Chapter 2

Spectrum of general
(unbounded) operators

[Draft version, November 21, 2022]

2.1 Unbounded operators - Spectrum

Let E and F be two Banach spaces.

2.1.1 Definitions and examples

Definition 2.1. A linear operator (or unbounded operator) from E to F is a linear map A
from a linear subspace Dom(A) of E (the domain of A) to F. An operator on E is an operator
from E to itself.

Definition 2.2. We say that the operator A is densely defined if Dom(A) is dense in E.

Ezample 2.3. A bounded operator A € L(E,F) is a particular case of unbounded operator
with Dom(A) = E.

Ezample 2.4. Let (Q, 1) be a measure space. Let f be a measurable function on Q. We
consider on L?(€2, 1) the multiplication operator
My : ¢ — fo,
defined on the domain
Dom(My) = {p e L*(Q) : foe L*(Q)}. (2.1)

Remark 2.5. One has to be careful when dealing with unbounded operators. For instance,
if Ay and As are two operators on E, then the sum A; + As is only defined on the do-
main Dom(A4;) n Dom(Az) (which can be {0}) and the composition Ay o A; is defined on
{x € Dom(A;) : A;p € Dom(As)}.

Definition 2.6. Let A and B be two linear operators from E to F. We say that A is an
extension of B and we write B A if Dom(B) c Dom(A) and Ap = By for all p € Dom(B).

Example 2.7. Let © be an open subset of RZ. Let f be a continuous function on €. We can
define My on L?(Q) as above (with domain (2.1)). We can also define M)? by M})u = fu for
u € Dom(M?) = Ci°(Q). Then we have M} < M;.

Ezample 2.8. Let Q be an open subset of class C2 in R%. We denote by Hy, H, Hp and Hy
the operators on L?(£2) which are all equal to —A, but defined on different domains:

+ Dom(Hy) = CF (%),
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« Dom(H) = H?*(Q),
o Dom(Hp) = H*(Q) n H} (),
« Dom(Hy) = {ue H*(Q) : d,u =0 on 0Q}.

These four operators are densely defined. Moreover we have Hyo  Hp < H and Hy c Hy ©
H.

Definition 2.9. Let A be an operator from E to F. The graph of A is
Gr(A) = {(v, Ap), o € Dom(A)} < E x F.

Remark 2.10. If A and S are two linear operators from E to F then S < A if and only if
Gr(S) c Gr(A4).

Definition 2.11. Let A be an operator on E. We define on Dom(A) the graph norm by

2 2 2 2
[l == (e, Ap)lexe = |A@lE + liele -

Remark 2.12. If A € L(E) then the graph norm is equivalent to the original norm on E.

Ezample 2.13. We consider on L?(R?) the Laplace operator H = —A, with domain Dom(H) =
H?(R?). Then the graph norm of H is equivalent to the usual Sobolev norm:

2 2 2
|=Aulzegay + [ulz2@ay = lulkz@a) -

This is not the case on any open subset  of R%.

2.1.2 Spectrum of unbounded operators

Definition 2.14. Let A be a linear operator from E to F. We say that A is invertible (or
that it is boundedly invertible, or that it has a bounded inverse) if there exists B € L(F,E)
such that Ran(S) ¢ Dom(A), BA = Idpom(a) and AB =1dg. In this case we write B = A~

Remark 2.15. Notice that if A is invertible then it is a bijective map from Dom(A) to F. But
if Dom(A) # E then A~! is only a right inverse of A.

Remark 2.16. If A is injective we can always define an (unbounded) inverse A~!, even if A is
not surjective. We define A~! as an operator from F to E with domain Dom(A~!) = Ran(A)
and we have A71A = Idpom(a)s AATL = Idran(a)- We will never consider unbounded inverses
in this course.

Definition 2.17. Let A be an operator on E. Then X\ € C belongs to the resolvent set p(A)
of A if A— X is invertible (according to Definition 2.1/, this means that (A — \) is bijective
as a map from Dom(A) to E and its inverse (A—\)~!: E — Dom(A) < E defines a bounded
operator on E). The spectrum o(A) is the complementary set of p(A) in C.

Definition 2.18. Let A be an operator on E. We say that A € C is an eigenvalue of A if
there exists o € Dom(A)\ {0} such that Ap = Ap. Such a ¢ is an eigenvector associated to
the eigenvalue A. The geometric multiplicity of A is the dimension of ker(A — X). We denote
by op(A) the set of eigenvalues of A.

As for bounded operators, we have o,(A) < 0(A) but the inclusion can be strict.

Ezxample 2.19. Let M, be the multiplication operator defined in Example 2.4. Let z € C.
Then, as in the bounded case, z € (M) if and only if

Ve>0, p({zeQ: |w() -z <e}) >0,
and z € 0,(My) if and only if

p({zeQ: jw(x)—z[=0}) >0,
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Ezample 2.20. o Let E = L2(R?) and Ay = —A with Dom(4,) = CF(R?). Then for any
z € C we have Ran(4y — 2z) = C(R?) so Ay — z cannot be invertible. This proves that
O'(Ao) =C.

e Now we consider A = —A with Dom(A) = H?(R%). Then o(A) = R and for z € C\R,.

we have

1

—1 = T
[(A =27 22 ay) = dist(z,R4)’

Indeed, if we denote by F the Fourier transform on L?(R%), then F is a unitary operator.
Then (—A — 2) is invertible if and only if F(—A — 2)F~! = M — z is invertible on L?(R%),
where M = F(—A)F~! is equal to the multiplication operator M, for w : £ |£|2. Thus
o(A) = o(M,) =R, and for z € C\R; we have

[CA =27 oy = 1771 =27 F | oy = 1O =27 g
1
~ dist(z,Ry)’

2.1.3 Basic properties of the spectrum and the resolvent

Proposition 2.21. Let A be an operator on E and z € C. Assume that there exists a sequence
(¢n) in Dom(A) such that |py|g =1 for alln e N and

I(A = 2)¢nle 0.

n——+0o0

Then z € o(A).
Proof. Assume that z € p(A). Then

lenle < (4~ 27| e, 14 — 2)pnlle ——— 0.

n—+o0

This gives a contradiction. O

Ezample 2.22. An unbounded operator can have an empty spectrum (compare with Propo-
sition 1.21). We consider on L?(0, 1) the operator

A=20,
defined on the domain
Dom(A) = {ue H'(0,1) : u(0) = 0}.

Then o(A) = &.
Indeed, for z € C we define R, : L?(0,1) — L?(0,1) as follows. For f e L?(0,1) and
x € [0, 1] we set

(R.)) - | "o 1) dy.

We can check that R, defines a bounded inverse for (A — z), which proves that z belongs to
p(A). Notice that we can replace H'(0,1) and L?(0,1) by C*([0,1]) and C°([0, 1]).
Proposition 2.23. Let A be a closed operator on E.
(i) For ¢ € Dom(A) and z € p(A) we have (A — 2)"1Ap = A(A — 2)"Lo.
(ii) The resolvent set p(A) of A is open (and, equivalently, its spectrum o(A) is closed).
Moreover, for zy € p(A) the disk D(z, (A — zo)_luz(lE)) is included in p(A), which

implies
1

A—2)t > —.
[(A=2)7 g dist(z, o (A))
(iii) The resolvent Ra : z — (A — 2)~! is analytic on p(A) and Ry = R?.
(iv) For z1, 29 € p(A) we have the resolvent identity
(A—Z1)_1 —(A_ZQ)_l = (Z1 —Zg)(A—Z1)_1(A—ZQ)_1 = (Z1 —Zg)(A—Zg)_l(A—Zl)_l.
In particular, (A — 21)~1 and (A — 29)~' commute.

The proofs are the same as for the bounded case.
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2.2 Closed operators

2.2.1 Closed operators

Proposition-Definition 2.24. Let A be an operator E. We say that A is closed if the
following equivalent assertions are satisfied.

(1) If a sequence (y,), cy € Dom(A)N is such that ¢, goes to some ¢ in E and A, goes to
some 1 in F, then ¢ belongs to Dom(A) and Ap = 1);

(ii) Gr(A) is closed in E x F;
(ili) Dom(A), endowed with the norm |-|| 4, is complete (hence a Banach space).

Remark 2.25. Let A be a closed operator on £. Then A defines a bounded operator from
the Banach space Dom(A) to E.

Ezxample 2.26. A bounded operator is closed.

Ezample 2.27. o We consider on L?(R) the operator A defined on the domain Dom(A) =
CE(R) by (Au)(x) = 2?u(x), x € R. We define v : R — R by v(z) = (1 + 22)72. Let
X € CP(R,[0,1]) be equal to 1 on [—1,1]. For n € N* and = € R we set x,,(z) = x(z/n).
Then x,v goes to v in L?(R), x,v € Dom(A) for all n € N* and A(x,v) has a limit in
L?(R). However v does not belong to Dom(A). This proves that A is not closed.

2

e« We now consider the operator A : u — x°u on the domain

Dom(A) = {ue L*(R) : z°ue L*(R)}.

Assume that (up)nen is a sequence in Dom(A) which goes to some u in L?(R) and
such that Au, has a limit v € L?(R). The function 2?u belongs to L% (R) and for all
¢ € CFP(R) we have

J 2?u(z)p(z)dz = lim 22u, (2)o(z) dz = f v(z)o(x) de.
R

n—+00 R R

This proves that 2?u(z) = v(z) for almost all € R. In particular, u € Dom(A) and
Au = v. This proves that A is closed.

Ezample 2.28. The Laplace operator A = —A with Dom(A) = C§°(R?) is not closed in
L2(RY). Let u e H*(RY)\CF (R?) and let (u,)nen be a sequence in C5°(R?) which goes to u
in H2(R%). Then u,, goes to u in L?(R%), the sequence (Auy, )nen has a limit in L2(R9) but
u ¢ Dom(A). This proves that the Laplace operator is not closed if the domain is C§°(R?).
However it is closed with domain H?(R?).

Ezxample 2.29. This example generalizes Examples 2.27 and 2.28. Let 2 be an open subset
of R%. Let m € N and consider smooth functions b,, on €2 for all a € N¢ such that |a| < m.
Then we consider the differential operator

P= ) ba(x)ds. (2.2)

lal<m
We denote by P* the formal adjoint of P, defined for ¢ € C°(€2) by

Po= 3 (0G0 - X (09 Y (5@ e

lal<m laj<m B<a

Given u € L?(Q), we have Pu € L?(Q) (in the sense of distributions) if and only if there
exists v € L?() such that

Vo e CF(Q), L uP*¢dx = J vodz,

Q

and in this case we write Pu = v.
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We define an unbounded operator A on L?(Q2) by setting Au = Pu for any u in the
domain

Dom(A) = {ue L*(Q) : Pue L*(Q)},

where Pu is understood in the sense of distributions. This operator A is closed. Indeed, let
(un) be a sequence in Dom(A) such that u,, goes to some u and Au,, goes to some v in L?(12).
For ¢ € C3°(§2) we have

JQ u(z)(P*¢)(z) dz = lim | w,(x)(P*¢)(x)de = lim | (Puy)(z)p(z)dz

n—o0 Q n—aoo0 Q
= lim | (Au,)(2)¢(z)dx = J v(z)p(x) da.
This proves that in the sense of distributions we have Pu = v € L?(Q). Therefore u € Dom(A)
and Au = v. This proves that A is closed.

2.2.2 Spectrum of closed operators

Remark 2.30. Let A be an operator from E to F, with domain Dom(A4). Assume that A
has a bounded inverse A= € £L(F,E). Then A~! is closed, which implies that A is closed
(Gr(A) is closed in E x F if and only if Gr(A~1) is closed in F x E). We can also give a direct
proof. Assume that (¢,) is a sequence in E such that ¢, has a limit ¢ in E and Aep,, has
a limit ¢ in F. Then Ay, — ¢ and A=*(Ap,) — ¢. Since A~! is closed, this implies that
) € Dom(A™!) = F (nothing new here) and ¢ = A7), so p € Ran(4~!) = Dom(A) and
Ap = 1. This proves that A is closed.

In particular we have the following result.
Proposition 2.31. Let A be an operator on E. If A is not closed then p(A) = (.
This is why we will only consider the spectral theory of closed operators.

Proposition 2.32. Let A: Dom(A) € E — E be a closed operator. Then X € C belongs to
the resolvent set p(A) of A if and only if A — X : Dom(A) — E is bijective.

Proof. We already know that if A € p(A) then A — X\ : Dom(A4) — E is bijective. Conversely,
assume that (A — )) is bijective. Since it is closed, Dom(A) is a Banach space and (4 —\)~!
belongs to L(E,Dom(A)), hence to L(F,E), by the open mapping theorem (see Theorem
A2). O

Remark 2.33. A closed operator can have empty resolvent set (see Exercise 2.7).

Proposition 2.34. Let A be an operator on E. Let z € C. Assume that there exists cg > 0
such that
Ve e Dom(4), (A —2)ple = colele- (2.4)

We say that z is a reqular point of A. Then
(i) (A = z) is injective ;
(ii) If (A — z) is invertible then |[(A— X7 < gt
(iii) If moreover A is closed, then (A — z) has closed range.

This means that if z is a regular point of A, then z € p(A) if and only if Ran(A — z) is
dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We prove the last statement. Let (1,,) be a sequence in Ran(A — z) which converges
to some v in E. For n € N we consider ¢,, € Dom(A) such that (A — 2)¢, = 1,. Since
((A — 2)py) is a Cauchy sequence, so is (¢y,) by (2.4). Since E is complete, ¢, converges to
some ¢ in E. Finally, since A is closed, ¢ € Dom(A) and ¥ = (A — z)p € Ran(A — z). This
proves that Ran(A — z) is closed in E. O
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2.2.3 Closable operators

We have seen in Examples 2.27 and 2.28 that an operator which is not closed can be closed
if it is defined on a bigger domain.

Definition 2.35. We say that on operator A is closable if it has a closed extension.
Of course, a closed operator is closable.
Proposition 2.36. Let A be an operator from E to F. The following assertions are equivalent.
(i) A is closable;

(ii) If (¢n)nen is a sequence in Dom(A) such that ¢, — 0 in E and Ap,, has a limit ¢ in
F, then ¢ = 0;

(iii) Gr(A) is the graph of a closed operator A from E to F.

Definition 2.37. If the assertions of Proposition 2.36 are satisfied, then the closure of A is
the operator A such that Gr(A) = Gr(A).

Proof. e Assume that A is closable and let A be a closed extension of A. Let (,) be a
sequence in Dom(A) such that ¢, — 01in E and Ap,, — ¢ in F. Then (y,,) is also a sequence
in Dom(A) and Ay, — . Since A is closed we have 1) = A0 = 0.

e Now assume that if a sequence (¢, )nen in Dom(A) is such that ¢,, — 0 in E and A¢p,, has

a limit ¥ in F, then we necessarily have 1) = 0. We denote by Dom(A) the closure of Dom(A)
for the graph norm. Let ¢ € Dom(A) and let (¢,,) be a sequence in Dom(A) which goes to ¢
for the graph norm. Then (Ag,,) is a Cauchy sequence in F, and we denote by Ay its limit.
This definition does not depend on the choice of the sequence (¢,,) since if (¢,) is another
sequence which goes to ¢ for the graph norm, we have ¢,, — (, — 0 and Ay, — A(, has a
limit, so this limit is 0. This defines a linear map A from Dom(A) to F, so A is an extension
of A.

By definition we have Gr(A) < Gr(A). Now let (p,1) € Gr(A). There exists a sequence
(@n,¥n) in Gr(A) such that ¢, — ¢ in E and v,, = Ap,, — @ in F. By definition of A we
have ¢ € Dom(A) and ¢ = Ay, so (p,1)) € Gr(A). This proves that Gr(A) = Gr(A). Since A
has a closed graph, this is a closed operator and (iii) is proved.

e Finally, assume (iii). Since Gr(A4) < Gr(A4), A is an extension of A, so A is a closed
extension of A and (i) holds. O

We have already seen examples of operators which are not closed but closable. Here is
an example of operator which is not closable.

Ezample 2.38. We consider on L?(R?) the operators Hy and H which acts as —A on the
domains
Dom(Hy) = CP(R?) Dom(H) = H*(R?).

Then H = H,.

Ezample 2.39. We consider the operator A from L?(R) to C defined on Dom(A) = C$°(R)
by Au = u(0). Then there exists a sequence (un)nen in C°(R) such that u, — 0 in L*(R)
but u,(0) — 1 in R, so A is not closable.

Proposition 2.40. If A is a closable operator, then A is the smallest closed extension of A
(if B is a closed extension of A we have A < B or, equivalently, Gr(A) < Gr(B)).

Proof. Let B be a closed extension. Then Gr(B) is closed and contains Gr(A), so it contains
Gr(A) = Gr(A). O

Definition 2.41. Let A be a closed operator from E to F. Let D be a linear subspace of
Dom(A). We say that D is a core of A if Ajp is closable and % = A. Equivalently, D is
dense in Dom(A) for the graph norm, or for any ¢ € Dom(A) there exists a sequence (p,,) in
D such that @, — ¢ in E and Ap,, — Ap in F.

Ezample 2.42. We consider on L?(RY) the Laplacian A = —A, Dom(A4) = H?(RY). Any
subspace D of H?(R?) which contains C§°(R?) is a core of A.
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2.3 Adjoint of an unbounded operator

Let H1 and Hsy be Hilbert spaces.

2.3.1 Definition and properties
Definition 2.43. Let A be a densely defined operator from Hi to Hs. Let 1 € Hy. We say
that v belongs to Dom(A*) if there exists * € Hy such that

VQO € Dom(A), <A§07 w>’}{2 = <<)07 w*>’H1 .

In this case ¥* is unique and we set A*y = *. This defines an operator A* from Ha to Hy
with domain Dom(A*). We say that A* is the adjoint of A.

By definition, we have

V¢ € Dom(A), Vi € Dom(A*), <A907¢>H2 = (p, A*¢>H1 :

Notice that if A is not densely defined, then A*v is not uniquely defined. We will never
consider this situation.

Remark 2.44. Let A be a densely defined operator from H; to Ho and ¢ € Ho. By the Riesz
representation theorem, we see that 1 belongs to Dom(A*) if and only if there exists C' > 0
such that

Vo € Dom(A), ‘<As0ﬂ/}>7{2‘ < Cllely, -

Moreover, in this case we have [A*)[,, < C.

Proposition 2.45. Let A and B be two densely defined operators from Hy to Ha such that
B c A. Then A* c B*.

Proposition 2.46. Let A be a densely defined operator from Hy to He. Then we have
ker(A*) = Ran(A)t, ker(4*)% = Ran(A).
Proposition 2.47. Let A be a densely defined operator from Hi to Ha. Then A* is closed.

Proof. Let (1,) be a sequence in Dom(A*) such that 1, goes to some ¢ in Hq and A*i),
goes to some (¢ in H;. For ¢ € Dom(A) we have

(A V3, =P O, = i (AR Py, = (s A )y, = 0.

This proves that ¢ € Dom(A*) and A*y = ¢. Thus A* is closed. O

Proposition 2.48. Let A be a densely defined operator from Hi to Ha. Then A is closable

if and only if Dom(A¥*) is dense in Ha. Moreover, in this case we have (A)* = A* and
A = (A*)*. In particular, A is closed if and only if A = (A*)*.

We can write A** instead of (A*)*.

Proof. ¢ We define
@.{ HixHy —  Hox Hy,

(x1,22) +— (—x2,21).
Then ©* :~@_1 (Y2, 1) — (Y1, —Y2).
o Let (¢,9) € Hy x Hi. We have
(¥, 1) € Gr(A*) <= VYp € Dom(A4), —(Tp, 1)y, +{p,¥),, =0
— VpeDom(4), (O(p, Ap), (¢, )4y, =0
— (¢, ) € (BGr(A))*,

SO

Gr(A*) = (OGr(A4))" = ©(Gr(A)"). (2.5)

2022-2023 23

22 Ex. 2.9

& FEzx. 2.10



& Ex. 2.11

& Ex. 2.12

M2RI - Spectral Theory and Evolution Equations

Then

Gr(A*)t = ©Gr(A) = ©Gr(A).
After composition by ©* we get
Gr(A) = 0*(Gr(4%)4). (2.6)

e Assume that Dom(A*) is dense in Ha. Then we can define A** = (A*)*. By Proposition
2.47, this defines a closed operator from H; to Ha. Let ¢ € Dom(A). For all ¢ € Dom(A*)
we have

(A%, ) = (P, Ap),

so ¢ € Dom(A**) and A**¢p = Ap. This proves that A** is an extension of A, and in
particular A is closable.
e Now assume that A is closable and let 1) € Dom(A*)*. Then, by (2.6),

(0,9) = ©%(=4,0) € ©*(Gr(A*)") = Gr(A) = Gr(A).
so 1 = 0. Thus Dom(A*) is dense in Hz. Moreover, by (2.5) applied with A we have

Gr((A)*) = O(Gr(A)*) = O(Gr(A)) = O(Gr(A)Y) = Gr(A*).

This proves that (A)* = A*. Since A* is densely defined, we can consider its adjoint A**.
By (2.5) applied first to A* (with © replaced by —©*) and then to A, we have

L

Gr(A**) = ©% (Gr(A*)1) = ©* ((0Gr(A) ") = (Gr(A)

)" = Gr(4) = Gr(4).
This proves that A** = A, O

Proposition 2.49. Let A be a closed and densely defined operator from Hi to Ha. Then
A* . Dom(A*) — Hq is bijective if and only if A : Dom(A) — Hy is bijective, and in this
case we have (A*)~t = (A71)*.

Proposition 2.50. Let A be a closed and densely defined operator on H. We have

o(A%) = o(A).
2.3.2 Examples: adjoints of some differential operators
General differential operators with smooth and bounded coefficients

Let © be an open subset of R%. We define on H = L?(Q) the operator Ay which acts as
the differential operator P (see (2.2)) on the domain Dom(A4g) = C(2). Then v € L*(Q)
belongs to Dom(A{) if and only if there exists w € L?(2) such that

VoeCE(®). | Pods - f o(x)wlz) dr.

By definition, this means that P*v = w (see (2.3)) in the sense of distributions. Then A{
acts as P* on the domain

Dom(A§) = {ve L*(Q) : P*ve L*(Q)}.

Then Ay is closed by Proposition 2.47 or by Example 2.29. The domain of A} contains
C§ (), so it is dense. By Proposition 2.48 this implies that Ag is closable. This is consistent
with the fact that we already know by Example 2.29 that A, has a closed extension. Notice
that Ap may have several closed extensions (see for instance the discussion of Section 3.1.5).
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The Laplace operator

As a particular case, we consider the Laplace operator. We define the operators which acts
as —A on the domains

Dom(Hg) = C () and Dom(H) = {ue L*(Q) : Aue L*(Q)}.

When Q = R?, the domain of H is just H%(R%). We recall that this is not true for a general
Q (it can happen that u € L?(Q) , Au € L?(Q) but u is not in H?(1)).

Since the formal adjoint of the Laplacian is the Laplacian itself we have in general Hf =
H. Since Hy ¢ H we have H* < Hf = H by Proposition 2.45.

When Q = R? we actually have H* = H. This follows from the fact that H = Hy
and Proposition 2.48. We can also give a direct proof. Let 1) € Dom(H¥) = H?(R?). For
¢ € Dom(H) = H%(R?) we have by the Green formula

(He, by = (=Dp, ) = {p, =AP) = {p, Hi ),

so ¢ € Dom(H). In general, since functions in Dom(H) or Dom(H{) are not necessarily in
H?(Q), we cannot apply the usual Green formula.

In dimension 1, it is still true that Dom(Hg) = H?(Q). And we can see that in general
we do not necessarily have H* = H¥. We consider the case 2 =]0, 1[. Let v € Dom(H*) and
w = H*v. For all u € Dom(H) = H?(0,1) we have

_fo U”(:v)@dx = (Hu, U>L2(o,1) =y, w>L2(0,1) = L u(z)w(z) dz.

On the other hand, since v € Dom(A#) = H?(0,1) we also have by the Green formula

1 1
fj u(z)"v(z)de = —u'(1)v(1) + o/ (0)v(1) + J o (z)v'(z) dz

0

This implies that w = —v” and v(0) = v(1) = v/(0) = v/(1) = 0. Then Dom(H{) is not
included in Dom(H*).

Creation and annihilation operators

We consider on H = L2(R) the creation and annihilation operators defined on the domain
Cg°(R) by

u' + au —u' + zu

NG and cou = NG

Vue CP(R), apu=
Then we set
a=3; and c=7¢.

We have
Dom(a) = {ue L*(R) : v’ + zue L*(R)}, Dom(c) ={ue L*(R) : —u’ +2ue L*(R)}.

Finally we have

a* =c and c*=a.

2.4 Example: the harmonic oscillator

We consider on L?(R) the operator H which acts as

2

d

on the domain
Dom(H) = {ue L*(R) : —u" +z’ue L*(R)}. (2.8)
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Proposition 2.51. The spectrum of H consists of a sequence (A;)ren of simple eigenvalues.
Moreover, for k € N* we have

A = (Zk + 1)
and a corresponding eigenfunction is given by

22

or(x) = hi(z)e™ 7,
where hy(x) = is the k-th Hermite polynomial (in particular it has degree k).

Proof. ¢ We recall that we have introduced the operators a and c is Section 2.3.2. We
observe that for u € S(R) we have

Hu = 2cau + u.
We also have [a, c]u = acu — cau = u so, by induction on k,

achu = k" 1u + Fau. (2.9)

12
e We set po(x) = e z. We have ¢y € S(R) and apg = 0, so Hpg = po. For k € N* we set
o1 = cFpy. We can check by induction on k € N that ¢, is of the form ¢, = Pypq where P,
is a polynomial of degree k. In particular ¢ € S(R). We have

Hy, = 2cac® oy + ¢r, = 2kcpg + 2" Lapg + ¢ = (2k + 1) g

This prove that Ay = 2k + 1 is an eigenvalue of H and ¢y is a corresponding eigenfunction.
e We prove by induction on j € N that for all & > 0 we have {g;, pr) = 0. Since c* = a, we
have

(pjyony = (o, Fpgy = (@I g, o) .

Since apo = 0 the conclusion follows if j = 0. For j > 1 we have by

<akcjg00, 900> =7 <ak71cj71<p0, gpo> + <ak*1cja<po, <P0> =0.

This proves that the family of eigenvectors (g )ken is orthogonal in L?(R).

e Let us prove that the family (o) is total in L?(R). This means that span((ox)ren) =
L?*(R). Let u e L%(R) be such that (ypy, u)p2gy = 0 for all k € N. Since Py, is of degree k for
all k, we deduce that for any polynomial q we have

JR q(z)e” Tu(z)dz = 0.

For ¢ € C we set
v(() = J e*”&u(x)efé dz.
R

By differentiation under the integral sign we see that v is holomorphic in C and for m € N

we have

22

0™ (0) = J (—iz)"u(x)e” 7 da = 0.
R
This implies that v = 0 on C, and in particular in R. Thus the Fourier transform of x —

22
u(z)e” 7 is 0, so u = 0 almost everywhere.
For k € N we set

P = &_

lxll
Then (¢%) is a Hilbert basis of L?(R), and Hy = Aty for all k. Thus the spectrum of H
is exactly given by the sequence (Ay),cy of simple eigenvalues. O
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2.5 A representation theorem

2.5.1 The abstract result

Let H be a Hilbert space. We identify H with its dual H’. Then if V is another Hilbert space
continuously embedded in ‘H we have

VcH~H V.
Notice that if we have already identified H with H’ we cannot identify V with V.

Theorem 2.52 (Representation theorem). Let H and V be two Hilbert spaces such that V
is densely and continuously embedded in H. Let q be a continuous and coercive sesquilinear
form on V. We set

Dom(A) = {p eV : 3C, > 0,V € V,|q(w, )| < Cy |¥] 4},
and for ¢ € Dom(A) we define Ap € H by

VeV, alp,v) = (Ap, ¥y,
This defines on H an operator A with domain Dom(A) such that
(i) Dom(A) is dense in'V and in H ;
(ii) A is closed ;
(iif) A is invertible.
Moreover, the operator on H associated to the form q* is A*.

Proof. e Let ¢ € Dom(A). The map ¢ — q(ip, ) extends to a bounded semilinear form on
H. Then, by the Riesz theorem, there exists a vector Ap € H such that q(p,) = (Ap, ),
for all ¢ € V. This defines on H an operator A with domain Dom(A) (the linearity of A is
left as an exercise).

e Let ( € H. The map ¢ € V — ((,v),, is a continuous semilinear map on V so, by the
Lax-Milgram theorem, there exists ¢ € V such that

V¢ € Va <<7 w>’H = q(@? 1/’)

Then we have ¢ € Dom(A) and Ap = ¢. This proves that A is surjective.
e For ¢ € Dom(A) we have

2 o 2
[ Al 2l = [CAG, 03] = lale, @)l = alely, = a7 el ,
where C' > 0 is such that WH?{ <C Hz/JHi for all ¢ € V. Thus,
|4l = aC o]y, (2.10)

This proves in particular that A is injective. Since A is surjective, it is invertible and
HA*1”£(H) < o~ 'C. This implies that A is closed (see Remark 2.30).

e Let ¢ €V bein the orthogonal of Dom(A) in V. Let T € L(V) be given by the Lax-Milgram
Theorem (Theorem 1.59). Since T* is bijective, there exists ¢ € V such that T*( = ¢. Then
for all ¢ € Dom(A) we have

0= {p, )y ={p, T*Oy, = (T, Oy = alip, ) = (Ap, Oy -

Since A is surjective, this implies that ¢ = 0, and hence 1) = 0. Then Dom(A) is dense in V
for the topology of V, and hence for the topology of H. Since V is dense in H, Dom(A) is
also dense in H.

e We denote by A the operator associated to q*. Since ¢* is continuous and coercive, A

is also a densely defined, closed and invertible operator on H. Let ¢» € Dom(A). For all
¢ € Dom(A) we have

(Ap, ) = q(p, ) = q* (¥, ) = (AY, ) = (p, AY).
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This proves that A c A*. Conversely, if ¢» € Dom(A*) then for all ¢ € Dom(A) we have

la* (v, 0)| = la(e, ¥)| = KAp, )l = [{p, A%l < [A%Pllyy ol -

Since Dom(A) is dense in V and H, we deduce that for all ¢ € V we have

ja* (@, )= A%l ol
so 1) € Dom(A). This proves that Dom(A*) c Dom(A), so A = A*. O

Remark 2.53. Let q be a continuous quadratic form on V. Assume that there exists 5 € C
such that the form qg : ¢ — q(¢) + B¢y is coercive on V. Let Ag be the operator on H
given by Theorem 2.52 and A = Ag — § with Dom(A) = Dom(Ag). Then A is closed and
densely defined, and (A + ) is invertible. Notice that this definition of A does not depend
on the choice of 5.

Remark 2.54. Let q be a continuous coercive quadratic form on V and @ € £(V, V') defined
by (1.8) (invertible by Theorem 1.59). Let A the operator on H be given by Theorem 2.52.
Then for all o € H < V' we have QLo = A~ 1.

2.5.2 Examples: Laplacian, Dirichlet and Neumann boundary con-
ditions

Ezample 2.55. We consider on H'(R) the quadratic form
q:u— Hu‘ﬁ{l(ﬂ{) :
We apply Theorem 2.52 with V = H*(R) and H = L?(R). We have
Dom(A) = {ue H'(R) : v" € L*(R)} = H*(R).

Indeed, if u € H?(R) then for all v € H'(R) we have

< (" + ul) o]

lg(u,v)| = ‘—f u”idx—!—J uv dz
R R

so u € Dom(A). Conversely, assume that u € Dom(A). Then for all v € H!(R) we have

J w7 dz
R

This proves that u” € L?, and hence u € H?(R). Finally, for u € Dom(A) we have

< lg(u, )| + Jlul v < (Cu + [Jul) o] -

Voe H'Y(R), {Au,v) = q(u,v) = (—u" +u,v),

)
Au = —u" +u.

Example 2.56. We consider on H'(0, 1) the quadratic form
2
qn *u— HUHHl(o,l) :

We apply Theorem 2.52 with V = H'(0,1) and H = L2(0,1). We denote by Ay the
corresponding operator. Let u € Dom(Ay). For all ¢ € C°(]0,1[) = H'(0,1) we have as

above )
f WP dx
0

< (Cu+ Jul) 4] -

This implies that ” € L?(0,1). Then for all ¢ € C§°(]0, 1[) we have

o 1
(Anu,8) = qn(u, 6) = fo W3 da + fo wgde = (" +u, ).
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This proves that Axyu = —u” + u. Then for all v e H'(0,1) we have

1 1

u'v' dz + fo wodz =o' (1)5(1) — ' (0)9(0) + (—u" + u,v)

(Anu,v) = gy (u,v) = f

0

This proves that for all v e H(0,1)
o' (1)9(1) — ' (0)v(0) = 0.

This implies that
v (0) = /(1) = 0. (2.11)

Conversely, assume that v € H?(0,1) satisfies (2.11). Then we can compute as above that
Yve HY(0,1), q(u,v) = <—u" + u,v>.
Then v € Dom(Ay). Finally we have
Dom(Ay) = {ue H*(0,1) : u/(0) = /(1) = 0}

and, for all u € Dom(Ay),
ANU = —’LL” + u.

Example 2.57. We consider on H{(0,1) the quadratic form
2
dp - u = HUHHI(U,U :

We apply Theorem 2.52 with V = H(0,1) and H = L?*(0,1). We denote by Ap the
corresponding operator. Let u € Dom(Ap). As above we see that u € H2(0,1) and Apu =
—u” +u. On the other hand, if u e H?(0,1) n H}(0, 1) we have q(u,v) = {(—u" + u,v) for all
v e H}(0,1) (there are no boundary terms since u and v vanish at the boundary). Finally
we have

Dom(Ap) = H?(0,1) n H3(0,1),

and for all u € Dom(Ap)
Apu=—u" +u.

Example 2.58. By Remark 2.53 we can define the operators associated to the form

1
u— J lu(z)]* dz
0

defined on H*(R) and H'(0,1) (note that this form is already coercive on Hg(0,1)).

2.6 Riesz projections

2.6.1 Separation of the spectrum

The interest of the resolvent is that it is a bounded operator which completely characterize
the operator. Moreover, since it is analytic, we can use all the tools from complex analysis.
In the following section we give a first application of the resolvent for the analysis of an
operator.

Let E be a Banach space.

Proposition 2.59. Let A be an operator on E. Let II be a projection of E such that
IIA c AIl

(for all ¢ € Dom(A) we have Iy € Dom(A) and Allp = IMAyp). Let F = Ran(Il) and
G = ker(II).

(i) F and G are closed subspace of E and E = F® G.
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(ii) A maps Dom(A)NF to F and Dom(A)nG to G. We denote by A and Ag the restrictions
of A to F and G, with Dom(Af) = Dom(A) n F and Dom(Ag) = Dom(A) n G.

(iii) If Dom(A) is dense in E then Dom(Ag) is dense in F and Dom(Ag) is dense in G.

(iv) If A is closed then Ag and Ag are closed.

(v) We have o(A) = o(Af) v o(Ag) and for z € p(A) = p(Ar) N p(Ag) we have
(A-2)'=(Ar—2) '@ (4 —2) "

Proof. e G is closed since it is the kernel of the bounded operator II, and F is closed since
it is the kernel of (1 —1II). Let ¢ € Fn G. We have ¢ = IIp = 0, so Fn G = {0}. On the other
hand, for ¢ € E we have ¢ = Ap + (p — Ap) with Ape F and p — Ap e G, s0 E=F + G.

e For ¢ € Dom(A) n F we have [TAp = Allp = Ay, so Ap € ker(1 — II) = F. We proceed
similarly for G = ker(II).

e Assume that Dom(A) is dense in E. Let ¢ € F. There exists a sequence (¢,) in Dom(A)
which converges to ¢ in E. For n € N we have Ilp,, € Dom(A) by assumption. Then
Iy, € Dom(A) N F converges to Iy = ¢. We proceed similarly for G.

e Assume that A is closed. Let (¢,) be a sequence in Dom(Af) such that ¢, — ¢ and
Arpn, — ¢ in F. Then ¢, — ¢ and Ap — ¢ in E. Since A is closed, this proves that
© € Dom(A) and Ay = 1. Since ¢ € F we also have ¢ € Dom(Ag) and App = 1. This proves
that Af is closed.

e Let z € p(A). The restriction of (A —2z)~! to F is an inverse for (Ag — 2), so p(A) < p(AF).
Similarly, p(A) < p(Ag). Conversely, if z € p(AF) N p(Ag) then (AF — 2)~t @ (Ag — 2) ! is
an inverse for A — z = (A — 2) ® (Ag — 2), so p(A) = p(Ar) N p(Ag). O

Proposition 2.60. Let zp € C and rg > 0 such that C(zo,70) < p(A). We set

1 1 (% 1 .
| | e — A— *1d - A— 20 z@de’
2w C(zomo)( ¢ ¢ 21 Jo ( (20 + roe )) foe

We set F = Ran(Il) and G = ker(II).
(i) I is a (not necessarily orthogonal) projection of E.
(ii) F < Dom(A).
(i) TIA < AT
(iv) o(AF) = 0(A) N D(20,70) and o(Ag) = o(A)\D(20,70)-

Remark 2.61. In Proposition 2.60 we consider for simplicity the case where II is defined by
an integral on a circle. But we can similarly consider the integral on any rectifiable simple
closed curve in p(A) (see [Kat80, § I111.6.4]).

Proof. e 1l is defined by the integral on a line segment of a continuous function with values
in the Banach space £(E). This can be understood in the sense of Riemann integrals and
this defines a bounded operator on E. In particular we have in £(E)

1 " i — i
II= lim II,, where II,=—— Z (Af (20 + 7’06%)) 17’0(3%.
n

n——+0o0

Then for ¢ € E and ¢ € E* we have

1 -1
L(IIp) = ~%i . (((A—2)""p)da.

Since p(A) is open in C, there exists Ry € [0,7[ and Ry > g such that D(0, R2)\D(0, R;)
p(A). Let ¢ € E and £ € E*. Since the map ¢ — ¢((4 —{)~'¢) is holomorphic on p(A), we
can replace ro by any r €] Ry, Ro[ in the expression of II.
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o Let r1,79 €]Ry, Ry with r; < ry. We can write
1 _ _
] W I RV SRS rartes
( ”T) ¢1€C(20,7m1) J(2€C(20,72)

By the resolvent identity we have

o 1 (A=) '—(A-¢)!
= (2im)? LleC(zo,rl) LgeC(zo,7'2) G —C dez dC1.

Then, by the Fubini Theorem,

1 1
HQ:—‘7J- A-¢)™ f ——d¢G | ¢
(2im)? CleC(zo,rl)( ) C2eC(z0,m2) G2 — C1 2 !

1 1
- A—()7! 4G | de.
(2i7r)2 LQEC(zU,r2)< CQ) (LleC(zo,rl) Cl - CQ Cl) C2

We look at the integral in brackets for each term. For the second term, for any (s € C(20,72)
the map (3 — 1/(¢1 — ¢2) is holomorphic on D(zg,73), so the integral vanishes. For the first
term, we get by the Cauchy Theorem that the integral is equal to 2im for all ¢; € C(zp,71).
Then

I = —i (A=) hde =11
2im (2€C(20,72)
This proves that II is a projection of E.
e Let p € F and ¢ € E such that ¢ = IIyp. For n € N* we set ¢, = II,,3 € Dom(A). Then

pn — @ in E. Moreover,

1 & . _ )
A, = - Z A(A = (20 + 1oe™™)) Lroet*qp
k=1
1 & ) . _ )
- Z (Id +(z0 + Toew"')(A — (20 + roeze’“)) 1)7‘0610""(/)
k=1
1 1
— == Id+¢(A— Q) )yd¢ = —-— C(A— ¢ M.
o 2im C(z0,70) ( ( ) ) 2im C(z0,70) ( )

Since A is closed this proves that ¢ € Dom(A) (and Ap = — 5 SC(Z()’TD) C(A—¢)~1pdo).

e Let ¢ € Dom(A). Since A commutes with its resolvent, we have AlIl,p = II,, Ay for all
n € N*. Since I, — Ilp and Allyp = IIyAp — ITAp, we get by closedness of A that
IIy € Dom(A) and Allp = [TAp.

o Let z € p(Ar)\D(20,70). Let r €]Ry,7ro[. We have on F

(AF — 2)71 = (AF — 2)711_1

1
=—— Ap —2) YA — )7t d¢
Sem CEC(ZM)( F—2) (Ar — ()
-1 _\—1
1 (AF — 2) (Ar — Q) dc
2im ¢eC(zo,T) z = C
-1
:;f He=O 4.
2im ¢eC(zo,r) 2 C

The right-hand side is bounded uniformly in z € p(Ag)\D(z0,70). By Proposition 2.23 this
implies that

o(Ag) € D(z9,70)- (2.12)
Now let z € p(Ag) N D(z0,70) and r €]rg, Ro[. We have on G

(A —2)7" = (Ae —2)7'(1 - 1)

- 1 (A —2) ' —(Ac =)'
—(Ag—2)' - —— d
( ¢ Z) 2im ¢eC(zo,r) C_Z C
1 (Ag — ¢!
= — > dC.
2im LEC(Z(),T) z = C C
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This is bounded uniformly in z € p(Ag) N D(zo,r0), SO
o(Ag) = C\D(0,70). (2.13)

Finally, with Proposition 2.59 and (2.12)-(2.13) we deduce that o(Ag) = o(A) n D(0,70) and
o(Ag) = a(AN\D(0, 7). O

Definition 2.62. Let A be a closed operator on E. Assume that A € C is an isolated point
in the spectrum of A. Let ro > 0 such that o(A) n D(A\,7) = {A} and r €]0,ro[. Then the
Riesz Projection of A at \ is

1
I, =—— A—2)"1dz 2.14
im C(m( ) (2.14)

(the definition does not depend on the choice of r).

Definition 2.63. Let \ be an isolated eigenvalue of A. The algebraic multiplicity of X\ is
dim(Ran(I1y)), where 11 is the Riesz projection at .

Remark 2.64. Since ker(A — X\) < Ran(IT4()\)) the geometric multiplicity is not greater than
the algebraic multiplicity.

Ezxample 2.65. Let o, 8 € C distinct and

=

Il
coocoR
cocooQ -
coQ oo
ocwo oo
=R

Then « is an eigenvalue of geometric multiplicity 2. For z € C\{«, 8} we have

(-2t —(a—2)72 0 0 0

0 (a—2)7t 0 0 0

(M —2)"' = 0 0 (a—2)71 0 0
0 0 0 (B-2)"" —(B—2)7"
0 0 0 0 (B—2)""

Then for r €]0, |a — 3| [ we have

1 0000
) 0100 0

My =——— (M —2)"tdz=[0 0 1 0 0],
2im Je(aur) 00000
0000 0

so a has algebraic multplicity 3 and Il is the projection of C® on ker((M — «)?) parallel to
ker(M — ).

Proposition 2.66. We use the notation of Proposition 2.60.
(i) Let A€ D(zp,79) and m € N*. Then ker((A — X)™) c F.
(ii) Let A € C\D(z0,70) and m € N*. Then ker((A — \)™) c G.
Proof. e Let ¢ € Dom(A) such that (A — Ay € F. For ¢ € C(zg,79) we have

(A== =0Tle= (A= (A-¢7 (A= Vg,

Then
To=—g [ (A-07e+ (-0 A= 07 (A- Ng)d¢
C(zo0,m)
_ 1 SO YA (A
¢t 5 C(Zm(/\ QO (A=¢Q) (A= Nedd
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Since
V(e C(zo,7), (A=N(A-)'(1-T)p= (A=) (1 -I)(A—- g =0,
we deduce
(== (-0 =g | 0=07A-07 (0 -~ Npdc =0

This proves that ¢ € F. Then we can prove by induction on m € N* that ker((4 — \)™) c F.

The second statement is similar. O

Proposition 2.67. Assume that A is an isolated point of 0(A) such that Ran(ILy) is of finite
dimension m € N*. Then X is an eigenvalue and

Ran(IIy) = ker((4 — \)™).

Proof. The restriction Ar of A to F is an operator on the finite dimensional space F, with
o(Ag, ) = {A}. Then the result follows from the finite dimensional case. O

Remark 2.68. We recall that (see Exercise 1.1)

o an isolated point A of o(A) is not necessarily an eigenvalue (in this case we have
dim(Ran(IIy)) = 400 by Proposition 2.67);

« as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multi-
plicity.

Definition 2.69. Let A be a closed and densely defined operator on E. Let A € C. We say
that A belongs to the discrete spectrum ogisc(A) of A and X is an isolated eigenvalue of A with
finite algebraic multiplicity. The essential spectrum of A is cess(A) = 0(A)\Odisc(A)

Proposition 2.70. Let A be a closed operator on E. gess(A) is closed.

2.6.2 Regularity of the spectrum with respect to a parameter
[Not discussed in class]

Lemma 2.71. Let II; and Il be two projections on E. Assume that [z — Il ,g) < 1.
Then
dim(Ran(II;)) = dim(Ran(Ily)).

Proof. Let 7 : Ran(Ilz) — Ran(II;) be the restriction of IT; to Ran(Ilz). This is a continuous
linear map. For ¢ € ker(m) we have II3(p) = ¢ and II;(¢) = 0 so

lel = Ma(p) — Mi(p)| < [T — T e,

so ¢ = 0. This implies that dim(Ran(II;)) = dim(Ran(II;)). Interverting the roles of IT; and
I, gives the reverse inequality and concludes the proof. O

Proposition 2.72. Let w be a connected subset of C. Let (An)acc be a family of linear
operators on E. Assume that there exists Ao € C and ro > 0 such that C(Xo,70) < p(Aa) for
all a € w. Assume that the map

{ w x C(Ag,m0) — L(E)
(v, 2) = (A —2)"

15 continuous.

(i) We denote by 11, the Riesz projection of A, on C(Ag,7). Then dim(Ran(Il,)) does not
depend on o € w.

(ii) Assume that dim(Ran(Il,)) = 1. Then for all a € w the operator A, has a unique simple
eigenvalue Ny in D(Ao, 7). Moreover the maps o — Ao and o — Tl are continuous on
w. If moreover a+— (A — 2)~1 is holomorphic on w for all z € C(\o,10), then a — 11,
and o — A\, are holomorphic.
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Proof. o Let ag € w. Since C(\g,r) is compact, there exists a neighborhood V of ap in w
such that for all @« € V and ¢ € C(\g, r) we have

H(Aa - C)_l - (Aao - C>_1H S o

Then we have
1

2 )

and, by Lemma 2.71, Ran(Il,) = Ran(Il,,) for all « € V. Then Ran(Il,) is locally constant,
so it is constant on the connected set w.

e By continuity under the integral sign, we see that II, is continuous with respect to a. If
(A, — ¢)~! is holomorphic with respect to « for all ¢ € C(lg,r), then I, is holomorphic by
complex differentiation under the integral sign.

e Now assume that Ran(Il,) = 1 for all @ € w. Let ap € w and @ € Ran(Il,,) with
[#] = 1. Then ¢ is an eigenvector corresponding to an eigenvalue Ao, € D(Ag,r). For a € w
we set ¥, = Il,1Y. For « close to ag we have ¥, # 0. Then 1), is an eigenvector of A,

continuous (holomorphic if the resolvent is holomorphic) with respect to . Finally we have
(Ag — 2) o = (Mo — 2) 19, Taking the inner product with v gives

M — oy || <

<1/1» (Ao — z>_11/’a> = (Aa — z)_l by ha) -

We have (1,1, = 1 when o = ayg, so this does not vanish on a neighborhood of ag. This
gives

_ <¢’ (Aoc B Z)_lwa>.

(Aa—2)7"
: W, %a)
Thus (A, — 2)~! is continuous (holomorphic if the resolvent is holomorphic) for o an a
neighborhood of «g, and so is \,. ]

Proposition 2.73 (Analytic family of type A). Let w be an open subset of C. Let (An)aew
be a family of closed operators on E. We assume that

(i) the operators A,, a € w, have the same domain D ;
(ii) for all ¢ € D the map a — Ayt € H is holomorphic on w.

Let ap € w and zp € p(Aa, ). Then there exists r > 0 such that z € p(Aq) for all a € D(a, 1)
and z € D(zo,7) and the map

(@, 2) = (A = 2)7"
is continuous on D(ag,r) x D(zp,7) and analytic in D(ag,r) for all z € D(zo,7).

Proof. For a € w and z € C we have
(Ao = 2) = (14 (Aa = Aay) = (2 = 20)) (Aay = 20) ") (Aaq — 20)

Since (Aq, —20) ! maps H to D, the operators A, (Aa, —20)* and Ay, (Aa, —20) "1 are well
defined on H. Since they are closed, they are bounded by the closed graph theorem. Then the
function o — A, (Aa, — 2)t is weakly holomorphic, and hence holomorphic by Proposition
A.7. In particular it is continuous, so there exists r > 0 such that |[(As, — 20) ™" < 1/(4r),
D(ap,r) € w and for all a« € D(«g,r) we have

1
[(Aa = Aag)(Aas = 20) " 23y < 7

4
Then the map (o, z) — (1 + (Ao — Aay) — (2 — 20)) (Aay — zo)_l)_l is well defined and
continuous on D(ag,r) x D(zg,7), and analytic with respect to « for all z € D(zg,r). We
deduce that the same holds for « +— (A4, — 2)7 1. O
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Proposition 2.74 (Analytic family of type B). Let V be a Hilbert space continuously and
densely embedded in H. Let w be an open subset of C. Let z € C. Let (go)acw be a family of
continuous forms on V such that ¢ — qo () € C is analytic for all p € V. Let ap € w and
20 € C such that g, — 20 is coercive. Then there exists v > 0 such that qo, — z s coercive
for all a € D(ag,r) and z € D(zg,r). For a € D(ag,r) we denote by A, the operator on H
given by the representation theorem (see Theorem 2.52 and Remark 2.53). Then the map

(a,2) = (Aa —2)7"
is continuous on D(ag,r) x D(z0,7) and holomorphic with respect to o € D(ag,r) for all
z € D(zp,T).

Proof. We denote by Q,, the operator in £(V,V’) associated with g, (see (1.8)). For a € w
we have in L(V,V')

(Qu=2) = (14 ((Qa = Qa) = (== 20)) Qg = 2) ™) (Quy = 2)

Since (Qa, — 2)~* maps V' to V, the operators Qn(Qa, — 2)7! and Qa,(Qa, — 2)~ ' are
bounded on V'. Then the function a + Qu(Qa, — z) ! is weakly holomorphic, and hence
holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 such
that |[(Qa, — ZO)ilHE(V’,V) < 1/(4r), D(ag,r) < w and for all a € D(ag,r) we have
1
—1
H(Qa - an)<Qa0 - Z) HE(V’) < Z
Then the map (av, 2) = (14 ((Qa— Qay) — (2—20) ) (Qay 72),1)71 € L(V') is well defined and
continuous on D(ap,r) x D(2,7), and analytic on D(«yg,r) for all z € D(zg,7). We deduce
that the same holds for @ — (Q, — 2)~! in L(V',V). Since (Qa — 2)7! and (4, — 2)7!
coincide on H, the conclusion follows. O]

For the perturbation of a double eigenvalue, we refer to Exemple I1.1.1 (page 64) in
[Kat80]

2.7 Exercises

Ezxercise 2.1. Let A be a densely defined operator from E to F. Assume that there exists
C > 0 such that |Ap|r < C|Afg for all ¢ € Dom(A). Prove that A extends uniquely to a
bounded operator A € L(E,F) and that |Allzgr < C.

Ezxercise 2.2. Prove Proposition 2.23

Ezxercise 2.3. Let (\,)
defined by

nen Pe a complex sequence. We consider on (2(N) the operator A

[}
Dom(A) = {u = (Un)pen 2, Al unl® < +oo}
n=0

and, for v = (uy), oy € Dom(A),
Au = (ApUn)nen-

1. Prove that A is closed.
2. What is the spectrum of A.

Ezercise 2.4. Let © be an open subset of R%. Let f :  — C be a measurable function.
We consider the multiplication operator M as in example 2.4.

1. Prove that M/ is densely defined.

2. What is the adjoint of My ?

Ezxercise 2.5. We set
H={ue L*R) : uiseven}.
1. Prove that H is a Hilbert space.
2. We want to consider on H the operator defined by Au = —u”. What is the natural domain
for A (in particular, we want A to be closed) ?
3. Then what is the spectrum of A ?
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FEzxercise 2.6. Let A be a closed and densely defined operator on E. Assume that there
exists C' > 0 such that |Ap|g < C|¢||g for all ¢ € Dom(A). Prove that Dom(A) = H and
that A € L(E).

Ezercise 2.7. We consider on L?(C) (K is endowed with its usual Lebesgue measure) the
operator A defined by (Au)(y) = yu(y) on the domain

Dom(A) = {ue L*(C) : yue L*(C)}.

1. Prove that A is closed.
2. Prove that o(A) = C.

Ezxercise 2.8 (Regular points). Let A be an operator on the Hilbert space H. Let z be
a regular point of A (see Proposition 2.34). We denote by da(z) = dim(Ran(A4 — 2)*) the
defect number of A. We also denote by w(A) the set of regular points of A.

1. Prove that m(A) is open (more precisely, if zg € 7(A4) and ¢y > 0 is the constant given by
(2.4), show that D(zg,c,,) < 7(A)).

2. Assume that A is closable. Prove that the defect number is constant on each connected
component of 7(A).

Ezercise 2.9. We consider the operator T from L?(R) to C defined by Dom(T) = CZF(R)
and T'¢ = ¢(0) for all ¢ € Dom(T'). Compute the adjoint T* of T.

Ezercise 2.10. Prove Proposition 2.46.
Ezxercise 2.11. Prove Proposition 2.48.
Ezxercise 2.12. Prove Proposition 2.48.

Ezercise 2.13. Let a € C. For ¢, € H*(0,1) we set

Gl) = j ()] da + o [u(0) 2.

1. Prove that the quadratic form q, is continuous on H*(0,1).

2. Prove that there exists § = 0 such that the form qo + 5 : u — qq(u) + 8 HuHiQ(O}l) is
coercive.

3. We denote by A, the operator on L?(0, 1) associated with the form q,, by the representation
theorem (see Remark 2.53). Describe A, (domain and action on an element of this domain).

FEzxercise 2.14. Let E; and E5 be two Banach spaces and E = E;®E,. Let A1 and As be two
closed operators, on E; and Es respectively. For ¢ = 7 + @2 € E we set A = A1p1 + Asps.
1. Prove that this defines a closed operator A on E.

2. Prove that 0(A) = 0(41) U o(43).

3. Prove that o,(A) = 0p(A41) U 0p(A2).

4. Assume that A is an isolated eigenvalue of A. Prove that the geometric (algebraic) multi-
plicity of A\ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of A
as an eigenvalue of A; and As.

Ezxercise 2.15. Let A be a closed operator on E. Let A € ggisc(A4). Let 79 > 0 be such that
D(\, 1) no(A) ={A}. For r €]0,ro[ and n € Z we set
1 A—-0O1t
Ry, = — (7%
2im Jeary (C=A)"

1. Prove that for ny,ny € Z\ {0} we have R, Rp, = —Rp,4np+1-
2. We set N = —R_5. Prove that for all n > 2 we have R_,, = —N"~1.
3. We denote by II the Riesz projection at A. Prove that NII = IIN = N. Deduce that IV

has finite rank.
4. Prove that for z € D(\,70)\ {\} we can write (A — z)~! as the Laurent series

(A=2)7" = > (z = N)"Ry,

nez

dc.

and in particular that the power series >, _qp"R_, is convergent for any p e C.
5. Prove that N is nilpotent and that R_,, = 0 for n large enough.
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