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Spectrum of general
(unbounded) operators
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2.1 Unbounded operators - Spectrum
Let E and F be two Banach spaces.

2.1.1 Definitions and examples
Definition 2.1. A linear operator (or unbounded operator) from E to F is a linear map A
from a linear subspace DompAq of E (the domain of A) to F. An operator on E is an operator
from E to itself.

Definition 2.2. We say that the operator A is densely defined if DompAq is dense in E.

Example 2.3. A bounded operator A P LpE, Fq is a particular case of unbounded operator
with DompAq “ E.
Example 2.4. Let pΩ, µq be a measure space. Let f be a measurable function on Ω. We
consider on L2pΩ, µq the multiplication operator

Mf : ϕ ÞÑ fϕ,

defined on the domain

DompMf q “ �
ϕ P L2pΩq : fϕ P L2pΩq(

. (2.1)

Remark 2.5. One has to be careful when dealing with unbounded operators. For instance,
if A1 and A2 are two operators on E, then the sum A1 ` A2 is only defined on the do-
main DompA1q X DompA2q (which can be t0u) and the composition A2 ˝ A1 is defined on
tϕ P DompA1q : A1ϕ P DompA2qu.

Definition 2.6. Let A and B be two linear operators from E to F. We say that A is an
extension of B and we write B Ă A if DompBq Ă DompAq and Aϕ “ Bϕ for all ϕ P DompBq.

� Ex. 2.1

Example 2.7. Let Ω be an open subset of Rd. Let f be a continuous function on Ω. We can
define Mf on L2pΩq as above (with domain (2.1)). We can also define M0

f by M0
f u “ fu for

u P DompM0
f q “ C8

0 pΩq. Then we have M0
f Ă Mf .

Example 2.8. Let Ω be an open subset of class C2 in Rd. We denote by H0, H̃, HD and HN

the operators on L2pΩq which are all equal to ´Δ, but defined on different domains:

• DompH0q “ C8
0 pΩq,
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• DompH̃q “ H2pΩq,
• DompHDq “ H2pΩq X H1

0 pΩq,
• DompHN q “ �

u P H2pΩq : Bνu “ 0 on BΩ
(
.

These four operators are densely defined. Moreover we have H0 Ă HD Ă H̃ and H0 Ă HN Ă
H̃.

Definition 2.9. Let A be an operator from E to F. The graph of A is

GrpAq “ tpϕ, Aϕq, ϕ P DompAqu Ă E ˆ F.

Remark 2.10. If A and S are two linear operators from E to F then S Ă A if and only if
GrpSq Ă GrpAq.
Definition 2.11. Let A be an operator on E. We define on DompAq the graph norm by

}ϕ}2
A :“ }pϕ, Aϕq}2

EˆF “ }Aϕ}2
F ` }ϕ}2

E .

Remark 2.12. If A P LpEq then the graph norm is equivalent to the original norm on E.
Example 2.13. We consider on L2pRdq the Laplace operator H “ ´Δ, with domain DompHq “
H2pRdq. Then the graph norm of H is equivalent to the usual Sobolev norm:

}´Δu}2
L2pRdq ` }u}2

L2pRdq » }u}2
H2pRdq .

This is not the case on any open subset Ω of Rd.

2.1.2 Spectrum of unbounded operators
Definition 2.14. Let A be a linear operator from E to F. We say that A is invertible (or
that it is boundedly invertible, or that it has a bounded inverse) if there exists B P LpF, Eq
such that RanpSq Ă DompAq, BA “ IdDompAq and AB “ IdF. In this case we write B “ A´1.

Remark 2.15. Notice that if A is invertible then it is a bijective map from DompAq to F. But
if DompAq ‰ E then A´1 is only a right inverse of A.
Remark 2.16. If A is injective we can always define an (unbounded) inverse A´1, even if A is
not surjective. We define A´1 as an operator from F to E with domain DompA´1q “ RanpAq
and we have A´1A “ IdDompAq, AA´1 “ IdRanpAq. We will never consider unbounded inverses
in this course.

Definition 2.17. Let A be an operator on E. Then λ P C belongs to the resolvent set ρpAq
of A if A ´ λ is invertible (according to Definition 2.14, this means that pA ´ λq is bijective
as a map from DompAq to E and its inverse pA ´ λq´1 : E Ñ DompAq Ă E defines a bounded
operator on E). The spectrum σpAq is the complementary set of ρpAq in C.

Definition 2.18. Let A be an operator on E. We say that λ P C is an eigenvalue of A if
there exists ϕ P DompAqz t0u such that Aϕ “ λϕ. Such a ϕ is an eigenvector associated to
the eigenvalue λ. The geometric multiplicity of λ is the dimension of kerpA ´ λq. We denote
by σppAq the set of eigenvalues of A.

As for bounded operators, we have σppAq Ă σpAq but the inclusion can be strict.
Example 2.19. Let Mw be the multiplication operator defined in Example 2.4. Let z P C.
Then, as in the bounded case, z P σpMf q if and only if

@ε ą 0, µ
` tx P Ω : |wpxq ´ z| ď εu ˘ ą 0,

and z P σppMf q if and only if

µ
` tx P Ω : |wpxq ´ z| “ 0u ˘ ą 0,
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Example 2.20. ‚ Let E “ L2pRdq and A0 “ ´Δ with DompA0q “ C8
0 pRdq. Then for any

z P C we have RanpA0 ´ zq Ă C8
0 pRdq so A0 ´ z cannot be invertible. This proves that

σpA0q “ C.
‚ Now we consider A “ ´Δ with DompAq “ H2pRdq. Then σpAq “ R` and for z P CzR`
we have ››pA ´ zq´1››

LpL2pRdqq “ 1
distpz,R`q .

Indeed, if we denote by F the Fourier transform on L2pRdq, then F is a unitary operator.
Then p´Δ ´ zq is invertible if and only if Fp´Δ ´ zqF ´1 “ M ´ z is invertible on L2pRdq,
where M “ Fp´ΔqF´1 is equal to the multiplication operator Mw for w : ξ ÞÑ |ξ|2. Thus
σpAq “ σpMwq “ R` and for z P CzR` we have

››pA ´ zq´1››
LpL2pRdqq “ ››F´1pM ´ zq´1F

››
LpL2pRdqq “ ››pM ´ zq´1››

LpL2pRdqq

“ 1
distpz,R`q .

2.1.3 Basic properties of the spectrum and the resolvent
Proposition 2.21. Let A be an operator on E and z P C. Assume that there exists a sequence
pϕnq in DompAq such that }ϕn}E “ 1 for all n P N and

}pA ´ zqϕn}E ÝÝÝÝÝÑ
nÑ`8 0.

Then z P σpAq.
Proof. Assume that z P ρpAq. Then

}ϕn}E ď ››pA ´ zq´1››
LpEq }pA ´ zqϕn}E ÝÝÝÝÝÑ

nÑ`8 0.

This gives a contradiction.

Example 2.22. An unbounded operator can have an empty spectrum (compare with Propo-
sition 1.21). We consider on L2p0, 1q the operator

A “ Bx

defined on the domain
DompAq “ �

u P H1p0, 1q : up0q “ 0
(

.

Then σpAq “ H.
Indeed, for z P C we define Rz : L2p0, 1q Ñ L2p0, 1q as follows. For f P L2p0, 1q and

x P r0, 1s we set
pRzfqpxq “

ż x

0
ezpx´yqfpyq dy.

We can check that Rz defines a bounded inverse for pA ´ zq, which proves that z belongs to
ρpAq. Notice that we can replace H1p0, 1q and L2p0, 1q by C1pr0, 1sq and C0pr0, 1sq.
Proposition 2.23. Let A be a closed operator on E.

(i) For ϕ P DompAq and z P ρpAq we have pA ´ zq´1Aϕ “ ApA ´ zq´1ϕ.

(ii) The resolvent set ρpAq of A is open (and, equivalently, its spectrum σpAq is closed).
Moreover, for z0 P ρpAq the disk Dpz0,

››pA ´ z0q´1››´1
LpEqq is included in ρpAq, which

implies ››pA ´ zq´1››
LpEq ě 1

distpz, σpAqq .

(iii) The resolvent RA : z ÞÑ pA ´ zq´1 is analytic on ρpAq and R1
A “ R2

A.

(iv) For z1, z2 P ρpAq we have the resolvent identity

pA´z1q´1 ´pA´z2q´1 “ pz1 ´z2qpA´z1q´1pA´z2q´1 “ pz1 ´z2qpA´z2q´1pA´z1q´1.

In particular, pA ´ z1q´1 and pA ´ z2q´1 commute.
The proofs are the same as for the bounded case. � Ex. 2.2

2022-2023 19



M2RI - Spectral Theory and Evolution Equations

2.2 Closed operators
2.2.1 Closed operators
Proposition-Definition 2.24. Let A be an operator E. We say that A is closed if the
following equivalent assertions are satisfied.

(i) If a sequence pϕnqnPN P DompAqN is such that ϕn goes to some ϕ in E and Aϕn goes to
some ψ in F, then ϕ belongs to DompAq and Aϕ “ ψ;

(ii) GrpAq is closed in E ˆ F;

(iii) DompAq, endowed with the norm }¨}A, is complete (hence a Banach space).

Remark 2.25. Let A be a closed operator on E. Then A defines a bounded operator from
the Banach space DompAq to E.
Example 2.26. A bounded operator is closed.
Example 2.27. • We consider on L2pRq the operator A defined on the domain DompAq “

C8
0 pRq by pAuqpxq “ x2upxq, x P R. We define v : R Ñ R by vpxq “ p1 ` x2q´2. Let

χ P C8
0 pR, r0, 1sq be equal to 1 on r´1, 1s. For n P N˚ and x P R we set χnpxq “ χpx{nq.

Then χnv goes to v in L2pRq, χnv P DompAq for all n P N˚ and Apχnvq has a limit in
L2pRq. However v does not belong to DompAq. This proves that A is not closed.

• We now consider the operator A : u ÞÑ x2u on the domain

DompAq “ �
u P L2pRq : x2u P L2pRq(

.

Assume that punqnPN is a sequence in DompAq which goes to some u in L2pRq and
such that Aun has a limit v P L2pRq. The function x2u belongs to L2

locpRq and for all
φ P C8

0 pRq we have
ż

R
x2upxqφpxq dx “ lim

nÑ`8

ż

R
x2unpxqφpxq dx “

ż

R
vpxqφpxq dx.

This proves that x2upxq “ vpxq for almost all x P R. In particular, u P DompAq and
Au “ v. This proves that A is closed.

Example 2.28. The Laplace operator A “ ´Δ with DompAq “ C8
0 pRdq is not closed in

L2pRdq. Let u P H2pRdqzC8
0 pRdq and let punqnPN be a sequence in C8

0 pRdq which goes to u
in H2pRdq. Then un goes to u in L2pRdq, the sequence pAunqnPN has a limit in L2pRdq but
u R DompAq. This proves that the Laplace operator is not closed if the domain is C8

0 pRdq.
However it is closed with domain H2pRdq.
Example 2.29. This example generalizes Examples 2.27 and 2.28. Let Ω be an open subset
of Rd. Let m P N and consider smooth functions bα on Ω for all α P Nd such that |α| ď m.
Then we consider the differential operator

P “
ÿ

|α|ďm

bαpxqBα
x . (2.2)

We denote by P ˚ the formal adjoint of P , defined for φ P C8
0 pΩq by

P ˚φ “
ÿ

|α|ďm

p´1q|α|Bα
x pbαφq “

ÿ

|α|ďm

p´1q|α| ÿ

βďα

ˆ
α
β

˙
pBα´β

x bαqBβ . (2.3)

Given u P L2pΩq, we have Pu P L2pΩq (in the sense of distributions) if and only if there
exists v P L2pΩq such that

@φ P C8
0 pΩq,

ż

Ω
uP ˚φ dx “

ż

Ω
vφ dx,

and in this case we write Pu “ v.

20 J. Royer - Université Toulouse 3
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We define an unbounded operator A on L2pΩq by setting Au “ Pu for any u in the
domain

DompAq “ �
u P L2pΩq : Pu P L2pΩq(

,

where Pu is understood in the sense of distributions. This operator A is closed. Indeed, let
punq be a sequence in DompAq such that un goes to some u and Aun goes to some v in L2pΩq.
For φ P C8

0 pΩq we have
ż

Ω
upxqpP ˚φqpxq dx “ lim

nÑ8

ż

Ω
unpxqpP ˚φqpxq dx “ lim

nÑ8

ż

Ω
pPunqpxqφpxq dx

“ lim
nÑ8

ż

Ω
pAunqpxqφpxq dx “

ż

Ω
vpxqφpxq dx.

This proves that in the sense of distributions we have Pu “ v P L2pΩq. Therefore u P DompAq
and Au “ v. This proves that A is closed.

2.2.2 Spectrum of closed operators
Remark 2.30. Let A be an operator from E to F, with domain DompAq. Assume that A
has a bounded inverse A´1 P LpF, Eq. Then A´1 is closed, which implies that A is closed
(GrpAq is closed in E ˆ F if and only if GrpA´1q is closed in F ˆ E). We can also give a direct
proof. Assume that pϕnq is a sequence in E such that ϕn has a limit ϕ in E and Aϕn has
a limit ψ in F. Then Aϕn Ñ ψ and A´1pAϕnq Ñ ϕ. Since A´1 is closed, this implies that
ψ P DompA´1q “ F (nothing new here) and ϕ “ A´1ψ, so ϕ P RanpA´1q “ DompAq and
Aϕ “ ψ. This proves that A is closed.

In particular we have the following result.

Proposition 2.31. Let A be an operator on E. If A is not closed then ρpAq “ H.

This is why we will only consider the spectral theory of closed operators.

Proposition 2.32. Let A : DompAq Ă E Ñ E be a closed operator. Then λ P C belongs to
the resolvent set ρpAq of A if and only if A ´ λ : DompAq Ñ E is bijective.

Proof. We already know that if λ P ρpAq then A ´ λ : DompAq Ñ E is bijective. Conversely,
assume that pA ´ λq is bijective. Since it is closed, DompAq is a Banach space and pA ´ λq´1

belongs to LpE, DompAqq, hence to LpF, Eq, by the open mapping theorem (see Theorem
A.2).

� Ex. 2.3
Remark 2.33. A closed operator can have empty resolvent set (see Exercise 2.7).

Proposition 2.34. Let A be an operator on E. Let z P C. Assume that there exists c0 ą 0
such that

@ϕ P DompAq, }pA ´ zqϕ}E ě c0 }ϕ}E . (2.4)
We say that z is a regular point of A. Then

(i) pA ´ zq is injective ;

(ii) If pA ´ zq is invertible then
››pA ´ λq´1›› ď c´1

0 .

(iii) If moreover A is closed, then pA ´ zq has closed range.

This means that if z is a regular point of A, then z P ρpAq if and only if RanpA ´ zq is
dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We prove the last statement. Let pψnq be a sequence in RanpA ´ zq which converges
to some ψ in E. For n P N we consider ϕn P DompAq such that pA ´ zqϕn “ ψn. Since
ppA ´ zqϕnq is a Cauchy sequence, so is pϕnq by (2.4). Since E is complete, ϕn converges to
some ϕ in E. Finally, since A is closed, ϕ P DompAq and ψ “ pA ´ zqϕ P RanpA ´ zq. This
proves that RanpA ´ zq is closed in E.

� Ex. 2.3 to 2.8
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2.2.3 Closable operators
We have seen in Examples 2.27 and 2.28 that an operator which is not closed can be closed
if it is defined on a bigger domain.

Definition 2.35. We say that on operator A is closable if it has a closed extension.

Of course, a closed operator is closable.

Proposition 2.36. Let A be an operator from E to F. The following assertions are equivalent.

(i) A is closable;

(ii) If pϕnqnPN is a sequence in DompAq such that ϕn Ñ 0 in E and Aϕn has a limit ψ in
F, then ψ “ 0;

(iii) GrpAq is the graph of a closed operator A from E to F.

Definition 2.37. If the assertions of Proposition 2.36 are satisfied, then the closure of A is
the operator A such that GrpAq “ GrpAq.
Proof. ‚ Assume that A is closable and let Ã be a closed extension of A. Let pϕnq be a
sequence in DompAq such that ϕn Ñ 0 in E and Aϕn Ñ ψ in F. Then pϕnq is also a sequence
in DompÃq and Ãϕn Ñ ψ. Since Ã is closed we have ψ “ Ã0 “ 0.
‚ Now assume that if a sequence pϕnqnPN in DompAq is such that ϕn Ñ 0 in E and Aϕn has
a limit ψ in F, then we necessarily have ψ “ 0. We denote by DompAq the closure of DompAq
for the graph norm. Let ϕ P DompAq and let pϕnq be a sequence in DompAq which goes to ϕ
for the graph norm. Then pAϕnq is a Cauchy sequence in F, and we denote by Aϕ its limit.
This definition does not depend on the choice of the sequence pϕnq since if pζnq is another
sequence which goes to ϕ for the graph norm, we have ϕn ´ ζn Ñ 0 and Aϕn ´ Aζn has a
limit, so this limit is 0. This defines a linear map A from DompAq to F, so A is an extension
of A.

By definition we have GrpAq Ă GrpAq. Now let pϕ, ψq P GrpAq. There exists a sequence
pϕn, ψnq in GrpAq such that ϕn Ñ ϕ in E and ψn “ Aϕn Ñ ψ in F. By definition of A we
have ϕ P DompAq and ψ “ Aϕ, so pϕ, ψq P GrpAq. This proves that GrpAq “ GrpAq. Since A
has a closed graph, this is a closed operator and (iii) is proved.
‚ Finally, assume (iii). Since GrpAq Ă GrpAq, A is an extension of A, so A is a closed
extension of A and (i) holds.

We have already seen examples of operators which are not closed but closable. Here is
an example of operator which is not closable.
Example 2.38. We consider on L2pRdq the operators H0 and H which acts as ´Δ on the
domains

DompH0q “ C8
0 pRdq DompHq “ H2pRdq.

Then H “ H0.
Example 2.39. We consider the operator A from L2pRq to C defined on DompAq “ C8

0 pRq
by Au “ up0q. Then there exists a sequence punqnPN in C8

0 pRq such that un Ñ 0 in L2pRq
but unp0q Ñ 1 in R, so A is not closable.

Proposition 2.40. If A is a closable operator, then A is the smallest closed extension of A
(if B is a closed extension of A we have A Ă B or, equivalently, GrpAq Ă GrpBq).
Proof. Let B be a closed extension. Then GrpBq is closed and contains GrpAq, so it contains
GrpAq “ GrpAq.
Definition 2.41. Let A be a closed operator from E to F. Let D be a linear subspace of
DompAq. We say that D is a core of A if A|D is closable and A|D “ A. Equivalently, D is
dense in DompAq for the graph norm, or for any ϕ P DompAq there exists a sequence pϕnq in
D such that ϕn Ñ ϕ in E and Aϕn Ñ Aϕ in F.

Example 2.42. We consider on L2pRdq the Laplacian A “ ´Δ, DompAq “ H2pRdq. Any
subspace D of H2pRdq which contains C8

0 pRdq is a core of A.
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2.3 Adjoint of an unbounded operator
Let H1 and H2 be Hilbert spaces.

2.3.1 Definition and properties
Definition 2.43. Let A be a densely defined operator from H1 to H2. Let ψ P H2. We say
that ψ belongs to DompA˚q if there exists ψ˚ P H1 such that

@ϕ P DompAq, xAϕ, ψyH2
“ xϕ, ψ˚yH1

.

In this case ψ˚ is unique and we set A˚ψ “ ψ˚. This defines an operator A˚ from H2 to H1
with domain DompA˚q. We say that A˚ is the adjoint of A. � Ex. 2.9

By definition, we have

@ϕ P DompAq, @ψ P DompA˚q, xAϕ, ψyH2
“ xϕ, A˚ψyH1

.

Notice that if A is not densely defined, then A˚ψ is not uniquely defined. We will never
consider this situation.
Remark 2.44. Let A be a densely defined operator from H1 to H2 and ψ P H2. By the Riesz
representation theorem, we see that ψ belongs to DompA˚q if and only if there exists C ą 0
such that

@ϕ P DompAq, ˇ̌xAϕ, ψyH2

ˇ̌ ď C }ϕ}H1
.

Moreover, in this case we have }A˚ψ}H1
ď C.

Proposition 2.45. Let A and B be two densely defined operators from H1 to H2 such that
B Ă A. Then A˚ Ă B˚.

Proposition 2.46. Let A be a densely defined operator from H1 to H2. Then we have

kerpA˚q “ RanpAqK, kerpA˚qK “ RanpAq. � Ex. 2.10

Proposition 2.47. Let A be a densely defined operator from H1 to H2. Then A˚ is closed.

Proof. Let pψnq be a sequence in DompA˚q such that ψn goes to some ψ in H2 and A˚ψn

goes to some ζ in H1. For ϕ P DompAq we have

xAϕ, ψyH2
´ xϕ, ζyH1

“ lim
nÑ`8 xAϕ, ψnyH2

´ xϕ, A˚ψnyH1
“ 0.

This proves that ψ P DompA˚q and A˚ψ “ ζ. Thus A˚ is closed.

Proposition 2.48. Let A be a densely defined operator from H1 to H2. Then A is closable
if and only if DompA˚q is dense in H2. Moreover, in this case we have pAq˚ “ A˚ and
A “ pA˚q˚. In particular, A is closed if and only if A “ pA˚q˚.

We can write A˚˚ instead of pA˚q˚.

Proof. ‚ We define
Θ :

"
H1 ˆ H2 Ñ H2 ˆ H1,
px1, x2q ÞÑ p´x2, x1q.

Then Θ˚ “ Θ´1 : py2, y1q ÞÑ py1, ´y2q.
‚ Let pψ, ψ̃q P H2 ˆ H1. We have

pψ, ψ̃q P GrpA˚q ðñ @ϕ P DompAq, ´ xTϕ, ψyH2
` @

ϕ, ψ̃
D

H1
“ 0

ðñ @ϕ P DompAq, xΘpϕ, Aϕq, pψ, ψ̃qyH2ˆH1 “ 0
ðñ pψ, ψ̃q P pΘGrpAqqK,

so
GrpA˚q “ `

ΘGrpAq˘K “ Θ
`
GrpAqK˘

. (2.5)
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Then
GrpA˚qK “ ΘGrpAq “ ΘGrpAq.

After composition by Θ˚ we get

GrpAq “ Θ˚`
GrpA˚qK˘

. (2.6)

‚ Assume that DompA˚q is dense in H2. Then we can define A˚˚ “ pA˚q˚. By Proposition
2.47, this defines a closed operator from H1 to H2. Let ϕ P DompAq. For all ψ P DompA˚q
we have

xA˚ψ, ϕy “ xψ, Aϕy ,

so ϕ P DompA˚˚q and A˚˚ϕ “ Aϕ. This proves that A˚˚ is an extension of A, and in
particular A is closable.
‚ Now assume that A is closable and let ψ P DompA˚qK. Then, by (2.6),

p0, ψq “ Θ˚p´ψ, 0q P Θ˚pGrpA˚qKq “ GrpAq “ GrpAq.

so ψ “ 0. Thus DompA˚q is dense in H2. Moreover, by (2.5) applied with A we have

GrppAq˚q “ Θ
`
GrpAqK˘ “ Θ

`
GrpAqK˘ “ Θ

`
GrpAqK˘ “ GrpA˚q.

This proves that pAq˚ “ A˚. Since A˚ is densely defined, we can consider its adjoint A˚˚.
By (2.5) applied first to A˚ (with Θ replaced by ´Θ˚) and then to A, we have

GrpA˚˚q “ Θ˚`
GrpA˚qK˘ “ Θ˚``

ΘGrpAqK˘K˘ “ `
GrpAqK˘K “ GrpAq “ GrpAq.

This proves that A˚˚ “ A.

Proposition 2.49. Let A be a closed and densely defined operator from H1 to H2. Then
A˚ : DompA˚q Ñ H1 is bijective if and only if A : DompAq Ñ H2 is bijective, and in this
case we have pA˚q´1 “ pA´1q˚.� Ex. 2.11

Proposition 2.50. Let A be a closed and densely defined operator on H. We have

σpA˚q “ σpAq.� Ex. 2.12

2.3.2 Examples: adjoints of some differential operators
General differential operators with smooth and bounded coefficients

Let Ω be an open subset of Rd. We define on H “ L2pΩq the operator A0 which acts as
the differential operator P (see (2.2)) on the domain DompA0q “ C8

0 pΩq. Then v P L2pΩq
belongs to DompA0̊ q if and only if there exists w P L2pΩq such that

@φ P C8
0 pΩq,

ż

Ω
Pφpxqvpxq dx “

ż

Ω
φpxqwpxq dx.

By definition, this means that P ˚v “ w (see (2.3)) in the sense of distributions. Then A0̊
acts as P ˚ on the domain

DompA0̊ q “ �
v P L2pΩq : P ˚v P L2pΩq(

.

Then A0 is closed by Proposition 2.47 or by Example 2.29. The domain of A0̊ contains
C8

0 pΩq, so it is dense. By Proposition 2.48 this implies that A0 is closable. This is consistent
with the fact that we already know by Example 2.29 that A0 has a closed extension. Notice
that A0 may have several closed extensions (see for instance the discussion of Section 3.1.5).
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The Laplace operator

As a particular case, we consider the Laplace operator. We define the operators which acts
as ´Δ on the domains

DompH0q “ C8
0 pΩq and DompHq “ �

u P L2pΩq : Δu P L2pΩq(
.

When Ω “ Rd, the domain of H is just H2pRdq. We recall that this is not true for a general
Ω (it can happen that u P L2pΩq , Δu P L2pΩq but u is not in H2pΩq).

Since the formal adjoint of the Laplacian is the Laplacian itself we have in general H0̊ “
H. Since H0 Ă H we have H˚ Ă H0̊ “ H by Proposition 2.45.

When Ω “ Rd we actually have H˚ “ H0̊ . This follows from the fact that H “ H0
and Proposition 2.48. We can also give a direct proof. Let ψ P DompH0̊ q “ H2pRdq. For
ϕ P DompHq “ H2pRdq we have by the Green formula

xHϕ, ψy “ x´Δϕ, ψy “ xϕ, ´Δψy “ xϕ, H0̊ ψy ,

so ψ P DompHq. In general, since functions in DompHq or DompH0̊ q are not necessarily in
H2pΩq, we cannot apply the usual Green formula.

In dimension 1, it is still true that DompH0̊ q “ H2pΩq. And we can see that in general
we do not necessarily have H˚ “ H0̊ . We consider the case Ω “s0, 1r. Let v P DompH˚q and
w “ H˚v. For all u P DompHq “ H2p0, 1q we have

´
ż 1

0
u2pxqvpxq dx “ xHu, vyL2p0,1q “ xu, wyL2p0,1q “

ż 1

0
upxqwpxq dx.

On the other hand, since v P DompA0̊ q “ H2p0, 1q we also have by the Green formula

´
ż 1

0
upxq2vpxq dx “ ´u1p1qvp1q ` u1p0qvp1q `

ż 1

0
u1pxqv1pxq dx

“ ´u1p1qvp1q ` u1p0qvp1q ` up1qv1p1q ´ up0qv1p0q ´
ż 1

0
upxqv2pxq dx.

This implies that w “ ´v2 and vp0q “ vp1q “ v1p0q “ v1p1q “ 0. Then DompH0̊ q is not
included in DompH˚q.

Creation and annihilation operators

We consider on H “ L2pRq the creation and annihilation operators defined on the domain
C8

0 pRq by

@u P C8
0 pRq, a0u “ u1 ` xu?

2
and c0u “ ´u1 ` xu?

2
.

Then we set
a “ a0 and c “ c0.

We have

Dompaq “ �
u P L2pRq : u1 ` xu P L2pRq(

, Dompcq “ �
u P L2pRq : ´u1 ` xu P L2pRq(

.

Finally we have
a˚ “ c and c˚ “ a.

2.4 Example: the harmonic oscillator
We consider on L2pRq the operator H which acts as

H “ ´ d2

dx2 ` x2 (2.7)

on the domain
DompHq “ �

u P L2pRq : ´u2 ` x2u P L2pRq(
. (2.8)
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Proposition 2.51. The spectrum of H consists of a sequence pλkqkPN of simple eigenvalues.
Moreover, for k P N˚ we have

λk “ p2k ` 1q
and a corresponding eigenfunction is given by

ϕkpxq “ hkpxqe´ x2
2 ,

where hkpxq “ is the k-th Hermite polynomial (in particular it has degree k).

Proof. ‚ We recall that we have introduced the operators a and c is Section 2.3.2. We
observe that for u P SpRq we have

Hu “ 2cau ` u.

We also have ra, csu “ acu ´ cau “ u so, by induction on k,

acku “ kck´1u ` ckau. (2.9)

‚ We set ϕ0pxq “ e´ x2
2 . We have ϕ0 P SpRq and aϕ0 “ 0, so Hϕ0 “ ϕ0. For k P N˚ we set

ϕk “ ckϕ0. We can check by induction on k P N that ϕk is of the form ϕk “ Pkϕ0 where Pk

is a polynomial of degree k. In particular ϕk P SpRq. We have

Hϕk “ 2cackϕ0 ` ϕk “ 2kckϕ0 ` 2ck`1aϕ0 ` ϕk “ p2k ` 1qϕk.

This prove that λk “ 2k ` 1 is an eigenvalue of H and ϕk is a corresponding eigenfunction.
‚ We prove by induction on j P N that for all k ą 0 we have xϕj , ϕky “ 0. Since c˚ “ a, we
have

xϕj , ϕky “ @
cjϕ0, ckϕ0

D “ @
akcjϕ0, ϕ0

D
.

Since aϕ0 “ 0 the conclusion follows if j “ 0. For j ě 1 we have by
@
akcjϕ0, ϕ0

D “ j
@
ak´1cj´1ϕ0, ϕ0

D ` @
ak´1cjaϕ0, ϕ0

D “ 0.

This proves that the family of eigenvectors pϕkqkPN is orthogonal in L2pRq.
‚ Let us prove that the family pϕkq is total in L2pRq. This means that spanppϕkqkPNq “
L2pRq. Let u P L2pRq be such that xϕk, uyL2pRq “ 0 for all k P N. Since Pk is of degree k for
all k, we deduce that for any polynomial q we have

ż

R
qpxqe´ x2

2 upxq dx “ 0.

For ζ P C we set

vpζq “
ż

R
e´ixξupxqe´ x2

2 dx.

By differentiation under the integral sign we see that v is holomorphic in C and for m P N
we have

vpmqp0q “
ż

R
p´ixqmupxqe´ x2

2 dx “ 0.

This implies that v “ 0 on C, and in particular in R. Thus the Fourier transform of x ÞÑ
upxqe´ x2

2 is 0, so u “ 0 almost everywhere.
For k P N we set

ψk “ ϕk

}ϕk} .

Then pψkq is a Hilbert basis of L2pRq, and Hψk “ λkψk for all k. Thus the spectrum of H
is exactly given by the sequence pλkqkPN of simple eigenvalues.
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2.5 A representation theorem
2.5.1 The abstract result
Let H be a Hilbert space. We identify H with its dual H1. Then if V is another Hilbert space
continuously embedded in H we have

V Ă H » H1 Ă V 1.

Notice that if we have already identified H with H1 we cannot identify V with V 1.

Theorem 2.52 (Representation theorem). Let H and V be two Hilbert spaces such that V
is densely and continuously embedded in H. Let q be a continuous and coercive sesquilinear
form on V. We set

DompAq “ tϕ P V : DCϕ ą 0, @ψ P V, |qpϕ, ψq| ď Cϕ }ψ}Hu ,

and for ϕ P DompAq we define Aϕ P H by

@ψ P V, qpϕ, ψq “ xAϕ, ψyH .

This defines on H an operator A with domain DompAq such that

(i) DompAq is dense in V and in H ;

(ii) A is closed ;

(iii) A is invertible.

Moreover, the operator on H associated to the form q˚ is A˚.

Proof. ‚ Let ϕ P DompAq. The map ψ ÞÑ qpϕ, ψq extends to a bounded semilinear form on
H. Then, by the Riesz theorem, there exists a vector Aϕ P H such that qpϕ, ψq “ xAϕ, ψyH
for all ψ P V. This defines on H an operator A with domain DompAq (the linearity of A is
left as an exercise).
‚ Let ζ P H. The map ψ P V ÞÑ xζ, ψyH is a continuous semilinear map on V so, by the
Lax-Milgram theorem, there exists ϕ P V such that

@ψ P V, xζ, ψyH “ qpϕ, ψq.
Then we have ϕ P DompAq and Aϕ “ ζ. This proves that A is surjective.
‚ For ϕ P DompAq we have

}Aϕ}H }ϕ}H ě |xAϕ, ϕyH| “ |qpϕ, ϕq| ě α }ϕ}2
V ě αC̃´1 }ϕ}2

H ,

where C̃ ą 0 is such that }ψ}2
H ď C̃ }ψ}2

V for all ψ P V. Thus,

}Aϕ}H ě αC̃´1 }ϕ}H . (2.10)

This proves in particular that A is injective. Since A is surjective, it is invertible and››A´1››
LpHq ď α´1C̃. This implies that A is closed (see Remark 2.30).

‚ Let ψ P V be in the orthogonal of DompAq in V. Let T P LpVq be given by the Lax-Milgram
Theorem (Theorem 1.59). Since T ˚ is bijective, there exists ζ P V such that T ˚ζ “ ψ. Then
for all ϕ P DompAq we have

0 “ xϕ, ψyV “ xϕ, T ˚ζyV “ xTϕ, ζyV “ qpϕ, ψq “ xAϕ, ζyH .

Since A is surjective, this implies that ζ “ 0, and hence ψ “ 0. Then DompAq is dense in V
for the topology of V, and hence for the topology of H. Since V is dense in H, DompAq is
also dense in H.
‚ We denote by Ã the operator associated to q˚. Since q˚ is continuous and coercive, Ã
is also a densely defined, closed and invertible operator on H. Let ψ P DompÃq. For all
ϕ P DompAq we have

xAϕ, ψy “ qpϕ, ψq “ q˚pψ, ϕq “ @
Ãψ, ϕ

D “ @
ϕ, Ãψ

D
.

2022-2023 27



M2RI - Spectral Theory and Evolution Equations

This proves that Ã Ă A˚. Conversely, if ψ P DompA˚q then for all ϕ P DompAq we have

|q˚pψ, ϕq| “ |qpϕ, ψq| “ |xAϕ, ψy| “ |xϕ, A˚ψy| ď }A˚ψ}H }ϕ}H .

Since DompAq is dense in V and H, we deduce that for all ϕ P V we have

|q˚pψ, ϕq|ď }A˚ψ}H }ϕ}H ,

so ψ P DompÃq. This proves that DompA˚q Ă DompÃq, so Ã “ A˚.

Remark 2.53. Let q be a continuous quadratic form on V. Assume that there exists β P C
such that the form qβ : ϕ ÞÑ qpϕq ` β }ϕ}H is coercive on V. Let Aβ be the operator on H
given by Theorem 2.52 and A “ Aβ ´ β with DompAq “ DompAβq. Then A is closed and
densely defined, and pA ` βq is invertible. Notice that this definition of A does not depend
on the choice of β.
Remark 2.54. Let q be a continuous coercive quadratic form on V and Q P LpV, V 1q defined
by (1.8) (invertible by Theorem 1.59). Let A the operator on H be given by Theorem 2.52.
Then for all ϕ P H Ă V 1 we have Q´1ϕ “ A´1ϕ.

2.5.2 Examples: Laplacian, Dirichlet and Neumann boundary con-
ditions

Example 2.55. We consider on H1pRq the quadratic form

q : u ÞÑ }u}2
H1pRq .

We apply Theorem 2.52 with V “ H1pRq and H “ L2pRq. We have

DompAq “ �
u P H1pRq : u2 P L2pRq( “ H2pRq.

Indeed, if u P H2pRq then for all v P H1pRq we have

|qpu, vq| “
ˇ̌
ˇ̌´

ż

R
u2v dx `

ż

R
uv dx

ˇ̌
ˇ̌ ď p››u2›› ` }u}q }v} ,

so u P DompAq. Conversely, assume that u P DompAq. Then for all v P H1pRq we have
ˇ̌
ˇ̌
ż

R
u1v1 dx

ˇ̌
ˇ̌ ď |qpu, vq| ` }u} }v} ď pCu ` }u}q }v} .

This proves that u2 P L2, and hence u P H2pRq. Finally, for u P DompAq we have

@v P H1pRq, xAu, vy “ qpu, vq “ @´u2 ` u, v
D

,

so
Au “ ´u2 ` u.

Example 2.56. We consider on H1p0, 1q the quadratic form

qN : u ÞÑ }u}2
H1p0,1q .

We apply Theorem 2.52 with V “ H1p0, 1q and H “ L2p0, 1q. We denote by AN the
corresponding operator. Let u P DompAN q. For all φ P C8

0 ps0, 1rq Ă H1p0, 1q we have as
above ˇ̌

ˇ̌
ż 1

0
u1φ1 dx

ˇ̌
ˇ̌ ď pCu ` }u}q }φ} .

This implies that u2 P L2p0, 1q. Then for all φ P C8
0 ps0, 1rq we have

xAN u, φy “ qN pu, φq “
ż 1

0
u1φ1 dx `

ż 1

0
uφ dx “ @´u2 ` u, φ

D
.
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This proves that AN u “ ´u2 ` u. Then for all v P H1p0, 1q we have

xAN u, vy “ qN pu, vq “
ż 1

0
u1v1 dx `

ż 1

0
uv dx “ u1p1qvp1q ´ u1p0qvp0q ` @´u2 ` u, v

D

This proves that for all v P H1p0, 1q
u1p1qvp1q ´ u1p0qvp0q “ 0.

This implies that
u1p0q “ u1p1q “ 0. (2.11)

Conversely, assume that u P H2p0, 1q satisfies (2.11). Then we can compute as above that

@v P H1p0, 1q, qpu, vq “ @´u2 ` u, v
D

.

Then u P DompAN q. Finally we have

DompAN q “ �
u P H2p0, 1q : u1p0q “ u1p1q “ 0

(

and, for all u P DompAN q,
AN u “ ´u2 ` u.

Example 2.57. We consider on H1
0 p0, 1q the quadratic form

qD : u ÞÑ }u}2
H1p0,1q .

We apply Theorem 2.52 with V “ H1
0 p0, 1q and H “ L2p0, 1q. We denote by AD the

corresponding operator. Let u P DompADq. As above we see that u P H2p0, 1q and ADu “
´u2 ` u. On the other hand, if u P H2p0, 1q X H1

0 p0, 1q we have qpu, vq “ x´u2 ` u, vy for all
v P H1

0 p0, 1q (there are no boundary terms since u and v vanish at the boundary). Finally
we have

DompADq “ H2p0, 1q X H1
0 p0, 1q,

and for all u P DompADq
ADu “ ´u2 ` u.

Example 2.58. By Remark 2.53 we can define the operators associated to the form

u ÞÑ
ż 1

0
|upxq|2 dx

defined on H1pRq and H1p0, 1q (note that this form is already coercive on H1
0 p0, 1q). � Ex. 2.13

2.6 Riesz projections
2.6.1 Separation of the spectrum
The interest of the resolvent is that it is a bounded operator which completely characterize
the operator. Moreover, since it is analytic, we can use all the tools from complex analysis.
In the following section we give a first application of the resolvent for the analysis of an
operator.

Let E be a Banach space.

Proposition 2.59. Let A be an operator on E. Let Π be a projection of E such that

ΠA Ă AΠ

(for all ϕ P DompAq we have Πϕ P DompAq and AΠϕ “ ΠAϕ). Let F “ RanpΠq and
G “ kerpΠq.

(i) F and G are closed subspace of E and E “ F ‘ G.
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(ii) A maps DompAqXF to F and DompAqXG to G. We denote by AF and AG the restrictions
of A to F and G, with DompAFq “ DompAq X F and DompAGq “ DompAq X G.

(iii) If DompAq is dense in E then DompAFq is dense in F and DompAGq is dense in G.

(iv) If A is closed then AF and AG are closed.

(v) We have σpAq “ σpAFq Y σpAGq and for z P ρpAq “ ρpAFq X ρpAGq we have

pA ´ zq´1 “ pAF ´ zq´1 ‘ pAG ´ zq´1.

Proof. ‚ G is closed since it is the kernel of the bounded operator Π, and F is closed since
it is the kernel of p1 ´ Πq. Let ϕ P F X G. We have ϕ “ Πϕ “ 0, so F X G “ t0u. On the other
hand, for ϕ P E we have ϕ “ Aϕ ` pϕ ´ Aϕq with Aϕ P F and ϕ ´ Aϕ P G, so E “ F ` G.
‚ For ϕ P DompAq X F we have ΠAϕ “ AΠϕ “ Aϕ, so Aϕ P kerp1 ´ Πq “ F. We proceed
similarly for G “ kerpΠq.
‚ Assume that DompAq is dense in E. Let ϕ P F. There exists a sequence pϕnq in DompAq
which converges to ϕ in E. For n P N we have Πϕn P DompAq by assumption. Then
Πϕn P DompAq X F converges to Πϕ “ ϕ. We proceed similarly for G.
‚ Assume that A is closed. Let pϕnq be a sequence in DompAFq such that ϕn Ñ ϕ and
AFϕn Ñ ψ in F. Then ϕn Ñ ϕ and Aϕ Ñ ψ in E. Since A is closed, this proves that
ϕ P DompAq and Aϕ “ ψ. Since ϕ P F we also have ϕ P DompAFq and AF ϕ “ ψ. This proves
that AF is closed.
‚ Let z P ρpAq. The restriction of pA´zq´1 to F is an inverse for pAF ´zq, so ρpAq Ă ρpAFq.
Similarly, ρpAq Ă ρpAGq. Conversely, if z P ρpAFq X ρpAGq then pAF ´ zq´1 ‘ pAG ´ zq´1 is
an inverse for A ´ z “ pAF ´ zq ‘ pAG ´ zq, so ρpAq “ ρpAFq X ρpAGq.

� Ex. 2.14

Proposition 2.60. Let z0 P C and r0 ą 0 such that Cpz0, r0q Ă ρpAq. We set

Π “ ´ 1
2iπ

ż

Cpz0,r0q
pA ´ ζq´1 dζ “ ´ 1

2π

ż 2π

0

`
A ´ pz0 ` r0eiθq˘´1

r0eiθ dθ.

We set F “ RanpΠq and G “ kerpΠq.
(i) Π is a (not necessarily orthogonal) projection of E.

(ii) F Ă DompAq.
(iii) ΠA Ă AΠ.

(iv) σpAFq “ σpAq X Dpz0, r0q and σpAGq “ σpAqzDpz0, r0q.
Remark 2.61. In Proposition 2.60 we consider for simplicity the case where Π is defined by
an integral on a circle. But we can similarly consider the integral on any rectifiable simple
closed curve in ρpAq (see [Kat80, § III.6.4]).

Proof. ‚ Π is defined by the integral on a line segment of a continuous function with values
in the Banach space LpEq. This can be understood in the sense of Riemann integrals and
this defines a bounded operator on E. In particular we have in LpEq

Π “ lim
nÑ`8 Πn, where Πn “ ´ 1

n

nÿ

k“1

`
A ´ pz0 ` r0e

ik
2π q˘´1

r0e
ik
2π .

Then for ϕ P E and � P E˚ we have

�pΠϕq “ ´ 1
2iπ

ż

Cpz0,r0q
�
`pA ´ zq´1ϕ

˘
dz.

Since ρpAq is open in C, there exists R1 P r0, r0r and R2 ą r0 such that Dp0, R2qzDp0, R1q Ă
ρpAq. Let ϕ P E and � P E˚. Since the map ζ ÞÑ �

`pA ´ ζq´1ϕ
˘

is holomorphic on ρpAq, we
can replace r0 by any r PsR1, R2r in the expression of Π.
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‚ Let r1, r2 PsR1, R2r with r1 ă r2. We can write

Π2 “ 1
p2iπq2

ż

ζ1PCpz0,r1q

ż

ζ2PCpz0,r2q
pA ´ ζ1q´1pA ´ ζ2q´1 dζ2 dζ1.

By the resolvent identity we have

Π2 “ 1
p2iπq2

ż

ζ1PCpz0,r1q

ż

ζ2PCpz0,r2q
pA ´ ζ1q´1 ´ pA ´ ζ2q´1

ζ1 ´ ζ2
dζ2 dζ1.

Then, by the Fubini Theorem,

Π2 “ ´ 1
p2iπq2

ż

ζ1PCpz0,r1q
pA ´ ζ1q´1

˜ż

ζ2PCpz0,r2q
1

ζ2 ´ ζ1
dζ2

¸
dζ1

´ 1
p2iπq2

ż

ζ2PCpz0,r2q
pA ´ ζ2q´1

˜ż

ζ1PCpz0,r1q
1

ζ1 ´ ζ2
dζ1

¸
dζ2.

We look at the integral in brackets for each term. For the second term, for any ζ2 P Cpz0, r2q
the map ζ1 ÞÑ 1{pζ1 ´ ζ2q is holomorphic on Dpz0, r2q, so the integral vanishes. For the first
term, we get by the Cauchy Theorem that the integral is equal to 2iπ for all ζ1 P Cpz0, r1q.
Then

Π2 “ ´ 1
2iπ

ż

ζ2PCpz0,r2q
pA ´ ζ2q´1 dζ2 “ Π.

This proves that Π is a projection of E.
‚ Let ϕ P F and ψ P E such that ϕ “ Πψ. For n P N˚ we set ϕn “ Πnψ P DompAq. Then
ϕn Ñ ϕ in E. Moreover,

Aϕn “ ´ 1
n

nÿ

k“1
A

`
A ´ pz0 ` r0eiθk q˘´1

r0eiθk ψ

“ ´ 1
n

nÿ

k“1

`
Id `pz0 ` r0eiθk q`

A ´ pz0 ` r0eiθk q˘´1˘
r0eiθk ψ

ÝÝÝÑ
nÑ8 ´ 1

2iπ

ż

Cpz0,r0q

`
Id `ζpA ´ ζq´1˘

ψ dζ “ ´ 1
2iπ

ż

Cpz0,r0q
ζpA ´ ζq´1ψ dζ.

Since A is closed this proves that ϕ P DompAq (and Aϕ “ ´ 1
2iπ

ş
Cpz0,r0q ζpA ´ ζq´1ψ dζ).

‚ Let ϕ P DompAq. Since A commutes with its resolvent, we have AΠnϕ “ ΠnAϕ for all
n P N˚. Since Πnϕ Ñ Πϕ and AΠN ϕ “ ΠN Aϕ Ñ ΠAϕ, we get by closedness of A that
Πϕ P DompAq and AΠϕ “ ΠAϕ.
‚ Let z P ρpAFqzDpz0, r0q. Let r PsR1, r0r. We have on F

pAF ´ zq´1 “ pAF ´ zq´1Π

“ ´ 1
2iπ

ż

ζPCpz0,rq
pAF ´ zq´1pAF ´ ζq´1 dζ

“ ´ 1
2iπ

ż

ζPCpz0,rq
pAF ´ zq´1 ´ pAF ´ ζq´1

z ´ ζ
dζ

“ 1
2iπ

ż

ζPCpz0,rq
pAF ´ ζq´1

z ´ ζ
dζ.

The right-hand side is bounded uniformly in z P ρpAFqzDpz0, r0q. By Proposition 2.23 this
implies that

σpAFq Ă Dpz0, r0q. (2.12)
Now let z P ρpAGq X Dpz0, r0q and r Psr0, R2r. We have on G

pAG ´ zq´1 “ pAG ´ zq´1p1 ´ Πq
“ pAG ´ zq´1 ´ 1

2iπ

ż

ζPCpz0,rq
pAG ´ zq´1 ´ pAG ´ ζq´1

ζ ´ z
dζ

“ 1
2iπ

ż

ζPCpz0,rq
pAG ´ ζq´1

z ´ ζ
dζ.
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This is bounded uniformly in z P ρpAGq X Dpz0, r0q, so

σpAGq Ă CzDp0, r0q. (2.13)

Finally, with Proposition 2.59 and (2.12)-(2.13) we deduce that σpAFq “ σpAq X Dp0, r0q and
σpAGq “ σpAqzDp0, r0q.� Ex. ??, 2.15

Definition 2.62. Let A be a closed operator on E. Assume that λ P C is an isolated point
in the spectrum of A. Let r0 ą 0 such that σpAq X Dpλ, rq “ tλu and r Ps0, r0r. Then the
Riesz Projection of A at λ is

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ zq´1 dz (2.14)

(the definition does not depend on the choice of r).

Definition 2.63. Let λ be an isolated eigenvalue of A. The algebraic multiplicity of λ is
dimpRanpΠλqq, where Πλ is the Riesz projection at λ.

Remark 2.64. Since kerpA ´ λq Ă RanpΠApλqq the geometric multiplicity is not greater than
the algebraic multiplicity.
Example 2.65. Let α, β P C distinct and

M “

¨
˚̊
˚̊
˝

α 1 0 0 0
0 α 0 0 0
0 0 α 0 0
0 0 0 β 1
0 0 0 0 β

˛
‹‹‹‹‚

Then α is an eigenvalue of geometric multiplicity 2. For z P Cztα, βu we have

pM ´ zq´1 “

¨
˚̊
˚̊
˝

pα ´ zq´1 ´pα ´ zq´2 0 0 0
0 pα ´ zq´1 0 0 0
0 0 pα ´ zq´1 0 0
0 0 0 pβ ´ zq´1 ´pβ ´ zq´2

0 0 0 0 pβ ´ zq´1

˛
‹‹‹‹‚

.

Then for r Ps0, |α ´ β| r we have

Πα “ ´ 1
2iπ

ż

Cpα,rq
pM ´ zq´1 dz “

¨
˚̊
˚̊
˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

˛
‹‹‹‹‚

,

so α has algebraic multplicity 3 and Πα is the projection of C5 on kerppM ´ αq2q parallel to
kerpM ´ βq.
Proposition 2.66. We use the notation of Proposition 2.60.

(i) Let λ P Dpz0, r0q and m P N˚. Then kerppA ´ λqmq Ă F.

(ii) Let λ P CzDpz0, r0q and m P N˚. Then kerppA ´ λqmq Ă G.

Proof. ‚ Let ϕ P DompAq such that pA ´ λqϕ P F. For ζ P Cpz0, r0q we have

pA ´ ζq´1ϕ “ pλ ´ ζq´1ϕ ´ pλ ´ ζq´1pA ´ ζq´1pA ´ λqϕ,

Then

Πϕ “ ´ 1
2iπ

ż

Cpz0,rq

`pλ ´ ζq´1ϕ ` pλ ´ ζq´1pA ´ ζq´1pA ´ λqϕ˘
dζ

“ ϕ ` 1
2iπ

ż

Cpz0,rq
pλ ´ ζq´1pA ´ ζq´1pA ´ λqϕ dζ.

32 J. Royer - Université Toulouse 3



Spectrum of general (unbounded) operators

Since

@ζ P Cpz0, rq, pA ´ λqpA ´ ζq´1p1 ´ Πqϕ “ pA ´ ζq´1p1 ´ ΠqpA ´ λqϕ “ 0,

we deduce

p1 ´ Πqϕ “ p1 ´ Πq2ϕ “ ´ 1
2iπ

ż

Cpz0,rq
pλ ´ ζq´1pA ´ ζq´1p1 ´ ΠqpA ´ λqϕ dζ “ 0.

This proves that ϕ P F. Then we can prove by induction on m P N˚ that kerppA ´ λqmq Ă F.
The second statement is similar.

Proposition 2.67. Assume that λ is an isolated point of σpAq such that RanpΠλq is of finite
dimension m P N˚. Then λ is an eigenvalue and

RanpΠλq “ kerppA ´ λqmq.
Proof. The restriction AF of A to F is an operator on the finite dimensional space F, with
σpAEλ

q “ tλu. Then the result follows from the finite dimensional case.

Remark 2.68. We recall that (see Exercise 1.1)

• an isolated point λ of σpAq is not necessarily an eigenvalue (in this case we have
dimpRanpΠλqq “ `8 by Proposition 2.67);

• as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multi-
plicity.

Definition 2.69. Let A be a closed and densely defined operator on E. Let λ P C. We say
that λ belongs to the discrete spectrum σdiscpAq of A and λ is an isolated eigenvalue of A with
finite algebraic multiplicity. The essential spectrum of A is σesspAq “ σpAqzσdiscpAq
Proposition 2.70. Let A be a closed operator on E. σesspAq is closed.

2.6.2 Regularity of the spectrum with respect to a parameter
[Not discussed in class]

Lemma 2.71. Let Π1 and Π2 be two projections on E. Assume that }Π2 ´ Π1}LpEq ă 1.
Then

dimpRanpΠ1qq “ dimpRanpΠ2qq.
Proof. Let π : RanpΠ2q Ñ RanpΠ1q be the restriction of Π1 to RanpΠ2q. This is a continuous
linear map. For ϕ P kerpπq we have Π2pϕq “ ϕ and Π1pϕq “ 0 so

}ϕ} “ }Π2pϕq ´ Π1pϕq} ď }Π2 ´ Π2} }ϕ} ,

so ϕ “ 0. This implies that dimpRanpΠ1qq ě dimpRanpΠ1qq. Interverting the roles of Π1 and
Π2 gives the reverse inequality and concludes the proof.

Proposition 2.72. Let ω be a connected subset of C. Let pAαqαPC be a family of linear
operators on E. Assume that there exists λ0 P C and r0 ą 0 such that Cpλ0, r0q Ă ρpAαq for
all α P ω. Assume that the map

"
ω ˆ Cpλ0, r0q Ñ LpEq

pα, zq ÞÑ pAα ´ zq´1

is continuous.

(i) We denote by Πα the Riesz projection of Aα on Cpλ0, rq. Then dimpRanpΠαqq does not
depend on α P ω.

(ii) Assume that dimpRanpΠαqq “ 1. Then for all α P ω the operator Aα has a unique simple
eigenvalue λα in Dpλ0, rq. Moreover the maps α ÞÑ λα and α ÞÑ Πα are continuous on
ω. If moreover α ÞÑ pAα ´ zq´1 is holomorphic on ω for all z P Cpλ0, r0q, then α ÞÑ Πα

and α ÞÑ λα are holomorphic.

2022-2023 33



M2RI - Spectral Theory and Evolution Equations

Proof. ‚ Let α0 P ω. Since Cpλ0, rq is compact, there exists a neighborhood V of α0 in ω
such that for all α P V and ζ P Cpλ0, rq we have

››pAα ´ ζq´1 ´ pAα0 ´ ζq´1›› ď 1
2r0

.

Then we have
}Πα ´ Πα0 } ď 1

2 ,

and, by Lemma 2.71, RanpΠαq “ RanpΠα0 q for all α P V. Then RanpΠαq is locally constant,
so it is constant on the connected set ω.
‚ By continuity under the integral sign, we see that Πα is continuous with respect to α. If
pAα ´ ζq´1 is holomorphic with respect to α for all ζ P Cpl0, rq, then Πα is holomorphic by
complex differentiation under the integral sign.
‚ Now assume that RanpΠαq “ 1 for all α P ω. Let α0 P ω and ψ P RanpΠα0 q with
}ψ} “ 1. Then ψ is an eigenvector corresponding to an eigenvalue λα0 P Dpλ0, rq. For α P ω
we set ψα “ Παψ. For α close to α0 we have ψα ‰ 0. Then ψα is an eigenvector of Aα,
continuous (holomorphic if the resolvent is holomorphic) with respect to α. Finally we have
pAα ´ zq´1ψα “ pλα ´ zq´1ψα. Taking the inner product with ψ gives

@
ψ, pAα ´ zq´1ψα

D “ pλα ´ zq´1 xψ, ψαy .

We have xψ, ψαy “ 1 when α “ α0, so this does not vanish on a neighborhood of α0. This
gives

pλα ´ zq´1 “
@
ψ, pAα ´ zq´1ψα

D

xψ, ψαy .

Thus pλα ´ zq´1 is continuous (holomorphic if the resolvent is holomorphic) for α an a
neighborhood of α0, and so is λα.

Proposition 2.73 (Analytic family of type A). Let ω be an open subset of C. Let pAαqαPω

be a family of closed operators on E. We assume that

(i) the operators Aα, α P ω, have the same domain D ;

(ii) for all ψ P D the map α ÞÑ Aαψ P H is holomorphic on ω.

Let α0 P ω and z0 P ρpAα0 q. Then there exists r ą 0 such that z P ρpAαq for all α P Dpα0, rq
and z P Dpz0, rq and the map

pα, zq ÞÑÞÑ pAα ´ zq´1

is continuous on Dpα0, rq ˆ Dpz0, rq and analytic in Dpα0, rq for all z P Dpz0, rq.
Proof. For α P ω and z P C we have

pAα ´ zq “
´

1 ` `
Aα ´ Aα0 q ´ pz ´ z0q˘pAα0 ´ z0q´1

¯
pAα0 ´ z0q

Since pAα0 ´z0q´1 maps H to D, the operators AαpAα0 ´z0q´1 and Aα0 pAα0 ´z0q´1 are well
defined on H. Since they are closed, they are bounded by the closed graph theorem. Then the
function α ÞÑ AαpAα0 ´ zq´1 is weakly holomorphic, and hence holomorphic by Proposition
A.7. In particular it is continuous, so there exists r ą 0 such that

››pAα0 ´ z0q´1›› ă 1{p4rq,
Dpα0, rq Ă ω and for all α P Dpα0, rq we have

››pAα ´ Aα0 qpAα0 ´ z0q´1››
LpHq ď 1

4 .

Then the map pα, zq ÞÑ `
1 ` `

Aα ´ Aα0 q ´ pz ´ z0q˘pAα0 ´ z0q´1˘´1 is well defined and
continuous on Dpα0, rq ˆ Dpz0, rq, and analytic with respect to α for all z P Dpz0, rq. We
deduce that the same holds for α ÞÑ pAα ´ zq´1.
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Proposition 2.74 (Analytic family of type B). Let V be a Hilbert space continuously and
densely embedded in H. Let ω be an open subset of C. Let z P C. Let pqαqαPω be a family of
continuous forms on V such that ϕ ÞÑ qαpϕq P C is analytic for all ϕ P V. Let α0 P ω and
z0 P C such that qα0 ´ z0 is coercive. Then there exists r ą 0 such that qα ´ z is coercive
for all α P Dpα0, rq and z P Dpz0, rq. For α P Dpα0, rq we denote by Aα the operator on H
given by the representation theorem (see Theorem 2.52 and Remark 2.53). Then the map

pα, zq ÞÑ pAα ´ zq´1

is continuous on Dpα0, rq ˆ Dpz0, rq and holomorphic with respect to α P Dpα0, rq for all
z P Dpz0, rq.
Proof. We denote by Qα the operator in LpV, V 1q associated with qα (see (1.8)). For α P ω
we have in LpV, V 1q

pQα ´ zq “
´

1 ` `pQα ´ Qα0 q ´ pz ´ z0q˘pQα0 ´ zq´1
¯

pQα0 ´ zq

Since pQα0 ´ zq´1 maps V 1 to V, the operators QαpQα0 ´ zq´1 and Qα0 pQα0 ´ zq´1 are
bounded on V 1. Then the function α ÞÑ QαpQα0 ´ zq´1 is weakly holomorphic, and hence
holomorphic by Proposition A.7. In particular it is continuous, so there exists r ą 0 such
that

››pQα0 ´ z0q´1››
LpV 1,Vq ď 1{p4rq, Dpα0, rq Ă ω and for all α P Dpα0, rq we have

››pQα ´ Qα0 qpQα0 ´ zq´1››
LpV 1q ď 1

4 .

Then the map pα, zq ÞÑ `
1``pQα ´Qα0 q´pz´z0q˘pQα0 ´zq´1˘´1 P LpV 1q is well defined and

continuous on Dpα0, rq ˆ Dpz0, rq, and analytic on Dpα0, rq for all z P Dpz0, rq. We deduce
that the same holds for α ÞÑ pQα ´ zq´1 in LpV 1, Vq. Since pQα ´ zq´1 and pAα ´ zq´1

coincide on H, the conclusion follows.

For the perturbation of a double eigenvalue, we refer to Exemple II.1.1 (page 64) in
[Kat80]

2.7 Exercises
Exercise 2.1. Let A be a densely defined operator from E to F. Assume that there exists
C ą 0 such that }Aϕ}F ď C }A}E for all ϕ P DompAq. Prove that A extends uniquely to a
bounded operator Ã P LpE, Fq and that }Ã}LpE,Fq ď C.

Exercise 2.2. Prove Proposition 2.23

Exercise 2.3. Let pλnqnPN be a complex sequence. We consider on �2pNq the operator A
defined by

DompAq “
#

u “ punqnPN :
8ÿ

n“0
|λn|2 |un|2 ă `8

+

and, for u “ punqnPN P DompAq,
Au “ pλnunqnPN.

1. Prove that A is closed.
2. What is the spectrum of A.

Exercise 2.4. Let Ω be an open subset of Rd. Let f : Ω Ñ C be a measurable function.
We consider the multiplication operator Mf as in example 2.4.
1. Prove that Mf is densely defined.
2. What is the adjoint of Mf ?

Exercise 2.5. We set
H “ �

u P L2pRq : u is even
(

.

1. Prove that H is a Hilbert space.
2. We want to consider on H the operator defined by Au “ ´u2. What is the natural domain
for A (in particular, we want A to be closed) ?
3. Then what is the spectrum of A ?
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Exercise 2.6. Let A be a closed and densely defined operator on E. Assume that there
exists C ą 0 such that }Aϕ}E ď C }ϕ}E for all ϕ P DompAq. Prove that DompAq “ H and
that A P LpEq.
Exercise 2.7. We consider on L2pCq (K is endowed with its usual Lebesgue measure) the
operator A defined by pAuqpyq “ yupyq on the domain

DompAq “ �
u P L2pCq : yu P L2pCq(

.

1. Prove that A is closed.
2. Prove that σpAq “ C.
Exercise 2.8 (Regular points). Let A be an operator on the Hilbert space H. Let z be
a regular point of A (see Proposition 2.34). We denote by dApzq “ dimpRanpA ´ zqKq the
defect number of A. We also denote by πpAq the set of regular points of A.
1. Prove that πpAq is open (more precisely, if z0 P πpAq and c0 ą 0 is the constant given by
(2.4), show that Dpz0, cz0 q Ă πpAq).
2. Assume that A is closable. Prove that the defect number is constant on each connected
component of πpAq.
Exercise 2.9. We consider the operator T from L2pRq to C defined by DompT q “ C8

0 pRq
and Tφ “ φp0q for all φ P DompT q. Compute the adjoint T ˚ of T .
Exercise 2.10. Prove Proposition 2.46.
Exercise 2.11. Prove Proposition 2.48.
Exercise 2.12. Prove Proposition 2.48.
Exercise 2.13. Let α P C. For ϕ, ψ P H1p0, 1q we set

qαpϕq “
ż 1

0

ˇ̌
u1pxqˇ̌2 dx ` α |up0q|2 .

1. Prove that the quadratic form qα is continuous on H1p0, 1q.
2. Prove that there exists β ě 0 such that the form qα ` β : u ÞÑ qαpuq ` β }u}2

L2p0,1q is
coercive.
3. We denote by Aα the operator on L2p0, 1q associated with the form qα by the representation
theorem (see Remark 2.53). Describe Aα (domain and action on an element of this domain).
Exercise 2.14. Let E1 and E2 be two Banach spaces and E “ E1 ‘E2. Let A1 and A2 be two
closed operators, on E1 and E2 respectively. For ϕ “ ϕ1 ` ϕ2 P E we set A “ A1ϕ1 ` A2ϕ2.
1. Prove that this defines a closed operator A on E.
2. Prove that σpAq “ σpA1q Y σpA2q.
3. Prove that σppAq “ σppA1q Y σppA2q.
4. Assume that λ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multi-
plicity of λ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of λ
as an eigenvalue of A1 and A2.
Exercise 2.15. Let A be a closed operator on E. Let λ P σdiscpAq. Let r0 ą 0 be such that
Dpλ, r0q X σpAq “ tλu. For r Ps0, r0r and n P Z we set

Rn “ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1

pζ ´ λqn`1 dζ.

1. Prove that for n1, n2 P Zz t0u we have Rn1Rn2 “ ´Rn1`n2`1.
2. We set N “ ´R´2. Prove that for all n ě 2 we have R´n “ ´Nn´1.
3. We denote by Π the Riesz projection at λ. Prove that NΠ “ ΠN “ N . Deduce that N
has finite rank.
4. Prove that for z P Dpλ, r0qz tλu we can write pA ´ zq´1 as the Laurent series

pA ´ zq´1 “
ÿ

nPZ
pz ´ λqnRn,

and in particular that the power series
ř

mě0 ρnR´m is convergent for any ρ P C.
5. Prove that N is nilpotent and that R´n “ 0 for n large enough.
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