
Chapter 4

Distributions

The purpose of this chapter is to introduce distributions. Distributions generalize the
notion of function of one or several real variables. In particular, we will extend the usual
notion of derivability, which turns out to be too rigid for applications.

The definition of functions (we only consider here functions of one or several real
variables) and of the regularity of these functions (continuity, etc.) have taken a long
time to stabilize to the precise and general notions as they are now understood. For
example, a function f from R3 to R is any correspondance that associates to any element
x P R3 a unique element fpxq of R. This is a very abstract and general notion.

And yet, this notion shows its limits and is not always adapted to the calculations
that one may have to make. Typically, when f represents a physical quantity as a
function of the position x. For example, if f denotes a mass density or an electric
density, and if we are interested in a very localized mass or charge, we model it by a
point mass or charge. This greatly simplifies the calculations, but the density f ... is
no longer a function. Indeed, in this case the density is what is improperly called “a
Dirac function”, zero except at one point but of strictly positive integral. This cannot
be realized by any function with the Lebesgue theory for integrals. Thus, to make a
simpler calculation, we have to use an object that seems more complicated. So what
should we do ? Giving up rigorous calculations, or giving up a model with which we can
actually do the computation? Neither, obviously, and it is the aim of the distributions to
propose a rigorous, efficient and sufficiently general framework to include in particular
the functions in the usual sense and the Dirac function. In fact we have already solved
this problem by introducing the measures, since the Dirac function has been replaced
by the Dirac measure. But the distributions go further and will include in particular
the measures.

Another aspect for which the usual theory of functions seems too restrictive is the
following. Let us consider a simple partial differential equation, namely the transport
problem

@pt, xq P R2,
Bu

Bt
pt, xq ` Bu

Bx
pt, xq “ 0, (4.1)

with a given initial condition:

@x P R, up0, xq “ u0pxq. (4.2)

The study of this type of problem will come later, but an important question before
looking for a solution is to ask in which set we are working. In which space do we choose
the initial data u0 ? And in which space do we look for the solution u ? A natural
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choice is to look for u in C1pR2q and then to consider u0 in C1pRq. We can then verify
that the unique solution of the problem is given by

@pt, xq P R2, upt, xq “ u0px ´ tq. (4.3)

And now, what happens if we consider an initial data u0 which is not differentiable
? We can still define u by (4.3), physically it will do exactly the same thing (transla-
tion of the profile u0 to the right when t grows), but on the other hand u is no longer
differentiable and we can no longer put it into (4.1). What is the problem? Should
we exclude such a solution, which seems physically reasonable but which is not a so-
lution to the problem as it was posed, or should we rethink the way we pose the problem?

As for the Dirac function via the unit approximation sequences, one could approxi-
mate in a suitable sense an irregular function by a sequence of regular functions. But
it is easier to make calculations with a Dirac than with a sequence of unit approxima-
tions, and the same will be true for functions that we will call “derivable in the sense of
distributions”. Thus it is quite relevant to introduce these new spaces of “functions”.

The change of point of view on functions that leads to the definition of distributions
is the following. Rather than characterizing a function of x (for example) by evaluating
its value at each point x in R, it is characterized by all its averages weighted by a
function with compact support. In other words, instead of focusing on every fpxq for
x P R, we will focus on every

ş
R fpsqϕpsq ds for ϕ P C8

0 pRq.
The characterization of a function by its value at each point had already been chal-

lenged in integration, where one began to consider that two functions that differ only
at one point must be considered as equal.

This new approach is not a simple mathematical artifice. On the contrary, it is quite
natural if we look closely. Or rather a little less closely. Consider for example a function
θ which describes the temperature of an infinite wire. What sense does it make to talk
about the temperature at a specific point? The temperature measures the degree of
agitation of particles. What sense would it make to measure the temperature with a
precision greater than the typical distance traveled by each particle during the measure
? And even so, no device could measure it with infinite precision. What a thermometer
measures, in the best case, is an average of the temperature over a small area around
each x point. Considering that the function θ has a meaning, what is measured is not
the value θpxq, but a quantity of the form

ż
θpyqϕpyq dy,

where ϕ is a function which describes the weight with which the average is obtained.
We call ϕ a test function.

In addition, this point of view perfectly fits what we intend to do with the Dirac
function δ on R. The aim of δ is to have a function such that

ż

R
δpxqϕpxq dx “ ϕp0q, (4.4)

for any test function ϕ. Rather than trying to give a doubtful explanation to the left-
hand side, we give up seeing δ as an usual function by assigning it values at each point
of R and we define directly the distribution δ as the map ϕ ÞÑ ϕp0q. And it is in fact
much simpler !
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In the same spirit, we will define a weaker notion of solution for problems such that
(4.1). We will say that u is a weak solution of (4.1) if

@ϕ P C1pR2q,
ż

R2
upt, xq

ˆBϕ

Bt
pt, xq ` Bϕ

Bx
pt, xq

˙
dt dx “ 0,

with the initial condition (4.2). Thus u can be a solution without being differentiable in
the usual sense. We will say that u is a strong solution of (4.1) on R2 if it is a solution
in the previous sense, that is, if u is of class C1 on R2 and verifies (4.1). Using an
integration by part, we see that a strong solution is a weak solution, and thus the notion
of weak solution is a generalization of the usual notion. Defining derivation in the weak
sense via integration by parts will be the key of the upcoming notion of derivation.

The aim of this chapter is to give a mathematical framework to all these ideas, by
defining in particular the derivation in the sense of distributions.

4.1 Definitions
In this section, we introduce the notion of distribution. In these notes, we have chosen to
gather all the examples in Section 4.2. The drawback of this choice is that the definitions
will be given here without example. Thus, do not hesitate to read the Section 4.2 in
parallel with this one. In particular, It is in section 4.2.1 that we will see that functions
can be identified as examples of distributions, and that in that sense the notion of
distribution “includes” in a suitable sense that of function.

4.1.1 Space of tests functions
Let Ω be an open set of Rd. We start by collecting some properties that we will need
later for the space of the test functions C8

0 pΩq.
Recall that C8

0 pRdq is dense in LppRdq for any p P r1, `8r (see Proposition 1.18).
We have also proved a result of partition of unity with cut-off functions of class C8 (see
Proposition 1.23).

The following properties of C8
0 pΩq are elementary and the proofs are left as exercises

for the reader.

Proposition 4.1. (i) C8
0 pΩq is a subspace of the space of functions from Rd to C.

(ii) If f P C8pΩq and ϕ P C8
0 pΩq then fϕ P C8

0 pΩq.
(iii) If ϕ P C8

0 pΩq and α P Nd then Bαϕ P C8
0 pΩq.

(iv) Let ϕ P C8
0 pΩq. For x P Rd we set

rϕpxq “
#

ϕpxq if x P Ω,

0 if x R Ω.

Then we have rϕ P C8
0 pRdq.

We now recall the Leibniz formula for C8 functions. For α “ pα1, . . . , αdq and
β “ pβ1, . . . , βdq in Nd we say that β ď α if βj ď αj for any j P J1, dK. Then we set

ˆ
α
β

˙
“ α!

β!pα ´ βq! , where α! “ α1! . . . αd!.
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Proposition 4.2 (Leibniz formula). Let u, v P C8pΩq and α P Nd. Then we have

Bαpuvq “
ÿ

βďα

ˆ
α
β

˙
Bα´βu Bβv.

The proof can be done by induction on |α| as for the case d “ 1 (exercise).

4.1.2 Topologies on the spaces of regular functions with compact sup-
port

Let Ω be an open set of Rd. The aim of this section is to describe the topologies of the
spaces of regular functions that have compact support Ω, and in particular C8

0 pΩq.

Let us start with the simplest of situations. Let K be a compact of Ω and k P N.
We denote by Ck

KpΩq the set of functions of class Ck on Ω with support included in K.
Then for u P Ck

KpΩq we set

}ϕ}Ck
KpΩq “

ÿ

|α|ďk

}Bαϕ}L8pKq . (4.5)

This defines a norm on Ck
KpΩq, and Ck

KpΩq is complete for this norm.

The situation is not that simple for the space C8
K pΩq of C8 functions defined on Ω

and with support included in K. Obviously, one can not simply replace k by `8 in the
definition (4.5). Each norm of (4.5) for k P N is a norm for C8

K pΩq, but C8
K pΩq is not

complete for any of these norms (a sequence of very regular functions can converge to-
wards a limit that is not that regular). To obtain a complete space, we need to consider
a topology that takes into account all the derivatives of the functions. There is no such
norm on C8

K pΩq, but we can endow C8
K pΩq with a Frechet space structure from every

norms of (4.5), for any k P N.

For ϕ, ψ P C8
K pΩq we set

dKpϕ, ψq “
`8ÿ

k“0

1
2k

min
`
1, }ϕ ´ ψ}Ck

KpΩq
˘
. (4.6)

This distance is not given by a norm, but it satisfies the important properties that we
need for applications.

Proposition 4.3. dK is a distance on C8
K pΩq, and C8

K pΩq is complete for this distance.

Let us recall the basic properties of the topology associated to the distance dK .

Proposition 4.4. (i) Let pϕnqnPN be a sequence of elements of C8
K pΩq and ϕ P C8

K pΩq.
Then ϕn tends to ϕ in C8

K pΩq if and only if

@k P N, }ϕn ´ ϕ}Ck
KpΩq ÝÝÝÝÑ

nÑ`8 0.

(ii) A linear form T on C8
K pΩq if and only if there exists k P N and C ą 0 such that

for any ϕ P C8
K pΩq we have

|T pϕq| ď C }ϕ}Ck
KpΩq .
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More generally, if pE, }¨}Eq is a normed vector space, then a linear map T :
C8

K pΩq Ñ E is continuous if there exists k P N and C ą 0 such that for any
ϕ P C8

K pΩq we have
}T pϕq}E ď C }ϕ}C8

K pΩq .

(iii) A linear map T : C8
K pΩq Ñ C8

K pΩq is continuous if for any j P N there exists k P N
and C ą 0 such that for any ϕ P C8

K pΩq we have

}T pϕq}
Cj

KpΩq ď C }ϕ}Ck
KpΩq .

Now we turn to C8
0 pΩq. The difference compared to C8

K pΩq is that the func-
tions of C8

0 pΩq are not supported in the same compact. We note in particular that
C8

K pΩq Ă C8
0 pΩq for any compact K of Ω. However there is no compact K of Ω such

that C8
0 pΩq is included in C8

K pΩq.

We cannot endow C8
0 pΩq with a distance analoguous to (4.6) or with norms ana-

loguous to (4.5) where K would be replaced by Ω, since for the corresponding topology
a sequence of functions compactly supported in Ω could converge to a function whose
support is Ω.

To ensure that the limit of a convergent sequence has compact support, we need a
topology defined in such a way that if pϕnqnPN is a convergent sequence in C8

0 pΩq then
the support of the functions ϕn, n P N, are included in a common compact K of Ω.
Once this is done, to also ensure the regularity of the limit, we impose that the sequence
pϕnqnPN is convergent in C8

K pΩq (this is now meaningful, since ϕn belongs to C8
K pΩq for

all n).

Such a topology is complicated, but it does exist. We state without proof the fol-
lowing theorem.

Theorem 4.5. There exists a topology on C8
0 pΩq which satisfies the following properties:

(i) A sequence pϕnqnPN of C8
0 pΩq converges to ϕ P C8

0 pΩq if and only if

• there exists a compact K of Ω such that supppϕnq Ă K for any n P N,
• Bαϕn goes uniformly to Bαϕ for any α P Nd.

(ii) A linear form T on C8
0 pΩq is continuous if and only if for any compact K of Ω

there exist m P N and C ą 0 such that

@ϕ P C8
K pΩq, |T pϕq| ď C

ÿ

|α|ďm

}Bαϕ}8 . (4.7)

4.1.3 Distributions
Now that we have described the topology of the space of test functions C8

0 pΩq, we can
define the notion of distribution.

Definition 4.6. Let Ω be an open set of Rd. A distribution on Ω is a continuous linear
form on C8

0 pΩq. We denote by D1pΩq the set of distributions on Ω.

In general, we denote by xT, ϕy or xT, ϕyD1pΩq,DpΩq instead of T pϕq for the image of
the test function ϕ P DpΩq “ C8

0 pΩq by the distribution T P D1pΩq.
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We will give many examples of distributions in Section 4.2 (they can be consulted
right now).

As the set of continuous of linear forms on a topological vector space, D1pΩq is
naturally endowed with a structure of topological vector space. Thus if T and S are two
distributions, the sum T ` S is defined by

@ϕ P C8
0 pΩq, xT ` S, ϕy “ xT, ϕy ` xS, ϕy ,

and for λ P K we define λT by

@ϕ P C8
0 pΩq, xλT, ϕy “ λ xT, ϕy .

We can check that T ` S and λS are indeed distributions on Ω and that D1pΩq endowed
with these two operations is vector space. We then endow D1pΩq with the weak-˚
topology.

Definition 4.7. Let Ω be an open set of Rd. Let pTnqnPN be a sequence of distributions
on Ω. We say that Tn goes to T in D1pΩq if

@ϕ P C8
0 pΩq, xTn, ϕy ÝÝÝÝÑ

nÑ`8 xT, ϕy .

By the Banach-Steinhaus Theorem, we have the following result:

Proposition 4.8. Let Ω be an open set of Rd and pTnqnPN be a sequence of distributions
on Ω. We suppose that for any ϕ P C8pΩq the sequence pxTn, ϕyqnPN is convergent. Then
the sequence pTnqnPN is convergent in D1pΩq.

4.1.4 Finite order distributions
The parameters m and C can depend on the compact K in (4.7). However, it may
happen (and it will actually often be the case) that we can choose the same integer m
for any K.

Definition 4.9. Let Ω be an open set of Rd and T be a distribution on Ω. We say that
T is a distribution of finite order if there exists m P N such that for any compact K of
Ω we can find C ą 0 which satisfies

@ϕ P C8
K pΩq, |T pϕq| ď C

ÿ

|α|ďm

}Bαϕ}8 .

In this case the order of T is the smallest integer m which satisfies this property. Oth-
erwise, T is said to be of infinite order.

We will see at section 4.2 that many usual distributions are of finite order.
Remark 4.10 (This remark can be omitted). If T is a distribution of order m P N on Ω,
we only need to control a finite number of derivatives to ensure that if ϕn tends to ϕ then
T pϕnq tends to T pϕq. Thus, a distribution of order m can be seen as a continuous linear
form on the space Cm

0 pΩq of compactly supported functions of class Cm on Ω. More
precisely, Cm

0 pΩq is endowed with a topology similar to the one described in theorem
4.5. A sequence pϕnqnPN in Cm

0 pΩq tends to ϕ P Cm
0 pΩq if and only if

(i) There exists a compact K of Ω such that supppϕnq Ă K for any n P N,

(ii) Bαϕn tends uniformly to Bαϕ for any α P Nd such that |α| ď m.

We can then verify that any distribution of order m on Ω extends into a continuous
linear form on Cm

0 pΩq and conversely, a continuous linear form on Cm
0 pΩq defines by

restriction to C8
0 pΩq a distribution of order m on Ω.
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4.1.5 Multiplication of a distribution by a regular function

The purpose of distributions is to generalize the notion of function. In order for this to
be useful, it will be necessary to be able to generalize the operations that we usually
perform on functions to this framework and in a suitable sense. We have already seen
that we can naturally add distributions and multiply them by a scalar. To go further,
the mechanism will essentially always be the same. The operation in question is carried
over to the test function. In particular, the operation in question must preserve the space
of test functions C8

0 pΩq. We illustrate this idea on a first example, the multiplication
by a regular function.

Proposition-Definition 4.11. Let Ω be an open set of Rd and T be a distribution on
Ω. Let f P C8pΩq. For ϕ P C8

0 pΩq we set

xfT, ϕy “ xT, fϕy .

This defines a distribution fT on Ω.

Two points have to be checked in this definition. First, the expression xT, fϕy has to
be meaningful. For this, the functions fϕ on the right has to be an element of C8

0 pΩq.
This is clear here, but it will not always be the case. And then we must show that
the map ϕ ÞÑ xT, fϕy “ T pfϕq is indeed a continuous linear form on C8

0 pΩq. And in
general, the continuity is not obvious.

Proof. ‚ For ϕ P C8
0 pΩq we have fϕ P C8

0 pΩq, and the map ϕ ÞÑ fϕ is linear on
C8

0 pΩq. Then, by composition, fT is a linear form on C8
0 pΩq.

‚ Let K be a compact of Ω. There exists m P N and C ą 0 such that for any ϕ P C8
K pΩq

we have
|xT, ϕy| ď C

ÿ

|α|ďm

}Bαϕ}8 .

The function f and its derivatives are bounded on the compact K. By the Leibniz rule,
we have

|xT, fϕy| ď C
ÿ

|α|ďm

}Bαpfϕq}8 ď C
ÿ

|α|ďm

ÿ

βďα

ˆ
α
β

˙
}Bα´βf}L8pKq}Bβϕ}8.

Thus, there exists a constant C̃ ą 0 independant of ϕ such that

|xT, fϕy| ď C̃
ÿ

|β|ďm

}Bβϕ}8.

This proves that fT is continuous on C8
0 pΩq.

Remark 4.12. We observe that if T is of finite order m then fT is of order at most m.
Indeed, in this case, the integer m does not depend on K in the computations of the
previous proof, and the last inequality shows that fT is of order not greater than m. In
fact, if f is not identically zero, then fT has exactly the same order m as T .
Remark 4.13. Given a certain f P C8pΩq the map T ÞÑ fT is continuous D1pΩq. In
other words, if pTnqnPN is a sequence of distributions that converges to T P D1pΩq (in
the sense given by Definition 4.7), then fTn converges to fT in D1pΩq.

An important remark to finish this section. There is no reasonable definition for the
product of two distributions ! One should just forget this idea.
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4.2 Important examples of distributions
In this section we give some classical examples of distributions. Other examples will
then appear in the exercises.

4.2.1 Locally integrable functions

One of the motivations for introducing the notion of distribution is that it must generalize
the notion of function. It is therefore necessary that the set of distributions contain the
set of functions in a reasonable sense. We said in the introduction that we could replace
the evaluation of a function f at each point of Ω by the evaluation of mean weights of
the form ż

Ω
fϕ dx.

This defines precisely a distribution, and it is indeed with this distribution that we will
identify the function f . In order for all this to make sense, we must nevertheless restrict
ourselves to the case of locally integrable functions. The constraint is reasonable.

Proposition-Definition 4.14. Let Ω be an open set of Rd and f P L1
locpΩq. Then the

map

Tf : ϕ ÞÑ
ż

Ω
fpxqϕpxq dx

is a distribution (of order 0) on Ω.

Proof. The map Tf is well defined, and it is linear on C8
0 pΩq by linearity of the integral.

Let K be a compact set of Ω. Then f is integrable on K and for ϕ P C8
K pΩq we have

ˇ̌
ˇ̌
ż

Ω
fϕ

ˇ̌
ˇ̌ ď }ϕ}8

ż

K
|fpxq| dx.

This proves that Tf is a distribution of order 0 on Ω.

We recall that we cannot multiply two distributions. On the other hand, the prod-
uct of two locally integrable functions is not necessarily locally integrable. But we can
multiply a locally integrable function by a regular function, and we have defined the
product of a distribution by a regular function. We check that in the case of a distri-
bution associated to a function, these two multiplications coincide. More precisely, for
f P L1

locpΩq and g P C8pΩq we have

gTf “ Tgf .

Indeed, for any test function ϕ P C8
0 pΩq we have

xgTf , ϕy “ xTf , gϕy “
ż

Ω
fpxqpgϕqpxq dx “

ż

Ω
pgfqpxqϕpxq dx “ xTgf , ϕy .

We have said that we want to identify the (locally integrable) functions to distribu-
tions. For this we have to be sure that two different functions are not associated with
the same distribution. This means that no information is lost by considering the set
of weighted mean values of f instead of the sets of their values up to equality almost
everywhere (it is clear that if f and g are two locally integrable functions equal almost
everywhere on Ω then we have Tf “ Tg).
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Proposition 4.15. Let Ω be an open set of Rd. The map
"

L1
locpΩq Ñ D1pΩq

f ÞÑ Tf

is injective.

Proof. Let f P L1
locpΩq and assume that

ş
Ω fϕ “ 0 for all ϕ P C8

0 pΩq. Soit K un compact
de Ω. Pour x P Ω on pose gpxq “ signpfpxqq1Kpxq.

Proof. Let f P L1
locpΩq and assume that

ş
Ω fϕ “ 0 for all ϕ P C8

0 pΩq.
Let K be a compact of Ω and let N P N. For x P Ω we set

gN pxq “
#

fpxq if x P K and |fpxq| ď N,

0 otherwise.

We have g P L1pΩq and g is 0 outside K. There exists a sequence pϕnqnPN in C8
0 pΩq

which converges to χf1AN
in L1pΩq and such that }ϕn}8 ď N for all n P N (the

sequence constructed in C8
0 pRdq belongs to C8

0 pΩq for n large enough). After extracting
a subsequence if necessary, we can assume that ϕnpxq goes to gpxq for almost all x P Ω.
Then by the dominated convergence theorem we have

0 “
ż

Ω
fpxqϕnpxq dx ÝÝÝÑ

nÑ8

ż

Ω
fpxqgN pxq dx “

ż

K
|fpxq|2 1|f |ďN pxq dx.

Par le théorème de convergence monotone on obtient à la limite N Ñ 8
ż

K
|fpxq|2 dx “ 0.

This prove that f “ 0 almost everywhere on K. Since this holds for any compact K Ă Ω,
we deduce that f “ 0 almost everywhere on Ω.

Once we are used to distributions, we identify a distribution of the form Tf with
the corresponding function f . Moreover, we can say that a distribution T P D 1pΩq is in
L1

locpΩq (or in LppΩq for some p P r1, `8s) if there exists f P L1
locpΩq (f P LppΩq) such

that T “ Tf .

4.2.2 Dirac mass and other measures
The typical example of an object that we would like to consider as a function but which
is not is the “Dirac function”, mentioned in the introduction. What is usually meant by
a Dirac function on Rd would be a positive-valued function, null outside t0u and with
an integral equal to 1. However, such a function cannot exist, since the definition of
the integral implies in particular that a function which vanishes almost everywhere on
Rd has an integral equal to 0. More precisely, we would like a function f which would
satisfies

@ϕ P C8
0 pRdq,

ż

Rd

fϕ “ ϕp0q. (4.8)

Proposition 4.16. There is no function f P L1
locpRdq verifying (4.8).

Proof. Assume by contradiction that there exists f P L1
locpRdq which satisfies (4.8). Let

ϕ P C8
0 pRd, r0, 1sq be supported in Bp0, 1q and such that ϕp0q “ 1. For n P N˚ and
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x P Rd we set ϕnpxq “ ϕpnxq. Then ϕn is supported in B
`
0, 1

n

˘
, ϕnpxq P r0, 1s for all

x P Rd, and ϕnp0q “ 1. With (4.8) we have for any n P N˚

1 “ ϕnp0q “
ż

Rd

fpxqϕpnxq dx ď
ż

Bp0, 1
n

q
|fpxq| dx.

On the other hand, since f is integrable on Bp0, 1q, we have by the dominated conver-
gence theorem ż

Bp0, 1
n

q
|fpxq| dx ÝÝÝÝÑ

nÑ`8 0.

This gives a contradiction.

Thus we must definitely give up the idea to see the Dirac function as a function.
But, on the other hand, the right-hand side of (4.8) does define a distribution. Thus
the Dirac will be included in the theory of distributions.
Proposition-Definition 4.17. Let x0 P Rd. The map

δx0 : ϕ ÞÑ ϕpx0q
is a distribution on Rd (of order 0), called Dirac distribution at x0 (In general, when
x0 “ 0, we simply write δ instead of δ0).
Proof. The map δx0 is linear on C8

0 pΩq and for any ϕ P C8
0 pΩq we have

|ϕpx0q| ď }ϕ}8 .

This proves that δx0 is a distribution of order 0 on Ω.

Note that Proposition 4.16 can be adapted at any point x0 to see that δx0 is not
the distribution associated with a function L1

locpΩq (short version: δx0 is not in L1
locpRdq).

In the chapter about convolution, we have already discussed the fact that there is
no Dirac function, and we had introduced the approximations to the Dirac mass to
approximate the expected behavior of a Dirac function by regular functions. Given a
sequence pρnq of approximations of the unit on Rd, we can then see that in D1pRdq

Tρn ÝÝÝÝÑ
nÑ`8 δ.

Indeed, for ϕ P C8
0 pRdq we have

xTρn , ϕy “
ż

Rd

ρnpxqϕpxq dx “ pρn ˚ ϕqp0q ÝÝÝÝÑ
nÑ`8 ϕp0q “ xδ, ϕy .

Before this, the notion of Dirac function was already made rigorous by the measure
theory. Indeed, we defined the measure δ such that δpt0uq “ 1 and δpRdz t0uq “ 0,
which gives in particular

@ϕ P C8
0 pRdq,

ż

Rd

ϕ dδ “ ϕp0q.

In fact, measures are already a generalization of functions (with non-negative values,
if we consider non-negative measures only). Indeed, if f is a locally integrable (and
positive valued) function on Rd, then the measure which maps A P BpRdq to

µf pAq “
ż

A
f dλ

(where λ is the Lebesgue measure) is a locally finite measure (that is a measure which is
finite on compact sets) on pRd, BpRdqq. The notion of distribution generalizes the notion
of (locally finite) measures.
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Proposition 4.18. Let µ be a locally finite measure on pΩ, BpΩqq. Then the map

Tµ : ϕ ÞÑ
ż

Ω
ϕ dµ

is a distribution on Ω.
Be careful, the fact that µ is locally finite is important to get the continuity of Tµ.

Note that Tµ is a distribution of order 0, and that it is a positive distribution if µ is a
positive measure (this means that xTµ, ϕy ě 0 if ϕ ě 0).
Remark 4.19. We can actually show that this gives all positive distributions of order 0
and this can give another way to define the Lebesgue measure on R. Indeed, even if we
only know the integral of continuous functions, we can see that the map

T : ϕ ÞÑ
ż

R
ϕpxq dx

is a distribution of order 0 on R, and we can define the Lebesgue measure as the unique
Radon measure λ (we do not detail this here) such that T “ Tλ.

4.2.3 Principal value of 1{x

The purpose of this paragraph is to define a distribution naturally associated with the
function x ÞÑ 1{x on R. Recall that this function is not in L1

locpRq since it is not
integrable in a neighborhood of 0. Nevertheless, it is odd and the positive and negative
parts compensate each other. We use this remark for the following definition (which
may seem rather artificial, but which turs out to be relevant for applications).
Proposition 4.20. The map

p.v.

ˆ
1
x

˙
: ϕ ÞÑ lim

εÑ0

ż

|x|ěε

ϕpxq
x

dx

is a distribution of order 1 on R. It is called the principal value of 1{x.
Proof. Let R ą 0. We consider ϕ P C8

0 pRq supported in r´R, Rs. Let ε Ps0, Rr. Since
the function x ÞÑ ϕp0q{x is odd and integrable on r´R, ´εs Y rε, Rs we have

ż

εď|x|ďR

ϕpxq
x

dx “
ż

εď|x|ďR

ϕpxq ´ ϕp0q
x

dx.

For x P r´R, Rsz t0u we have by the mean value theorem
ˇ̌
ˇ̌ϕpxq ´ ϕp0q

x

ˇ̌
ˇ̌ ď ››ϕ1››

L8p´R,Rq .

Then, by the dominated convergence theorem, the limit

lim
εÑ0

ż

εď|x|ďR

ϕpxq
x

dx

exists and its modulus is not greater than 2R }ϕ1}L8p´R,Rq. Moreover, this limit is linear
with respect to ϕ, so it defines a distribution of order at most 1.

Finally, for n ě 3 we consider ϕn P C8
0 pR, r0, 1sq supported in

‰ 1
n , 2

“
and equal to 1

on
“ 2

n , 1
‰
. Then }ϕn}8 “ 1 for any n ě 3 and

B
p.v.

ˆ
1
x

˙
, ϕn

F
ě

ż 1

2
n

1
x

dx ÝÝÝÝÑ
nÑ`8 `8.

This proves that the distribution p.v.
` 1

x

˘
cannot be of order 0. It is then exactly of

order 1.

2022-2023 77



M1 ESR - Distributions - Fourier

4.2.4 Exercises

Exercise 1. For x P R˚ we set fpxq “ e
1
x .

1. Prove that f belongs to L1
locpR˚q. Deduce that f defines a distribution on R˚.

2. Prove that f (well defined everywhere on R) does not belong to L1
locpRq.

3. Prove that there is no distribution T on R such that

@ϕ P C8
0 pR˚̀ q, xT, ϕy “

ż

R
fpxqϕpxq dx.

Exercise 2. Let k P N. Prove that the map which to ϕ P C8
0 pRq ÞÑ ϕpkqp0q is a

distribution on R and give its order.

Exercise 3. Prove that the map

T : ϕ P C8
0 pRq ÞÑ xT, ϕy “

`8ÿ

n“0
ϕpnqpnq

is a distribution of infinite order on R.

Exercise 4. In this exercise we give examples in the same spirit as the Dirac mass,
since we have to integrate a function on a submanifolds of Rd of dimension strictly less
than d. In other words, we integrate a function with respect to a measure which only
“loads” a set of zero Lebesgue measure in Rd.
1. Prove that the map

T : ϕ P C8
0 pRq ÞÑ xT, ϕy “

ż

R
ϕp0, xq dx

is a distribution on R2 and give its order.
2. Let f : R Ñ R be a function of class C1. Prove that the map

ϕ P C8
0 pR2q ÞÑ

ż

R
ϕ

`
fpxq, x

˘a
1 ` f 1pxq2 dx

is a distribution sur R2 and give its order.
3. Let f : R Ñ R and ν : R Ñ R2 be two functions of class C1. Prove that the map

ϕ P C8
0 pR2q ÞÑ

ż

R
∇ϕ

`
fpxq, x

˘ ¨ νpxq dx

is a distribution on R2 and give its order.

Exercise 5. We recall that for f P L1
locpRdq and y P Rd we have denoted by τyf the

translation of f (τyf : x ÞÑ fpx ´ yq). Let T P D1pRdq. For y P Rd and ϕ P C8
0 pRdq we

set
xτyT, ϕy “ xT, τ´yϕy .

1. Prove that this defines a distribution τyT on Rd.
2. Prove that for f P L1

locpRdq we have τyTf “ Tτyf .
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4.3 Derivative of a distribution
We now turn to one of the main motivations for the notion of distribution, namely the
extansion of the notion of derivability to functions that are not differentiable in the usual
sense. The idea is to see any function as a distribution, i.e. as a linear form on C8

0 pΩq,
and to transfer the derivation to the test function ϕ (which is differentiable).

If f is a function of class C1 on R (in particular, it is locally integrable), then for
any ϕ P C8

0 pRq we have
ż

R
f 1pxqϕpxq dx “ ´

ż

R
fpxqϕ1pxq dx. (4.9)

With the notations of proposition 4.15, this can be written as
@
Tf 1 , ϕ

D “ ´ @
Tf , ϕ1D .

For a function f P L1
locpRq, the left-hand side in (4.9) has no meaning. However,

the right-hand side does, and we notice that it defines a distribution. It is what we are
going to define as the derivative of Tf . If this distribution is associated to a function
g P L1

locpRq, that is if there exists g P L1
locpRq such that

@ϕ P C8
0 pRq, ´

ż

R
fpxqϕ1pxq dx “

ż

R
gpxqϕpxq dx,

we will say that g is the derivative in the sense of distributions (or weak derivative) of
f .
Example 4.21. For ϕ P C8

0 pRq we have

´
ż

R
|x| ϕ1pxq dx “

ż 0

´8
xϕ1pxq dx ´

ż `8

0
xϕ1pxq dx.

In each of these integrals we can do an integration by parts, this gives
ż

R
|x| ϕ1pxq dx “ ´

ż 0

´8
ϕpxq dx `

ż `8

0
ϕpxq dx.

Thus, if we set

gpxq “
#

1 if x ě 0,

´1 if x ă 0,
(4.10)

then for any ϕ P C8
0 pRq we have

´
ż

R
|x| ϕpxq dx “

ż

R
gpxqϕpxq dx.

This means that g is the derivative in the sense of distribution of the absolute value
function. This was the expected result.

4.3.1 Definitions and first examples
We now give a precise definition for the derivatives of a distribution. As for usual
derivatives, we use different notation in dimension 1 or in higher dimension.

Proposition-Definition 4.22. Let Ω be an open set of R and T P DpΩq. The derivative
T 1 of T is defined by

@ϕ P C8
0 pΩq, @

T 1, ϕ
D “ ´ @

T, ϕ1D .

More generally, for k P N˚ we denote by T pkq the distribution defined by

@ϕ P C8
0 pΩq, @

T pkq, ϕ
D “ p´1qk

@
T, ϕpkqD.
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Proof. We prove that the map ϕ ÞÑ ´ xT, ϕ1y is indeed a distribution on Ω. Let K be a
compact set of Ω. There exist m P N and C ą 0 such that for any ϕ P C8

K pΩq we have

|xT, ϕy| ď C
mÿ

j“0
}ϕpjq}8.

Then for ϕ P C8
K pΩq we have

ˇ̌´ @
T, ϕ1Dˇ̌ ď C

mÿ

j“0
}pϕ1qpjq}8 ď C

m`1ÿ

j“0
}ϕpjq}8.

This proves that T 1 is a distribution on Ω. The general case follows by induction on the
order of diffentiation.

We observe that if T is a distribution of order m, then T pkq is a distribution of order
m ` k. The definition is analogous in any dimension.

Proposition-Definition 4.23. Let Ω be an open set of Rd and T P D1pΩq. For j P J1, dK
we denote by Bxj T the partial derivative of the distribution T with respect to the j-th
variable. It is defined by

@ϕ P C8
0 pΩq, @Bxj T, ϕ

D “ ´ @
T, Bxj ϕ

D
.

More generally, for α P Nd we define BαT by

@ϕ P C8
0 pΩq, xBαT, ϕy “ p´1q|α| xT, Bαϕy .

We now give some examples. In the specification of the definition, the derivative
of the distribution associated to a differentiable function has to be the distribution
associated with its derivative. This is indeed the case according to the equality (4.9) on
which the definition of T 1 was based.
Example 4.24. If f is a function of class C1 on R, then T 1

f “ Tf 1 .
This is also the case in any dimension and for any order of deviation.

Example 4.25. Let f be a function of class Ck on an open set Ω of Rd. Let α P Nd with
|α| ď k. We have

BαTf “ TBαf .

We now rewrite Example 4.21 in terms of differentiation in the sense of distributions.
Example 4.26. If we denote by f the absolute value function on R, then we have T 1

f “ Tg,
where g is defined by (4.10).

We now give the derivative of a function that is not continuous.
Example 4.27. The Heaviside function is defined on R by

Hpxq “
#

1 if x ě 0,

0 if x ă 0.
(4.11)

Then we have T 1
H “ δ. Indeed, for ϕ P C8

0 pRq we have

@
T 1

H , ϕ
D “ ´ @

TH , ϕ1D “ ´
ż `8

0
ϕ1pxq dx “ ϕp0q “ xδ, ϕy .

We can give an example of derivative of a distribution which is not associated with
a function.
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Example 4.28. The derivative δ1 of the Dirac distribution δ on R is given by

@ϕ P C8
0 pRq, @

δ1, ϕ
D “ ´ @

δ, ϕ1D “ ´ϕ1p0q.

Finally, we give an example of a locally integrable function whose derivative is a
function which is not locally integrable.
Example 4.29. The function f : x ÞÑ lnp|x|q is in L1

locpRq. It is differentiable on R˚ and
its derivative is the function x ÞÑ 1{x, which is not locally integrable. Let ϕ P C8

0 pRq.
Since f is locally integrable we have by the dominated convergence theorem

´
ż

R
lnp|x|qϕ1pxq dx “ lim

εÑ0` Iε,

where we have set

Iε “ ´
ż ´ε

´8
lnp|x|qϕ1pxq dx ´

ż `8

ε
lnp|x|qϕ1pxq dx.

Since we have removed a neighbourhood of 0, we can do an integration by parts in both
terms. This gives

Iε “ ´ lnpεqϕp´εq `
ż ´ε

´8
ϕpxq

x
` lnpεqϕpεq `

ż 8

ε

ϕpxq
x

“
ż

|x|ěε

ϕpxq
x

` `
ϕpεq ´ ϕp´εq˘

lnpεq.

Since ϕpεq ´ ϕp´εq “ Opεq we get

Iε ÝÝÝÑ
εÑ0

B
p.v.

ˆ
1
x

˙
, ϕ

F
.

This proves that

T 1
f “ p.v.

ˆ
1
x

˙
.

Notice the importance of the domain on which we consider the distributions, as is
already the case for the derivation in the usual sense. Let us consider for example on
the open R˚ the function f defined by

fpxq “
#

1 if x ą 0,

0 if x ă 0.

Then f is derivable in the usual sense on R˚ and its derivative is null. If we see f
as a function on R, then for any value of f at 0 we obtain a function which is not
differentiable, because it is not differentiable at 0.

When we comput the derivative in the sense of distributions, we no longer evaluate
the function at every point, but this distinction remains. If we see f as a function on
R˚, its derivative in the sense of distributions is 0 (in other words, T 1

f “ 0). On R, the
distribution Tf has a derivative as any distribution, and this derivative is T 1

f “ δ.
In the sense of distributions we identify two functions that are equal almost every-

where, but it is not because a function is differentiable at almost every point of R with
zero derivative that it is differentiable with zero derivative on R. In the sense of distri-
butions, the problem does not come from the differentiability at the point 0, but if we
consider a test function which is not 0 around 0 then we can see the jump at 0 and T 1

f
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cannot be 0 (and cannot even be identified with a function).

We note that the derivative of a distribution of order m is a distribution of order
at most m ` 1. Its order is not necessarily equal to m ` 1. For example if T is the
distribution associated to a function of class C1 then T and T 1 are both of order 0.

The following proposition is a generalization of the Leibniz formula. We can similarly
give a result in higher dimension (generalization of proposition 4.2 given for functions).
Proposition 4.30. Let I be an interval of R, f P C8pIq and T P D1pIq. Then we have

pfT q1 “ f 1T ` fT 1.

More generally, for n P N we have

pfT qpnq “
nÿ

k“0
Ck

nf pkqT pn´kq.

Proof. We prove the first statement. The general case follows by induction on n as for
functions. For ϕ P C8

0 pIq we have
@pfT q1, ϕ

D “ ´ @
fT, ϕ1D “ ´ @

T, fϕ1D “ ´ @
T, pfϕq1D ` @

T, f 1ϕ
D “ @

T 1, fϕ
D ` @

T, f 1ϕ
D

“ @
fT 1 ` f 1T, ϕ

D
.

This proves that pfT q1 “ f 1T ` fT 1.

4.3.2 Jumps formula in dimension 1
In this section, we compute the derivative in the sense of distributions of a piecewise C1

function in dimension 1.

Let f be a piecewise C1 function on an open interval I of R. To simplify the
notation, we assume that f has only a finite number N of discontinuities (but we can do
the same if f has an infinite –necessarily countable– number of discontinuities). Thus
there exist a1, . . . , aN P I such that a1 ă ¨ ¨ ¨ ă aN , f has for all j P J1, NK left and right
limits at aj (that we will respectively denote by fpa´

j q and fpa`
j q), f is differentiable on

Izta1, . . . , aN u and its derivative (denoted by rf 1s) also has left and right limits at any
point. In particular, rf 1s defines a locally integrable function on I.
Proposition 4.31. Let f be as described above. Then we have

T 1
f “ Trf 1s `

Nÿ

j“1

`
fpa`

j q ´ fpa´
j q˘

δaj .

Proof. We set a0 “ infpIq P r´8, a1r and aN`1 “ suppIq PsaN , `8s. For ϕ P C8
0 pIq we

have

´
ż

I
fpxqϕ1pxq dx “ ´

Nÿ

j“0

ż aj`1

aj

fpxqϕ1pxq dx

“
Nÿ

j“0

ż aj`1

aj

f 1pxqϕpxq dx `
Nÿ

j“0

`
fpa´

j`1qϕpaj`1q ´ fpa`
j qϕpajq˘

“
ż

I
rf 1spxqϕpxq dx `

Nÿ

j“1

`
fpa`

j q ´ fpa´
j q˘

ϕpajq.

For the last equality we used the fact that ϕ vanishes in a neighbourhood of the (possibly
infinite) boundary points of I.
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With this proposition we recover the derivatives of Examples 4.24, 4.26 and 4.27.

4.3.3 Examples in higher dimensions

Example 4.32. We consider on R2 the function f which to px1, x2q associates

fpx1, x2q “
#

1 if x1 ą 0,

0 if x1 ď 0.

This defines a function in L1
locpR2q. For ϕ P C8

0 pR2q using the Fubini theorem and an
integration by parts we have

´
ż

R2
fpxqBx1ϕpxq dx “ ´

ż

x2PR

ˆż `8

x1“0
Bx1ϕpx1, x2q dx1

˙
dx2 “

ż

R
ϕp0, x2q dx2,

hence Bx1Tf is the distribution seen in the exercise 4. On the other hand

´
ż

R2
fpxqBx2ϕpxq dx “ 0,

so Bx2Tf “ 0.

Example 4.33. Let α Ps ´ 8, d ´ 1r. We consider the unit ball Bp1q of Rd and the
function f ÞÑ |x|´α. This defines an integrable function on Bp1q. Moreover, it is of class
C8 on Bp1qz t0u and for x P Bp1qz t0u we have

∇fpxq “ ´α |x|´α´2 x.

Let ϕ P C8
0 pBp1qq. Since f is integrable we have by the dominated convergence theorem

´
ż

Bp1q
f∇ϕ dx “ ´ lim

εÑ0

ż

Bp1qzBpεq
f∇ϕ dx.

By the Green Formula we have for any ε Ps0, 1r

´
ż

Bp1qzBpεq
f∇ϕ dx “ ´

ż

Spεq
ε´αϕν dx ´ α

ż

Bp1qzBpεq
|x|´α´2 xϕ dx,

where Spεq is the sphere of radius ε and ν is the normal unit vector to Spεq directed
towards Bpεq. We have on the one hand

ˇ̌
ˇ̌
ˇ

ż

Spεq
ε´αϕν dx

ˇ̌
ˇ̌
ˇ ď |Sp1q| εd´1´α }ϕ}8 ÝÝÝÑ

εÑ0
0.

On the other hand, using the dominated convergence theorem, we have

´α

ż

Bp1qzBpεq
|x|´α´2 xϕ dx ÝÝÝÑ

εÑ0
´α

ż

Bp1q
|x|´α´2 xϕ dx

This proves that the gradient of Tf is the distribution associated to the integrable
function x ÞÑ ´α |x|´α´2 x. In other words, for any j P J1, dK, the distribution BjTf is
the distribution associated to the function x ÞÑ ´α |x|´α´2 xj .
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4.3.4 First examples of differential equations
Now that we have introduced the derivatives of a distribution, we can try to solve dif-
ferential equations in the space of distributions. As for the functions, the question is to
find the set of distributions T such that some relations between T and its derivatives
are satisfied.

We begin by a simple problem. The first question is to find all the distributions
with a zero derivative in open interval of R. Of course, the distributions associated to
constant functions are solutions. They are the only solutions in the space of differentiable
functions, but since we have enlarged the space where we look for a solution, we could
have new solutions that are not distributions associated to derivable functions. This is
actually not the case.

Proposition 4.34. Let I be an open interval of R. Let T P D1pIq. Then T 1 “ 0 if and
only if T is constant (that is if T can be identified to a constant function).

For the proof we will use the following lemma. Notice that a function ϕ P C8
0 pIq has

primitives on I. They are necessarily of class C8, but in general they are not compactly
supported.

Lemma 4.35. Let I be an open interval of R and ϕ P C8
0 pIq. Then there exists

ψ P C8
0 pIq such that ψ1 “ ϕ if and only if

ş
I ϕ “ 0.

Proof. Assume that there exists ψ P C8
0 pIq such that ψ1 “ ϕ. Then we have

ż

I
ϕ “

ż

I
ψ1 “ 0.

Conversely, assume that
ş
I ϕ “ 0. For x P I we set ψpxq “ şx

a ϕptq dt, with a “ infpIq.
Then ψ P C8

0 pIq and ψ1 “ ϕ.

Proof of proposition 4.34. We know that the derivative in the sense of distributions of
a constant function is 0. Conversely, assume that T P D1pIq is such that T 1 “ 0.

Let ϕ0 P C8
0 pIq such that

ş
I ϕ0 “ 1. We set α “ xT, ϕ0y. Let ϕ P C8

0 pIq. We have
ż

I

ˆ
ϕ ´ ϕ0

ż

I
ϕ

˙
“ 0,

So by Lemma 4.35 there exists ψ P C8
0 pIq such that ψ1 “ ϕ ´ ϕ0

ş
I ϕ. Then we have

B
T, ϕ ´ ϕ0

ż

I
ϕ

F
“ @

T, ψ1D “ ´ @
T 1, ψ

D “ 0,

and on the other hand
B

T, ϕ ´ ϕ0

ż

I
ϕ

F
“ xT, ϕy ´ α

ż

I
ϕ,

hence
xT, ϕy “ α

ż

I
ϕ.

This proves that T is the distribution associated to the constant function equal to α.
We note that the definition of α does not depend of the choice of ϕ0.

The following generalizations are left as exercises for the reader.
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Corollary 4.36. Let I be an open interval of R and k P N˚. Let T P D1pIq. Then
T pkq “ 0 if and only if T is a polynomials of degree at most k ´ 1.

Corollary 4.37. Let I be an open interval of R, k P N˚, a0, . . . , ak P C and f a
continuous function of I. The solutions T P D1pIq of the equation

akT pkq ` ¨ ¨ ¨ ` a0T “ f

are exactly the solutions of the same problems set in CkpIq.
Example 4.38. Let α P R. We consider the equation

T 1 ´ αT “ δ, (4.12)

of unknown T P D1pRq. As for the usual case, since it is an affine problem, it is enough
to find a particular solution and to add the solutions of the homogeneous problem. To
find a particular solution, we can use. . . the variation of the parameter. Let T P D 1pIq
and S “ e´αxT . Then T is solution of (4.12) if and only if eαxS “ δ, or S1 “ e´αxδ “ δ.
According to Example 4.27 we can take the Heaviside function H and we get a particular
solution T0 “ eαxH. As for the case of functions, even if we are not convinced with the
previous computation, we can check a posteriori (with Proposition 4.30 or 4.31) that
T0 is indeed a solution. Thus, the set of solutions of (4.12) is the set of distributions
associated to functions of the form

x ÞÑ eαx
`
Hpxq ` c

˘
,

where c is a constant.
Remark 4.39. We recall that if f is a continuous function with compact support on R
then the solutions of the equation

y1 ´ αy “ f

are functions of the form

t ÞÑ Ceαt `
ż t

´8
eαpt´sqfpsq ds.

Notice that these solutions are precisely convolutions of functions that are solutions of
(4.12) with f . This is not a coincidence, and we will generalize this remark later on.

We observe that as in the case of functions, the difficulty to solve an equation like
(4.12) is to identify the primitive of a given distribution. As for continuous functions,
we can ensure that any distribution on an interval of R has a primitive (this is Exer-
cise 9). In particular, any function in L1

locpRq has a primitive in the sense of distributions.

The following proposition is left as an exercise fo the reader.

Proposition 4.40. Let f P L1
locpRq. For x P R we set

F pxq “
ż x

0
fptq dt.

Then F is in L1
locpRq and its derivative in the sense of distributions is f (in other words,

T 1
F “ Tf ).
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4.3.5 Exercises
Exercise 6. Let T P DpRq, f P C8pRq and k P N. Prove that

pfT qpkq “
kÿ

j“0

ˆ
k
j

˙
f pk´jqT pjq.

Exercise 7. 1. Let α P C. Determine the set of distributions T P D1pRq such that

T 1 “ αT.

2. Solve in D1pRq the equation

T 1 ´ αT “ Hpxq,

where H is the Heaviside function.

Exercise 8. For ϕ P C8
0 pR2q we set

xT, ϕy “
ż

R
ϕpx, ´xq dx.

1. Prove that it defines a distribution T on R2.
2. Prove that T cannot be seen as a L1

locpR2q function.
3. Compute B1T ´ B2T .

Exercise 9. Let I be an interval of R and let T be a distribution on I.
1. Prove that T has a primitive S P D1pIq.
2. Use S to describe the set of primitives of T .

Exercise 10. 1. Determine the set of primitives of δ on R. Verify in particular that
the primitives of δ can be identified to functions of L8pRq.
2. Let f P L1pRq. Prove that the set of primitives of f (in the sense of distributions) is
the set of functions of the form pG ˚ fq, where G is a primitive of δ.

Exercise 11. Determine the set of solutions in D1pRq of the equation

´T 2 ` T “ δ.

Exercise 12. Let Ω “ ␣px1, x2q P R2 : |x1| ă 1, |x2| ă 1
(
. For px1, x2q P Ω we set

upxq “

$
’’’’&
’’’’%

1 ´ x1 if |x2| ă x1,

1 ` x1 if |x2| ă ´x1,

1 ´ x2 if |x1| ă x2,

1 ` x2 if |x1| ă ´x2.

Determine the derivatives of u in the sense of distributions on Ω.

Exercise 13. For pt, xq P R2 we set

Gpt, xq “
#

1
2 if t ´ |x| ą 0,

0 otherwise

Prove that G P L1
locpR2q and compute pBtt ´ BxxqG in the sense of distributions.
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Exercise 14. For pt, xq P R2 we set

Gpt, xq “ Hptq e´ x2
4t?

4πt
.

Prove that G P L1
locpR2q and compute pBt ´ BxxqG in the sense of distributions.

Exercise 15. 1. Let µ be a probability measure on pR, BpRqq. For x P R we set fpxq “
µps ´ 8, xrq.

a. Prove that f is a nondecreasing function, tends to 0 at ´8 and tends to 1 at `8.
b. Prove that in the sense of distributions, we have f 1 “ µ.

2. Let f be a nondecreasing function on R. Suppose that f tends to 0 at ´8 and tends
to 1 at `8. Prove that there exists a probability measure µ on pR, BpRqq such that, in
the sense of distributions, f 1 “ µ.

4.4 Compactly supported distributions
In this section we focus on the case of compactly supported distributions, that is distri-
butions that vanish outside a compact subset of Ω.

4.4.1 Restriction of a distribution - Support
Proposition 4.41 (Restriction of a distribution). Let Ω and ω be two open sets of Rd

such that ω Ă Ω. Let T be a distribution on Ω. Then the restriction Tω of T to C8
0 pωq

(we identify a function ϕ P C8
0 pωq to its extension by 0 on Ω) defines a distribution on

ω.

Proof. T defines a linear map on C8
0 pωq. Let K be a compact set of ω. This is also a

compact set of Ω, so there exist m P N and C ą 0 such that for any ϕ P C8
K pωq » C8

K pΩq
we have

|Tωpϕq| “ |T pϕq| ď C
ÿ

|α|ďm

}Bαϕ}8 .

This proves that Tω is indeed a distribution on ω.

Definition 4.42. Let Ω be an open set of Rd and T be a distribution on Ω. We say that
T vanishes on ω if its restriction to ω is zero, that is if xT, ϕy “ 0 for any ϕ P C8

0 pΩq
supported in ω.

Lemma 4.43. Let Ω be an open set of Rd and T be a distribution on Ω. We denote by
O the union of all the open sets of Ω on which T vanishes. Then T vanishes on O (in
particular, O is then the biggest open set on which T vanishes).

Proof. Let ϕ P C8
0 pOq. Let K be the support of ϕ. Since K is compact, there exist

n P N and open sets ω1, . . . , ωn Ă Ω such that K Ă Ťn
j“1 ωj and T vanishes on ωj for any

j P J1, nK. Let χ1, . . . , χn P C8
0 pOq be an associated partition of unity (supppχjq Ă ωj

for any j P J1, nK and
řn

j“1 χj “ 1 on Kq. Then supppχjϕq Ă ωj for any j P J1, nK and

xT, ϕy “
nÿ

j“1
xT, χjϕy “ 0.

This proves that T is vanishes on O.

Definition 4.44. Let Ω be an open set of Rd and let T be a distribution on Ω. The
support of T , denoted by supppT q, is the complementary set in Ω of the biggest open
set on which T vanishes.
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Example 4.45. • If f is a continuous function on Ω then supppTf q “ supppfq.
• supppδq “ t0u.

• Let f P L1
locpΩq and ω be an open set of Ω. Then the restriction of Tf to ω is the

distribution associated to the restriction on ω of f . In particular Tf vanishes on ω
if and only if f is almost everywhere 0 on ω. Thus supppTf q is the complementary
set of the biggest open set of Ω on which f is almost everywhere 0.

Proposition 4.46. Let Ω be an open set of Rd and T a distribution on Ω.

(i) supppT q is a closed set of Ω

(ii) Let ϕ P C8
0 pΩq such that supppT q X supppϕq “ H. Then xT, ϕy “ 0.

(iii) For any α P Nd, we have supppBαT q Ă supppT q.
Remark 4.47. Let T be a distribution on Ω. There can exist ϕ P C8

0 pΩq such that ϕ “ 0
on supppT q but xT, ϕy ‰ 0. For example, we have supppδ1q “ t0u and for ϕ P C8

0 pRq we
have @

δ1, ϕ
D “ ´ϕ1p0q.

But we can have ϕp0q “ 0 and ϕ1p0q ‰ 0. In that case ϕ “ 0 on supppT q but xT, ϕy ‰ 0.
However, 0 belongs to the support of ϕ so supppT q X supppϕq ‰ H.

4.4.2 Compactly supported distributions
We now consider distributions on Ω whose support is a compact subset of Ω. We denote
by E 1pΩq the set of compactly supported distributions on Ω.

Since a distribution has “locally a finite order” it is not surprising that compactly
supported distributions are of finite order.

Lemma 4.48. Let Ω be an open set of Rd and T P E 1pΩq. Let χ P C8
0 pΩq equal to 1 on

a neighbourhood1 of supppT q. Then for any ϕ P C8
0 pΩq we have

xT, ϕy “ xT, χϕy .

Proof. Let ϕ P C8
0 pΩq. Since supppT q X supppp1 ´ χqϕq “ H we have xT, p1 ´ χqϕy “ 0,

hence xT, ϕy “ xT, χϕy.

Proposition 4.49. A compactly supported distribution is of finite order. More precisely,
if K is a compact neighbourhood of supppT q in Ω, then there exist m P N et C ą 0 such
that for any ϕ P C8

0 pΩq we have

|xT, ϕy| ď C
ÿ

|α|ďm

sup
xPK

|Bαϕpxq| . (4.13)

Proof. Let Ω be an open set of Rd and T P E 1pΩq. By Proposition 1.22 there exists
χ P C8

0 pΩ, r0, 1sq supported in K such that χ “ 1 in a neighbourhood of supppT q.
There exist m P N and CK ą 0 such that

@ϕ P C8
K pΩq, |xT, ϕy| ď CK

ÿ

|α|ďm

}Bαϕ}8 .

1As for Remark 4.47, it is not enough to assume that χ is equal to 1 on supppT q.
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Then, by Lemma 4.48 and the Leibniz rule, we have for any ϕ P C8
0 pΩq

|xT, ϕy| “ |xT, χϕy| ď CK

ÿ

|α|ďm

}Bαpχϕq}8 ď C
ÿ

|α|ďm

}Bαϕ}8 ,

for some constant C which does not depend of ϕ. This proves (4.13) and in particular
T is of finite order.

We observe that another consequence of lemma 4.48 is that a compactly supported
distribution can be extended to a linear form on C8pΩq. Indeed, if ϕ P C8pΩq has a non
compact support, we can define xT, ϕy as xT, χϕy, with χ equal to 1 in a neighbourhood
of the support of T . This definition does not depend of the choice of χ, and this new
map is a linear form on C8pΩq.

Let us now define a topology on C8pΩq, to see a compactly supported distribution
as a continuous linear map on C8pΩq. For n P N we set

Kn “
!

x P Ω | |x| ď n and distpx,RdzΩq ě 2´n
)

.

This defines a sequence pKnqnPN of compacts of Ω such that

Ω “
ď

nPN
Kn.

Moreover, if K is a compact set of Ω then there exists n P N such that K Ă Kn.
For u, v P C8pΩq we set

d8pu, vq “
`8ÿ

n“0

1
2n

min
`
1, }u ´ v}Cn

Kn
pΩq

˘
.

This defines a distance on C8pΩq, and pC8pΩq, d8q is a complete metric space.
With this topology, a sequence punqnPN of C8pΩq converges to u P C8pΩq if and

only if for any α P Nd and any compact K of Ω the sequence pBαunqnPN converges to
Bαu uniformly on K.

We can now check that if T is a compactly supported distribution on Ω, extended
to a linear form on C8pΩq, then T is in fact continuous on C8pΩq.

4.4.3 Point-supported distributions
Among the compactly supported distributions, we now consider those supported on a
point. We know that the support of a function cannot be a singleton. However, it is
the case for the Dirac distribution and its derivatives. We prove that there is no other
possibility.

Proposition 4.50. Let T be a distribution on Rd such that supppT q “ t0u. Then there
exist m P N and constants cα P C, |α| ď m, such that

T “
ÿ

|α|ďm

cαδpαq.

Proof. ‚ By the previous proposition, T is of finite order, so there exist m P N and
C ą 0 such that for any ϕ P C8

0 pRdq we have

|xT, ϕy| ď C
ÿ

|α|ďm

}Bαϕ}8 .
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Let χ P C8
0 pR, r0, 1sq be equal to 1 in a neighbourhood of 0 and supported in Bp0, 1q.

For ε Ps0, 1s and x P Rd we set χεpxq “ χ
`

x
ε

˘
. Then χε is supported in Bp0, εq and there

exists Cχ ą 0 such that for any α P Nd with |α| ď m we have

}Bαχε}8 ď Cχε´|α|.

‚ Let ϕ P C8
0 pRdq. For x P Rd we set

ψpxq “ χpxq
¨
˝ϕpxq ´

ÿ

|α|ďm

Bαϕp0q
α! xα

˛
‚.

Then ψ P C8
0 pRdq and Bαψp0q “ 0 for any α P Nd with |α| ď m. By the Taylor formula,

there exists Cϕ ą 0 such that for |α| ď m, ε Ps0, 1s and x P Bp0, εq we have

|Bαψpxq| ď Cϕεm`1´|α|.

Then by the Leibniz formula we have, for any |α| ď m,

}Bαpχεψq} “ sup
xPBp0,εq

ÿ

βďα

ˆ
α
β

˙ ˇ̌
ˇBα´βψpxq

ˇ̌
ˇ
ˇ̌
ˇBβχεpxq

ˇ̌
ˇ “ O

εÑ0
pεm`1´|α|q “ O

εÑ0
pεq.

By Lemma 4.48 we have

xT, ψy “ xT, χεψy “ O
εÑ0

pεq ÝÝÝÑ
εÑ0

0.

This proves that xT, ψy “ 0. Thus,

xT, ϕy “ xT, χϕy “
ÿ

|α|ďm

Bαϕp0q
B

T,
xαχ

α!

F
“

ÿ

|α|ďn

cα xBαδ, ϕy ,

where for |α| ď m we have set 2

cα “ p´1q|α|
B

T,
xαχ

α!

F
.

This proposition is useful when we want to show that a distribution is a Dirac
distribution. We can first show that its support is reduced to a point, which reduces the
possibilities. It only remains to check that there cannot be a term involving a derivative
of the Dirac distribution.

4.5 Convolution
In this section, we generalize the convolution product to distributions. This cannot be
done in complete generality, but we can go further than what will be discussed here.

4.5.1 Derivation and integration under the bracket

We begin by generalizing to the distributions the theorems of derivation under the
integral sign and the Fubini Theorem.

2Check that this definition of cα does not depend of the choice of χ
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Theorem 4.51 (Derivation under the bracket). Let T P D1pRdq and Φ P C8pRd ˆ
Rνq. We assume that there exists a compact set K of Rd such that supppT q Ă K or
supppΦp¨, λqq Ă K for all λ P Rν . For λ P Rν we set

F pλq “ xT, Φp¨, λqyD1pRdq,DpRdq .

Then F is of class C8 on Rν and for α P Nν and λ P Rν we have

BαF pλq “ xT, Bα
λ Φp¨, λqy .

Proof. ‚ Let λ0 P Rν . Let K̃ be a compact neighbourhood of K in Rd. There exist
m P N and C ą 0 such that for all λ P Rν we have

|F pλq ´ F pλ0q| “ |xT, Φp¨, λq ´ Φp¨, λ0qy| ď C
ÿ

|α|ďm

sup
xPK̃

ˇ̌Bα
x

`
Φpx, λq ´ Φpx, λ0q˘ˇ̌

.

Let r ą |λ0|. By the Mean Value Inequality we have for any λ P Bprq
|F pλq ´ F pλ0q| ď C

ÿ

|α|ďm,|β|ď1
sup
xPK̃

sup
λ1PBprq

ˇ̌
ˇBα

x Bβ
λΦpx, λ1q

ˇ̌
ˇ |λ ´ λ0| ÝÝÝÝÑ

λÑλ0
0.

This proves that F is continuous on λ0, and then on Rν .
‚ We denote by pe1, . . . , eνq the canonical basis of Rν . Let λ P Rν and j P J1, νK. For
h P R˚ we have

F pλ ` hejq ´ F pλq
h

´ @
T, Bλj

Φp¨, λqD “ xT, Ψhp¨, λqy ,

where
Ψhpx, λq “ Φpx, λ ` hejq ´ Φpx, λq

h
´ Bλj

Φpx, λq.
For any λ P Rν we have supppΨhp¨, λqq Ă K if supppΦp¨, λqq Ă K. Moreover, BαΨh

converges uniformly to 0 as h tends to 0 for any α P Nd, so we get as above that
the derivative of F with respect to λj exists and is given by

@
T, Bλj

Φp¨, λqD
. Thus, F is

continuous, its partial derivatives exist and are as given by the proposition. We conclude
by applying this result to the successive derivatives of Φ with respect to λ.

Proposition 4.52. Let T P D1pRdq and Φ P C8pRd ˆRνq. We suppose that there exists
a compact set K of Rd such that supppT q Ă K or supppΦp¨, λqq Ă K for any λ P Rν .
Let P “ śν

j“1raj , bjs be a rectangular cuboid of Rν . Then we have
ż

P
xT, Φp¨, λqy dλ “

B
T,

ż

P
Φp¨, λq dλ

F
.

Proof. Let P 1 “ śν
j“2raj , bjs. For λ1 P ra1, b1s we set

F pλ1q “
B

T,

ż λ1

a1

ż

P 1
Φp¨; s1, λ1q dλ1 ds1

F
.

By the theorem of derivation under the bracket, F is of class C1 on ra1, b1s and for
λ1 P ra1, b1s we have

F 1pλ1q “
B

T,

ż

P 1
Φp¨; λ1, λ1q dλ1

F
.

Hence
ż b1

a1

B
T,

ż

P 1
Φp¨; λ1, λ1q dλ1

F
dλ1 “ F pb1q ´ F pa1q “

B
T,

ż b1

a1

ż

P 1
Φp¨; λ1, λ1q dλ1 dλ1

F
.

We proceed similarly to “get out of the bracket" the integrals with respect to every other
variables.
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4.5.2 Convolution of a distribution with a function
In this paragraph we define the convolution product of a distribution and a regular
function, one of them at least being compactly supported.

Recall that for f P L1
locpRdq and ϕ P C8pRdq (one at least being compactly sup-

ported) the convolution pf ˚ ϕq is defined by

pf ˚ ϕqpxq “
ż

Rd

fpyqϕpx ´ yq dy.

With the notations introduced for distributions this can also be written as

pf ˚ ϕqpxq “ xTf , ϕpx ´ ¨qy .

We recall that we have set Pg “ ǧ the function g : y ÞÑ gp´yq and τxg is the function
y ÞÑ gpy ´ xq. Thus we can also write

pf ˚ ϕqpxq “
A

Tf , τxϕ̌
E

Note that if ϕ is compactly supported, this is still the case for τxϕ̌, so this can be
generalized to a general distribution.

Definition 4.53. Let T P D1pRdq and ϕ P C8
0 pRdq, or T P E 1pRdq and ϕ P C8pRdq. For

x P Rd we set
pT ˚ ϕqpxq “ xT, ϕpx ´ ¨qy “

A
T, τxϕ̌

E
.

This defines a function on Rd, called the convolution of T and ϕ.

Example 4.54. As usual the specification for defining an operation on distributions is that
it should coincide with the usual operation for a distribution associated with a function.
Here the definition has effectively been chosen in such a way that for f P L1

locpRdq and
ϕ P C8pRdq, one at least being is compactly supported, we have

pTf ˚ ϕq “ f ˚ ϕ.

Example 4.55. The convolution of functions had no unit element, because the Dirac
mass is not a function. Now that we can define the convolution with a distribution, we
observe that

@ψ P C8pRdq, pδ ˚ ψq “ ψ.

We now give some properties of this convolution product. We first prove that two
distributions which have the same convolution product with test functions are equal.

Lemma 4.56. Let T P D1pRdq. We suppose that for ϕ P C8
0 pRdq we have T ˚ ϕ “ 0.

Then T “ 0.

Proof. For any ϕ P C8
0 pRdq we have

xT, ϕy “ pT ˚ ϕ̌qp0q “ 0,

so T “ 0.

Corollary 4.57. If T1, T2 P D1pRdq are such that T1 ˚ ϕ “ T2 ˚ ϕ for any ϕ P C8
0 pRdq

then T1 “ T2.

Now we generalize the fact that the convolution of two compactly supported functions
is compactly supported.
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Proposition 4.58. If T P E 1pRdq is supported in Bp0, R1q and ϕ P C8
0 pRdq is supported

in Bp0, R2q with R1, R2 ą 0, then pT ˚ ϕq vanishes outside Bp0, R1 ` R2q.
Proof. Let x P Rd such that |x| ą R1 ` R2. Then the supports of T and ϕpx ´ ¨q are
disjoint, so pT ˚ ϕqpxq “ 0.

We have seen in Proposition 1.18 that if one of the term of the convolution is regular,
then the product is also regular and the derivatives of the product can be obtained by
differentiating this term. Here, we have an analoguous result, and we can put the
derivative on any term.

Proposition 4.59. Let T P D1pRdq and ϕ P C8
0 pRdq, or T P E 1pRdq et ϕ P C8pRdq.

Then pT ˚ ϕq is a function of class C8 on Rd and for any α P Nd we have

BαpT ˚ ϕq “ T ˚ pBαϕq “ pBαT q ˚ ϕ.

Proof. By the theorem of derivation under the bracket, pT ˚ ϕq is of class C8 and for
any α P Nd we have

BαpT ˚ ϕq “ @
T, Bα

x

`
ϕpx ´ ¨q˘D “ xT, pBα

x ϕqpx ´ ¨qy “ T ˚ pBαϕq.
Moreover, for x, y P Rd we have

Bα
x ϕpx ´ yq “ p´1q|α|Bα

y ϕpx ´ yq,
so we also have

xT, Bα
x ϕpx ´ ¨qy “ p´1q|α| @

T, Bα
`
ϕpx ´ ¨q˘D “ xBαT, ϕpx ´ ¨qy .

We now generalize to this context the good behavior of the convolution with trans-
lations, and we show the associativity of the convolution of a distribution with two
functions.

Proposition 4.60. Let T P D1pRdq and ϕ P C8
0 pRdq, or T P E 1pRdq and ϕ P C8pRdq.

Then for a P Rd we have
τapT ˚ ϕq “ T ˚ pτaϕq.

Proof. At x P Rd, these two functions are equal to xT, ϕpx ´ a ´ ¨qy .

Proposition 4.61. Let T P D1pRdq and ψ P C8
0 pRdq, or T P E 1pRdq and ψ P C8pRdq.

Let ϕ P C8
0 pRdq. Then we have

pT ˚ ψq ˚ ϕ “ T ˚ pψ ˚ ϕq.
Proof. Let P be a rectangular cuboid of Rd containing the support of ϕ. For x P Rd we
have

`pT ˚ ψq ˚ ϕ
˘pxq “

ż

P
pT ˚ ψqpx ´ yqϕpyq dy “

ż

P
xT, ψpx ´ y ´ ¨qy ϕpyq dy.

By the theorem of integration under the bracket we have

`pT ˚ ψq ˚ ϕ
˘pxq “

B
T,

ż

P
ψpx ´ y ´ ¨qϕpyq dy

F
“ xT, pψ ˚ ϕqpx ´ ¨qy “ `

T ˚ pψ ˚ ϕq˘pxq,

and the conclusion follows.

In the next section, we will also use the following equality.
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Proposition 4.62. Let T P D1pRdq and ψ P C8
0 pRdq, or T P E 1pRdq and ψ P C8pRdq.

Let ϕ P C8
0 pRdq. Then we have

xT ˚ ψ, ϕy “ @
T, ψ̌ ˚ ϕ

D
.

Proof. As in the previous proof we consider a rectangular cuboid P containing the
support of ϕ and we apply the theorem of integration under the bracket to get

xT ˚ ψ, ϕy “
ż

P
pT ˚ ψqpxqϕpxq dx “

ż

P
xT, ψpx ´ ¨qy ϕpxq dx

“
B

T,

ż

P
ψpx ´ ¨qϕpxq dx

F

“
B

T,

ż

P
ψ̌p¨ ´ xqϕpxq dx

F

“
A

T, ψ̌ ˚ ϕ
E

.

4.5.3 Density of regular functions in the space of distributions
We used convolution to prove that C8

0 pRdq is dense in the Lebesgue spaces LppRdq,
p P r1, `8r. In the same way, we can prove that C8

0 pRdq (that can be seen as a part of
D1pRdq since each f P C8

0 pRdq is identified as a distribution of Rd) is dense in D1pRdq.
Be careful, this seems to be a strong result since D1pRdq is larger than LppRdq, but the
notion of density is not the same, and it is “easier” to be dense for the topology of
D1pRdq than for the topology of LppRdq. For example, we get in particular that we can
approach any f P L8pRdq by a sequence of functions in C8

0 pRdq for the topology of
D1pRdq, which was not the case for the topology of L8pRdq.
Proposition 4.63. Let Ω be an open set of Rd and T P D1pΩq. Then there exists a
sequence pfnqnPN of functions in C8

0 pΩq which converges to T in the sense of distributions
(in other words, Tfn converges to T in D1pΩq).
Proof. Let pKnqnPN be a non-decreasing sequence (for the inclusion) of compacts sets
in Ω such that

Ť
nPN Kn “ Ω. For n P N we consider χn P C8

0 pΩq such that χn “ 1 in
a neighbourhood of Kn and then εn such that Bpx, 2εnq Ă Ω for all x P supppχnq. We
can choose the εn, n P N, in such a way that the sequence pεnqnPN is non-increasing and
goes to 0. Let pρεqεą0 be an approximation of the unit. For n P N we set

fn “ pχnT q ˚ ρεn .

Let ϕ P DpΩq. For n P N we have by Proposition 4.62

xfn, ϕy “ xχnT, |ρεn ˚ ϕy .

There exist a compact subset K of Ω and N P N such that |ρεn ˚ϕ is compactly supported
in K for any n ě N . In addition for any α P Nd, Bαp |ρεn ˚ ϕq “ |ρεn ˚ Bαϕ converges
uniformly to Bαϕ. Thus,

xT, |ρεn ˚ ϕy ÝÝÝÝÑ
nÑ`8 xT, ϕy .

Choosing N larger if necessary, we can assume that χn “ 1 on K for any n ě N . Then
we have

xfn, ϕy “ xT, χnp |ρεn ˚ ϕqy “ xT, |ρεn ˚ ϕy ÝÝÝÝÑ
nÑ`8 xT, ϕy .

This means that fn goes to T in the sense of distributions.
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4.5.4 Fundamental solution of a PDE
Let P be a differential operator with constants coefficients on Rd. This means that there
exists m P N and constants bα for α P Nd, |α| ď m such that

P “
ÿ

|α|ďm

bαBα.

The formal adjoint of P is defined by

P ˚ϕ “
ÿ

|α|ďm

p´1q|α|Bαpbαϕq.

We consider the problem
Pu “ f, (4.14)

where f is a given function and u is the unknown.

Definition 4.64. A distribution G on Rd is said to be a fundamental solution of the
equation (4.14) if we have, in the sense of distributions,

PG “ δ.

This means that for ϕ P C8
0 pRdq we have

xG, P ˚ϕyD1pRdq,DpRdq “ ϕp0q.

The following proposition is a direct consequence of Proposition 4.59, according to
which P pG ˚ fq “ pPGq ˚ f for any f P C8

0 pRdq.
Proposition 4.65. Assume that G P D1pRdq is an fundamental solution of the equation
(4.14). Then for any f P C8

0 pRdq the function u “ G ˚ f is a solution of (4.14) in the
sense of distributions.

Example 4.66. Recall that H 1 “ δ, where H is the Heaviside function. For f P C8
0 pRq

and x P R we have
pH ˚ fqpxq “

ż x

´8
fpyq dy.

The proposition says that pH ˚ fq1 “ f . This is indeed the case.
Example 4.67. Let z P C with Impzq ą 0. We consider on R the equation

´u2 ´ z2u “ f.

For z “ i, we have already mentioned this example in the end of the chapter about the
Fourier Transform. In particular, we observed that this problem can be simply solved
with the variation of parameters. This gives the particular solution

u : x ÞÑ ´
ż

R
eiz|x´y|2izfpyq dt,

which is exactly what is given by Proposition 4.65 with the fundamental solution (or
Green function) G given by

Gzpxq “ ´eiz|x|

2iz
.
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Example 4.68. We have seen in Example 3.30 that in dimension d ě 3 the fundamental
solution of the Poisson equation

´∆u “ f. (4.15)

is given by
Gpxq “ 1

pd ´ 2qσpSd´1q |x|d´2 .

In general, we want to solve equations like (4.14) with source terms that are more
general than f P C8

0 pRdq. Under some conditions, we can define the convolution of two
distributions, and we can state Proposition 4.65 for some f P D1pRdq. In the following
section, we define for example the convolution of two distributions, one of which being
compactly supported.

But instead of pushing further the general theory, we give results for some particular
situations which will include some models we are interested in.

Proposition 4.69. Let p, q, r P r1, `8s such that

1
p

` 1
q

“ 1 ` 1
r

.

Let us suppose that G P LppRdq is a fundamental solution of (4.14). Then for f P LqpRdq
we have u “ G ˚ f P LrpRdq and, in the sense of distributions, Pu “ f .

Proof. The fact that u belongs to LrpRdq has been proved in Proposition 1.10. Let
ϕ P C8

0 pRdq. By the Fubini Theorem, we have
ż

Rd

pG ˚ fqpxqpP ˚ϕqpxq dx “
ż

xPRd

ż

yPRd

Gpx ´ yqfpyqpP ˚ϕqpxq dy dx

“
ż

yPRd

fpyq
ˆż

xPRd

Gpx ´ yqpP ˚ϕqpxq dx

˙
dy

“
ż

yPRd

fpyq
ˆż

xPRd

GpxqpP ˚ϕqpx ` yq dx

˙
dy

“
ż

yPRd

fpyq
ˆż

xPRd

GpxqpP ˚ϕ´yqpxq dx

˙
dy

“
ż

Rd

fpyqϕpyq dy.

This proves that P pG ˚ fq “ f in the sense of distributions.

In Example 4.66 we have H P L8pRq, and the result is valid for any f P L1pRq. For
Example 4.67 we have G P LppRq for any p P r1, `8s. We now consider the Helmholtz
equation in dimension 3.
Example 4.70. For z P C such that Impzq ą 0 we consider on R3 the equation

p´∆ ´ z2qu “ f.

For x P R3z t0u we set

Gzpxq “ eiz|x|

4π |x| .

This defines a function Gz P L1pR3q.
On R3z t0u we have

p´∆ ´ z2qGz “ 0.
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Let ϕ P C8
0 pR3q. By the Green formula we have

´
ż

R3
Gzp∆ ` z2qϕ dx “ ´ lim

εÑ0

ż

|x|ěε
Gzp∆ ` z2qϕ dx

“ ´ lim
εÑ0

ż

|x|“ε
Gz Bνϕ dx ` lim

εÑ0

ż

|x|“ε
BνGz ϕ dx.

We have ż

|x|“ε
Gz Bνϕ dx “

ż

|x|“ε

eizε

4πε
Bνϕ dx “ Opεq ÝÝÝÑ

εÑ0
0,

and ż

|x|“ε
BνGz ϕ dx “

ż

|x|“ε

eizε

4πε2 p1 ´ izεq ϕ dx ÝÝÝÑ
εÑ0

ϕp0q.

This proves that p´∆ ´ z2qGz “ δ in the sense of distributions. Thus, if for f P L2pR3q
we set

upxq “
ż

R3

eiz|x´y|

4π |x ´ y|fpyq dy,

then u P L2pR3q and in the sense of distributions we have p´∆ ´ z2qu “ f .
Example 4.71. For pt, xq P R2 we set

Gpt, xq “ Hptq e´ x2
4t?

4πt
.

Then G P L1
locpR2q and in the sense of distributions we have

pBt ´ BxxqG “ δ.

Indeed, for ϕ P C8
0 pR2q we have

xpBt ´ BxxqG, ϕy “ xG, p´Bt ´ Bxxqϕy

“ ´ lim
εÑ0`

ż `8

t“ε

ż

xPR
e´ x2

4t?
4πt

pBt ` Bxxqϕpt, xq dx dt.

For t ą 0 and x P R we have

BtGpt, xq “ BxxGpt, xq “ e´ x2
4t?

4π

ˆ
´ 1

2t
3
2

` x2

4t
5
2

˙
.

Thus, after using an integration by part we get

xpBt ´ BxxqG, ϕy “ lim
εÑ0`

ż

xPR
e´ x2

4ε?
4πε

ϕpε, xq dx

“ lim
εÑ0`

ż

ηPR
e´η2

?
π

ϕpε, 2
?

εηq dη

“ ϕp0, 0q.
For t ą 0 the function Gptq “ Gpt, ¨q is integrable on R, and we can see G as a

continuous and bounded function from R˚̀ to L1pRq. Let us consider now a function f
defined on R˚̀ ˆ R such that for any t ą 0 the function fptq “ fpt, ¨q belongs to LppRq
for some p P r1, `8s. Let us suppose that f is continuous from R˚̀ to LppRq, with

ż `8

0
}fptq}LppRq dt ă `8.
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We can consider the function u from R˚̀ to LppRq defined as

uptq “
ż t

s“0
Gpt ´ sq ˚ fpsq ds.

This means that for t ą 0 the function uptq P LppRq is defined for x P R by

upt, xq “
ż t

s“0

ż

yPR
Gpt ´ s, x ´ yqfps, yq dy ds. (4.16)

We can then check that in the sense of distributions on R˚̀ ˆ R we have

Btu ´ Bxxu “ f.

We could go even further. Even if it is not included in the framework we have discussed
so far, we could imagine a source term f supported at time t “ 0. Formally, we take
fpt, xq “ δptqu0pxq, where u0 P LppRq. Concretely, we define f as the distribution

ϕ P C8
0 pR2q ÞÑ

ż

xPR
u0pxqϕp0, xq dx.

Formally, the expression (4.16) becomes

upt, xq “
ż

R
Gpt, x ´ yqu0pyq dy “ 1?

4πt

ż

R
e´ |x´y|2

4t u0pyq dy. (4.17)

And even if we did not give any general result including this case, we can verify that
the function u defined this way is bounded as a function from R˚̀ to LppRq, it satisfies
in the sense of distributions the heat equation

Btu ´ Bxxu “ 0, sur R˚̀ ˆ R,

and it verifies the initial condition up0q “ u0 in the sense that

}upt, ¨q ´ u0}LppRq ÝÝÝÑ
tÑ0` 0.

4.5.5 Convolution of two distributions, one of which at least being
compactly supported

Now we define the convolution of two distributions. This section can be omitted. One
should simply remember that under certain conditions one can define the convolution
of two distributions, and that this convolution verifies the good expected properties (in
particular, the Dirac distribution is indeed a unit for this product on E 1pRdq).
Proposition-Definition 4.72. Let T and S be two distributions on Rd, one of which
at least being compactly supported. We denote by T ˚ S the unique distribution on Rd

such that
@ϕ P C8

0 pRdq, pT ˚ Sq ˚ ϕ “ T ˚ pS ˚ ϕq.
Proof. Uniqueness comes from Corollary 4.57. For the existence we consider on C8

0 pRdq
the linear form

L : ϕ ÞÑ pT ˚ pS ˚ pPϕqqqp0q.
If S P E 1pRdq then S ˚ pPϕq P C8

0 pRdq, so T ˚ pS ˚ pPϕqq is a function of class C8,
whereas if T P E 1pRdq then T defines a linear map from C8pRdq to itself, and S ˚ pPϕq
belongs to C8pRdq. In any case, Lpϕq is well defined.
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Let K be a compact set of Rd. Let R ą 0 such that K Ă Bp0, Rq and T or S is
supported in Bp0, Rq.

Let ϕ P C8
0 pRdq be supported in K. If S is supported in Bp0, Rq then S ˚ ϕ has is

supported in Bp0, 2Rq. Otherwise T is supported in Bp0, Rq. In any case there exist
mT P N and CT ą 0 which do not depend of T and R such that

|Lpϕq| ď CT

ÿ

|α|ďmT

sup
|x|ď2R

|BαpS ˚ pPϕqqpxq| “ CT

ÿ

|α|ďmT

sup
|x|ď2R

|pS ˚ BαpPϕqqpxq| .

But there exist mS P N and CS ą 0 such that for ψ P C8
0 pRdq supported in Bp0, Rq and

x P Bp0, 2Rq we have

|pS ˚ ψqpxq| “ |xS, ψpx ´ ¨qy| ď CS

ÿ

|β|ďmS

›››Bβψ
›››8

.

Applied with ψ “ BαPϕ we finally get

|Lpϕq| ď CT CS

ÿ

|β|ďmT `mS

›››Bβϕ
›››8

.

This proves that the map L is a distribution on Rd.
Let us prove that L ˚ ϕ “ T ˚ pS ˚ ϕq for any ϕ P C8

0 pRdq. For x P Rd we have

pL ˚ ϕqpxq “ xL, τxPϕy “ pT ˚ pS ˚ pPτxPϕqqqp0q “ pT ˚ pS ˚ pτ´xϕqqqp0q
“ pT ˚ pτ´xpS ˚ ϕqqqp0q “ pτ´xpT ˚ pS ˚ ϕqqqp0q
“ pT ˚ pS ˚ ϕqqpxq.

Thus T ˚ S is defined as the distribution L.

Examples 4.73. • For T P D1pRdq we have T ˚ δ “ δ ˚ T “ T .

• Let T P D1pRdq and f P C8
0 pRdq or T P E 1pRdq and f P C8pRdq. Then we have

T ˚ Tf “ TT ˚f .
We prove the commutativity, the good behaviour of the derivation and the associa-

tivity for this convolution.

Proposition 4.74. Let T and S be two distributions on Rd, one of which at least being
compactly supported. Then we have

T ˚ S “ S ˚ T.

Proof. By Corollary 4.57 it is enough to prove that for any ϕ P C8
0 pRdq we have

pT ˚ Sq ˚ ϕ “ pS ˚ T q ˚ ϕ.

For this it is enough to prove that for ψ P C8
0 pRdq we have

ppT ˚ Sq ˚ ϕq ˚ ψ “ ppS ˚ T q ˚ ϕq ˚ ψ.

Let ϕ, ψ P C8
0 pRdq. By Proposition 4.61 (twice), the definition of T ˚ S and the com-

mutativity of the convolution of functions we have

ppT ˚ Sq ˚ ϕq ˚ ψ “ pT ˚ Sq ˚ pϕ ˚ ψq “ T ˚ pS ˚ pϕ ˚ ψqq
“ T ˚ ppS ˚ ϕq ˚ ψq “ T ˚ pψ ˚ pS ˚ ϕqq
“ pT ˚ ψq ˚ pS ˚ ϕq.
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Similarly,

ppS ˚ T q ˚ ϕq ˚ ψ “ pS ˚ T q ˚ pϕ ˚ ψq “ pS ˚ T q ˚ pψ ˚ ϕq
“ S ˚ pT ˚ pψ ˚ ϕqq “ S ˚ ppT ˚ ψq ˚ ϕq
“ S ˚ pϕ ˚ pT ˚ ψqq “ pS ˚ ϕq ˚ pT ˚ ψq
“ pT ˚ ψq ˚ pS ˚ ϕq.

Proposition 4.75. Let T and S be two distributions on Rd, one of which at least being
compactly supported. For α P Nd we have

BαpT ˚ Sq “ pBαT q ˚ S “ T ˚ pBαSq.
Proof. Let ϕ P C8

0 pRdq. By Proposition 4.59 we have

pBαpT ˚Sqq˚ϕ “ pT ˚Sq˚pBαϕq “ T ˚pS˚pBαϕqq “ T ˚pBαpS˚ϕqq “ pBαT q˚pS˚ϕq “ ppBαT q˚Sq˚ϕ

and
pBαpT ˚ Sqq ˚ ϕ “ T ˚ pS ˚ pBαϕqq “ T ˚ ppBαSq ˚ ϕqq “ pT ˚ pBαSqq ˚ ϕ.

Proposition 4.76. Let T , R and S be two distributions on Rd, one of which at least
being compactly supported. Then we have

pT ˚ Sq ˚ R “ T ˚ pS ˚ Rq.
Proof. For ϕ P C8

0 pRdq we have

ppT ˚ Sq ˚ Rq ˚ ϕ “ pT ˚ Sq ˚ pR ˚ ϕq “ T ˚ pS ˚ pR ˚ ϕqq “ T ˚ ppS ˚ Rq ˚ ϕq
“ pT ˚ pS ˚ Rqq ˚ ϕ.

4.6 Fourier Transform
4.6.1 Tempered distributions
The Fourier transform has been naturally defined on L1pRdq, then to its restriction on
L1pRdq X L2pRdq (or on SpRdq) and then it has been extended to L2pRdq. Now we want
to extend the Fourier transform to distributions.

Most of the usual operations on functions (derivation, multiplication by a regular
function, etc.) are extended to distributions by reporting the operation on the test
functions to which we apply the distribution. It is reasonable to want to proceed in the
same way for the Fourier transform.

Recall that in Section 2.4 we have chosen SpRdq instead of C8
0 pRdq as the space in

which we can derive and multiply by polynomial functions as much as we wish. The
reason was Proposition 2.18 which shows that the Schwartz space has a nice behavior
with respect to the Fourier transform. This is not the case for C8

0 pRdq which is not even
stable under Fourier transform. Even worse, we can check that a function ϕ P C8

0 pRdq
such that ϕ̂ P C8

0 pRdq is 0 (for d “ 1, the Fourier transform of ϕ can be extended to
a holomorphic function on C whose restriction on R cannot be compactly supported if
it is not 0). However, since C8

0 pRdq Ă SpRdq, the Fourier transform of a function in
C8

0 pRdq at least belongs to SpRdq.
Thus, the Fourier transform Fϕ of a function ϕ P C8

0 pRdq is not in C8
0 pRdq in gen-

eral, so we cannot apply a distribution to it. To generalize the Fourier transform to
distributions, we have to . . . change the definition of a distribution. Thus we will not
extend the Fourier transform to continuous linear forms on C8

0 pRdq, but to continuous

100 J. Royer (translation by S. Damage) - Université Toulouse 3



Distributions

linear forms on SpRdq.

The purpose of this paragraph is therefore to introduce the continuous linear forms
on SpRdq. They will be called tempered distributions. For this we first have to describe
the topology of SpRdq.

This is another advantage of the tempered distributions over the usual distributions,
the topology of SpRdq is simpler to describe than the topology of C8

0 pRdq.

For k P N et ϕ P SpRdq we set

Nkpϕq “ sup
|α|,|β|ďk

›››xαBβϕ
›››8

.

We observe that this defines a norm on SpRdq, but a norm for which SpRdq is not
complete. As we did for C8

K pΩq, we define on SpRdq a topology that is associated to
every norm at the same time. It is given by the distance defined on ϕ, ψ P SpRdq by

dSpϕ, ψq “
ÿ

kPN

1
2k

min
`
1, Nkpϕ ´ ψq˘

.

Proposition 4.77. pSpRdq, dSq is a complete metric space.

Proposition 4.78. (i) Let pϕnqnPN be a sequence in SpRdq and ϕ P SpRdq. Then ϕn

tends to ϕ in SpRdq if and only if

@k P N, Nkpϕn ´ ϕq ÝÝÝÝÑ
nÑ`8 0.

(ii) A linear form T on SpRdq is continuous if and only if there exist k P N and C ą 0
such that for any ϕ P SpRdq we have

|T pϕq| ď CNkpϕq.
More generally, if pE, }¨}Eq is a normed vector space, then a linear map T :
SpRdq Ñ E is continuous if and only if there exist k P N and C ą 0 such that for
any ϕ P SpRdq we have

}T pϕq}E ď CNkpϕq.
(iii) A linear map T : S Ñ S is continuous if for any j P N there exist k P N and C ą 0

such that for any ϕ P SpRdq we have

NjpT pϕqq ď CNkpϕq.

Now that we have defined the topology of SpRdq, we can give the basic properties.

Proposition 4.79. (i) Let α P Nd. The map ϕ ÞÑ xαϕ is continuous from SpRdq to
itself. More generally, if f is a function of class C8 on Rd with slowly increasing
derivatives (see definition 2.3), then the multiplication by f is a continuous map
on SpRdq.

(ii) Let α P Nd. The map ϕ ÞÑ Bαϕ is continuous from SpRdq to itself.

(iii) Let p P r1, `8s. The inclusion SpRdq Ă LppRdq is continuous.

(iv) The Fourier transform and its inverse are continuous functions on SpRdq.
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Proof. The first two properties are left as exercises.
‚ For ϕ P SpRdq we have }ϕ}8 “ N0pϕq, so the inclusion SpRdq Ă L8pRdq is continuous.
Now let p P r1, `8r. Let k P N such that kp ą d. For ϕ P SpRdq we have

}ϕ}p
p “

ż

Rd

p1 ` |x|q´kpp1 ` |x|qkp |ϕpxq|p dx ď CNkpϕqp

with
C “ 2k

ż

Rd

1
p1 ` |x|qkp

dx ă `8.

This proves that the inclusion SpRdq Ă LppRdq is continuous.
‚ Let α, β P Nd. Using propositions 2.18 and 2.11 we have for any ϕ P SpRdq

sup
ξPRd

ˇ̌
ˇξαBβϕ̂pξq

ˇ̌
ˇ “ sup

xPRd

ˇ̌
ˇ {Bαxβϕpξq

ˇ̌
ˇ ď

›››Bαxβϕ
›››

L1pRdq
.

Since multiplication by xβ , derivation Bα and inclusion in L1pRdq are continuous maps
on SpRdq, there exists k P N and C ą 0 independants of ϕ such that

›››Bαxβϕ
›››

L1pRdq
ď CNkpϕq.

This proves that the Fourier transform is continuous on SpRdq.
Proposition 4.80. (i) C8

0 pRdq is dense in SpRdq.
(ii) The inclusion of C8

0 pRdq in SpRdq is continuous.

Proof. ‚ Let χ P C8
0 pRd, r0, 1sq supported in Bp0, 2q and equal to 1 on Bp0, 1q. For

n P N˚ and x P Rd we set χnpxq “ χ
`

x
n

˘
.

Let ϕ P SpRdq. For any n P N˚ we have χnϕ P C8
0 pRdq. Let α, β P Nd. By the

Leibniz rule we have

Bβ
`p1 ´ χnqϕ˘ “

ÿ

β̃ďβ

ˆ
β

β̃

˙
Bβ´β̃p1 ´ χnqBβ̃ϕ.

Since Bβ´β̃p1 ´ χnq is supported outside Bpnq we have
›››xαBβ´β̃p1 ´ χnqBβ̃ϕ

›››
L8pRdq

ď
›››|x|´1 Bβ´β̃p1 ´ χnq

›››
L8pRdq

N|α|`|β|`1pϕq ÝÝÝÝÑ
nÑ`8 0.

Hence ›››xαBβpϕ ´ χnϕq
›››

L8pRdq
ÝÝÝÝÑ
nÑ`8 0,

and so, for any k P N,
Nkpϕ ´ χnϕq ÝÝÝÝÑ

nÑ`8 0.

Thus the sequence pχnϕqnPN˚ tends to ϕ in SpRdq, which proves the first point.
‚ Let us now consider a sequence pϕnqnPN that converges to ϕ in C8

0 pRdq. There exists
a compact set K of Rd, k P N and C ą 0 such that ϕn is supported in K for any n P N
and Bαϕn converges uniformly to Bαϕ uniformly on Rd. This proves that ϕn converges
to ϕ in SpRdq and gives the second property.

Now that the topology of SpRdq is well understood, we can consider the continuous
linear forms theron.
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Definition 4.81. A tempered distribution on Rd is a continuous linear form of SpRdq.
The space of tempered distributions is denoted by S 1pRdq.

Since C8
0 pRdq is continuously included and dense in SpRdq, we have the following

link with the usual distributions.

Proposition 4.82. (i) By restriction, a continuous linear form on SpRdq induces a
continuous linear form on C8

0 pRdq. Thus we have S 1pRdq Ă D1pRdq.

(ii) Let T P D1pRdq. Assume that there exist k P N and C ą 0 such that for any
ϕ P C8

0 pRdq we have
|xT, ϕy| ď CNkpϕq.

Then T can be uniquely extended to a tempered distribution.

Examples 4.83. • Compactly supported distributions (for example, a Dirac mass at
one point) can be extended into tempered distributions.

• If f P L1pRdq then Tf : ϕ ÞÑ ş
Rd fϕ is a tempered distribution.

• If f is measurable and slowly increasing on Rd then Tf is a tempered distribution.

• The function ex defines a distribution on R but not a tempered distribution.

Basic operations on tempered distributions are defined as for usual distributions.

Proposition-Definition 4.84. Let T P S 1pRdq.

(i) Let α P Nd. We define the tempered distribution BαT by

@ϕ P SpRdq, xBαT, ϕy “ p´1q|α| xT, Bαϕy .

(ii) Let f be a smooth function with slowly increasing derivatives. We define the tem-
pered distribution fT by

@ϕ P SpRdq, xfT, ϕy “ xT, fϕy .

(iii) Let y P Rd. We define the tempered distribution τyT by

@ϕ P SpRdq, xτyT, ϕy “ xT, τ´yϕy .

Remark 4.85. Let T P S 1pRdq and α P Nd. By restriction, T defines a distribution
T̃ P D1pRdq on Rd, and its derivative BαT̃ P D1pRdq can be extended into a tempered
distribution. This extension is exactly the tempered distribution BαT that we just
defined.

Definition 4.86. Let pTnqnPN be a sequence of tempered distributions. Then Tn tends
to T in S 1pRdq if

@ϕ P SpRdq, xTn, ϕy ÝÝÝÝÑ
nÑ`8 xT, ϕy .

2022-2023 103



M1 ESR - Distributions - Fourier

4.6.2 Fourier transform of tempered distributions
Now that we have introduced the tempered distributions, we can define their Fourier
transforms. As for the other operations, the definition of the Fourier transform for
distributions should generalize the definition already known for functions. The definition
is based on Corollary 2.22.

Proposition-Definition 4.87. Let T P S 1pRdq. Then the map T̂ defined by

xT̂ , ϕy “ xT, ϕ̂y
is a tempered distribution on Rd, called the Fourier transform of T . It can also be
denoted by FT .

By definition, we have A
xTf , ϕ

E
“

A
Tf̂ , ϕ

E

for f P SpRdq. This is also the case for f P L2pRdq by Remark 2.24, and it is easy to see
that it holds for f P L1pRdq, using the density of SpRdq in L1pRdq or observing that the
computation we made in the corollary 2.22 is still valid for f P L1pRdq.

Let us now give an example of Fourier transform for a distribution which is not a
function.
Example 4.88. For ϕ P SpRdq we have

xδ, ϕ̂y “ ϕ̂p0q “
ż

R
ϕpxq dx,

so
δ̂ “ 1.

Conversely, by the inversion formula for the Fourier transform we have

x1, ϕ̂y “
ż

Rd

ϕ̂pξq dξ “ p2πqdϕp0q,
so

1̂ “ p2πqdδ.

We now conclude this chapter by extending to distributions some usual properties
of the Fourier transform.

Proposition 4.89. Let T P S 1pRdq and a P Rd. We note ea the function3 y ÞÑ e´iy¨a “
e´ia¨y. We have

FpτaT q “ eaFT

and
Fpe´aT q “ τaFT.

Proof. Let ϕ P SpRdq. By Proposition 2.12.(iii) we have Fpτaϕq “ eaFϕ and Fpe´aϕq “
τaFϕ. We see that this can be extended to distributions by writing

xFpτaT q, ϕy “ xτaT, Fϕy “ xT, τ´aFϕy “ xT, Fpeaϕqy “ xFT, eaϕy “ xeaFT, ϕy
and

xFpe´aT q, ϕy “ xe´aT, Fϕy “ xT, e´aFϕy “ xT, Fpτ´aϕqy “ xFT, τ´aϕy “ xτaFT, ϕy .

3We give two expressions to emphisize the fact that a and y can both play the roles of x and ξ, if we
refer to the notations of Proposition 2.12.(iii).
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Now we extend to distributions the results of Propositions 2.16 and 2.17.

Proposition 4.90. Let T P S 1pRdq and α P Nd. Then we have

FpBαT q “ piξqαFpT q

and
FpxαT q “ piBqαFpT q.

Proof. Let ϕ P SpRdq. By Propositions 2.16 and 2.17 we have 4

xFpBαT q, ϕy “ p´1q|α| xT, BαFϕy “ p´1q|α| xT, Fpp´iyqαϕqy “ xFT, piyqαϕy “ xpiyqαT, Fϕy

and

xFpyαT q, ϕy “ xT, yαFϕy “ xT, Fpp´iBqαϕqy “ xFT, p´iBqαϕy “ xpiBqαFT, ϕy .

The conclusions follow.

We now generalize the inversion formula of Proposition 2.14. Recall that we have
defined on L1pRdq the operator F , analogous to the Fourier transform. This definition
can be extended to a tempered distribution T by

@ϕ P SpRdq, @
FT, ϕ

D “ @
T, Fϕ

D
.

The operator P can equally be extended to tempered distributions by the definition

@ϕ P SpRdq, xPT, ϕy “ xT, Pϕy .

The equalities (2.6) are then still valid for a tempered distribution.

Proposition 4.91. For T P S 1pRdq we have

T “ FFT “ 1
p2πqd

PFFT “ 1
p2πqd

FFPT “ FFT.

The following result gives an expression analoguous to (2.4) for compactly supported
distributions.

Proposition 4.92. Let T be a compactly supported distribution on Rd. Then T̂ is (the
distribution associated to) a C8 function with slowly increasing derivatives, and for
ξ P Rd we have

T̂ pξq “ xT, eξy .

Proof. ‚ For ξ P Rd we set fpξq “ xT, eξy. By the theorem of derivation under the
bracket, f is of class C8 on Rd and for any α P Nd and ξ P Rd we have

Bαfpξq “ xT, p´ixqαeξy .

‚ Let K be a compact neighbourhood of the support of T . There exist m P N and
C ą 0 such that for any ξ P Rd

|Bαfpξq| ď C
ÿ

|β|ďm

sup
xPK

ˇ̌
ˇBβ

x pxαe´ix¨ξq
ˇ̌
ˇ .

4Everywhere we note y the dummy variable, it can play the role of the variables x or ξ.
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Thus there exists C̃ ą 0 such that for any ξ P Rd we have

|Bαfpξq| ď C̃p1 ` |ξ|mq.
This proves that the derivatives of f are slowly increasing.
‚ Let ϕ P C8

0 pRdq. Let P be a rectangular cuboid of Rd containing the support of ϕ.
By the theorem of integration under the bracket we have

xTf , ϕy “
ż

P
xT, eyy ϕpyq dy “

B
T,

ż

P
ϕpyqey dy

F
“ xT, Fϕy “ xFT, ϕy ,

and so FT “ Tf .

If T and S are two compactly supported distributions, we have defined the convolu-
tion T ˚ S, and the product T̂ Ĝ has a meaning since F̂ and Ĝ are regular functions. In
that case we can generalize proposition 2.13.

Proposition 4.93. (i) Let T P E 1pRdq and ψ P C8
0 pRdq. Then we have

FpT ˚ ψq “ FpT q Fpψq.

(ii) Let T, S P E 1pRdq. Then we have

FpT ˚ Sq “ FpT q FpSq.
Proof. By proposition 4.92, all the Fourier transforms are functions.
(i) Let ξ P Rd. Since pT ˚ ψq P C8

0 pRdq we have

FpT ˚ ψqpξq “
ż

Rd

e´ix¨ξpT ˚ ψqpxq dx

“
ż

Rd

e´ix¨ξ xT, ψpx ´ ¨qy dx

“
B

T,

ż

Rd

e´ix¨ξψpx ´ ¨q dx

F

“
B

T,

ż

Rd

e´ipx`¨q¨ξψpxq dx

F

“
A

T, eξψ̂pξq
E

“ T̂ pξqψ̂pξq.
(ii) We have

FpT ˚Sqpξq “ xT ˚ S, eξy “ ppT ˚Sq˚pPeξqqp0q “ pT ˚pS˚pPeξqqqp0q “ xT, PpS ˚ pPeξqqy .

But for x P Rd we have

pS ˚ pPeξqqp´xq “ xS, pPeξqp´x ´ ¨qy “ xS, eξpx ` ¨qy “ Ŝpξqe´ix¨ξ,

so
FpT ˚ Sqpξq “

A
T, Ŝpξqeξ

E
“ pFT qpξqpFSqpξq.
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