Chapter 2

Spectrum of general (unbounded) operators

[Draft version, November 21, 2022]

2.1 Unbounded operators - Spectrum

Let E and F be two Banach spaces.

2.1.1 Definitions and examples

Definition 2.1. A linear operator (or unbounded operator) from E to F is a linear map A from a linear subspace $\mathsf{Dom}(A)$ of E (the domain of A) to F . An operator on E is an operator from E to itself.

Definition 2.2. We say that the operator A is densely defined if Dom(A) is dense in E.

Example 2.3. A bounded operator $A \in \mathcal{L}(\mathsf{E},\mathsf{F})$ is a particular case of unbounded operator with $\mathsf{Dom}(A) = \mathsf{E}$.

Example 2.4. Let (Ω, μ) be a measure space. Let f be a measurable function on Ω . We consider on $L^2(\Omega, \mu)$ the multiplication operator

$$M_f: \varphi \mapsto f\varphi,$$

defined on the domain

$$\mathsf{Dom}(M_f) = \left\{ \varphi \in L^2(\Omega) : f\varphi \in L^2(\Omega) \right\}.$$
(2.1)

Remark 2.5. One has to be careful when dealing with unbounded operators. For instance, if A_1 and A_2 are two operators on E, then the sum $A_1 + A_2$ is only defined on the domain $\mathsf{Dom}(A_1) \cap \mathsf{Dom}(A_2)$ (which can be $\{0\}$) and the composition $A_2 \circ A_1$ is defined on $\{\varphi \in \mathsf{Dom}(A_1) : A_1\varphi \in \mathsf{Dom}(A_2)\}$.

Definition 2.6. Let A and B be two linear operators from E to F. We say that A is an extension of B and we write $B \subset A$ if $Dom(B) \subset Dom(A)$ and $A\varphi = B\varphi$ for all $\varphi \in Dom(B)$.

Example 2.7. Let Ω be an open subset of \mathbb{R}^d . Let f be a continuous function on Ω . We can define M_f on $L^2(\Omega)$ as above (with domain (2.1)). We can also define M_f^0 by $M_f^0 u = f u$ for $u \in \mathsf{Dom}(M_f^0) = C_0^{\infty}(\Omega)$. Then we have $M_f^0 \subset M_f$.

Example 2.8. Let Ω be an open subset of class C^2 in \mathbb{R}^d . We denote by H_0 , \tilde{H} , H_D and H_N the operators on $L^2(\Omega)$ which are all equal to $-\Delta$, but defined on different domains:

• $\mathsf{Dom}(H_0) = C_0^\infty(\Omega),$

B Ex. 2.1

- $\mathsf{Dom}(\tilde{H}) = H^2(\Omega),$
- $\mathsf{Dom}(H_D) = H^2(\Omega) \cap H^1_0(\Omega),$
- $\mathsf{Dom}(H_N) = \{ u \in H^2(\Omega) : \partial_\nu u = 0 \text{ on } \partial\Omega \}.$

These four operators are densely defined. Moreover we have $H_0 \subset H_D \subset \tilde{H}$ and $H_0 \subset H_N \subset \tilde{H}$.

Definition 2.9. Let A be an operator from E to F. The graph of A is

$$\mathsf{Gr}(A) = \{(\varphi, A\varphi), \varphi \in \mathsf{Dom}(A)\} \subset \mathsf{E} \times \mathsf{F}.$$

Remark 2.10. If A and S are two linear operators from E to F then $S \subset A$ if and only if $Gr(S) \subset Gr(A)$.

Definition 2.11. Let A be an operator on E. We define on Dom(A) the graph norm by

$$\left\|\varphi\right\|_{A}^{2} := \left\|\left(\varphi, A\varphi\right)\right\|_{\mathsf{E}\times\mathsf{F}}^{2} = \left\|A\varphi\right\|_{\mathsf{F}}^{2} + \left\|\varphi\right\|_{\mathsf{E}}^{2}$$

Remark 2.12. If $A \in \mathcal{L}(\mathsf{E})$ then the graph norm is equivalent to the original norm on E .

Example 2.13. We consider on $L^2(\mathbb{R}^d)$ the Laplace operator $H = -\Delta$, with domain $\mathsf{Dom}(H) = H^2(\mathbb{R}^d)$. Then the graph norm of H is equivalent to the usual Sobolev norm:

$$\|-\Delta u\|_{L^{2}(\mathbb{R}^{d})}^{2}+\|u\|_{L^{2}(\mathbb{R}^{d})}^{2}\simeq\|u\|_{H^{2}(\mathbb{R}^{d})}^{2}.$$

This is not the case on any open subset Ω of \mathbb{R}^d .

2.1.2 Spectrum of unbounded operators

Definition 2.14. Let A be a linear operator from E to F. We say that A is invertible (or that it is boundedly invertible, or that it has a bounded inverse) if there exists $B \in \mathcal{L}(\mathsf{F},\mathsf{E})$ such that $\operatorname{Ran}(S) \subset \operatorname{Dom}(A)$, $BA = \operatorname{Id}_{\operatorname{Dom}(A)}$ and $AB = \operatorname{Id}_{\mathsf{F}}$. In this case we write $B = A^{-1}$.

Remark 2.15. Notice that if A is invertible then it is a bijective map from $\mathsf{Dom}(A)$ to F. But if $\mathsf{Dom}(A) \neq \mathsf{E}$ then A^{-1} is only a right inverse of A.

Remark 2.16. If A is injective we can always define an (unbounded) inverse A^{-1} , even if A is not surjective. We define A^{-1} as an operator from F to E with domain $Dom(A^{-1}) = Ran(A)$ and we have $A^{-1}A = Id_{Dom(A)}$, $AA^{-1} = Id_{Ran(A)}$. We will never consider unbounded inverses in this course.

Definition 2.17. Let A be an operator on E. Then $\lambda \in \mathbb{C}$ belongs to the resolvent set $\rho(A)$ of A if $A - \lambda$ is invertible (according to Definition 2.14, this means that $(A - \lambda)$ is bijective as a map from Dom(A) to E and its inverse $(A - \lambda)^{-1} : E \to \text{Dom}(A) \subset E$ defines a bounded operator on E). The spectrum $\sigma(A)$ is the complementary set of $\rho(A)$ in \mathbb{C} .

Definition 2.18. Let A be an operator on E. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there exists $\varphi \in \text{Dom}(A) \setminus \{0\}$ such that $A\varphi = \lambda \varphi$. Such a φ is an eigenvector associated to the eigenvalue λ . The geometric multiplicity of λ is the dimension of ker $(A - \lambda)$. We denote by $\sigma_{p}(A)$ the set of eigenvalues of A.

As for bounded operators, we have $\sigma_{p}(A) \subset \sigma(A)$ but the inclusion can be strict.

Example 2.19. Let M_w be the multiplication operator defined in Example 2.4. Let $z \in \mathbb{C}$. Then, as in the bounded case, $z \in \sigma(M_f)$ if and only if

$$\forall \varepsilon > 0, \quad \mu \big(\left\{ x \in \Omega : |w(x) - z| \le \varepsilon \right\} \big) > 0,$$

and $z \in \sigma_{\mathsf{p}}(M_f)$ if and only if

$$\mu(\{x \in \Omega : |w(x) - z| = 0\}) > 0,$$

Example 2.20. • Let $\mathsf{E} = L^2(\mathbb{R}^d)$ and $A_0 = -\Delta$ with $\mathsf{Dom}(A_0) = C_0^{\infty}(\mathbb{R}^d)$. Then for any $z \in \mathbb{C}$ we have $\mathsf{Ran}(A_0 - z) \subset C_0^{\infty}(\mathbb{R}^d)$ so $A_0 - z$ cannot be invertible. This proves that $\sigma(A_0) = \mathbb{C}$.

• Now we consider $A = -\Delta$ with $\mathsf{Dom}(A) = H^2(\mathbb{R}^d)$. Then $\sigma(A) = \mathbb{R}_+$ and for $z \in \mathbb{C} \setminus \mathbb{R}_+$ we have

$$\|(A-z)^{-1}\|_{\mathcal{L}(L^2(\mathbb{R}^d))} = \frac{1}{\mathsf{dist}(z,\mathbb{R}_+)}.$$

Indeed, if we denote by \mathcal{F} the Fourier transform on $L^2(\mathbb{R}^d)$, then \mathcal{F} is a unitary operator. Then $(-\Delta - z)$ is invertible if and only if $\mathcal{F}(-\Delta - z)\mathcal{F}^{-1} = M - z$ is invertible on $L^2(\mathbb{R}^d)$, where $M = \mathcal{F}(-\Delta)\mathcal{F}^{-1}$ is equal to the multiplication operator M_w for $w : \xi \mapsto |\xi|^2$. Thus $\sigma(A) = \sigma(M_w) = \mathbb{R}_+$ and for $z \in \mathbb{C} \setminus \mathbb{R}_+$ we have

$$\begin{aligned} \|(A-z)^{-1}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} &= \|\mathcal{F}^{-1}(M-z)^{-1}\mathcal{F}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} = \|(M-z)^{-1}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} \\ &= \frac{1}{\mathsf{dist}(z,\mathbb{R}_{+})}. \end{aligned}$$

2.1.3 Basic properties of the spectrum and the resolvent

Proposition 2.21. Let A be an operator on E and $z \in \mathbb{C}$. Assume that there exists a sequence (φ_n) in $\mathsf{Dom}(A)$ such that $\|\varphi_n\|_{\mathsf{E}} = 1$ for all $n \in \mathbb{N}$ and

$$\|(A-z)\varphi_n\|_{\mathsf{E}} \xrightarrow[n \to +\infty]{} 0.$$

Then $z \in \sigma(A)$.

Proof. Assume that $z \in \rho(A)$. Then

$$\|\varphi_n\|_{\mathsf{E}} \leq \|(A-z)^{-1}\|_{\mathcal{L}(\mathsf{E})} \|(A-z)\varphi_n\|_{\mathsf{E}} \xrightarrow[n \to +\infty]{} 0$$

This gives a contradiction.

Example 2.22. An unbounded operator can have an empty spectrum (compare with Proposition 1.21). We consider on $L^2(0, 1)$ the operator

 $A = \partial_x$

defined on the domain

$$\mathsf{Dom}(A) = \left\{ u \in H^1(0,1) : u(0) = 0 \right\}.$$

Then $\sigma(A) = \emptyset$.

Indeed, for $z \in \mathbb{C}$ we define $R_z : L^2(0,1) \to L^2(0,1)$ as follows. For $f \in L^2(0,1)$ and $x \in [0,1]$ we set

$$(R_z f)(x) = \int_0^x e^{z(x-y)} f(y) \,\mathrm{d}y.$$

We can check that R_z defines a bounded inverse for (A - z), which proves that z belongs to $\rho(A)$. Notice that we can replace $H^1(0,1)$ and $L^2(0,1)$ by $C^1([0,1])$ and $C^0([0,1])$.

Proposition 2.23. Let A be a closed operator on E.

- (i) For $\varphi \in \mathsf{Dom}(A)$ and $z \in \rho(A)$ we have $(A z)^{-1}A\varphi = A(A z)^{-1}\varphi$.
- (ii) The resolvent set $\rho(A)$ of A is open (and, equivalently, its spectrum $\sigma(A)$ is closed). Moreover, for $z_0 \in \rho(A)$ the disk $D(z_0, ||(A - z_0)^{-1}||_{\mathcal{L}(\mathsf{E})}^{-1})$ is included in $\rho(A)$, which implies

$$\|(A-z)^{-1}\|_{\mathcal{L}(\mathsf{E})} \ge \frac{1}{\mathsf{dist}(z,\sigma(A))}$$

- (iii) The resolvent $R_A : z \mapsto (A z)^{-1}$ is analytic on $\rho(A)$ and $R'_A = R^2_A$.
- (iv) For $z_1, z_2 \in \rho(A)$ we have the resolvent identity $(A-z_1)^{-1} - (A-z_2)^{-1} = (z_1-z_2)(A-z_1)^{-1}(A-z_2)^{-1} = (z_1-z_2)(A-z_2)^{-1}(A-z_1)^{-1}$. In particular, $(A-z_1)^{-1}$ and $(A-z_2)^{-1}$ commute.

The proofs are the same as for the bounded case.

2.2 Closed operators

2.2.1 Closed operators

Proposition-Definition 2.24. Let A be an operator E. We say that A is closed if the following equivalent assertions are satisfied.

- (i) If a sequence (φ_n)_{n∈N} ∈ Dom(A)^N is such that φ_n goes to some φ in E and Aφ_n goes to some ψ in F, then φ belongs to Dom(A) and Aφ = ψ;
- (ii) Gr(A) is closed in $E \times F$;
- (iii) $\mathsf{Dom}(A)$, endowed with the norm $\|\cdot\|_A$, is complete (hence a Banach space).

Remark 2.25. Let A be a closed operator on E. Then A defines a bounded operator from the Banach space Dom(A) to E.

Example 2.26. A bounded operator is closed.

- Example 2.27. We consider on $L^2(\mathbb{R})$ the operator A defined on the domain $\mathsf{Dom}(A) = C_0^\infty(\mathbb{R})$ by $(Au)(x) = x^2u(x), x \in \mathbb{R}$. We define $v : \mathbb{R} \to \mathbb{R}$ by $v(x) = (1 + x^2)^{-2}$. Let $\chi \in C_0^\infty(\mathbb{R}, [0, 1])$ be equal to 1 on [-1, 1]. For $n \in \mathbb{N}^*$ and $x \in \mathbb{R}$ we set $\chi_n(x) = \chi(x/n)$. Then $\chi_n v$ goes to v in $L^2(\mathbb{R}), \chi_n v \in \mathsf{Dom}(A)$ for all $n \in \mathbb{N}^*$ and $A(\chi_n v)$ has a limit in $L^2(\mathbb{R})$. However v does not belong to $\mathsf{Dom}(A)$. This proves that A is not closed.
 - We now consider the operator $A: u \mapsto x^2 u$ on the domain

$$\mathsf{Dom}(A) = \left\{ u \in L^2(\mathbb{R}) : x^2 u \in L^2(\mathbb{R}) \right\}$$

Assume that $(u_n)_{n\in\mathbb{N}}$ is a sequence in $\mathsf{Dom}(A)$ which goes to some u in $L^2(\mathbb{R})$ and such that Au_n has a limit $v \in L^2(\mathbb{R})$. The function x^2u belongs to $L^2_{\mathrm{loc}}(\mathbb{R})$ and for all $\phi \in C_0^{\infty}(\mathbb{R})$ we have

$$\int_{\mathbb{R}} x^2 u(x)\phi(x) \, \mathrm{d}x = \lim_{n \to +\infty} \int_{\mathbb{R}} x^2 u_n(x)\phi(x) \, \mathrm{d}x = \int_{\mathbb{R}} v(x)\phi(x) \, \mathrm{d}x.$$

This proves that $x^2u(x) = v(x)$ for almost all $x \in \mathbb{R}$. In particular, $u \in \mathsf{Dom}(A)$ and Au = v. This proves that A is closed.

Example 2.28. The Laplace operator $A = -\Delta$ with $\mathsf{Dom}(A) = C_0^{\infty}(\mathbb{R}^d)$ is not closed in $L^2(\mathbb{R}^d)$. Let $u \in H^2(\mathbb{R}^d) \setminus C_0^{\infty}(\mathbb{R}^d)$ and let $(u_n)_{n \in \mathbb{N}}$ be a sequence in $C_0^{\infty}(\mathbb{R}^d)$ which goes to u in $H^2(\mathbb{R}^d)$. Then u_n goes to u in $L^2(\mathbb{R}^d)$, the sequence $(Au_n)_{n \in \mathbb{N}}$ has a limit in $L^2(\mathbb{R}^d)$ but $u \notin \mathsf{Dom}(A)$. This proves that the Laplace operator is not closed if the domain is $C_0^{\infty}(\mathbb{R}^d)$. However it is closed with domain $H^2(\mathbb{R}^d)$.

Example 2.29. This example generalizes Examples 2.27 and 2.28. Let Ω be an open subset of \mathbb{R}^d . Let $m \in \mathbb{N}$ and consider smooth functions b_α on Ω for all $\alpha \in \mathbb{N}^d$ such that $|\alpha| \leq m$. Then we consider the differential operator

$$P = \sum_{|\alpha| \le m} b_{\alpha}(x) \partial_x^{\alpha}.$$
(2.2)

We denote by P^* the formal adjoint of P, defined for $\phi \in C_0^{\infty}(\Omega)$ by

$$P^*\phi = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial_x^{\alpha}(\overline{b_{\alpha}}\phi) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \sum_{\beta \le \alpha} \binom{\alpha}{\beta} (\partial_x^{\alpha-\beta}\overline{b_{\alpha}}) \partial^{\beta}.$$
(2.3)

Given $u \in L^2(\Omega)$, we have $Pu \in L^2(\Omega)$ (in the sense of distributions) if and only if there exists $v \in L^2(\Omega)$ such that

$$\forall \phi \in C_0^\infty(\Omega), \quad \int_\Omega u \overline{P^* \phi} \, \mathrm{d} x = \int_\Omega v \overline{\phi} \, \mathrm{d} x,$$

and in this case we write Pu = v.

We define an unbounded operator A on $L^2(\Omega)$ by setting Au = Pu for any u in the domain

$$\mathsf{Dom}(A) = \left\{ u \in L^2(\Omega) : Pu \in L^2(\Omega) \right\},\$$

where Pu is understood in the sense of distributions. This operator A is closed. Indeed, let (u_n) be a sequence in $\mathsf{Dom}(A)$ such that u_n goes to some u and Au_n goes to some v in $L^2(\Omega)$. For $\phi \in C_0^{\infty}(\Omega)$ we have

$$\int_{\Omega} u(x)\overline{(P^*\phi)(x)} \, \mathrm{d}x = \lim_{n \to \infty} \int_{\Omega} u_n(x)\overline{(P^*\phi)(x)} \, \mathrm{d}x = \lim_{n \to \infty} \int_{\Omega} (Pu_n)(x)\overline{\phi(x)} \, \mathrm{d}x$$
$$= \lim_{n \to \infty} \int_{\Omega} (Au_n)(x)\overline{\phi(x)} \, \mathrm{d}x = \int_{\Omega} v(x)\overline{\phi(x)} \, \mathrm{d}x.$$

This proves that in the sense of distributions we have $Pu = v \in L^2(\Omega)$. Therefore $u \in Dom(A)$ and Au = v. This proves that A is closed.

2.2.2 Spectrum of closed operators

Remark 2.30. Let A be an operator from E to F, with domain Dom(A). Assume that A has a bounded inverse $A^{-1} \in \mathcal{L}(\mathsf{F},\mathsf{E})$. Then A^{-1} is closed, which implies that A is closed ($\mathsf{Gr}(A)$ is closed in $\mathsf{E} \times \mathsf{F}$ if and only if $\mathsf{Gr}(A^{-1})$ is closed in $\mathsf{F} \times \mathsf{E}$). We can also give a direct proof. Assume that (φ_n) is a sequence in E such that φ_n has a limit φ in E and $A\varphi_n$ has a limit ψ in F. Then $A\varphi_n \to \psi$ and $A^{-1}(A\varphi_n) \to \varphi$. Since A^{-1} is closed, this implies that $\psi \in \mathsf{Dom}(A^{-1}) = \mathsf{F}$ (nothing new here) and $\varphi = A^{-1}\psi$, so $\varphi \in \mathsf{Ran}(A^{-1}) = \mathsf{Dom}(A)$ and $A\varphi = \psi$. This proves that A is closed.

In particular we have the following result.

Proposition 2.31. Let A be an operator on E. If A is not closed then $\rho(A) = \emptyset$.

This is why we will only consider the spectral theory of closed operators.

Proposition 2.32. Let $A : \text{Dom}(A) \subset E \to \mathsf{E}$ be a closed operator. Then $\lambda \in \mathbb{C}$ belongs to the resolvent set $\rho(A)$ of A if and only if $A - \lambda : \text{Dom}(A) \to \mathsf{E}$ is bijective.

Proof. We already know that if $\lambda \in \rho(A)$ then $A - \lambda : \mathsf{Dom}(A) \to \mathsf{E}$ is bijective. Conversely, assume that $(A - \lambda)$ is bijective. Since it is closed, $\mathsf{Dom}(A)$ is a Banach space and $(A - \lambda)^{-1}$ belongs to $\mathcal{L}(\mathsf{E},\mathsf{Dom}(A))$, hence to $\mathcal{L}(\mathsf{F},\mathsf{E})$, by the open mapping theorem (see Theorem A.2).

Ø Ex. 2.3

Remark 2.33. A closed operator can have empty resolvent set (see Exercise 2.7).

Proposition 2.34. Let A be an operator on E . Let $z \in \mathbb{C}$. Assume that there exists $c_0 > 0$ such that

 $\forall \varphi \in \mathsf{Dom}(A), \quad \|(A-z)\varphi\|_{\mathsf{E}} \ge c_0 \, \|\varphi\|_{\mathsf{E}} \,. \tag{2.4}$

We say that z is a regular point of A. Then

- (i) (A-z) is injective ;
- (ii) If (A-z) is invertible then $||(A-\lambda)^{-1}|| \leq c_0^{-1}$.
- (iii) If moreover A is closed, then (A z) has closed range.

This means that if z is a regular point of A, then $z \in \rho(A)$ if and only if Ran(A - z) is dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We prove the last statement. Let (ψ_n) be a sequence in $\operatorname{Ran}(A-z)$ which converges to some ψ in E. For $n \in \mathbb{N}$ we consider $\varphi_n \in \operatorname{Dom}(A)$ such that $(A-z)\varphi_n = \psi_n$. Since $((A-z)\varphi_n)$ is a Cauchy sequence, so is (φ_n) by (2.4). Since E is complete, φ_n converges to some φ in E. Finally, since A is closed, $\varphi \in \operatorname{Dom}(A)$ and $\psi = (A-z)\varphi \in \operatorname{Ran}(A-z)$. This proves that $\operatorname{Ran}(A-z)$ is closed in E.

2.2.3 Closable operators

We have seen in Examples 2.27 and 2.28 that an operator which is not closed can be closed if it is defined on a bigger domain.

Definition 2.35. We say that on operator A is closable if it has a closed extension.

Of course, a closed operator is closable.

Proposition 2.36. Let A be an operator from E to F. The following assertions are equivalent.

- (i) A is closable;
- (ii) If (φ_n)_{n∈ℕ} is a sequence in Dom(A) such that φ_n → 0 in E and Aφ_n has a limit ψ in F, then ψ = 0;
- (iii) Gr(A) is the graph of a closed operator \overline{A} from E to F.

Definition 2.37. If the assertions of Proposition 2.36 are satisfied, then the closure of A is the operator \overline{A} such that $Gr(\overline{A}) = \overline{Gr(A)}$.

Proof. • Assume that A is closable and let \tilde{A} be a closed extension of A. Let (φ_n) be a sequence in $\mathsf{Dom}(A)$ such that $\varphi_n \to 0$ in E and $A\varphi_n \to \psi$ in F . Then (φ_n) is also a sequence in $\mathsf{Dom}(\tilde{A})$ and $\tilde{A}\varphi_n \to \psi$. Since \tilde{A} is closed we have $\psi = \tilde{A}0 = 0$.

• Now assume that if a sequence $(\varphi_n)_{n\in\mathbb{N}}$ in $\mathsf{Dom}(A)$ is such that $\varphi_n \to 0$ in E and $A\varphi_n$ has a limit ψ in F , then we necessarily have $\psi = 0$. We denote by $\mathsf{Dom}(\overline{A})$ the closure of $\mathsf{Dom}(A)$ for the graph norm. Let $\varphi \in \mathsf{Dom}(\overline{A})$ and let (φ_n) be a sequence in $\mathsf{Dom}(A)$ which goes to φ for the graph norm. Then $(A\varphi_n)$ is a Cauchy sequence in F , and we denote by $\overline{A}\varphi$ its limit. This definition does not depend on the choice of the sequence (φ_n) since if (ζ_n) is another sequence which goes to φ for the graph norm, we have $\varphi_n - \zeta_n \to 0$ and $A\varphi_n - A\zeta_n$ has a limit, so this limit is 0. This defines a linear map \overline{A} from $\mathsf{Dom}(\overline{A})$ to F , so \overline{A} is an extension of A.

By definition we have $\operatorname{Gr}(\overline{A}) \subset \operatorname{Gr}(\overline{A})$. Now let $(\varphi, \psi) \in \operatorname{Gr}(\overline{A})$. There exists a sequence (φ_n, ψ_n) in $\operatorname{Gr}(A)$ such that $\varphi_n \to \varphi$ in E and $\psi_n = A\varphi_n \to \psi$ in F . By definition of \overline{A} we have $\varphi \in \operatorname{Dom}(\overline{A})$ and $\psi = \overline{A}\varphi$, so $(\varphi, \psi) \in \operatorname{Gr}(\overline{A})$. This proves that $\operatorname{Gr}(\overline{A}) = \overline{\operatorname{Gr}(A)}$. Since \overline{A} has a closed graph, this is a closed operator and (iii) is proved.

• Finally, assume (iii). Since $Gr(A) \subset Gr(\overline{A})$, \overline{A} is an extension of A, so \overline{A} is a closed extension of A and (i) holds.

We have already seen examples of operators which are not closed but closable. Here is an example of operator which is not closable.

Example 2.38. We consider on $L^2(\mathbb{R}^d)$ the operators H_0 and H which acts as $-\Delta$ on the domains

$$\mathsf{Dom}(H_0) = C_0^\infty(\mathbb{R}^d) \quad \mathsf{Dom}(H) = H^2(\mathbb{R}^d).$$

Then $H = \overline{H_0}$.

Example 2.39. We consider the operator A from $L^2(\mathbb{R})$ to \mathbb{C} defined on $\mathsf{Dom}(A) = C_0^{\infty}(\mathbb{R})$ by Au = u(0). Then there exists a sequence $(u_n)_{n \in \mathbb{N}}$ in $C_0^{\infty}(\mathbb{R})$ such that $u_n \to 0$ in $L^2(\mathbb{R})$ but $u_n(0) \to 1$ in \mathbb{R} , so A is not closable.

Proposition 2.40. If A is a closable operator, then \overline{A} is the smallest closed extension of A (if B is a closed extension of A we have $\overline{A} \subset B$ or, equivalently, $Gr(\overline{A}) \subset Gr(B)$).

Proof. Let *B* be a closed extension. Then Gr(B) is closed and contains Gr(A), so it contains $Gr(\overline{A}) = \overline{Gr(A)}$.

Definition 2.41. Let A be a closed operator from E to F. Let \mathcal{D} be a linear subspace of $\mathsf{Dom}(A)$. We say that \mathcal{D} is a core of A if $A_{|\mathcal{D}}$ is closable and $\overline{A_{|\mathcal{D}}} = A$. Equivalently, \mathcal{D} is dense in $\mathsf{Dom}(A)$ for the graph norm, or for any $\varphi \in \mathsf{Dom}(A)$ there exists a sequence (φ_n) in \mathcal{D} such that $\varphi_n \to \varphi$ in E and $A\varphi_n \to A\varphi$ in F.

Example 2.42. We consider on $L^2(\mathbb{R}^d)$ the Laplacian $A = -\Delta$, $\mathsf{Dom}(A) = H^2(\mathbb{R}^d)$. Any subspace \mathcal{D} of $H^2(\mathbb{R}^d)$ which contains $C_0^{\infty}(\mathbb{R}^d)$ is a core of A.

2.3 Adjoint of an unbounded operator

Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces.

2.3.1 Definition and properties

Definition 2.43. Let A be a densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 . Let $\psi \in \mathcal{H}_2$. We say that ψ belongs to $\mathsf{Dom}(A^*)$ if there exists $\psi^* \in \mathcal{H}_1$ such that

 $\forall \varphi \in \mathsf{Dom}(A), \quad \langle A\varphi, \psi \rangle_{\mathcal{H}_2} = \langle \varphi, \psi^* \rangle_{\mathcal{H}_1}.$

In this case ψ^* is unique and we set $A^*\psi = \psi^*$. This defines an operator A^* from \mathcal{H}_2 to \mathcal{H}_1 with domain $\mathsf{Dom}(A^*)$. We say that A^* is the adjoint of A.

By definition, we have

$$\forall \varphi \in \mathsf{Dom}(A), \forall \psi \in \mathsf{Dom}(A^*), \quad \langle A\varphi, \psi \rangle_{\mathcal{H}_2} = \langle \varphi, A^*\psi \rangle_{\mathcal{H}_1}$$

Notice that if A is not densely defined, then $A^*\psi$ is not uniquely defined. We will never consider this situation.

Remark 2.44. Let A be a densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 and $\psi \in \mathcal{H}_2$. By the Riesz representation theorem, we see that ψ belongs to $\mathsf{Dom}(A^*)$ if and only if there exists C > 0 such that

$$\forall \varphi \in \mathsf{Dom}(A), \quad \left| \langle A\varphi, \psi \rangle_{\mathcal{H}_2} \right| \leq C \left\| \varphi \right\|_{\mathcal{H}_1}$$

Moreover, in this case we have $||A^*\psi||_{\mathcal{H}_1} \leq C$.

Proposition 2.45. Let A and B be two densely defined operators from \mathcal{H}_1 to \mathcal{H}_2 such that $B \subset A$. Then $A^* \subset B^*$.

Proposition 2.46. Let A be a densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 . Then we have

$$\ker(A^*) = \mathsf{Ran}(A)^{\perp}, \quad \ker(A^*)^{\perp} = \overline{\mathsf{Ran}(A)}.$$

Proposition 2.47. Let A be a densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 . Then A^* is closed.

Proof. Let (ψ_n) be a sequence in $\mathsf{Dom}(A^*)$ such that ψ_n goes to some ψ in \mathcal{H}_2 and $A^*\psi_n$ goes to some ζ in \mathcal{H}_1 . For $\varphi \in \mathsf{Dom}(A)$ we have

$$\langle A\varphi,\psi\rangle_{\mathcal{H}_2} - \langle \varphi,\zeta\rangle_{\mathcal{H}_1} = \lim_{n\to+\infty} \langle A\varphi,\psi_n\rangle_{\mathcal{H}_2} - \langle \varphi,A^*\psi_n\rangle_{\mathcal{H}_1} = 0.$$

This proves that $\psi \in \mathsf{Dom}(A^*)$ and $A^*\psi = \zeta$. Thus A^* is closed.

Proposition 2.48. Let A be a densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 . Then A is closable if and only if $\mathsf{Dom}(A^*)$ is dense in \mathcal{H}_2 . Moreover, in this case we have $(\overline{A})^* = A^*$ and $\overline{A} = (A^*)^*$. In particular, A is closed if and only if $A = (A^*)^*$.

We can write A^{**} instead of $(A^*)^*$.

Proof. • We define

$$\Theta: \left\{ \begin{array}{ccc} \mathcal{H}_1 \times \mathcal{H}_2 & \to & \mathcal{H}_2 \times \mathcal{H}_1, \\ (x_1, x_2) & \mapsto & (-x_2, x_1). \end{array} \right.$$

Then $\Theta^* = \Theta^{-1} : (y_2, y_1) \mapsto (y_1, -y_2).$ • Let $(\psi, \tilde{\psi}) \in \mathcal{H}_2 \times \mathcal{H}_1$. We have

$$\begin{split} (\psi, \tilde{\psi}) \in \mathsf{Gr}(A^*) & \Longleftrightarrow \forall \varphi \in \mathsf{Dom}(A), \quad -\langle T\varphi, \psi \rangle_{\mathcal{H}_2} + \left\langle \varphi, \tilde{\psi} \right\rangle_{\mathcal{H}_1} = 0 \\ & \Longleftrightarrow \forall \varphi \in \mathsf{Dom}(A), \quad \left\langle \Theta(\varphi, A\varphi), (\psi, \tilde{\psi}) \right\rangle_{\mathcal{H}_2 \times \mathcal{H}_1} = 0 \\ & \Longleftrightarrow (\psi, \tilde{\psi}) \in (\Theta\mathsf{Gr}(A))^{\perp}, \end{split}$$

 \mathbf{SO}

$$\mathsf{Gr}(A^*) = \big(\Theta\mathsf{Gr}(A)\big)^{\perp} = \Theta\big(\mathsf{Gr}(A)^{\perp}\big). \tag{2.5}$$

Then

$$\operatorname{Gr}(A^*)^{\perp} = \overline{\Theta \operatorname{Gr}(A)} = \Theta \overline{\operatorname{Gr}(A)}.$$

After composition by Θ^* we get

$$\overline{\mathsf{Gr}(A)} = \Theta^* \big(\mathsf{Gr}(A^*)^{\perp} \big). \tag{2.6}$$

• Assume that $\mathsf{Dom}(A^*)$ is dense in \mathcal{H}_2 . Then we can define $A^{**} = (A^*)^*$. By Proposition 2.47, this defines a closed operator from \mathcal{H}_1 to \mathcal{H}_2 . Let $\varphi \in \mathsf{Dom}(A)$. For all $\psi \in \mathsf{Dom}(A^*)$ we have

$$\langle A^*\psi,\varphi\rangle = \langle \psi,A\varphi\rangle,$$

so $\varphi \in \mathsf{Dom}(A^{**})$ and $A^{**}\varphi = A\varphi$. This proves that A^{**} is an extension of A, and in particular A is closable.

• Now assume that A is closable and let $\psi \in \mathsf{Dom}(A^*)^{\perp}$. Then, by (2.6),

$$(0,\psi) = \Theta^*(-\psi,0) \in \Theta^*(\mathsf{Gr}(A^*)^{\perp}) = \overline{\mathsf{Gr}(A)} = \mathsf{Gr}(\overline{A}).$$

so $\psi = 0$. Thus $\mathsf{Dom}(A^*)$ is dense in \mathcal{H}_2 . Moreover, by (2.5) applied with \overline{A} we have

$$\mathsf{Gr}((\overline{A})^*) = \Theta(\mathsf{Gr}(\overline{A})^{\perp}) = \Theta(\overline{\mathsf{Gr}(A)}^{\perp}) = \Theta(\mathsf{Gr}(A)^{\perp}) = \mathsf{Gr}(A^*).$$

This proves that $(\overline{A})^* = A^*$. Since A^* is densely defined, we can consider its adjoint A^{**} . By (2.5) applied first to A^* (with Θ replaced by $-\Theta^*$) and then to A, we have

$$\mathsf{Gr}(A^{**}) = \Theta^* \big(\mathsf{Gr}(A^*)^{\perp} \big) = \Theta^* \big(\big(\Theta \overline{\mathsf{Gr}(A)}^{\perp} \big)^{\perp} \big) = \big(\overline{\mathsf{Gr}(A)}^{\perp} \big)^{\perp} = \overline{\mathsf{Gr}(A)} = \mathsf{Gr}(\overline{A}).$$

This proves that $A^{**} = \overline{A}$.

Proposition 2.49. Let A be a closed and densely defined operator from \mathcal{H}_1 to \mathcal{H}_2 . Then $A^* : \text{Dom}(A^*) \to \mathcal{H}_1$ is bijective if and only if $A : \text{Dom}(A) \to \mathcal{H}_2$ is bijective, and in this \mathscr{C} Ex. 2.11 case we have $(A^*)^{-1} = (A^{-1})^*$.

Proposition 2.50. Let A be a closed and densely defined operator on \mathcal{H} . We have

B Ex. 2.12

2.3.2 Examples: adjoints of some differential operators

General differential operators with smooth and bounded coefficients

Let Ω be an open subset of \mathbb{R}^d . We define on $\mathcal{H} = L^2(\Omega)$ the operator A_0 which acts as the differential operator P (see (2.2)) on the domain $\mathsf{Dom}(A_0) = C_0^{\infty}(\Omega)$. Then $v \in L^2(\Omega)$ belongs to $\mathsf{Dom}(A_0^*)$ if and only if there exists $w \in L^2(\Omega)$ such that

 $\sigma(A^*) = \overline{\sigma(A)}.$

$$\forall \phi \in C_0^\infty(\Omega), \quad \int_\Omega P\phi(x)\overline{v(x)} \, \mathrm{d}x = \int_\Omega \phi(x)\overline{w(x)} \, \mathrm{d}x.$$

By definition, this means that $P^*v = w$ (see (2.3)) in the sense of distributions. Then A_0^* acts as P^* on the domain

$$\mathsf{Dom}(A_0^*) = \{ v \in L^2(\Omega) : P^* v \in L^2(\Omega) \}.$$

Then A_0 is closed by Proposition 2.47 or by Example 2.29. The domain of A_0^* contains $C_0^{\infty}(\Omega)$, so it is dense. By Proposition 2.48 this implies that A_0 is closable. This is consistent with the fact that we already know by Example 2.29 that A_0 has a closed extension. Notice that A_0 may have several closed extensions (see for instance the discussion of Section 3.1.5).

The Laplace operator

As a particular case, we consider the Laplace operator. We define the operators which acts as $-\Delta$ on the domains

$$\mathsf{Dom}(H_0) = C_0^\infty(\Omega)$$
 and $\mathsf{Dom}(H) = \{ u \in L^2(\Omega) : \Delta u \in L^2(\Omega) \}$.

When $\Omega = \mathbb{R}^d$, the domain of H is just $H^2(\mathbb{R}^d)$. We recall that this is not true for a general Ω (it can happen that $u \in L^2(\Omega)$, $\Delta u \in L^2(\Omega)$ but u is not in $H^2(\Omega)$).

Since the formal adjoint of the Laplacian is the Laplacian itself we have in general H_0^* =

H. Since $H_0 \subset H$ we have $H^* \subset H_0^* = H$ by Proposition 2.45. When $\Omega = \mathbb{R}^d$ we actually have $H^* = H_0^*$. This follows from the fact that $H = \overline{H_0}$. and Proposition 2.48. We can also give a direct proof. Let $\psi \in \mathsf{Dom}(H_0^*) = H^2(\mathbb{R}^d)$. For $\varphi \in \mathsf{Dom}(H) = H^2(\mathbb{R}^d)$ we have by the Green formula

$$\left\langle H\varphi,\psi\right\rangle = \left\langle -\Delta\varphi,\psi\right\rangle = \left\langle \varphi,-\Delta\psi\right\rangle = \left\langle \varphi,H_{0}^{*}\psi\right\rangle$$

so $\psi \in \mathsf{Dom}(H)$. In general, since functions in $\mathsf{Dom}(H)$ or $\mathsf{Dom}(H_0^*)$ are not necessarily in $H^2(\Omega)$, we cannot apply the usual Green formula.

In dimension 1, it is still true that $\mathsf{Dom}(H_0^*) = H^2(\Omega)$. And we can see that in general we do not necessarily have $H^* = H_0^*$. We consider the case $\Omega =]0, 1[$. Let $v \in \mathsf{Dom}(H^*)$ and $w = H^*v$. For all $u \in \mathsf{Dom}(H) = H^2(0, 1)$ we have

$$-\int_0^1 u''(x)\overline{v(x)} \,\mathrm{d}x = \langle Hu, v \rangle_{L^2(0,1)} = \langle u, w \rangle_{L^2(0,1)} = \int_0^1 u(x)\overline{w(x)} \,\mathrm{d}x.$$

On the other hand, since $v \in \mathsf{Dom}(A_0^*) = H^2(0,1)$ we also have by the Green formula

$$-\int_0^1 u(x)'' \overline{v(x)} \, \mathrm{d}x = -u'(1)\overline{v(1)} + u'(0)\overline{v(1)} + \int_0^1 u'(x)\overline{v'(x)} \, \mathrm{d}x$$
$$= -u'(1)\overline{v(1)} + u'(0)\overline{v(1)} + u(1)\overline{v'(1)} - u(0)\overline{v'(0)} - \int_0^1 u(x)\overline{v''(x)} \, \mathrm{d}x.$$

This implies that w = -v'' and v(0) = v(1) = v'(0) = v'(1) = 0. Then $\mathsf{Dom}(H_0^*)$ is not included in $\mathsf{Dom}(H^*)$.

Creation and annihilation operators

We consider on $\mathcal{H} = L^2(\mathbb{R})$ the creation and annihilation operators defined on the domain $C_0^\infty(\mathbb{R})$ by

$$\forall u \in C_0^{\infty}(\mathbb{R}), \quad \mathsf{a}_0 u = \frac{u' + xu}{\sqrt{2}} \quad \text{and} \quad \mathsf{c}_0 u = \frac{-u' + xu}{\sqrt{2}}$$

Then we set

$$a = \overline{a_0}$$
 and $c = \overline{c_0}$.

We have

$$\mathsf{Dom}(\mathsf{a}) = \left\{ u \in L^2(\mathbb{R}) \, : \, u' + xu \in L^2(\mathbb{R}) \right\}, \quad \mathsf{Dom}(\mathsf{c}) = \left\{ u \in L^2(\mathbb{R}) \, : \, -u' + xu \in L^2(\mathbb{R}) \right\}$$

Finally we have

$$a^* = c$$
 and $c^* = a$.

Example: the harmonic oscillator 2.4

We consider on $L^2(\mathbb{R})$ the operator H which acts as

$$H = -\frac{d^2}{dx^2} + x^2$$
 (2.7)

on the domain

$$\mathsf{Dom}(H) = \left\{ u \in L^2(\mathbb{R}) : -u'' + x^2 u \in L^2(\mathbb{R}) \right\}.$$
(2.8)

Proposition 2.51. The spectrum of H consists of a sequence $(\lambda_k)_{k \in \mathbb{N}}$ of simple eigenvalues. Moreover, for $k \in \mathbb{N}^*$ we have

$$\lambda_k = (2k+1)$$

and a corresponding eigenfunction is given by

$$\varphi_k(x) = h_k(x)e^{-\frac{x^2}{2}},$$

where $h_k(x) = is$ the k-th Hermite polynomial (in particular it has degree k).

Proof. • We recall that we have introduced the operators \mathbf{a} and \mathbf{c} is Section 2.3.2. We observe that for $u \in \mathcal{S}(\mathbb{R})$ we have

$$Hu = 2\mathsf{ca}u + u.$$

We also have [a, c]u = acu - cau = u so, by induction on k,

$$\mathsf{ac}^k u = k\mathsf{c}^{k-1}u + \mathsf{c}^k a u. \tag{2.9}$$

• We set $\varphi_0(x) = e^{-\frac{x^2}{2}}$. We have $\varphi_0 \in \mathcal{S}(\mathbb{R})$ and $\mathbf{a}\varphi_0 = 0$, so $H\varphi_0 = \varphi_0$. For $k \in \mathbb{N}^*$ we set $\varphi_k = \mathbf{c}^k \varphi_0$. We can check by induction on $k \in \mathbb{N}$ that φ_k is of the form $\varphi_k = P_k \varphi_0$ where P_k is a polynomial of degree k. In particular $\varphi_k \in \mathcal{S}(\mathbb{R})$. We have

$$H\varphi_k = 2\mathsf{cac}^k\varphi_0 + \varphi_k = 2k\mathsf{c}^k\varphi_0 + 2\mathsf{c}^{k+1}\mathsf{a}\varphi_0 + \varphi_k = (2k+1)\varphi_k.$$

This prove that $\lambda_k = 2k + 1$ is an eigenvalue of H and φ_k is a corresponding eigenfunction. • We prove by induction on $j \in \mathbb{N}$ that for all k > 0 we have $\langle \varphi_j, \varphi_k \rangle = 0$. Since $c^* = a$, we have

$$\left\langle \varphi_{j},\varphi_{k}
ight
angle =\left\langle \mathsf{c}^{j}arphi_{0},\mathsf{c}^{k}arphi_{0}
ight
angle =\left\langle \mathsf{a}^{k}\mathsf{c}^{j}arphi_{0},arphi_{0}
ight
angle .$$

Since $\mathbf{a}\varphi_0 = 0$ the conclusion follows if j = 0. For $j \ge 1$ we have by

$$\left\langle \mathsf{a}^{k}\mathsf{c}^{j}\varphi_{0},\varphi_{0}\right\rangle = j\left\langle \mathsf{a}^{k-1}\mathsf{c}^{j-1}\varphi_{0},\varphi_{0}\right\rangle + \left\langle \mathsf{a}^{k-1}\mathsf{c}^{j}\mathsf{a}\varphi_{0},\varphi_{0}\right\rangle = 0.$$

This proves that the family of eigenvectors $(\varphi_k)_{k \in \mathbb{N}}$ is orthogonal in $L^2(\mathbb{R})$.

• Let us prove that the family (φ_k) is total in $L^2(\mathbb{R})$. This means that $\overline{\mathsf{span}((\varphi_k)_{k\in\mathbb{N}})} = L^2(\mathbb{R})$. Let $u \in L^2(\mathbb{R})$ be such that $\langle \varphi_k, u \rangle_{L^2(\mathbb{R})} = 0$ for all $k \in \mathbb{N}$. Since P_k is of degree k for all k, we deduce that for any polynomial **q** we have

$$\int_{\mathbb{R}} \mathsf{q}(x) e^{-\frac{x^2}{2}} u(x) \, \mathrm{d}x = 0.$$

For $\zeta \in \mathbb{C}$ we set

$$v(\zeta) = \int_{\mathbb{R}} e^{-ix\xi} u(x) e^{-\frac{x^2}{2}} \,\mathrm{d}x.$$

By differentiation under the integral sign we see that v is holomorphic in \mathbb{C} and for $m \in \mathbb{N}$ we have

$$v^{(m)}(0) = \int_{\mathbb{R}} (-ix)^m u(x) e^{-\frac{x^2}{2}} dx = 0.$$

This implies that v = 0 on \mathbb{C} , and in particular in \mathbb{R} . Thus the Fourier transform of $x \mapsto u(x)e^{-\frac{x^2}{2}}$ is 0, so u = 0 almost everywhere.

For $k \in \mathbb{N}$ we set

$$\psi_k = \frac{\varphi_k}{\|\varphi_k\|}.$$

Then (ψ_k) is a Hilbert basis of $L^2(\mathbb{R})$, and $H\psi_k = \lambda_k \psi_k$ for all k. Thus the spectrum of H is exactly given by the sequence $(\lambda_k)_{k \in \mathbb{N}}$ of simple eigenvalues.

2.5 A representation theorem

2.5.1 The abstract result

Let \mathcal{H} be a Hilbert space. We identify \mathcal{H} with its dual \mathcal{H}' . Then if \mathcal{V} is another Hilbert space continuously embedded in \mathcal{H} we have

$$\mathcal{V} \subset \mathcal{H} \simeq \mathcal{H}' \subset \mathcal{V}'.$$

Notice that if we have already identified \mathcal{H} with \mathcal{H}' we cannot identify \mathcal{V} with \mathcal{V}' .

Theorem 2.52 (Representation theorem). Let \mathcal{H} and \mathcal{V} be two Hilbert spaces such that \mathcal{V} is densely and continuously embedded in \mathcal{H} . Let q be a continuous and coercive sesquilinear form on \mathcal{V} . We set

$$\mathsf{Dom}(A) = \{\varphi \in \mathcal{V} : \exists C_{\varphi} > 0, \forall \psi \in \mathcal{V}, |\mathsf{q}(\varphi, \psi)| \leq C_{\varphi} \|\psi\|_{\mathcal{H}} \},\$$

and for $\varphi \in \mathsf{Dom}(A)$ we define $A\varphi \in \mathcal{H}$ by

$$\forall \psi \in \mathcal{V}, \quad \mathsf{q}(\varphi, \psi) = \langle A\varphi, \psi \rangle_{\mathcal{H}}$$

This defines on \mathcal{H} an operator A with domain $\mathsf{Dom}(A)$ such that

- (i) $\mathsf{Dom}(A)$ is dense in \mathcal{V} and in \mathcal{H} ;
- (ii) A is closed;
- (iii) A is invertible.

Moreover, the operator on \mathcal{H} associated to the form q^* is A^* .

Proof. • Let $\varphi \in \mathsf{Dom}(A)$. The map $\psi \mapsto \mathsf{q}(\varphi, \psi)$ extends to a bounded semilinear form on \mathcal{H} . Then, by the Riesz theorem, there exists a vector $A\varphi \in \mathcal{H}$ such that $\mathsf{q}(\varphi, \psi) = \langle A\varphi, \psi \rangle_{\mathcal{H}}$ for all $\psi \in \mathcal{V}$. This defines on \mathcal{H} an operator A with domain $\mathsf{Dom}(A)$ (the linearity of A is left as an exercise).

• Let $\zeta \in \mathcal{H}$. The map $\psi \in \mathcal{V} \mapsto \langle \zeta, \psi \rangle_{\mathcal{H}}$ is a continuous semilinear map on \mathcal{V} so, by the Lax-Milgram theorem, there exists $\varphi \in \mathcal{V}$ such that

$$\forall \psi \in \mathcal{V}, \quad \langle \zeta, \psi \rangle_{\mathcal{H}} = \mathsf{q}(\varphi, \psi).$$

Then we have $\varphi \in \mathsf{Dom}(A)$ and $A\varphi = \zeta$. This proves that A is surjective.

• For $\varphi \in \mathsf{Dom}(A)$ we have

$$\|A\varphi\|_{\mathcal{H}} \|\varphi\|_{\mathcal{H}} \ge |\langle A\varphi, \varphi \rangle_{\mathcal{H}}| = |\mathbf{q}(\varphi, \varphi)| \ge \alpha \|\varphi\|_{\mathcal{V}}^2 \ge \alpha \tilde{C}^{-1} \|\varphi\|_{\mathcal{H}}^2,$$

where $\tilde{C} > 0$ is such that $\|\psi\|_{\mathcal{H}}^2 \leq \tilde{C} \|\psi\|_{\mathcal{V}}^2$ for all $\psi \in \mathcal{V}$. Thus,

$$\|A\varphi\|_{\mathcal{H}} \ge \alpha \tilde{C}^{-1} \|\varphi\|_{\mathcal{H}}.$$
(2.10)

This proves in particular that A is injective. Since A is surjective, it is invertible and $||A^{-1}||_{\mathcal{L}(\mathcal{H})} \leq \alpha^{-1}\tilde{C}$. This implies that A is closed (see Remark 2.30).

• Let $\psi \in \mathcal{V}$ be in the orthogonal of $\mathsf{Dom}(A)$ in \mathcal{V} . Let $T \in \mathcal{L}(\mathcal{V})$ be given by the Lax-Milgram Theorem (Theorem 1.59). Since T^* is bijective, there exists $\zeta \in \mathcal{V}$ such that $T^*\zeta = \psi$. Then for all $\varphi \in \mathsf{Dom}(A)$ we have

$$0 = \langle \varphi, \psi \rangle_{\mathcal{V}} = \langle \varphi, T^* \zeta \rangle_{\mathcal{V}} = \langle T\varphi, \zeta \rangle_{\mathcal{V}} = \mathsf{q}(\varphi, \psi) = \langle A\varphi, \zeta \rangle_{\mathcal{H}}.$$

Since A is surjective, this implies that $\zeta = 0$, and hence $\psi = 0$. Then $\mathsf{Dom}(A)$ is dense in \mathcal{V} for the topology of \mathcal{V} , and hence for the topology of \mathcal{H} . Since \mathcal{V} is dense in \mathcal{H} , $\mathsf{Dom}(A)$ is also dense in \mathcal{H} .

• We denote by \tilde{A} the operator associated to q^* . Since q^* is continuous and coercive, \tilde{A} is also a densely defined, closed and invertible operator on \mathcal{H} . Let $\psi \in \mathsf{Dom}(\tilde{A})$. For all $\varphi \in \mathsf{Dom}(A)$ we have

$$\langle A\varphi,\psi\rangle = \mathsf{q}(\varphi,\psi) = \overline{\mathsf{q}^*(\psi,\varphi)} = \left\langle \tilde{A}\psi,\varphi\right\rangle = \left\langle \varphi,\tilde{A}\psi\right\rangle.$$

This proves that $\tilde{A} \subset A^*$. Conversely, if $\psi \in \mathsf{Dom}(A^*)$ then for all $\varphi \in \mathsf{Dom}(A)$ we have

$$|\mathsf{q}^*(\psi,\varphi)| = |\mathsf{q}(\varphi,\psi)| = |\langle A\varphi,\psi\rangle| = |\langle \varphi,A^*\psi\rangle| \leqslant \|A^*\psi\|_{\mathcal{H}} \, \|\varphi\|_{\mathcal{H}} \, .$$

Since $\mathsf{Dom}(A)$ is dense in \mathcal{V} and \mathcal{H} , we deduce that for all $\varphi \in \mathcal{V}$ we have

$$\left|\mathsf{q}^{*}(\psi,\varphi)\right|^{\leq} \left\|A^{*}\psi\right\|_{\mathcal{H}} \left\|\varphi\right\|_{\mathcal{H}},$$

so $\psi \in \mathsf{Dom}(\tilde{A})$. This proves that $\mathsf{Dom}(A^*) \subset \mathsf{Dom}(\tilde{A})$, so $\tilde{A} = A^*$.

Remark 2.53. Let \mathbf{q} be a continuous quadratic form on \mathcal{V} . Assume that there exists $\beta \in \mathbb{C}$ such that the form $\mathbf{q}_{\beta} : \varphi \mapsto \mathbf{q}(\varphi) + \beta \|\varphi\|_{\mathcal{H}}$ is coercive on \mathcal{V} . Let A_{β} be the operator on \mathcal{H} given by Theorem 2.52 and $A = A_{\beta} - \beta$ with $\mathsf{Dom}(A) = \mathsf{Dom}(A_{\beta})$. Then A is closed and densely defined, and $(A + \beta)$ is invertible. Notice that this definition of A does not depend on the choice of β .

Remark 2.54. Let q be a continuous coercive quadratic form on \mathcal{V} and $Q \in \mathcal{L}(\mathcal{V}, \mathcal{V}')$ defined by (1.8) (invertible by Theorem 1.59). Let A the operator on \mathcal{H} be given by Theorem 2.52. Then for all $\varphi \in \mathcal{H} \subset \mathcal{V}'$ we have $Q^{-1}\varphi = A^{-1}\varphi$.

2.5.2 Examples: Laplacian, Dirichlet and Neumann boundary conditions

Example 2.55. We consider on $H^1(\mathbb{R})$ the quadratic form

$$\mathsf{q}: u \mapsto \|u\|_{H^1(\mathbb{R})}^2$$

We apply Theorem 2.52 with $\mathcal{V} = H^1(\mathbb{R})$ and $\mathcal{H} = L^2(\mathbb{R})$. We have

$$\mathsf{Dom}(A) = \left\{ u \in H^1(\mathbb{R}) : u'' \in L^2(\mathbb{R}) \right\} = H^2(\mathbb{R}).$$

Indeed, if $u \in H^2(\mathbb{R})$ then for all $v \in H^1(\mathbb{R})$ we have

$$|q(u,v)| = \left| -\int_{\mathbb{R}} u'' \overline{v} \, \mathrm{d}x + \int_{\mathbb{R}} u \overline{v} \, \mathrm{d}x \right| \leq \left(\left\| u'' \right\| + \left\| u \right\| \right) \left\| v \right\|,$$

so $u \in \mathsf{Dom}(A)$. Conversely, assume that $u \in \mathsf{Dom}(A)$. Then for all $v \in H^1(\mathbb{R})$ we have

$$\left|\int_{\mathbb{R}} u'\overline{v}' \,\mathrm{d}x\right| \leq |q(u,v)| + ||u|| \,||v|| \leq (C_u + ||u||) \,||v||.$$

This proves that $u'' \in L^2$, and hence $u \in H^2(\mathbb{R})$. Finally, for $u \in \mathsf{Dom}(A)$ we have

$$\forall v \in H^1(\mathbb{R}), \quad \langle Au, v \rangle = q(u, v) = \left\langle -u'' + u, v \right\rangle,$$

 \mathbf{so}

$$Au = -u'' + u.$$

Example 2.56. We consider on $H^1(0,1)$ the quadratic form

$$\mathsf{q}_N: u \mapsto \|u\|_{H^1(0,1)}^2$$

We apply Theorem 2.52 with $\mathcal{V} = H^1(0,1)$ and $\mathcal{H} = L^2(0,1)$. We denote by A_N the corresponding operator. Let $u \in \mathsf{Dom}(A_N)$. For all $\phi \in C_0^{\infty}(]0,1[) \subset H^1(0,1)$ we have as above

$$\left| \int_0^1 u' \overline{\phi}' \, \mathrm{d}x \right| \le \left(C_u + \|u\| \right) \|\phi\| \, .$$

This implies that $u'' \in L^2(0,1)$. Then for all $\phi \in C_0^{\infty}(]0,1[)$ we have

$$\langle A_N u, \phi \rangle = q_N(u, \phi) = \int_0^1 u' \overline{\phi}' \, \mathrm{d}x + \int_0^1 u \overline{\phi} \, \mathrm{d}x = \langle -u'' + u, \phi \rangle$$

This proves that $A_N u = -u'' + u$. Then for all $v \in H^1(0, 1)$ we have

$$\langle A_N u, v \rangle = q_N(u, v) = \int_0^1 u' \overline{v}' \, \mathrm{d}x + \int_0^1 u \overline{v} \, \mathrm{d}x = u'(1)\overline{v}(1) - u'(0)\overline{v}(0) + \left\langle -u'' + u, v \right\rangle$$

This proves that for all $v \in H^1(0, 1)$

$$u'(1)\overline{v}(1) - u'(0)\overline{v}(0) = 0.$$

This implies that

$$u'(0) = u'(1) = 0. (2.11)$$

Conversely, assume that $u \in H^2(0,1)$ satisfies (2.11). Then we can compute as above that

 $\forall v \in H^1(0,1), \quad q(u,v) = \left\langle -u'' + u, v \right\rangle.$

Then $u \in \mathsf{Dom}(A_N)$. Finally we have

$$\mathsf{Dom}(A_N) = \left\{ u \in H^2(0,1) \, : \, u'(0) = u'(1) = 0 \right\}$$

and, for all $u \in \mathsf{Dom}(A_N)$,

$$A_N u = -u'' + u.$$

Example 2.57. We consider on $H_0^1(0,1)$ the quadratic form

$$\mathsf{q}_D: u \mapsto \left\| u \right\|_{H^1(0,1)}^2.$$

We apply Theorem 2.52 with $\mathcal{V} = H_0^1(0,1)$ and $\mathcal{H} = L^2(0,1)$. We denote by A_D the corresponding operator. Let $u \in \mathsf{Dom}(A_D)$. As above we see that $u \in H^2(0,1)$ and $A_D u = -u'' + u$. On the other hand, if $u \in H^2(0,1) \cap H_0^1(0,1)$ we have $q(u,v) = \langle -u'' + u, v \rangle$ for all $v \in H_0^1(0,1)$ (there are no boundary terms since u and v vanish at the boundary). Finally we have

$$\mathsf{Dom}(A_D) = H^2(0,1) \cap H^1_0(0,1),$$

and for all $u \in \mathsf{Dom}(A_D)$

$$A_D u = -u'' + u.$$

Example 2.58. By Remark 2.53 we can define the operators associated to the form

$$u \mapsto \int_0^1 |u(x)|^2 \, \mathrm{d}x$$

defined on $H^1(\mathbb{R})$ and $H^1(0,1)$ (note that this form is already coercive on $H^1_0(0,1)$).

🖉 Ex. 2.13

2.6 Riesz projections

2.6.1 Separation of the spectrum

The interest of the resolvent is that it is a bounded operator which completely characterize the operator. Moreover, since it is analytic, we can use all the tools from complex analysis. In the following section we give a first application of the resolvent for the analysis of an operator.

Let E be a Banach space.

Proposition 2.59. Let A be an operator on E . Let Π be a projection of E such that

 $\Pi A \subset A \Pi$

(for all $\varphi \in \text{Dom}(A)$ we have $\Pi \varphi \in \text{Dom}(A)$ and $A \Pi \varphi = \Pi A \varphi$). Let $\mathsf{F} = \mathsf{Ran}(\Pi)$ and $\mathsf{G} = \ker(\Pi)$.

(i) F and G are closed subspace of E and $\mathsf{E} = \mathsf{F} \oplus \mathsf{G}$.

- (ii) A maps $Dom(A) \cap F$ to F and $Dom(A) \cap G$ to G. We denote by A_F and A_G the restrictions of A to F and G, with $Dom(A_F) = Dom(A) \cap F$ and $Dom(A_G) = Dom(A) \cap G$.
- (iii) If Dom(A) is dense in E then $Dom(A_F)$ is dense in F and $Dom(A_G)$ is dense in G.
- (iv) If A is closed then A_{F} and A_{G} are closed.
- (v) We have $\sigma(A) = \sigma(A_{\mathsf{F}}) \cup \sigma(A_{\mathsf{G}})$ and for $z \in \rho(A) = \rho(A_{\mathsf{F}}) \cap \rho(A_{\mathsf{G}})$ we have

$$(A-z)^{-1} = (A_{\mathsf{F}}-z)^{-1} \oplus (A_{\mathsf{G}}-z)^{-1}$$

Proof. • **G** is closed since it is the kernel of the bounded operator Π , and **F** is closed since it is the kernel of $(1 - \Pi)$. Let $\varphi \in \mathsf{F} \cap \mathsf{G}$. We have $\varphi = \Pi \varphi = 0$, so $\mathsf{F} \cap \mathsf{G} = \{0\}$. On the other hand, for $\varphi \in \mathsf{E}$ we have $\varphi = A\varphi + (\varphi - A\varphi)$ with $A\varphi \in \mathsf{F}$ and $\varphi - A\varphi \in \mathsf{G}$, so $\mathsf{E} = \mathsf{F} + \mathsf{G}$.

• For $\varphi \in \text{Dom}(A) \cap F$ we have $\Pi A \varphi = A \Pi \varphi = A \varphi$, so $A \varphi \in \text{ker}(1 - \Pi) = F$. We proceed similarly for $G = \text{ker}(\Pi)$.

• Assume that $\mathsf{Dom}(A)$ is dense in E. Let $\varphi \in \mathsf{F}$. There exists a sequence (φ_n) in $\mathsf{Dom}(A)$ which converges to φ in E. For $n \in \mathbb{N}$ we have $\Pi \varphi_n \in \mathsf{Dom}(A)$ by assumption. Then $\Pi \varphi_n \in \mathsf{Dom}(A) \cap \mathsf{F}$ converges to $\Pi \varphi = \varphi$. We proceed similarly for G.

• Assume that A is closed. Let (φ_n) be a sequence in $\text{Dom}(A_{\mathsf{F}})$ such that $\varphi_n \to \varphi$ and $A_{\mathsf{F}}\varphi_n \to \psi$ in F . Then $\varphi_n \to \varphi$ and $A\varphi \to \psi$ in E . Since A is closed, this proves that $\varphi \in \text{Dom}(A)$ and $A\varphi = \psi$. Since $\varphi \in \mathsf{F}$ we also have $\varphi \in \text{Dom}(A_{\mathsf{F}})$ and $A_F\varphi = \psi$. This proves that A_{F} is closed.

• Let $z \in \rho(A)$. The restriction of $(A-z)^{-1}$ to F is an inverse for $(A_{\mathsf{F}}-z)$, so $\rho(A) \subset \rho(A_{\mathsf{F}})$. Similarly, $\rho(A) \subset \rho(A_{\mathsf{G}})$. Conversely, if $z \in \rho(A_{\mathsf{F}}) \cap \rho(A_{\mathsf{G}})$ then $(A_{\mathsf{F}}-z)^{-1} \oplus (A_{\mathsf{G}}-z)^{-1}$ is an inverse for $A-z = (A_{\mathsf{F}}-z) \oplus (A_{\mathsf{G}}-z)$, so $\rho(A) = \rho(A_{\mathsf{F}}) \cap \rho(A_{\mathsf{G}})$.

Proposition 2.60. Let $z_0 \in \mathbb{C}$ and $r_0 > 0$ such that $\mathcal{C}(z_0, r_0) \subset \rho(A)$. We set

$$\Pi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} (A - \zeta)^{-1} \,\mathrm{d}\zeta = -\frac{1}{2\pi} \int_0^{2\pi} \left(A - (z_0 + r_0 e^{i\theta}) \right)^{-1} r_0 e^{i\theta} \,\mathrm{d}\theta.$$

We set $F = Ran(\Pi)$ and $G = ker(\Pi)$.

- (i) Π is a (not necessarily orthogonal) projection of E.
- (*ii*) $\mathsf{F} \subset \mathsf{Dom}(A)$.
- (*iii*) $\Pi A \subset A \Pi$.
- (iv) $\sigma(A_{\mathsf{F}}) = \sigma(A) \cap D(z_0, r_0)$ and $\sigma(A_{\mathsf{G}}) = \sigma(A) \setminus \overline{D}(z_0, r_0)$.

Remark 2.61. In Proposition 2.60 we consider for simplicity the case where Π is defined by an integral on a circle. But we can similarly consider the integral on any rectifiable simple closed curve in $\rho(A)$ (see [Kat80, § III.6.4]).

Proof. • Π is defined by the integral on a line segment of a continuous function with values in the Banach space $\mathcal{L}(\mathsf{E})$. This can be understood in the sense of Riemann integrals and this defines a bounded operator on E . In particular we have in $\mathcal{L}(\mathsf{E})$

$$\Pi = \lim_{n \to +\infty} \Pi_n, \quad \text{where} \quad \Pi_n = -\frac{1}{n} \sum_{k=1}^n \left(A - \left(z_0 + r_0 e^{\frac{ik}{2\pi}} \right) \right)^{-1} r_0 e^{\frac{ik}{2\pi}}.$$

Then for $\varphi \in \mathsf{E}$ and $\ell \in \mathsf{E}^*$ we have

$$\ell(\Pi\varphi) = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r_0)} \ell((A-z)^{-1}\varphi) \,\mathrm{d}z.$$

Since $\rho(A)$ is open in \mathbb{C} , there exists $R_1 \in [0, r_0[$ and $R_2 > r_0$ such that $D(0, R_2) \setminus \overline{D}(0, R_1) \subset \rho(A)$. Let $\varphi \in \mathsf{E}$ and $\ell \in \mathsf{E}^*$. Since the map $\zeta \mapsto \ell((A - \zeta)^{-1}\varphi)$ is holomorphic on $\rho(A)$, we can replace r_0 by any $r \in]R_1, R_2[$ in the expression of Π .

• Let $r_1, r_2 \in]R_1, R_2[$ with $r_1 < r_2$. We can write

$$\Pi^{2} = \frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} (A - \zeta_{1})^{-1} (A - \zeta_{2})^{-1} \,\mathrm{d}\zeta_{2} \,\mathrm{d}\zeta_{1}.$$

By the resolvent identity we have

$$\Pi^{2} = \frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} \frac{(A - \zeta_{1})^{-1} - (A - \zeta_{2})^{-1}}{\zeta_{1} - \zeta_{2}} \,\mathrm{d}\zeta_{2} \,\mathrm{d}\zeta_{1}$$

Then, by the Fubini Theorem,

$$\Pi^{2} = -\frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} (A - \zeta_{1})^{-1} \left(\int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} \frac{1}{\zeta_{2} - \zeta_{1}} \, \mathrm{d}\zeta_{2} \right) \, \mathrm{d}\zeta_{1}$$
$$- \frac{1}{(2i\pi)^{2}} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} (A - \zeta_{2})^{-1} \left(\int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \frac{1}{\zeta_{1} - \zeta_{2}} \, \mathrm{d}\zeta_{1} \right) \, \mathrm{d}\zeta_{2}.$$

We look at the integral in brackets for each term. For the second term, for any $\zeta_2 \in \mathcal{C}(z_0, r_2)$ the map $\zeta_1 \mapsto 1/(\zeta_1 - \zeta_2)$ is holomorphic on $D(z_0, r_2)$, so the integral vanishes. For the first term, we get by the Cauchy Theorem that the integral is equal to $2i\pi$ for all $\zeta_1 \in \mathcal{C}(z_0, r_1)$. Then

$$\Pi^{2} = -\frac{1}{2i\pi} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} (A - \zeta_{2})^{-1} \,\mathrm{d}\zeta_{2} = \Pi.$$

This proves that Π is a projection of E .

• Let $\varphi \in \mathsf{F}$ and $\psi \in \mathsf{E}$ such that $\varphi = \Pi \psi$. For $n \in \mathbb{N}^*$ we set $\varphi_n = \Pi_n \psi \in \mathsf{Dom}(A)$. Then $\varphi_n \to \varphi$ in E . Moreover,

$$\begin{aligned} A\varphi_n &= -\frac{1}{n} \sum_{k=1}^n A \Big(A - (z_0 + r_0 e^{i\theta_k}) \Big)^{-1} r_0 e^{i\theta_k} \psi \\ &= -\frac{1}{n} \sum_{k=1}^n \Big(\mathrm{Id} + (z_0 + r_0 e^{i\theta_k}) \Big(A - (z_0 + r_0 e^{i\theta_k}) \Big)^{-1} \Big) r_0 e^{i\theta_k} \psi \\ &\xrightarrow[n \to \infty]{} - \frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \Big(\mathrm{Id} + \zeta (A - \zeta)^{-1} \Big) \psi \, \mathrm{d}\zeta = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \zeta (A - \zeta)^{-1} \psi \, \mathrm{d}\zeta. \end{aligned}$$

Since A is closed this proves that $\varphi \in \mathsf{Dom}(A)$ (and $A\varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r_0)} \zeta(A-\zeta)^{-1} \psi \,\mathrm{d}\zeta$).

• Let $\varphi \in \text{Dom}(A)$. Since A commutes with its resolvent, we have $A\Pi_n \varphi = \Pi_n A \varphi$ for all $n \in \mathbb{N}^*$. Since $\Pi_n \varphi \to \Pi \varphi$ and $A\Pi_N \varphi = \Pi_N A \varphi \to \Pi A \varphi$, we get by closedness of A that $\Pi \varphi \in \text{Dom}(A)$ and $A\Pi \varphi = \Pi A \varphi$.

• Let $z \in \rho(A_{\mathsf{F}}) \setminus D(z_0, r_0)$. Let $r \in]R_1, r_0[$. We have on F

$$\begin{aligned} (A_{\mathsf{F}} - z)^{-1} &= (A_{\mathsf{F}} - z)^{-1} \Pi \\ &= -\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} (A_{\mathsf{F}} - z)^{-1} (A_{\mathsf{F}} - \zeta)^{-1} \, \mathrm{d}\zeta \\ &= -\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{F}} - z)^{-1} - (A_{\mathsf{F}} - \zeta)^{-1}}{z - \zeta} \, \mathrm{d}\zeta \\ &= \frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{F}} - \zeta)^{-1}}{z - \zeta} \, \mathrm{d}\zeta. \end{aligned}$$

The right-hand side is bounded uniformly in $z \in \rho(A_{\mathsf{F}}) \setminus D(z_0, r_0)$. By Proposition 2.23 this implies that

$$\sigma(A_{\mathsf{F}}) \subset D(z_0, r_0). \tag{2.12}$$

Now let $z \in \rho(A_{\mathsf{G}}) \cap D(z_0, r_0)$ and $r \in]r_0, R_2[$. We have on G

$$(A_{\mathsf{G}} - z)^{-1} = (A_{\mathsf{G}} - z)^{-1} (1 - \Pi)$$

= $(A_{\mathsf{G}} - z)^{-1} - \frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{G}} - z)^{-1} - (A_{\mathsf{G}} - \zeta)^{-1}}{\zeta - z} \,\mathrm{d}\zeta$
= $\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{G}} - \zeta)^{-1}}{z - \zeta} \,\mathrm{d}\zeta.$

This is bounded uniformly in $z \in \rho(A_{\mathsf{G}}) \cap D(z_0, r_0)$, so

$$\sigma(A_{\mathsf{G}}) \subset \mathbb{C} \setminus \overline{D}(0, r_0). \tag{2.13}$$

Finally, with Proposition 2.59 and (2.12)-(2.13) we deduce that $\sigma(A_{\mathsf{F}}) = \sigma(A) \cap D(0, r_0)$ and \mathscr{D} Ex. ??, 2.15 $\sigma(A_{\mathsf{G}}) = \sigma(A) \setminus \overline{D}(0, r_0)$.

Definition 2.62. Let A be a closed operator on E. Assume that $\lambda \in \mathbb{C}$ is an isolated point in the spectrum of A. Let $r_0 > 0$ such that $\sigma(A) \cap D(\lambda, r) = \{\lambda\}$ and $r \in]0, r_0[$. Then the Riesz Projection of A at λ is

$$\Pi_{\lambda} = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} (A-z)^{-1} \,\mathrm{d}z \tag{2.14}$$

(the definition does not depend on the choice of r).

Definition 2.63. Let λ be an isolated eigenvalue of A. The algebraic multiplicity of λ is dim(Ran(Π_{λ})), where Π_{λ} is the Riesz projection at λ .

Remark 2.64. Since $\ker(A - \lambda) \subset \mathsf{Ran}(\Pi_A(\lambda))$ the geometric multiplicity is not greater than the algebraic multiplicity.

Example 2.65. Let $\alpha, \beta \in \mathbb{C}$ distinct and

$$M = \begin{pmatrix} \alpha & 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & \beta & 1 \\ 0 & 0 & 0 & 0 & \beta \end{pmatrix}$$

Then α is an eigenvalue of geometric multiplicity 2. For $z \in \mathbb{C} \setminus \{\alpha, \beta\}$ we have

$$(M-z)^{-1} = \begin{pmatrix} (\alpha-z)^{-1} & -(\alpha-z)^{-2} & 0 & 0 & 0\\ 0 & (\alpha-z)^{-1} & 0 & 0 & 0\\ 0 & 0 & (\alpha-z)^{-1} & 0 & 0\\ 0 & 0 & 0 & (\beta-z)^{-1} & -(\beta-z)^{-2}\\ 0 & 0 & 0 & 0 & (\beta-z)^{-1} \end{pmatrix}.$$

Then for $r \in]0, |\alpha - \beta|$ [we have

so α has algebraic multiplicity 3 and Π_{α} is the projection of \mathbb{C}^5 on ker $((M - \alpha)^2)$ parallel to ker $(M - \beta)$.

Proposition 2.66. We use the notation of Proposition 2.60.

- (i) Let $\lambda \in D(z_0, r_0)$ and $m \in \mathbb{N}^*$. Then $\ker((A \lambda)^m) \subset \mathsf{F}$.
- (ii) Let $\lambda \in \mathbb{C} \setminus \overline{D}(z_0, r_0)$ and $m \in \mathbb{N}^*$. Then $\ker((A \lambda)^m) \subset \mathsf{G}$.

Proof. • Let $\varphi \in \mathsf{Dom}(A)$ such that $(A - \lambda)\varphi \in \mathsf{F}$. For $\zeta \in \mathcal{C}(z_0, r_0)$ we have

$$(A-\zeta)^{-1}\varphi = (\lambda-\zeta)^{-1}\varphi - (\lambda-\zeta)^{-1}(A-\zeta)^{-1}(A-\lambda)\varphi,$$

Then

$$\Pi \varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} \left((\lambda - \zeta)^{-1} \varphi + (\lambda - \zeta)^{-1} (A - \zeta)^{-1} (A - \lambda) \varphi \right) d\zeta$$
$$= \varphi + \frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} (\lambda - \zeta)^{-1} (A - \zeta)^{-1} (A - \lambda) \varphi d\zeta.$$

Since

$$\forall \zeta \in \mathcal{C}(z_0, r), \quad (A - \lambda)(A - \zeta)^{-1}(1 - \Pi)\varphi = (A - \zeta)^{-1}(1 - \Pi)(A - \lambda)\varphi = 0$$

we deduce

$$(1-\Pi)\varphi = (1-\Pi)^2\varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} (\lambda-\zeta)^{-1} (A-\zeta)^{-1} (1-\Pi) (A-\lambda)\varphi \,\mathrm{d}\zeta = 0.$$

This proves that $\varphi \in \mathsf{F}$. Then we can prove by induction on $m \in \mathbb{N}^*$ that $\ker((A - \lambda)^m) \subset \mathsf{F}$. The second statement is similar.

Proposition 2.67. Assume that λ is an isolated point of $\sigma(A)$ such that $\operatorname{Ran}(\Pi_{\lambda})$ is of finite dimension $m \in \mathbb{N}^*$. Then λ is an eigenvalue and

$$\mathsf{Ran}(\Pi_{\lambda}) = \ker((A - \lambda)^m).$$

Proof. The restriction A_{F} of A to F is an operator on the finite dimensional space F , with $\sigma(A_{\mathsf{E}_{\lambda}}) = \{\lambda\}$. Then the result follows from the finite dimensional case.

Remark 2.68. We recall that (see Exercise 1.1)

- an isolated point λ of σ(A) is not necessarily an eigenvalue (in this case we have dim(Ran(Π_λ)) = +∞ by Proposition 2.67);
- as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multiplicity.

Definition 2.69. Let A be a closed and densely defined operator on E. Let $\lambda \in \mathbb{C}$. We say that λ belongs to the discrete spectrum $\sigma_{\text{disc}}(A)$ of A and λ is an isolated eigenvalue of A with finite algebraic multiplicity. The essential spectrum of A is $\sigma_{\text{ess}}(A) = \sigma(A) \setminus \sigma_{\text{disc}}(A)$

Proposition 2.70. Let A be a closed operator on E. $\sigma_{ess}(A)$ is closed.

2.6.2 Regularity of the spectrum with respect to a parameter

[Not discussed in class]

Lemma 2.71. Let Π_1 and Π_2 be two projections on E . Assume that $\|\Pi_2 - \Pi_1\|_{\mathcal{L}(\mathsf{E})} < 1$. Then

$$\dim(\mathsf{Ran}(\Pi_1)) = \dim(\mathsf{Ran}(\Pi_2)).$$

Proof. Let $\pi : \mathsf{Ran}(\Pi_2) \to \mathsf{Ran}(\Pi_1)$ be the restriction of Π_1 to $\mathsf{Ran}(\Pi_2)$. This is a continuous linear map. For $\varphi \in \ker(\pi)$ we have $\Pi_2(\varphi) = \varphi$ and $\Pi_1(\varphi) = 0$ so

$$\|\varphi\| = \|\Pi_2(\varphi) - \Pi_1(\varphi)\| \le \|\Pi_2 - \Pi_2\| \|\varphi\|,$$

so $\varphi = 0$. This implies that $\dim(\operatorname{Ran}(\Pi_1)) \ge \dim(\operatorname{Ran}(\Pi_1))$. Interverting the roles of Π_1 and Π_2 gives the reverse inequality and concludes the proof.

Proposition 2.72. Let ω be a connected subset of \mathbb{C} . Let $(A_{\alpha})_{\alpha \in \mathbb{C}}$ be a family of linear operators on E . Assume that there exists $\lambda_0 \in \mathbb{C}$ and $r_0 > 0$ such that $\mathcal{C}(\lambda_0, r_0) \subset \rho(A_{\alpha})$ for all $\alpha \in \omega$. Assume that the map

$$\begin{cases} \omega \times \mathcal{C}(\lambda_0, r_0) & \to & \mathcal{L}(\mathsf{E}) \\ (\alpha, z) & \mapsto & (A_\alpha - z)^{-1} \end{cases}$$

is continuous.

- (i) We denote by Π_α the Riesz projection of A_α on C(λ₀, r). Then dim(Ran(Π_α)) does not depend on α ∈ ω.
- (ii) Assume that dim(Ran(Π_{α})) = 1. Then for all $\alpha \in \omega$ the operator A_{α} has a unique simple eigenvalue λ_{α} in $D(\lambda_0, r)$. Moreover the maps $\alpha \mapsto \lambda_{\alpha}$ and $\alpha \mapsto \Pi_{\alpha}$ are continuous on ω . If moreover $\alpha \mapsto (A_{\alpha} z)^{-1}$ is holomorphic on ω for all $z \in C(\lambda_0, r_0)$, then $\alpha \mapsto \Pi_{\alpha}$ and $\alpha \mapsto \lambda_{\alpha}$ are holomorphic.

Proof. • Let $\alpha_0 \in \omega$. Since $\mathcal{C}(\lambda_0, r)$ is compact, there exists a neighborhood \mathcal{V} of α_0 in ω such that for all $\alpha \in \mathcal{V}$ and $\zeta \in \mathcal{C}(\lambda_0, r)$ we have

$$\|(A_{\alpha}-\zeta)^{-1}-(A_{\alpha_0}-\zeta)^{-1}\| \leq \frac{1}{2r_0}.$$

Then we have

$$\|\Pi_{\alpha} - \Pi_{\alpha_0}\| \leqslant \frac{1}{2},$$

and, by Lemma 2.71, $\mathsf{Ran}(\Pi_{\alpha}) = \mathsf{Ran}(\Pi_{\alpha_0})$ for all $\alpha \in \mathcal{V}$. Then $\mathsf{Ran}(\Pi_{\alpha})$ is locally constant, so it is constant on the connected set ω .

• By continuity under the integral sign, we see that Π_{α} is continuous with respect to α . If $(A_{\alpha} - \zeta)^{-1}$ is holomorphic with respect to α for all $\zeta \in C(l_0, r)$, then Π_{α} is holomorphic by complex differentiation under the integral sign.

• Now assume that $\operatorname{Ran}(\Pi_{\alpha}) = 1$ for all $\alpha \in \omega$. Let $\alpha_0 \in \omega$ and $\psi \in \operatorname{Ran}(\Pi_{\alpha_0})$ with $\|\psi\| = 1$. Then ψ is an eigenvector corresponding to an eigenvalue $\lambda_{\alpha_0} \in D(\lambda_0, r)$. For $\alpha \in \omega$ we set $\psi_{\alpha} = \Pi_{\alpha}\psi$. For α close to α_0 we have $\psi_{\alpha} \neq 0$. Then ψ_{α} is an eigenvector of A_{α} , continuous (holomorphic if the resolvent is holomorphic) with respect to α . Finally we have $(A_{\alpha} - z)^{-1}\psi_{\alpha} = (\lambda_{\alpha} - z)^{-1}\psi_{\alpha}$. Taking the inner product with ψ gives

$$\langle \psi, (A_{\alpha} - z)^{-1} \psi_{\alpha} \rangle = (\lambda_{\alpha} - z)^{-1} \langle \psi, \psi_{\alpha} \rangle.$$

We have $\langle \psi, \psi_{\alpha} \rangle = 1$ when $\alpha = \alpha_0$, so this does not vanish on a neighborhood of α_0 . This gives

$$(\lambda_{\alpha} - z)^{-1} = \frac{\left\langle \psi, (A_{\alpha} - z)^{-1} \psi_{\alpha} \right\rangle}{\left\langle \psi, \psi_{\alpha} \right\rangle}$$

Thus $(\lambda_{\alpha} - z)^{-1}$ is continuous (holomorphic if the resolvent is holomorphic) for α and a neighborhood of α_0 , and so is λ_{α} .

Proposition 2.73 (Analytic family of type A). Let ω be an open subset of \mathbb{C} . Let $(A_{\alpha})_{\alpha \in \omega}$ be a family of closed operators on E . We assume that

- (i) the operators $A_{\alpha}, \alpha \in \omega$, have the same domain \mathcal{D} ;
- (ii) for all $\psi \in \mathcal{D}$ the map $\alpha \mapsto A_{\alpha} \psi \in \mathcal{H}$ is holomorphic on ω .

Let $\alpha_0 \in \omega$ and $z_0 \in \rho(A_{\alpha_0})$. Then there exists r > 0 such that $z \in \rho(A_\alpha)$ for all $\alpha \in D(\alpha_0, r)$ and $z \in D(z_0, r)$ and the map

$$(\alpha, z) \mapsto \mapsto (A_{\alpha} - z)^{-1}$$

is continuous on $D(\alpha_0, r) \times D(z_0, r)$ and analytic in $D(\alpha_0, r)$ for all $z \in D(z_0, r)$.

Proof. For $\alpha \in \omega$ and $z \in \mathbb{C}$ we have

$$(A_{\alpha} - z) = \left(1 + \left(A_{\alpha} - A_{\alpha_0}\right) - (z - z_0)\right)(A_{\alpha_0} - z_0)^{-1}\right)(A_{\alpha_0} - z_0)$$

Since $(A_{\alpha_0} - z_0)^{-1}$ maps \mathcal{H} to \mathcal{D} , the operators $A_{\alpha}(A_{\alpha_0} - z_0)^{-1}$ and $A_{\alpha_0}(A_{\alpha_0} - z_0)^{-1}$ are well defined on \mathcal{H} . Since they are closed, they are bounded by the closed graph theorem. Then the function $\alpha \mapsto A_{\alpha}(A_{\alpha_0} - z)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 such that $||(A_{\alpha_0} - z_0)^{-1}|| < 1/(4r)$, $D(\alpha_0, r) \subset \omega$ and for all $\alpha \in D(\alpha_0, r)$ we have

$$\|(A_{\alpha} - A_{\alpha_0})(A_{\alpha_0} - z_0)^{-1}\|_{\mathcal{L}(\mathcal{H})} \leq \frac{1}{4}.$$

Then the map $(\alpha, z) \mapsto (1 + (A_{\alpha} - A_{\alpha_0}) - (z - z_0))(A_{\alpha_0} - z_0)^{-1})^{-1}$ is well defined and continuous on $D(\alpha_0, r) \times D(z_0, r)$, and analytic with respect to α for all $z \in D(z_0, r)$. We deduce that the same holds for $\alpha \mapsto (A_{\alpha} - z)^{-1}$.

Proposition 2.74 (Analytic family of type B). Let \mathcal{V} be a Hilbert space continuously and densely embedded in \mathcal{H} . Let ω be an open subset of \mathbb{C} . Let $z \in \mathbb{C}$. Let $(q_{\alpha})_{\alpha \in \omega}$ be a family of continuous forms on \mathcal{V} such that $\varphi \mapsto q_{\alpha}(\varphi) \in \mathbb{C}$ is analytic for all $\varphi \in \mathcal{V}$. Let $\alpha_0 \in \omega$ and $z_0 \in \mathbb{C}$ such that $q_{\alpha_0} - z_0$ is coercive. Then there exists r > 0 such that $q_{\alpha} - z$ is coercive for all $\alpha \in D(\alpha_0, r)$ and $z \in D(z_0, r)$. For $\alpha \in D(\alpha_0, r)$ we denote by A_{α} the operator on \mathcal{H} given by the representation theorem (see Theorem 2.52 and Remark 2.53). Then the map

$$(\alpha, z) \mapsto (A_{\alpha} - z)^{-1}$$

is continuous on $D(\alpha_0, r) \times D(z_0, r)$ and holomorphic with respect to $\alpha \in D(\alpha_0, r)$ for all $z \in D(z_0, r)$.

Proof. We denote by Q_{α} the operator in $\mathcal{L}(\mathcal{V}, \mathcal{V}')$ associated with q_{α} (see (1.8)). For $\alpha \in \omega$ we have in $\mathcal{L}(\mathcal{V}, \mathcal{V}')$

$$(Q_{\alpha} - z) = \left(1 + \left((Q_{\alpha} - Q_{\alpha_0}) - (z - z_0)\right)(Q_{\alpha_0} - z)^{-1}\right)(Q_{\alpha_0} - z)$$

Since $(Q_{\alpha_0} - z)^{-1}$ maps \mathcal{V}' to \mathcal{V} , the operators $Q_{\alpha}(Q_{\alpha_0} - z)^{-1}$ and $Q_{\alpha_0}(Q_{\alpha_0} - z)^{-1}$ are bounded on \mathcal{V}' . Then the function $\alpha \mapsto Q_{\alpha}(Q_{\alpha_0} - z)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 such that $\|(Q_{\alpha_0} - z_0)^{-1}\|_{\mathcal{L}(\mathcal{V}',\mathcal{V})} \leq 1/(4r), D(\alpha_0, r) \subset \omega$ and for all $\alpha \in D(\alpha_0, r)$ we have

$$\left\| (Q_{\alpha} - Q_{\alpha_0})(Q_{\alpha_0} - z)^{-1} \right\|_{\mathcal{L}(\mathcal{V}')} \leq \frac{1}{4}$$

Then the map $(\alpha, z) \mapsto (1 + ((Q_{\alpha} - Q_{\alpha_0}) - (z - z_0))(Q_{\alpha_0} - z)^{-1})^{-1} \in \mathcal{L}(\mathcal{V}')$ is well defined and continuous on $D(\alpha_0, r) \times D(z_0, r)$, and analytic on $D(\alpha_0, r)$ for all $z \in D(z_0, r)$. We deduce that the same holds for $\alpha \mapsto (Q_{\alpha} - z)^{-1}$ in $\mathcal{L}(\mathcal{V}', \mathcal{V})$. Since $(Q_{\alpha} - z)^{-1}$ and $(A_{\alpha} - z)^{-1}$ coincide on \mathcal{H} , the conclusion follows.

For the perturbation of a double eigenvalue, we refer to Exemple II.1.1 (page 64) in [Kat80]

2.7 Exercises

Exercise 2.1. Let A be a densely defined operator from E to F. Assume that there exists C > 0 such that $||A\varphi||_{\mathsf{F}} \leq C ||A||_{\mathsf{E}}$ for all $\varphi \in \mathsf{Dom}(A)$. Prove that A extends uniquely to a bounded operator $\tilde{A} \in \mathcal{L}(\mathsf{E},\mathsf{F})$ and that $||\tilde{A}||_{\mathcal{L}(\mathsf{E},\mathsf{F})} \leq C$.

Exercise 2.2. Prove Proposition 2.23

Exercise 2.3. Let $(\lambda_n)_{n \in \mathbb{N}}$ be a complex sequence. We consider on $\ell^2(\mathbb{N})$ the operator A defined by

$$\mathsf{Dom}(A) = \left\{ u = (u_n)_{n \in \mathbb{N}} : \sum_{n=0}^{\infty} |\lambda_n|^2 |u_n|^2 < +\infty \right\}$$

and, for $u = (u_n)_{n \in \mathbb{N}} \in \mathsf{Dom}(A)$,

$$Au = (\lambda_n u_n)_{n \in \mathbb{N}}.$$

1. Prove that A is closed.

2. What is the spectrum of *A*.

Exercise 2.4. Let Ω be an open subset of \mathbb{R}^d . Let $f : \Omega \to \mathbb{C}$ be a measurable function. We consider the multiplication operator M_f as in example 2.4.

1. Prove that M_f is densely defined.

2. What is the adjoint of M_f ?

Exercise 2.5. We set

$$\mathcal{H} = \left\{ u \in L^2(\mathbb{R}) : u \text{ is even} \right\}.$$

1. Prove that \mathcal{H} is a Hilbert space.

2. We want to consider on \mathcal{H} the operator defined by Au = -u''. What is the natural domain for A (in particular, we want A to be closed) ?

3. Then what is the spectrum of A?

Exercise 2.6. Let A be a closed and densely defined operator on E. Assume that there exists C > 0 such that $||A\varphi||_{\mathsf{E}} \leq C ||\varphi||_{\mathsf{E}}$ for all $\varphi \in \mathsf{Dom}(A)$. Prove that $\mathsf{Dom}(A) = \mathcal{H}$ and that $A \in \mathcal{L}(\mathsf{E})$.

Exercise 2.7. We consider on $L^2(\mathbb{C})$ (K is endowed with its usual Lebesgue measure) the operator A defined by (Au)(y) = yu(y) on the domain

$$\mathsf{Dom}(A) = \left\{ u \in L^2(\mathbb{C}) : yu \in L^2(\mathbb{C}) \right\}$$

1. Prove that A is closed.

2. Prove that $\sigma(A) = \mathbb{C}$.

Exercise 2.8 (Regular points). Let A be an operator on the Hilbert space \mathcal{H} . Let z be a regular point of A (see Proposition 2.34). We denote by $d_A(z) = \dim(\operatorname{Ran}(A-z)^{\perp})$ the defect number of A. We also denote by $\pi(A)$ the set of regular points of A.

1. Prove that $\pi(A)$ is open (more precisely, if $z_0 \in \pi(A)$ and $c_0 > 0$ is the constant given by (2.4), show that $D(z_0, c_{z_0}) \subset \pi(A)$).

2. Assume that A is closable. Prove that the defect number is constant on each connected component of $\pi(A)$.

Exercise 2.9. We consider the operator T from $L^2(\mathbb{R})$ to \mathbb{C} defined by $\mathsf{Dom}(T) = C_0^{\infty}(\mathbb{R})$ and $T\phi = \phi(0)$ for all $\phi \in \mathsf{Dom}(T)$. Compute the adjoint T^* of T.

Exercise 2.10. Prove Proposition 2.46.

Exercise 2.11. Prove Proposition 2.48.

Exercise 2.12. Prove Proposition 2.48.

Exercise 2.13. Let $\alpha \in \mathbb{C}$. For $\varphi, \psi \in H^1(0, 1)$ we set

$$\mathsf{q}_{\alpha}(\varphi) = \int_{0}^{1} \left| u'(x) \right|^{2} \, \mathrm{d}x + \alpha \left| u(0) \right|^{2}.$$

1. Prove that the quadratic form q_{α} is continuous on $H^1(0,1)$.

2. Prove that there exists $\beta \ge 0$ such that the form $\mathbf{q}_{\alpha} + \beta : u \mapsto \mathbf{q}_{\alpha}(u) + \beta \|u\|_{L^{2}(0,1)}^{2}$ is coercive.

3. We denote by A_{α} the operator on $L^2(0, 1)$ associated with the form \mathbf{q}_{α} by the representation theorem (see Remark 2.53). Describe A_{α} (domain and action on an element of this domain).

Exercise 2.14. Let E_1 and E_2 be two Banach spaces and $E = E_1 \oplus E_2$. Let A_1 and A_2 be two closed operators, on E_1 and E_2 respectively. For $\varphi = \varphi_1 + \varphi_2 \in E$ we set $A = A_1\varphi_1 + A_2\varphi_2$. 1. Prove that this defines a closed operator A on E.

2. Prove that $\sigma(A) = \sigma(A_1) \cup \sigma(A_2)$.

3. Prove that $\sigma_{\mathsf{p}}(A) = \sigma_{\mathsf{p}}(A_1) \cup \sigma_{\mathsf{p}}(A_2)$.

4. Assume that λ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multiplicity of λ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of λ as an eigenvalue of A_1 and A_2 .

Exercise 2.15. Let A be a closed operator on E. Let $\lambda \in \sigma_{\mathsf{disc}}(A)$. Let $r_0 > 0$ be such that $D(\lambda, r_0) \cap \sigma(A) = \{\lambda\}$. For $r \in]0, r_0[$ and $n \in \mathbb{Z}$ we set

$$R_n = \frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} \frac{(A-\zeta)^{-1}}{(\zeta-\lambda)^{n+1}} \,\mathrm{d}\zeta.$$

1. Prove that for $n_1, n_2 \in \mathbb{Z} \setminus \{0\}$ we have $R_{n_1}R_{n_2} = -R_{n_1+n_2+1}$.

2. We set $N = -R_{-2}$. Prove that for all $n \ge 2$ we have $R_{-n} = -N^{n-1}$.

3. We denote by Π the Riesz projection at λ . Prove that $N\Pi = \Pi N = N$. Deduce that N has finite rank.

4. Prove that for $z \in D(\lambda, r_0) \setminus \{\lambda\}$ we can write $(A - z)^{-1}$ as the Laurent series

$$(A-z)^{-1} = \sum_{n \in \mathbb{Z}} (z-\lambda)^n R_n,$$

and in particular that the power series $\sum_{m \ge 0} \rho^n R_{-m}$ is convergent for any $\rho \in \mathbb{C}$. 5. Prove that N is nilpotent and that $R_{-n} = 0$ for n large enough.