
Chapter 1

Spectrum of bounded operators

[Draft version, November 16, 2022]

In this chapter we introduce the basic notions of spectral theory for bounded operators.
We do not too far in the general properties since many aspects will be common with the
theory for unbounded operators, discussed in the next chapter.

1.1 Bounded operators - Examples
Let E and F be two Banach spaces. We denote by LpE, Fq the set of bounded linear maps
from E to F, and for A P LpE, Fq we set

}A}LpE,Fq “ sup
ϕPEzt0u

}Aϕ}F
}ϕ}E

.

We write LpEq for LpE, Eq.
Remark 1.1. We recall that a linear map from E to F is continuous if and only if it is bounded.
Remark 1.2. Let G be a third Banach space. For A P LpE, Fq and B P LpF, Gq we have

}BA}LpE,Gq ď }A}LpE,Fq }B}LpF,Gq .

Example 1.3. If E has finite dimension then all the linear maps from E to F are continuous.
Example 1.4. We consider on �2pNq the operators Sr and S� defined by

Srpu0, u1, . . . , un, . . . q “ p0, u0, . . . , un´1, . . . q
and

S�pu0, u1, . . . , un, . . . q “ pu1, u2, . . . , un`1, . . . q.
Then Sr and S� are bounded operators on �2pNq with }Sr}Lp�2pNqq “ }S�}Lp�2pNqq “ 1.
Example 1.5. Let a “ panqnPN be a bounded sequence in C. For u “ punqnPN P �2pNq we
define Mau P �2pNq by

@n P N, pMauqn “ anun.

We have Ma P �2pNq with }Ma}Lp�2pNqq “ supnPN |an|.
Example 1.6. More generally, let pΩ, µq be a measure space. Let w P L8pΩq. We consider
on L2pΩq the multiplication operator Mw : u ÞÑ uw. Then we have Mw P LpL2pΩqq with

}Mw}LpL2pΩqq “ }w}L8pΩq .

Definition 1.7. We say that A P LpE, Fq is invertible if there exists B P LpF, Eq such that
BA “ IdE and AB “ IdF.

Example 1.8. • Sr is not surjective and S� is not injective, so these two operators are not
invertible.
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• Given a “ panq P �8pNq, the operator Ma is invertible if and only if

0 R tan, n P Nu.

• Given w P L8pΩ, µq, the operator Mw is invertible in L2pΩ, µq if and only if there exists
ε ą 0 such that

µ
` tx P Ω : |wpxq| ď εu ˘ “ 0. (1.1)

Assume that (1.1) holds. Then w´1 is well defined almost everywhere and
››w´1››

L8pΩq ď
1
ε . Then Mw´1 P LpL2pΩqq is an inverse for Mw. Conversely, assume that Mw is in-
vertible. Assume by contradiction that (1.1) does not hold. Then for all n P N˚ we
set

An “ w´1
ˆ

D

ˆ
0,

1
n

˙˙
and un “ 1An

µpAnq 1
2

.

Then }un}L2pΩq “ 1 and

}Mwun}2
L2pΩq “ 1

µpAnq
ż

An

|wpxq|2 dµpxq ď 1
n2 .

Then
}un}L2pΩq “ ››M´1

w Mwun

››
L2pΩq ď 1

n
}M´1

w }LpL2pΩqq ÝÝÝÝÝÑ
nÑ`8 0,

which gives a contradiction.
The following result is a consequence of the open mapping theorem (see for instance

[Bre11, Cor. 2.7]).

Proposition 1.9. Let A P LpE, Fq. Assume that A is bijective. Then its inverse is necessarily
continuous.

1.2 Spectrum of bounded operators - Resolvent
Let E be a Banach space.

1.2.1 Definition and basic properties
Definition 1.10. Let A P LpEq.

(i) The resolvent set ρpAq of A is the set of z P C such that pA ´ zq “ pA ´ z IdEq is
invertible.

(ii) The spectrum σpAq of A is the complementery set of ρpAq in C.

Definition 1.11. Let A P LpEq. We say that λ P C is an eigenvalue of A if pA ´ λq is not
injective. In other words, there exists u P Ez t0u such that Au “ λu. Such a vector u is called
an eigenvector of A for the eigenvalue λ. The geometric multiplicity of λ is the dimension
of kerpA ´ λq. We denote by σppAq the set of eigenvalues of A.

Remark 1.12. We have σppAq Ă σpAq, but the inclusion can be strict.� Ex. 1.1
Example 1.13. We consider the multiplication operator Mw defined in Example 1.6. Let
λ P C. Then λ is an eigenvalue of Mw is and only if

µ ptx P Ω : wpxq “ λuq ą 0.

On the other hand, since Mw ´ λ “ Mw´λ, we see that λ belongs to σpMwq if and only if for
all ε ą 0 we have

µ ptx P Ω : |wpxq ´ λ| ď εuq ą 0.

� Ex. 1.2

Proposition 1.14. Let A P LpEq.
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(i) σpAq Ă Dp0, }A}LpEqq.

(ii) ρpAq is open. For z0 P ρpAq and |z ´ z0| ă ››pA ´ z0q´1››´1
LpEq we have z P ρpAq and

pA ´ zq´1 “
ÿ

nPN
pz ´ z0qnpA ´ z0q´pn`1q. (1.2)

(iii) σpAq is compact.
Proof. ‚ Let z P C such that |z| ą }A}. Then we have

A ´ z “ ´z

ˆ
Id ´A

z

˙
.

Since ››››
A

z

›››› “ }A}
|z| ă 1,

the operator Id ´ A
z is invertible with inverse given by the Neumann series

ř
kPNp A

z qk. This
proves that A ´ z is invertible with inverse

pA ´ zq´1 “ ´
ÿ

kPN

Ak

zk`1 .

‚ Let z0 P ρpAq. For z P D
`
z0,

››pA ´ z0q´1››´1
LpEq

˘
we have

A ´ z “ pA ´ z0q ´ pz ´ z0q “ `
1 ´ pz ´ z0qpA ´ z0q´1˘pA ´ z0q.

Since pz ´z0qpA´z0q´1 has norm less that 1, the operator 1´ pz ´z0qpA´z0q´1 is invertible
with inverse `

1 ´ pz ´ z0qpA ´ z0q´1˘´1 “
ÿ

nPN
pz ´ z0qnpA ´ z0q´n.

Then A ´ z is invertible and pA ´ zq´1 is given by (1.2). This proves in particular that ρpAq
is open.
‚ Finally, σpAq “ CzρpAq is closed by (ii) and bounded by (i), so it is compact.

Proposition 1.15. Let A P LpEq be invertible. Then

σpA´1q “ �
λ´1, λ P σpAq(

.

Proof. We already know that 0 is in ρpAq X ρpA´1q. For λ P Cz t0u we have

pA ´ λq “ λApλ´1 ´ A´1q
so pA´1 ´ λ´1q is invertible if and only if pA ´ λq is invertible.

� Ex. 1.3

Proposition 1.16. Let A P LpEq. Let z P C. Assume that there exists c0 ą 0 such that

@ϕ P E, }pA ´ zqϕ}E ě c0 }ϕ}E . (1.3)

We say that z is a regular point of A. Then
(i) pA ´ λq is injective ;

(ii) pA ´ λq has closed range;

(iii) If pA ´ λq is invertible then
››pA ´ λq´1›› ď c´1

0 .
This means that if z is a regular point of A, then z P ρpAq if and only if RanpA ´ λq is

dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We prove the second statement. Let pψnq be a sequence in RanpA´zq which converges
to some ψ in E. For n P N we consider ϕn P E such that pA ´ zqϕn “ ψn. Since ppA ´ zqϕnq
is a Cauchy sequence, so is pϕnq by (1.3). Since E is complete, ϕn converges to some ϕ in E.
Finally, since A is continuous, ψ “ pA ´ zqϕ P RanpA ´ zq. This proves that RanpA ´ zq is
closed in E.
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1.2.2 Resolvent
Definition 1.17. Let A P LpEq. The resolvent of A is the map

"
ρpAq Ñ LpEq,

z ÞÑ pA ´ zq´1.

Proposition 1.18 (Resolvent Identity). Let A P LpEq. For z1, z2 P ρpAq we have

pA ´ z1q´1 ´ pA ´ z2q´1 “ pz1 ´ z2qpA ´ z1q´1pA ´ z2q´1

“ pz1 ´ z2qpA ´ z2q´1pA ´ z1q´1.

Proof. We have pA ´ z2q ´ pA ´ z1q “ z1 ´ z2. The first equality follows after composition
by pA ´ z1q´1 on the left and by pA ´ z2q´1 on the right. The second equality is similar.

Remark 1.19. The resolvent identity proves in particular that pA ´ z1q´1 and pA ´ z2q´1

commute.

Proposition 1.20. Let A P LpEq. The resolvent RA : z ÞÑ pA ´ zq´1 is analytic on ρpAq
and R1

A “ R2
A.

Proof. This follows from (1.2).

Proposition 1.21. Let A P LpEq. Then σpAq ‰ H.

Proof. Assume by contradiction that ρpAq “ C. For z P C such that |z| ě 2 }A}LpEq we have

››pA ´ zq´1››
LpEq “ 1

|z|

›››››

ˆ
A

z
´ 1

˙´1
›››››

LpEq
ď 1

|z|
8ÿ

k“0

˜}A}LpEq
|z|

¸k

ď 2
|z| . (1.4)

Let ϕ P E and � P E1. The map z ÞÑ �ppA ´ zq´1ϕq is holomorphic on C and bounded. Thus
it is constant by the Liouville Theorem. By the previous estimate, its value must be 0. In
particular, �pA´1ϕq “ 0 for all ϕ and all � P E1. By the Hahn-Banach Theorem, we have
A´1ϕ for all ϕ P E. This gives a contradiction and proves that ρpAq ‰ C.

Remark 1.22. In the real case we know from the finite dimensional case that the spectrum
of a bounded operator can be empty.

1.2.3 Spectral radius
Definition 1.23. Let A P LpEq. The spectral radius of A is

rpAq “ sup
λPσpAq

|λ| .

By Proposition 1.14 we already know that rpAq ď }A}LpEq. The equality is not true in
general. Consider for instance the matrix

Aα “
ˆ

1 α
0 1

˙

for α P C. We have σpAq “ t1u and }A}LpC2q Ñ `8 as |α| Ñ `8. In general we have at
least the following result.

Proposition 1.24 (Gelfand’s Formula). Let A P LpEq. We have

rpAq “ inf
nPN˚

}An} 1
n

LpEq “ lim
nÑN˚

}An} 1
n

LpEq .

Example 1.25. Check that Aα satisfies the Gelfand Formula.
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Proof. ‚ Assume that there exists N P N such that AN “ 0. Then An “ 0 for all n ě N .
Let z P Cz t0u. Then pz´1A ´ 1q is invertible with inverse

ˆ
A

z
´ 1

˙´1
“ ´

N´1ÿ

n“0

ˆ
A

z

˙n

.

This proves that A ´ z “ zpz´1A ´ 1q is invertible. Thus σpAq Ă t0u. Since σpAq ‰ H, we
have σpAq “ t0u and the proposition is proved in this case. Now we assume that An ‰ 0 for
all n P N.
‚ For n P N we set un “ lnp}An}q. For m, p P N˚ we have by Remark 1.2

um`p ď um ` up.

Let p P N˚. Let n P N˚ and pq, rq P N ˆ �0, p ´ 1� such that n “ qp ` r. Then we have

un

n
ď qup ` ur

qp ` r
ď up

p
` ur

n
,

so
lim sup

nÑ8
un

n
ď up

p
.

Then for all p P N˚ we have
lim sup

nÑ8
}An} 1

n ď }Ap} 1
p

Thus
lim sup

nP8
}An} 1

n ď inf
pPN˚

}Ap} 1
p .

This implies that
}An} 1

n ÝÝÝÑ
nÑ8 inf

pPN˚
}Ap} 1

p ,

which gives the second inequality of the proposition.
‚ We set r̃pAq “ lim }An} 1

n . For z P C we have kerpA ´ zq Ă kerpAn ´ znq and

An ´ zn “ pA ´ zq
n´1ÿ

k“0
zkAn´1´k,

so RanpAn ´ znq Ă RanpA ´ zq. Thus, if An ´ zn is bijective, then so is A ´ z. Now let
λ P σpAq. We have λn P σpAnq. By Proposition 1.14 we have |λ|n “ |λn| ď }An}, so
|λ| ď }An} 1

n for all n P N, and hence |λ| ď r̃pAq. This proves that rpAq ď r̃pAq.
‚ Let z P C with |z| ą r̃pAq. Then the power series

´
ÿ

nPN

An

zn`1

is convergent in LpEq and defines a bounded inverse for pA´zq. This proves that r̃pAq ď rpAq
and concludes the proof.

1.3 Adjoint of a bounded operator
Let H, H1, H2 be Hilbert spaces.

1.3.1 Definition and basic properties
Definition 1.26. Let A P LpH1, H2q. Let ψ P H2. We denote by A˚ψ the unique vector in
H1 such that

@ϕ P H1, xAϕ, ψyH2
“ xϕ, A˚ψyH1

. (1.5)

The definition is justified by the Riesz representation theorem. Indeed, since ϕ ÞÑ
xAϕ, ψyH2

is a continuous semilinear map on H1, there exists a unique A˚ψ such that (1.5)
holds.
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Example 1.27. Assume that H1 and H2 are of finite dimensions n1, n2 P N˚. Let β1 and β2
be orthonormal bases of H1 and H2, and let M “ pmj,kq1ďjďn2

1ďkďn1

be the matrix of A in β1 and

β2. Then the matrix of A˚ in β2 and β1 is

M˚ “ M
T “ pmk,jq1ďjďn2

1ďkďn1

.

Example 1.28. Let f P L8pΩ, µq and let Mf be the multiplication operator as in Example
1.6. Then the adjoint of Mf is M˚

f “ Mf .
Example 1.29. The shift operators Sr and S� (see Example 1.4) are adjoint of each other on
�2pNq.
Proposition 1.30. Let A P LpH1, H2q.

(i) pA˚q˚ “ A.

(ii) A˚ P LpH2, H1q and }A˚}LpH2,H1q “ }A}LpH1,H2q.

Proof. ‚ Let ϕ P H1. For all ψ P H2 we have

xA˚ψ, ϕyH1
“ xϕ, A˚ψyH1

“ xAϕ, ψyH2
“ xψ, AϕyH2

This proves that A˚˚ϕ “ Aϕ.
‚ We leave the linearity of A˚ as an exercise. For ψ P H2, we have

}A˚ψ}2
H1

“ xAA˚ψ, ψyH1
ď }A}LpH1,H2q }A˚ψ}H1

}ψ}H2
,

so }A˚ψ}H1
ď }A}LpH1,H2q }ψ}H2

. This proves that A˚ P LpH2, H1q and }A˚}LpH2,H1q ď
}A}LpH1,H2q. Then

}A}LpH1,H2q “ }A˚˚}LpH1,H2q ď }A˚}LpH2,H1q ,

and finally, }A˚}LpH2,H1q “ }A}LpH1,H2q.

Proposition 1.31. For A1 P LpH1, H2q and A2 P LpH2, H3q we have pA2A1q˚ “ A1̊ A2̊ .

Proof. Let ϕ P H1 and ψ P H3. We have

xA2A1ϕ, ψyH3
“ xA1ϕ, A2̊ ψyH2

“ xϕ, A1̊ A2̊ ψyH1
,

and the conclusion follows.

Proposition 1.32. Let A P LpHq. If F is a subspace of H such that ApFq Ă F, then
A˚pFKq Ă FK.

Proof. Let ψ P F K. Then for all ϕ P F we have xϕ, A˚ψy “ xAϕ, ψy “ 0, so A˚ψ P F K.

1.3.2 Spectrum of the adjoint
Proposition 1.33. Let A P LpH1, H2q. Then

kerpA˚q “ RanpAqK and kerpA˚qK “ RanpAq.
Proof. Let ϕ P kerpA˚q. Then for all ψ P H1 we have

xAψ, ϕyH2
“ xψ, A˚ϕyH1

“ 0,

so ϕ P RanpAqK. Conversely, if ϕ P RanpAqK then the same computation shows that ϕ P
kerpA˚q. This gives the first inequality. Then, by Proposition A.5 we have

kerpA˚qK “ pRanpAqKqK “ RanpAq,
and the proof is complete.
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Proposition 1.34. Let A P LpH1, H2q. Then A˚ is invertible if and only if A is, and in
this case we have pA˚q´1 “ pA´1q˚.

Proof. ‚ Assume that A is invertible. By Proposition 1.31 we have

A˚pA´1q˚ “ pA´1Aq˚ “ Id˚ “ Id .

and similarly pA´1q˚A˚ “ Id, so A˚ is invertible and pA˚q´1 “ pA´1q˚.
‚ Similarly, if A˚ is bijective then A˚˚ is bijective. But A˚˚ “ A by Proposition 1.30, and
the proof is complete.

Proposition 1.35. Let A P LpHq. Then

σpA˚q “ tz, z P σpAqu .

Proof. Let λ P C. By Proposition 2.49 the operator pA ´ λq is bijective if and only if
pA ´ λq˚ “ pA˚ ´ λq is bijective.

Example 1.36. We consider on �2pNq the shift operators of Example 1.4. We have

σppSrq “ H and σppS�q “ Dp0, 1q.
By Proposition 1.14, σpS�q is closed and contained in Dp0, 1q, so σpS�q “ Dp0, 1q. Finally,
since Sr̊ “ S�, we also have σpSrq “ Dp0, 1q by Proposition 1.30.

1.3.3 Normal bounded operators
Definition 1.37. We say that A P LpHq is normal if AA˚ “ A˚A.

Remark 1.38. If A is normal and invertible, then A´1 is normal.

Proposition 1.39. Let A P LpHq be a normal operator.

(i) For ϕ P H we have }Aϕ} “ }A˚ϕ}. In particular, kerpA˚q “ kerpAq.
(ii) If λ and µ are two distinct eigenvalues of A, then kerpA ´ λq and kerpA ´ µq are

orthogonal.

Proof. ‚ Let ϕ P H. We have

}Aϕ}2 “ xA˚Aϕ, ϕy “ xAA˚ϕ, ϕy “ }A˚ϕ}2
,

which gives the first statement.
‚ Let ϕ P kerpA ´ λq and ψ P kerpA ´ µq. By the first statement we also have ψ P
kerppA ´ µq˚q “ kerpA˚ ´ µq. Then we have

pλ ´ µq xϕ, ψy “ xλϕ, ψy ´ xϕ, µψy “ xAϕ, ψy ´ xϕ, A˚ψy “ 0.

Since λ ‰ µ, this proves that xϕ, ψy “ 0, so kerpA ´ λq and kerpA ´ µq are orthogonal.

Definition 1.40. Let A P LpHq.
(i) We say that A is symmetric if

@ϕ, ψ P H, xAϕ, ψyH “ xϕ, AψyH .

(ii) We say that A is selfadjoint if A˚ “ A.

� Ex. 1.4

Proposition 1.41. Let A P LpHq. Then A is symmetric if and only if it is selfadjoint.

Definition 1.42. A P LpHq is said to be skew-adjoint (or skew-symmetric) if A˚ “ ´A.
Notice that A is selfadjoint if and only if iA is skew-adjoint.
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Definition 1.43. Let H1 and H2 be two Hilbert spaces. An operator A P LpH1, H2q is said
to be unitary if it is invertible and A´1 “ A˚.� Ex. 1.5 to 1.7

Remark 1.44. Selfadjoint, skew-adjoint and unitary operators on H are normal.
Example 1.45. The multiplication operator Mw (see Example 1.6) is selfadjoint if and only
if w is almost everywhere real valued.

In Section 1.2.3 we have said that the spectral radius of a bounded operator can be smaller
that its norm. This is not the case for a normal operator.

Proposition 1.46. Let A P LpEq be normal. We have rpAq “ }A}LpHq.

Proof. ‚ Assume that A is selfadjoint. We always have
››A2›› ď }A}2. For ϕ P H we have

}Aϕ}2 “ xA˚Aϕ, ϕy “ @
A2ϕ, ϕ

D ď ››A2›› }ϕ}2
.

This proves that }A}2 ď ››A2››, and hence }A}2 “ ››A2››. Since A2k is selfadjoint for all k P N,
we deduce by induction that

››A2k ›› “ }A}2k

for all k P N. Then, by the Gelfand Formula we
have

rpAq “ lim
kÑ8

››A2k ›› 1
2k “ }A} .

‚ Now we only assume that A is normal. We have }A˚A} “ }A}2 (exercise). On the other
hand, since A˚A is selfadjoint we have rpA˚Aq “ }A˚A}, so rpA˚Aq “ }A}2. On the other
hand, since A is normal,

rpA˚Aq “ lim
nÑ8 }pA˚Aqn} 1

n “ lim
nÑ8 }pAnq˚An} 1

n “ lim
nÑ8 }An} 2

n “ rpAq2.

This proves that rpAq “ }A}.

Remark 1.47. If A P LpHq is a normal operator such that σpAq “ t0u then A “ 0. This is
not the case in general, since every nilpotent operator has spectrum t0u.

Theorem 1.48. Let A P LpHq a normal operator. For z P ρpAq we have

››pA ´ zq´1››
LpHq “ 1

distpz, σpAqq
Proof. For ζ P Cz tzu we have by Proposition 1.15

σppA ´ zq´1q “ �pζ ´ zq´1, ζ P σpAq(
.

Since pA ´ zq´1 is normal, we deduce by Proposition 1.46

››pA ´ zq´1›› “ rppA ´ zq´1q “ sup
λPσpAq

|λ ´ z|´1 “ 1
infλPσpAq |λ ´ z| “ 1

distpz, σpAqq .

1.4 Polar decomposition
[Not discussed in class]

Definition 1.49. Let A P LpHq be a symmetric operator. We say that A is non-negative if
xAϕ, ϕyH ě 0 for all ϕ P H.

Proposition 1.50. Let A P LpHq be non-negative. Let ϕ P H. If xAϕ, ϕy “ 0 then Aϕ “ 0.

Proof. By the Cauchy-Schwarz inequality we have for all ψ P H

|xAϕ, ψy| ď xAϕ, ϕy 1
2 xAψ, ψy 1

2 “ 0.

Then xAϕ, ψy “ 0 for all ψ P H, so Aϕ “ 0.
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Proposition 1.51 (Square root of a bounded non-negative operator). Let A P LpHq be
non-negative. There exists a unique non-negative bounded operator S such that S2 “ A.
Moreover, S commutes with A, and any operator which commutes with A also commutes
with S. We can write S “ ?

A.

Proof. ‚ Assume that the existence is proved when }A} ď 1. Then in general we can
multiply A by ε “ }A}´1, so that }εA} ď 1. Then we set S “ ε´ 1

2 Sε, where Sε is the square
root of εA. Then S2 “ ε´1εA “ A and, since Sε commutes with εA, S commutes with A.
‚ Now assume that }A} ď 1. We set B “ Id ´A. For ϕ P H we have

xBϕ, ϕy “ }ϕ}2 ´ xAϕ, ϕy ď }ϕ}2
.

We also have
xBϕ, ϕy “ }ϕ}2 ´ xAϕ, ϕy ě }ϕ}2 ´ }A} }u}2 ě 0.

Then by the Cauchy-Schwarz inequality we have for ϕ, ψ P H,

|xBϕ, ψy| ď xBϕ, ϕy 1
2 xBψ, ψy 1

2 ď }ϕ} }ψ} .

This proves that }B} ď 1. Now we use the power series for the function z ÞÑ ?
1 ´ z,

absolutely convergent 1 on Dp0, 1q:

@z P Dp0, 1q, ?
1 ´ z “ 1 ´

8ÿ

n“1
anzn, an “ p2nq!

p2n ´ 1qpn!q24n
.

Then we set

S “ 1 ´
8ÿ

n“1
anBn.

Then by Cauchy product for a power series we have S2 “ Id ´B “ A. Moreover S commute
with B and hence with A. Similarly, any operator which commutes with A commutes with
B and hence with S.
‚ Now we prove uniqueness. Assume that S 1 is another solution. In particular S and S 1
commute. If we set

T “ pS ´ S1qSpS ´ S1q and T 1 “ pS ´ S1qS1pS ´ S1q
We observe that

T ` T 1 “ pS ´ S1qpS ` S1qpS ´ S´q “ pS ´ S1qpS2 ´ S12q “ 0.

Since T and T 1 are non-negative, they are both 0 by Proposition 1.50. Then

pS ´ S1q4 “ pS ´ S1qpT ´ T 1q “ 0.

This implies that pS ´ S 1q2 “ 0 and finally S ´ S1 “ 0.

Definition 1.52. For A P LpHq we set |A| “ ?
A˚A.

This definition makes sense since A˚A is always a non-negative operator.

Definition 1.53. We say that U P LpHq is a partial isometry if for all ϕ P kerpUqK we have
}Uϕ} “ }ϕ}.

1For x P r0, 1r we have
?

1 ´ x “ 1 ´
8ÿ

n“1
anxn.

Since all the coefficients are positive we have
8ÿ

n“1
an “ lim

xÑ1

8ÿ

n“1
anxn “ 1 ´ ?

1 ´ 1 “ 1 ă `8.

This proves that
ř8

n“1 an ă `8.
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Proposition 1.54. Let A P LpHq. There exists a unique partial isometry U such that
kerpUq “ kerpAq and

A “ U |A| .

Proof. ‚ Assume that U1 and U2 are solutions. We have U1 |A| “ U2 |A| so U1 “ U2 on
Ranp|A|q, and then on Ranp|A|q by continuity. On the other hand, on Ranp|A|qK “ kerp|A|q “
kerpAq (see Proposition 1.33) we have U1 “ U2 “ 0 so, finally, U1 “ U2.
‚ For ϕ P H we have }|A| ϕ} “ }Aϕ}. Then if ϕ1, ϕ2 P H are such that |A| ϕ1 “ |A| ϕ2, we
also have Aϕ1 “ Aϕ2. Thus we can define U on Ranp|A|q by

U |A| ϕ “ Aϕ.

This is a linear isometry from Ranp|A|q to RanpAq. It can be extended to a linear isometry
from Ranp|A|q to RanpAq. Then we extend U by 0 on Ranp|A|qK “ kerpAq. In particular,
kerpAq Ă kerpUq. On the other hand, since U is an isometry on kerpAqK, we can check that
kerpUq “ kerpAq. Then U is an isometry on kerpUqK, so this is a partial isometry.

1.5 Operators and quadratic forms - Lax-Milgram The-
orem

Let V be a Hilbert space. Let V 1 be the space of continuous semilinear forms on V. We recall
that

I :
"

V Ñ V 1
ϕ ÞÑ ψ ÞÑ xϕ, ψyV

is a bijective isometry by the Riesz theorem. We can identify V and V 1 via this map, but we
do not use this possibility here.

Then we can check that the map
"

LpVq Ñ LpV, V 1q
T ÞÑ I ˝ T

is also a bijective isometry. Moreover T P LpVq is invertible if and only if pI ˝ T q P LpV, V 1q
is.

Definition 1.55. Let V be a Hilbert space.

(i) A sesquilinear form q on V is a map q : V ˆ V Ñ C such that

• for all ψ P V the map ϕ ÞÑ qpϕ, ψq is linear ;
• for all ϕ P V the map ψ ÞÑ qpϕ, ψq is semilinear.

(ii) The quadratic form associated to q is the map ϕ ÞÑ qpϕ, ϕq. It is usually also denoted
by q.

(iii) We say that q is continuous if there exists C ě 0 such that, for all ϕ, ψ P V,

|qpϕ, ψq| ď C }ϕ}V }ψ}V . (1.6)

(iv) We say that q is coercive if there exists α ą 0 such that for all ϕ P V we have

|qpϕ, ϕq| ě α }ϕ}2
V . (1.7)

(v) The adjoint q˚ of the form q is the sesquilinear form defined by

@ϕ, ψ P V, q˚pϕ, ψq “ qpψ, ϕq.

Remark 1.56. Coercivity is often defined by

qpϕ, ϕq ě α }ϕ}2
V .

We use a weaker property here.
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Example 1.57. The map ϕ ÞÑ }ϕ}2
V is a (coercive) quadratic form on V.

We can also define a bijection between continuous sequilinear forms on V and operators
in LpV, V 1q. Given a continuous sesquilinar form q on V we define Q P LpV, V 1q by

@ϕ P V, @ψ P V, pQϕqpψq “ qpϕ, ψq. (1.8)

Conversely, given Q P LpV, V 1q, we similarly define a corresponding continuous sesquilinear
form q.

Proposition 1.58. Let q be a continuous sesquilinear form on V. There exists a unique
operator T P LpVq such that

@ϕ, ψ P V, qpϕ, ψq “ xTϕ, ψyV .

Moreover,
sup

ϕ,ψPVzt0u
|qpϕ, ψq|

}ϕ}V }ψ}V
“ }T }LpVq .

The operator associated with the adjoint form q˚ is T ˚.

Proof. ‚ Let ϕ P V. The map ψ ÞÑ qpϕ, ψq is a continuous semilinear form on V, so by the
Riesz representation theorem there exists an element of V, which we denote by Tϕ, such that

@ψ P V, qpϕ, ψq “ xTϕ, ψyV .

This defines a map T : V Ñ V.
‚ Let ϕ1, ϕ2 P V and λ P R. For all ψ P V we have

xT pϕ1 ` λϕ2q, ψyV “ qpϕ1 ` λϕ2, ψq “ qpϕ1, ψq ` λqpϕ2, ψq “ xTϕ1, ψyV ` λ xTϕ2, ψyV
“ xTϕ1 ` λTϕ2, ψy .

This proves that T pϕ1 ` λϕ2q “ Tϕ1 ` λTϕ2, and hence that the map ϕ ÞÑ Tϕ is linear.
‚ For ϕ P V we have

}Tϕ}2
V “ xTϕ, TϕyV “ qpϕ, Tϕq ď C }ϕ}V }Tϕ}V ,

where C “ supϕ,ψPVzt0u
|qpϕ,ψq|

}ϕ}V }ψ}V
, so }Tϕ}V ď C }ϕ}V . This proves that T P LpVq and

}T }LpVq ď C. Conversely, for ϕ, ψ P Vz t0u we have

|qpϕ, ψq| “ |xTϕ, ψy| ď }T } }ϕ} }ψ} .

‚ Finally, let T̃ be the operator associated to the adjoint form q˚. Let ψ P V. For all ϕ P V
we have

xTϕ, ψy “ qpϕ, ψq “ q˚pψ, ϕq “ @
T̃ψ, ϕ

D “ @
ϕ, T̃ψ

D
.

This proves that T̃ “ T ˚.

Theorem 1.59 (Lax-Milgram). Let V be a Hilbert space. Let q be a continuous and coercive
sesquilinear form on V. Let T P LpVq be the corresponding operator. Then T is bijective and››T ´1››

LpVq ď α´1, where α is given by (1.7). In particular, if � is a bounded semilinear form
on V there exists a unique ϕ� P V such that

@ψ P V, qpϕ�, ψq “ xTϕ�, ψy “ �pψq.
Proof. ‚ For ϕ P V we have

α }ϕ}2
V ď |qpϕ, ϕq| “ |xTϕ, ϕyV | ď }Tϕ}V }ϕ}V ,

so
}Tϕ}V ě α }ϕ}V . (1.9)

This proves in particular that T is injective with closed range (see Proposition 1.16). Now
let ψ P RanpT qK. In particular we have

0 “ |xTψ, ψyV | “ |qpψ, ψq| ě α }ψ}2
V ,
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so ψ “ 0. Since RanpT q is closed, this implies that RanpT q “ V. Thus T is bijective and by
(1.9) we have

››T ´1››
LpVq ď α´1.

‚ By the Riesz theorem there exists ζ P V such that xζ, ψy “ �pψq for all ψ P V. Then we
set ϕ� “ T ´1ζ to get the last statement.

Example 1.60. We consider on H1pRq the quadratic form

q : u ÞÑ }u}2
H1pRq “

ż

R

` ˇ̌
u1pxqˇ̌2 ` |upxq|2 ˘

dx.

Let f P L2pRq. There exists u P H1pRq such that

@v P H1pRq,
ż

R

`
u1pxqv1pxq ` upxqvpxq˘

dx “
ż

R
fpxqvpxq dx.

Example 1.61. We consider on H1p0, 1q the quadratic form

qN : u ÞÑ }u}2
H1p0,1q “

ż 1

0

` ˇ̌
u1pxqˇ̌2 ` |upxq|2 ˘

dx..

We have the same result as above.
Example 1.62. We consider on H1

0 p0, 1q the quadratic form

q̃D : u ÞÑ }u}2
H1p0,1q .

This is also a coercive form.
Example 1.63. We consider on H1

0 p0, 1q the quadratic form

qD : u ÞÑ }u1}2
L2p0,1q.

By the Poincaré inequality, qD is a coercive form on H1
0 p0, 1q.

1.6 Exercises
Exercise 1.1. We consider on �2pN˚q the operator A defined by

Apu1, u2, u3, . . . , uk, . . . q “
´

0,
u1
2 ,

u2
4 ,

u3
8 , . . . ,

uk

2k
, . . .

¯
.

1. Prove that A P Lp�2pN˚qq and compute }A}Lp�2pN˚qq.
2. Compute σpAq.
3. Compute σppAq.
Exercise 1.2. We define on R the function w defined by

wpxq “
#

1
x`1 if x ą 0,

0 if x ď 0

Then we consider on L2pRq the operator Mw of multiplication by w.
1. What is σpMwq ?
2. What is σppMwq ? For each eigenvalue λ of Mw, give a corresponding eigenvector.

Exercise 1.3. Let A P LpEq. Let P P CrXs. Prove that

σpP pAqq “ tP pλq, λ P σpAqu .

Let λ P σpAq. There exists Q P CrXs such that P pXq ´ P pλq “ QpXqpX ´ λq “
pX ´ λqQpXq.
Exercise 1.4. Let Π P LpHq be a projection of H (Π2 “ Π). Prove that Π is an orthogonal
projection if and only if is selfadjoint.
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Exercise 1.5. For u “ punqnPZ P �2pZq we set

Sp. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, u0, u1, u2, u3, . . . q.
1. Prove that this defines a unitary operator A on �2pZq.
2. Prove that σpSq Ă U “ tλ P C : |λ| “ 1u.
3. Let λ P U. For k P N we consider

upkq “ p. . . , 0, 0, 1, λ, λ2, . . . , λk, 0, 0, . . . q.
Compute

››upkq››
�2pZq and

››pS ´ λqupkq››
�2pZq. Prove that λ P σpSq.

Exercise 1.6. Let A P LpHq. Let U P LpHq be unitary. Prove that

σpU˚AUq “ σpAq and σppU˚AUq “ σpAq.
Exercise 1.7. We consider on �2pZq the operator H0 which maps the sequence u “ punqnPZ
to the sequence H0u defined by

@n P Z, pH0uqn “ un`1 ` un´1 ´ 2un.

1. Prove that H0 P Lp�2pZqq.
2. We denote by L2pS1q the set of L2-functions on the torus S1 “ R{2πZ. Functions on S1

can also be seen as 2π-periodic functions on R. For v P L2pS1q we have

}v}2
L2pS1q “ 1

2π

ż π

´π

|vpsq|2 ds.

Given a sequence u “ punqnPZ we define Θu P L2pS1q by

pΘuqpsq “
ÿ

nPZ
uneins.

Prove that Θ is a unitary operator from �2pZq to L2pS1q.
3. Prove that ΘH0Θ´1 is a multiplication operator on S1.
4. Compute the spectrum of ΘH0Θ´1 and deduce the spectrum of H0 (use Exercise 1.6).
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