.

(3.4)

The map ζ ÞÑ pζ ´ λqpA ´ ζq´1 is analytic in Dpλ, rqz tλu. By (3.3) it is also bounded.
Thus it extends to an analytic function on Dpλ, rq and (3.4) vanishes. This proves that
RanpΠq Ă kerpA ´ λq, so RanpΠq “ kerpA ´ λq. Finally, RanpΠq cannot be t0u (since λ
belongs to the spectrum of the restriction of A to RanpΠq), so λ is an eigenvalues of A.

Corollary 3.48. Let A be a selfadjoint operator on H and let λ be an isolated element
of σpAq. Let G be a reducing subspace for A and let AG be the restriction of A to G. If
G Ă kerpA ´ λqK then σpAGq Ă σpAqz tλu.

Proof. By Proposition 2.59 we have σpAGq Ă σpAq. Moreover, AG is a selfadjoint operator by
Proposition 3.18 and λ is not an eigenvalue of AG since kerpAG ´ λq “ kerpA ´ λq X G “ t0u.
By Proposition 3.47, λ P ρpAGq.
Lemma 3.49. Let A be a selfadjoint operator on H. Let λ P σpAq. Assume that kerpA ´ λq
has finite dimension and that there exists c ą 0 such that

@ϕ P kerpA ´ λqK, }pA ´ λqϕ} ě c }ϕ} . (3.5)

Then λ is isolated in σpAq.
Proof. Let F “ kerpA ´ λq and G “ FK. Then F and G are closed. Let Π be the orthogonal
projection on F. Let AF and AG be the restrictions of A to F and G. We have σpAFq “ tλu.
On the other hand, AG is a selfadjoint operator on G such that kerpAG ´ λq “ t0u. Then
RanpAG ´ λq “ kerpAG ´ λqK “ G. By (3.5) and Proposition 2.34, RanpAG ´ λq is closed so
λ P ρpAGq. Since ρpAGq is open, there exists ε ą 0 such that sλ ´ ε, λ ` εrĂ ρpAGq. Then,
by Proposition 2.59, sλ ´ ε, λ ` εrz tλu Ă ρpAFq X ρpAGq “ ρpAq.
Proposition 3.50 (Weyl Criterion). Let A be a selfadjoint operator on H and λ P R. The
following assertions are equivalent.

(i) λ P σesspAq.
(ii) There exists a sequence pϕnqnPN in DompAq such that }ϕn}H “ 1 for all n P N, ϕn goes

weakly to 0 and }pA ´ λqϕn}H Ñ 0 as n Ñ 8.

(iii) There exists a sequence pϕnqnPN in DompAq such that }ϕn}H “ 1 for all n P N, pϕnqnPN
has no convergent subsequence in H and }pA ´ λqϕn}H Ñ 0 as n Ñ 8.

� Ex. 3.7

Proof. We set F “ kerpA ´ λq and G “ kerpA ´ λqK. We denote by AG the restriction of A
to G.
‚ Assume that λ P σesspAq. If dimpFq “ 8 then we can construct an orthonormal sequence
pϕnqnPN in F. Now assume that dimpFq ă 8. By Lemma 3.49, (3.5) cannot hold, so there
exists a normalized sequence pϕnqnPN in G such that }pA ´ λqϕn} Ñ 0 as n Ñ 8. For ψ P F
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we have xψ, ϕny “ 0 for all n P N. It remains to prove that xψ, ϕny Ñ 0 for all ψ P G. It is
enough to prove this for ψ in a dense subset of G. We have

RanpAG ´ λqK “ kerpAG ´ λq “ t0u ,

so it is enough to consider ψ P RanpAG ´ λq. In this case we consider ζ P DompAGq such that
ψ “ pAG ´ λqζ and write

xψ, ϕny “ xpAG ´ λqζ, ϕny “ xζ, pAG ´ λqϕny ÝÝÝÝÝÑ
nÑ`8 0.

This proves that ϕn á 0 as n Ñ 8. This proves (i) ùñ (iii).
‚ A normalized sequence which goes weakly to 0 cannot have a convergent subsequence, so
(ii) ùñ (iii).
‚ Assume that there exists a sequence pϕnqnPN as in (iii). By Proposition 3.46 we have
λ P σpAq. Assume by contradiction that λ P σdiscpAq. For n P N we write ϕn “ ψn ` ψK

n

where ψn P F and ψK
n P G X DompAq. We have

pAG ´ λqψK
n “ pA ´ λqψK

n “ pA ´ λqϕn ÝÝÝÑ
nÑ8 0.

Since λ P ρpAGq by Corollary 3.48, we deduce that ψK
n Ñ 0 as n Ñ 8. In particular,

}ϕn ´ ψn}H Ñ 0. But the sequence pψnqnPN is in F which has finite dimension, so it has a
convergent subsequence. This gives a contradiction and proves that λ P σesspAq.
Proposition 3.51. Let A be a selfadjoint operator on H and λ P σesspAq. Let N P N˚ and
ε ą 0. There exists an orthonormal family pϕnq1ďnďN such that

@n P �1, N�, }pA ´ λqϕn}H ď ε.

Proof. ‚ If λ is isolated, it is an eigenvalue of infinite multiplicity, so we can consider an
orthonormal family pϕnq1ďnďN in kerpA ´ λq.
‚ Now assume that λ is not isolated. We fix distinct elements λ1, . . . , λN of σpAq such that,
for all n P �1, N�,

|λn ´ λ| ď ε

2 . (3.6)

Let η Ps0, 1s. Let n P �1, N�. By Proposition 3.50 we can consider ψn P DompAq such that
}ψn}H “ 1 and

}pA ´ λnqψn}H ď η.

We set ϕ̃1 “ ψ1 and for n P �2, N� we define by induction

ϕ̃n “ ψn ´
n´1ÿ

k“1
xϕ̃k, ψnyH ϕ̃k.

‚ We prove by induction on n P �1, N� that there exists a constant Cn ą 0 independant of
η Ps0, 1s such that

}pA ´ λnqϕ̃n} ď Cnη and |}ϕ̃n} ´ 1| ď Cnη. (3.7)

This is clear for n “ 1. Now assume that this holds up to order n ´ 1 for some n P �2, N�.
For k P �1, n ´ 1� we have

pλn ´ λkq xϕ̃k, ψny “ xpA ´ λkqϕ̃k, ψny ´ xϕ̃k, pA ´ λnqψny ,

so, for some C̃k,n ą 0,

|xϕ̃k, ψny| ď Ckη ` p1 ` Ckηqη
|λk ´ λn| ď C̃k,nη.

Then

|}ϕ̃n} ´ 1| ď }ϕ̃n ´ ψn} ď
n´1ÿ

k“1
|xϕ̃k, ψny| }ϕ̃k}

2022-2023 47



M2RI - Spectral Theory and Evolution Equations

and

}pA ´ λnqϕ̃n} ď }pA ´ λnqψn} `
n´1ÿ

k“1
|xϕ̃k, ψny| ` }pA ´ λkqϕ̃k} ` |λk ´ λn| }ϕ̃k} ˘

.

We deduce (3.7). If η is chosen small enough then for n P �1, N� we can set

ϕn “ ϕ̃n

}ϕ̃n} .

Then there exists C ą 0 such that for n P �1, N� and η Ps0, 1s we have

}pA ´ λnqϕn} ď Cη.

It remains to chose η smaller that ε{p2Cq and conclude with (3.6).

3.2.3 Min-max principle
We consider on H a self-adjoint operator A bounded from below.

Proposition 3.52. We have

minpσpAqq “ inf
ϕPDompAqzt0u

xAϕ, ϕyH
}ϕ}2

H
. (3.8)

Proof. We denote by µ1 the right-hand side of (3.8).
‚ Let λ P σpAq. By the Weyl criterion (Proposition 3.50) there exists a sequence pϕnq such
that }ϕn} “ 1 for all n and }pA ´ λqϕn} Ñ 0. This implies in particular

µ1 ď xAϕn, ϕny ÝÝÝÑ
nÑ8 λ,

so µ1 ď minpσpAqq.
‚ Now assume by contradiction that µ1 P ρpAq. We set R “ pA ´ µ1q´1. For η, ψ P H we
set

qpη, ψq “ xRη, ψyH .

For η P H and ψ “ Rη P DompAq we have

qpη, ηq “ xψ, pA ´ µ1qψy ě 0,

so q is a non-negative sesquilinear form on H. Let pψnq be a sequence in DompAq such that
}ψn}H “ 1 for all n P N and

xAψn, ψny ÝÝÝÝÝÑ
nÑ`8 µ1.

For n P N we set ηn “ pA ´ µ1qψn. Then by the Cauchy-Schwarz inequality we have

1 “ }ψn}2
H “ qpηn, ψnq

ď qpηn, ηnq 1
2 qpψn, ψnq 1

2

“ xψn, pA ´ µ1pAqqψny 1
2 xRψn, ψny 1

2

ÝÝÝÝÝÑ
nÑ`8 0.

This gives a contradiction and proves that µ1pAq P σpAq, and in particular µ1pAq ě minpσpAqq.
The conclusion follows.

Theorem 3.53 (Min-max Theorem). Let A be a lower-bounded self-adjoint operator on H.
We denote by pλkqkPN˚,kďN with N P N Y t8u the non-decreasing sequence of eigenvalues
(counted with multiplicities) smaller than inf σesspAq. For n P N˚ (with n ď dimpHq if H is
of finite dimension) we have

inf
FĂDompAq
dimpFq“n

sup
ϕPFzt0u

xAϕ, ϕyH
}ϕ}2

H
“

#
λn if n ď N,

inf σesspAq if n ą N.
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Proof. For n P N˚ we set
µn “ inf

FĂDompAq
dimpFq“n

sup
ϕPFzt0u

xAϕ, ϕyH
}ϕ}2

H
.

‚ We set N “ �1, N� if N P N and N “ N if N “ `8. We consider an orthonormal
family pϕkqkPN such that ϕk P DompAq and Aϕk “ λkϕk for all k P N . For n P N we set
Fn “ spanpϕ1, . . . , ϕnq. We also set η “ inf σesspAq.
‚ Let n P N . Let ϕ P Fn such that }ϕ} “ 1. We can write ϕ “ řn

k“1 αkϕk withřn
k“1 |αk|2 “ 1. Then we have

xAϕ, ϕy “
nÿ

k“1
|αk|2 λk ď λn,

so µn ď λn.
‚ Let F be a subspace of DompAq of dimension n. By Corollary 3.48, the restriction of A to
F K

n´1 is selfadjoint and its spectrum is included in rλn, `8r. There exists ϕ P F X FK
n´1 with

}ϕ} “ 1. For such a ϕ we have xAϕ, ϕy ě λn by Proposition 3.52. This proves that µn ě λn.
Then µn “ λn and the infimum is a minimum.
‚ Now assume that N is finite and consider n ą N . As in the previous step, we see that
µn ě η. Then let ε ą 0. Since η P σesspAq there exists by Proposition 3.51 an orthonormal
family pψkq1ďkďn of vectors in DompAq such that

@k P �1, n�, }ψk}H “ 1 and }pA ´ ηqψk}H ď ε?
n

.

Let ψ P F “ spanpψ1, . . . , ψnq such that }ψ} “ 1. We write ψ “ řn
k“1 αkψk with

řn
k“1 |αk|2 “

1. Then we have

xAψ, ψy ď η ` }pA ´ ηqψ}

ď η `
nÿ

k“1
|αk| }pA ´ ηqψk}H

ď η `
˜

nÿ

k“1
}pA ´ ηqψk}2

¸ 1
2

ď η ` ε.

This proves that
µn ď max

ψPF
}ψ}H“1

xAϕ, ϕyH ď η ` ε.

Finally µn “ η.

Remark 3.54. • Let F be a finite dimensional subspace of DompAq. Since the unit sphere
SF of F is compact and the map ϕ ÞÑ xAϕ, ϕy is continuous on SF, we have

sup
ϕPFzt0u

xAϕ, ϕyH
}ϕ}2

H
“ sup

ϕPSF

xAϕ, ϕyH “ max
ϕPSF

xAϕ, ϕyH “ max
ϕPFzt0u

xAϕ, ϕyH
}ϕ}2

H
.

• Let n P N . We have seen that

inf
FĂDompAq
dimpFq“n

sup
ϕPFzt0u

xAϕ, ϕyH
}ϕ}2

H
“ λn “ sup

ϕPFnzt0u
xAϕ, ϕyH

}ϕ}2
H

,

so the infinimum is a minimum.

• When n ą N , the infimum is not necessarily reached. Consider for instance the usual
Laplacian H0 on Rd. We have min σpH0q “ σesspH0q “ 0 and there is no ϕ P H2pR2q
such that xH0ϕ, ϕy is equal to 0.

This Min-max Theorem has an equivalent Max-min version. See Exercise 3.8. � Ex. 3.8
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Corollary 3.55. Let a ă inf σesspAq. Assume that there exists a subspace V of DompAq of
dimension n P N˚ such that

@ϕ P V, xAϕ, ϕyH ď a }ϕ}2
H .

Then A has at least n eigenvalues (counted with multiplicities) not greater that a.

Proposition 3.56. Let A be a lower bounded selfadjoint operator A on H. Let qA be the
corresponding quadratic form and let VA be the form domain of A (see Definition 3.29).

(i) We have

min σpAq “ inf
ϕPVAzt0u

qApϕq
}ϕ}2

H
. (3.9)

(ii) The right-hand side of (3.9) is a minimum if and only if min σpAq is an eigenvalue,
and in this case the minimizers are the eigenvectors corresponding to the eigenvalue
min σpAq.

Proof. ‚ We set

µ1 “ min σpAq “ inf
ϕPDompAqzt0u

xAϕ, ϕy
}ϕ}2 and µ̃1 “ inf

ϕPVAzt0u
qApϕq
}u}2

H
.

Since DompAq Ă VA and qApϕq “ xAϕ, ϕy for ϕ P DompAq, we have µ̃1 ď µ1. After
translation we can assume that µ1 ą 0. Then by definition of the form domain, DompAq
is dense in VA for the norm defined by qA, so we also have µ1 ď µ̃1. This gives the first
statement.
‚ Now assume that µ1 is an eigenvalue of A. Then for a corresponding eigenvector ϕ we
have

qApϕq
}ϕ}2 “ xAϕ, ϕy

}ϕ}2 “ µ1,

so µ̃1 is a minimum and ϕ is a minimizer. Conversely, assume that ϕ is a minimizer for µ̃1
with }ϕ} “ 1. Let ψ P DompAq. The map

Φ : t ÞÑ qApϕ ` tψq
}ϕ ` tψ}2

H

is well defined for |t| small enough, it is smooth and it reaches its minimum at t “ 0. Thus
Φ1p0q “ 0, which implies that

Re qApϕ, ψq “ µ̃1 Re xϕ, ψy .

Since we can replace ψ by iψ, this gives

@ψ P DompAq, qApϕ, ψq “ xµ̃1ϕ, ψy .

This proves that ϕ P DompAq and Aϕ “ µ̃1ϕ. Then µ̃1 is an eigenvalue of A and ϕ is a
corresponding eigenvector.

Example 3.57. Let Ω be a bounded open set of Rd. We denote by H0 the Dirichlet Laplacian
on Ω (H0 “ ´Δ, DompH0q “ H2pΩq X H1

0 pΩq). The form domain of H0 is H1
0 pΩq and the

corresponding quadratic form is qH0 : u ÞÑ }∇u}2
L2pΩq. We will see in Chapter 4 that H0 has

no essential spectrum. Then by Proposition 3.56 the first eigenvalue of H0 is given by

λ1pH0q “ inf
uPH1

0 pΩqzt0u
}∇u}2

L2pΩq
}u}2

L2pΩq
.

By the Poincaré inequality we have λ1pH0q ą 0.
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3.3 Exercises
Exercise 3.1. Let Ω be an open subset of Rd. We consider on L2pΩq the operators H0 and
H which act as ´Δ on the domains DompH0q “ C8

0 pΩq and DompHq “ H2pΩq. Are H0 and
H symmetric operators ?

Exercise 3.2. Let H1 and H2 be two Hilbert spaces. Let U : H1 Ñ H2 be a unitary
operator. Let A1 be an operator on H1 and A2 an operator on H2. Assume that DompA2q “
UDompA1q and A2 “ UA1U˚. Prove that A1 is selfadjoint on H1 if and only if A2 is
selfadjoint on H2.

Exercise 3.3. Let A be a symmetric operator on the Hilbert space H. Assume that A is
not selfadjoint but RanpA ´ iq “ H or RanpA ` iq “ H. Prove that A has no selfadjoint
extension.

Exercise 3.4. Let m ą 0. We consider the Hilbert space H “ H1pRdq ˆ L2pRdq the
operator

W “
ˆ

0 1
Δ ´ m 0

˙

defined on the domain DompWq “ H2pRdq ˆ H1pRdq. Prove that W is skew-adjoint if H is
endowed with the Hilbert structure corresponding to the norm defined by

}pu, vq}2
H “ }∇u}2

L2pRdq ` m }u}2
L2pRdq ` }v}2

L2pRdq .

Exercise 3.5. Let A0 be the operator of Example 3.30.
1. What is the adjoint of A0 ?
2. Compute kerpA0̊ ´ zq for z P CzR.
3. For u P H2p0, 1q we set

Bu “

¨
˚̊
˝

up0q
u1p0q
up1q
u1p1q

˛
‹‹‚.

Prove that there exists a matrix M P M4pCq (to be explicited) such that an operator A is a
selfadjoint extension of A0 if and only if there exists a subspace F of C4 such that MF “ F K
and

A “ ´ d2

dx2 , DompAq “ �
u P H2p0, 1q : Bu P F

(
.

4. Give some examples of selfadjoint extensions of A0 ?

Exercise 3.6. Give an example of an operator A and λ P C such that λ P σpAq but there is
no corresponding Weyl sequence.

Exercise 3.7. We consider the Laplacian H “ ´Δ on L2pRq, with domain H2pRq. Let
λ ą 0. Construct a sequence pϕnq in H2pRq such that }ϕn} “ 1, }pH ´ λqϕn} Ñ 0 and ϕn

goes weakly to 0 in L2pRq.
Exercise 3.8. Prove the following version of the Min-Max Theorem. Let A be a self-adjoint
operator on H. Assume that A is semi-bounded from below. For n P N˚ (with n ď dimpHq
if H is of finite dimension) we set

µnpAq “ sup
ϕ1,...,ϕn´1PH

inf
ϕPspanpϕ1,...,ϕn´1qK

ϕPDompAqzt0u

xAϕ, ϕyH
}ϕ}2

H
.

The sequence pµnqnPN˚ is non-decreasing and for n P N˚ one of the following statements
hold.

(i) µnpAq ă inf σesspAq and µn is the n-th eigenvalue of A counted with multiplicities,

(ii) µnpAq “ inf σesspAq.
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