
Chapter 1

Convolution and application to
regularization

We introduce in this chapter the notion of convolution, essentially in Rd endowed with
the Lebesgue measure. The convolution appears in a natural way in many contexts.
Typically, and it is one of our main motivation, convolution is intimately linked to
the regular product via the Fourier transform, that we will introduce later. Another
important application, that we will devellop in the second part of this chapter, is the
regularization of functions.

Without necessarily having mentioned it, we have already met convolution and the
links it has with the usual product. Let us have a quick and non exhaustive overview
before we get to the heart of the matter.

First, let us consider two real or complex sequences pajqjPN and pbkqkPN that are
eventually vanishing (there exist N, M P N such that aj “ 0 for j ą N and bk “ 0 for
k ą M). We note P and Q the corresponding polynomials:

P “
Nÿ

j“0
ajXj and Q “

Mÿ

k“0
bkXk.

The usual product of these polynomials is

PQ “
N`Mÿ

n“0

˜
nÿ

j“0
ajbn´j

¸
Xn.

This polynomial is associated to the eventually vanishing sequence pcnqnPN defined by

@n P N, cn “
nÿ

j“0
ajbn´j . (1.1)

If we extend the sequences pajqjPN, pbkqkPN et pcnqnPN by 0 to see them as Z indexed
sequences, we get that the sequence pcnqnPZ is exactly what we will define as the con-
volution of panqnPZ and pbnqnPZ. Thus, the usual product of polynomials is defined by
convolution.

If we remove the hypothesis saying that the sequences pajqjPN and pbkqkPN are even-
tually vanishing, the polynomials become power series, but the discussion remains the
same. the product of

ř`8
j“0 ajzj and

ř`8
k“0 bkzk is the power series

ř`8
n“0 cn where cn is
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again defined by (1.1).

This observation has, for example, applications in probabilities. If X and Y are two
independant random variables with values in N, then for any n P N we have

P pX ` Y “ nq “
nÿ

j“0
P

`
X “ j and Y “ n ´ j

˘ “
nÿ

j“0
P pX “ jqP pY “ n ´ jq.

Thus, the distribution of X ` Y is given by the convolution of the distributions of X
and Y . Thus it is relevant to associate to a random variable X : Ω Ñ N the power series
(called probability-generating function) defined by

GXpzq “
`8ÿ

j“0
P pX “ jqzj .

We have GX`Y “ GXGY (usual power series product), and from GX`Y we can then
identify X ` Y .

In the same spirit, but closer to the issues of this course, we consider the case of
Fourier series. Let f and g be two locally integrable and 2π-perodic functions on R. We
note pαnqnPZ and pβnqnPZ their Fourier coefficients. In L2pSq we have

fpxq “
ÿ

nPZ
αneinx and gpxq “

ÿ

nPZ
βneinx.

The Fourier coefficients of fg are given by the convolution of the sequences of coefficients
of f and g:

pfgqpxq “
ÿ

nPZ

˜ÿ

kPZ
αkβn´k

¸
einx.

We observe the same phenomenon for the Fourier transform. More precisely, the
Fourier transform of a product of function will be the convolution of the Fourier trans-
forms of these functions. We will come back on this in the next chapter, but for this,
we will need convolution for functions on Rd. This is the object of this chapter.

When we will study the Fourier transform, we will see that its main interest, as
for Fourier series, is its nice behaviour in the framework of differential equations. This
suggests that the convolution will naturally appear when solving differential equtions.
It is indeed the case, and can already be observed for the simplest cases. Consider α P R
and f a continuous function from R` to R. Using variation of parameters, we know
that the unique solution on R` of the Cauchy problem

#
y1 ` αy “ fptq, t ě 0,

yp0q “ 0,

is the function
y : t ÞÑ

ż t

0
e´αpt´sqfpsq ds.

It is precisely the convolution of s ÞÑ e´αs, solution of
#

y1 ` αy “ 0, t ě 0,

yp0q “ 1,

with the source term f (these two functions being extended by 0 on R˚́ ). This is not
a coincidence, and the generalization of this remark will be one of the issues in the
following chapters.
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1.1 Convolution
Rd and C are endowed with their usual Borel algebras. On pRd, BpRdqq we consider the
Lebesgue measure.

1.1.1 Definitions and first properties
Let f and g be two measurable functions from Rd to C. We observe once and for all
that for any x P Rd the function y ÞÑ fpx ´ yqgpyq is measurable from Rd to C. We will
no longer mention this point in the proofs of this chapter.

Definition 1.1. For x P Rd such that the function y ÞÑ fpx ´ yqgpyq is integrable, we
set

pf ˚ gqpxq “
ż

Rd

fpx ´ yqgpyq dy.

The function pf ˚ gq is called the convolution of f and g.

Example 1.2. ‚ For any f measurable on Rd we have f ˚ 0 “ 0.
‚ If f is integrable on Rd we have

p1 ˚ fqpxq “
ż

Rd

fpyq dy.

‚ For x P R we have

p1r0,1s ˚ 1r0,1sqpxq “
ż 1

0
1r0,1spx ´ yq dy “

$
’&
’%

x if x P r0, 1s,
2 ´ x if x P r1, 2s,
0 if x R r0, 2s.

‚ Let f be the characteristic function of the interval
“ ´ 1

2 , 1
2 s. Let g P L1

locpRq. For
x P R we have

pf ˚ gqpxq “
ż x` 1

2

x´ 1
2

gpyq dy.

Thus, considering the convolution of g with f , at the point x we replace gpxq (that has
no meaning since we consider almost everywhere equal functions) by the mean of g on“ ´ 1

2 , 1
2 s (that always has a meaning, even for g in L1

locpRq). We observe that we obtain
a continuous function pf ˚ gq. Moreover, if g is of class Ck for some k P N, then pf ˚ gq
is of class Ck`1.
‚ Let α P R. For n P N we now consider the function gn : x ÞÑ α ` cospnxq. Thus, for
x P R we have

pf ˚ gnqpxq “ α ` sin
`
npx ` 1

2q˘ ´ sin
`
npx ´ 1

2q˘

n
.

The function gn is of class C8 for any n P N, but it oscillates with higher and higher
frequency when n grows. The convolution erases these high frequency oscillations and
pf ˚ gnq is closer and closer to its mean value α.

These first examples show the regularizing effect of the convolution mentioned in the
introduction. We will come back on this aspect in the second part of this chapter. For
now, we begin by describing some general properties of the convolution.

Proposition 1.3. Let x P Rd. The convolution pf ˚ gqpxq is well defined if and only if
pg ˚ fqpxq is, and in that case their values coincide.
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Proof. Applying the change of variables η “ x ´ y we get
ż

Rd

|fpx ´ yq| |gpyq| dy “
ż

Rd

|fpηq| |gpx ´ ηq| dη.

This proves that pf ˚ gqpxq is defined if and only if pg ˚ fqpxq is defined. in that case,
the same computation considering f and g instead of |f | and |g| shows that pf ˚ gqpxq “
pg ˚ fqpxq.
Proposition 1.4. Suppose there exist R1, R2 ą 0 such that f vanishes outside the ball
BpR1q and g is null outside the ball BpR2q. Then for x P Rd such that |x| ą R1 ` R2
the convolution pf ˚ gq is well defined at x and pf ˚ gqpxq “ 0.

Proof. Let x P Rd such that |x| ą R1 ` R2. Let y P Rd. If |y| ď R2 then |x ´ y| ą R1 so
fpx´yq “ 0, while if |y| ą R2 we have gpyq “ 0. In both cases we have fpx´yqgpyq “ 0,
so the function y ÞÑ fpx ´ yqgpyq is integrable with integral 0.

1.1.2 Convolution in LppRdq spaces
The purpose of this section is, just like the Hölder inequality for the usual product, to
give necessary conditions which ensure that pf ˚ gq is in some Lebesgue space if f and
g are. As for the usual product, there are some obvious cases.

Proposition 1.5. (i) Assume that f P L1pRdq and g P L8pRdq. Then pf ˚ gqpxq is
well defined for any x P Rd and pf ˚ gq P L8pRdq with

}f ˚ g}8 ď }f}1 }g}8 .

(ii) We suppose that f P L1
locpRdq and g P L8pRdq vanishes outside a compact of Rd.

Then pf ˚ gqpxq is well defined for any x P Rd.

Of course, we have analoguous properties if we switch the roles of f and g.

Proof. For this first proof, we emphasize the distinction between L1pRdq and L1pRdq or
L8pRdq and L8pRdq. We will not do this in the rest of the chapter.

So let f P L1pRdq and g P L8pRdq. Let x P Rd. For almost every y P Rd we have
|gpyq| ď }g}8, so

ż

yPRd

|fpx ´ yq| |gpyq| dy ď }g}8
ż

yPRd

|fpx ´ yq| dy.

Using the affine change of variables η “ x ´ y, dη “ dy, we get
ż

yPRd

|fpx ´ yq| |gpyq| dy ď }g}8
ż

ηPRd

|fpηq| dη “ }f}1 }g}8 .

This proves that pf ˚ gqpxq is well defined and

|pf ˚ gqpxq| ď
ż

yPRd

|fpx ´ yq| |gpyq| dy ď }f}1 }g}8 .

Hence }pf ˚ gq}8 ď }f}1 }g}8.
We now consider f P L1pRdq and g P L8pRdq. Let f1, f2 P L1pRdq be two elements of

the equivalence class of f , and g1, g2 P L8pRdq be two elements of the equivalence class
of g. Let x P Rd. The functions y ÞÑ f1px´yqg1pyq and y ÞÑ f2px´yqg2pyq are integrable
on Rd. Since f1px ´ yqg1pyq coincide for almost every y P Rd with f2px ´ yqg2pyq, their
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integrals also coincide, so pf1˚g1qpxq “ pf2˚g2qpxq. We denote by pf ˚gqpxq this common
value. Moreover we have

}f ˚ g}8 “ }f1 ˚ g1}8 ď }f1}1 }g1}8 “ }f}1 }g}8 .

This gives the first property.
For the second, we do not give so many details, we just identify f and g with two of

their equivalence class representatives in L1
locpRdq and L8pRdq, with g vanishing almost

everywhere outside Bp0, Rq for some R ą 0. Let x P Rd. As above, we have
ż

yPRd

|fpx ´ yq| |gpyq| dy “
ż

yPBp0,Rq
|fpx ´ yq| |gpyq| dy

ď }g}8
ż

yPBp0,Rq
|fpx ´ yq| dy

ď }g}8
ż

ηPBpx,Rq
|f | dη.

Since f is integrable on Bpx, Rq, this proves that pf ˚ gqpxq is well defined.

Now we turn to the first important result about convolution. We prove that the
convolution of two integrable functions is an integrable function, and furthermore the
norm of the convolution is not greater than the product of the norms of the two factors.
From this perspective, convolution is more convenient than the usual product.
Proposition 1.6. Let f, g P L1pRdq. The function y ÞÑ fpx ´ yqgpyq is integrable (and
thus pf ˚ gqpxq is well defined) for almost every x P Rd. This defines a function pf ˚ gq
which is integrable on Rd, and

}f ˚ g}1 ď }f}1 }g}1 .

Proof. We identify f and g to representatives of their equivalence class in L1pRdq (and
we check that everything is independant of the choice of the representative). The map
px, yq ÞÑ |fpx ´ yq| |gpyq| is measurable from Rd ˆ Rd to r0, `8s. By the Fubini-Tonelli
theorem, the function

x ÞÑ
ż

Rd

|fpx ´ yq| |gpyq| dy

is well defined and measurable from Rd to r0, `8s. Moreover,
ż

Rd

ˆż

Rd

|fpx ´ yq| |gpyq| dy

˙
dx “

ż

Rd

|gpyq|
ˆż

Rd

|fpx ´ yq| dx

˙
dy

“
ż

Rd

|gpyq|
ˆż

Rd

|fpηq| dη

˙
dy

“ }f}1

ż

Rd

|gpyq| dy

“ }f}1 }g}1 .

(1.2)

For the third equality we used the change of variables η “ x ´ y, dη “ dx, in the
x-variable integral. This proves that for almost every x P Rd we have

ż

Rd

|fpx ´ yq| |gpyq| dy ă `8.

Thus, by the Fubini-Lebesgue theorem, pf ˚gqpxq is well defined for almost every x P Rd.
Moreover,

ż

Rd

|pf ˚ gqpxq| dx ď
ż

Rd

ˆż

Rd

|fpx ´ yq| |gpyq| dy

˙
dx “ }f}1 }g}1 .

The proposition is proved.

2022-2023 29



M1 ESR - Distributions - Fourier

The aim of this section is to give more results of this kind, that is, prove that if
f and g are in suitable Lebesgue spaces, their convolution is well defined and satisfies
some useful properties.

The following result generalizes the first property of Proposition 1.5 and Proposition
1.6. If a function is in LppRdq for some p, then so is its convolution with an integrable
function.

Proposition 1.7. Let p P r1, `8s, f P L1pRdq and g P LppRdq. Then the convolution
pf ˚ gqpxq is well defined for almost every x P Rd, we have pf ˚ gq P LppRdq and

}f ˚ g}p ď }f}1 }g}p .

Using the commutativity of convolution, we have an analoguous result for f P LppRdq
and g P L1pRdq.
Proof. We identify f et g to representatives in L1pRdq and LppRdq. The result is already
known if p “ `8, so we can assume that p P r1, `8r. Let q “ p

p´1 be the conjugate
exponent of p. For x P Rd we have by the Hölder inequality

ż

Rd

|fpx ´ yq| |gpyq| dy “
ż

Rd

|fpx ´ yq| 1
q |fpx ´ yq| 1

p |gpyq| dy

ď }f}
1
q

1

ˆż

Rd

|fpx ´ yq| |gpyq|p dy

˙ 1
p

.

By the Fubini-Tonelli Theorem we get

}|f | ˚ |g|}p
p “

ż

Rd

ˇ̌
ˇ̌
ż

Rd

|fpx ´ yq| |gpyq| dy

ˇ̌
ˇ̌
p

dx

ď }f}
p
q

1

ż

Rd

ˆż

Rd

|fpx ´ yq| |gpyq|p dy

˙
dx

ď }f}
p
q

1

ż

Rd

|gpyq|p
ˆż

Rd

|fpx ´ yq| dx

˙
dy

ď }f}p
1 }g}p

p .

We deduce that p|f | ˚ |g|q P LppRdq with }|f | ˚ |g|}p ď }f}1 }g}p. In particular the
function y ÞÑ fpx ´ yqgpyq is integrable for almost every x P Rd, and

ż

Rd

ˇ̌
ˇ̌
ż

Rd

fpx ´ yqgpyq dy

ˇ̌
ˇ̌
p

dx ď
ż

Rd

ˇ̌
ˇ̌
ż

Rd

|fpx ´ yq| |gpyq| dy

ˇ̌
ˇ̌
p

dx ď }f}p
1 }g}p

p .

Hence pf ˚ gq P LppRdq and }f ˚ g}p ď }f}1 }g}p.

Remark 1.8. For p P r1, `8s et f P L1pRdq, we have proved that the map F : g ÞÑ f ˚ g
is a continuous linear map on LppRdq, with }F }LpLppXqq ď }f}1.

Let us discuss another generalization of Proposition 1.5. We still arrive in L8pRdq,
but we now consider f and g in LppRdq and LqpRdq for general conjugate exponents
p and q. It is interesting to compare this result with Hölder inequality for the usual
product of functions.

Proposition 1.9. Let p, q P r1, `8s be two conjugate exponents. Let f P LppRdq and
g P LqpRdq. Then the convolution pf ˚ gqpxq is well defined for any x P Rd, pf ˚ gq is
bounded on Rd and

}f ˚ g}L8 ď }f}Lp }g}Lq .

Moreover, pf ˚gq is uniformly continuous and, if p and q are finite, then pf ˚gqpxq tends
to 0 when |x| tends to `8.
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Proof. We identify f and g to representatives of their class in LppRdq and LqpRdq.
‚ Let x P Rd. By the Hölder Inequality we have

ż

Rd

|fpx ´ yq| |gpyq| dy ď
ˆż

Rd

|fpx ´ yq|p dy

˙ 1
p

ˆż

Rd

|gpyq|q dy

˙ 1
q “ }f}p }g}q .

Hence pf ˚ gqpxq is well defined and

|pf ˚ gqpxq| ď }f}p }g}q .

This proves that pf ˚ gq is bounded with

}f ˚ g}8 ď }f}p }g}q .

‚ Let h P Rd. We suppose that p ă `8. For x P Rd we have, still using the Hölder
Inequality,

|pf ˚ gqpx ` hq ´ pf ˚ gqpxq| ď
ż

Rd

|fpx ` h ´ yq ´ fpx ´ yq| |gpyq| dy

ď }g}q

ˆż

Rd

|fpx ` h ´ yq ´ fpx ´ yq|p dy

˙ 1
p

ď }τ´hf ´ f}p }g}q

(recall that τ´hf is the function η ÞÑ fpη ` hq). By continuity of the translation in
LppRdq,

sup
xPRd

|pf ˚ gqpx ` hq ´ pf ˚ gqpxq| ď }τhf ´ f}p }g}q ÝÝÝÑ
hÑ0

0,

so pf ˚ gq is uniformly continuous. If p “ `8 then q “ 1 and we can similarly write, by
commutativity of convolution,

|pf ˚ gqpx ` hq ´ pf ˚ gqpxq| ď
ż

Rd

|fpyq| |gpx ` h ´ yq ´ gpx ´ yq| dy

ď }f}p }τ´hg ´ g}q

ÝÝÝÑ
hÑ0

0.

‚ Now assume that p and q are finite. Then, there exist sequences pfnqnPN and pgnqnPN
of compactly supported and continuous functions that tends to f and g in LppRdq and
in LqpRdq, respectively. For any n P N, the function pfn ˚ gnq has compact support (see
proposition 1.4). By linearity of the convolution with respect to each factor, we can
write

pf ˚ gq ´ pfn ˚ gnq “ pf ´ fnq ˚ g ` fn ˚ pg ´ gnq,
hence

}pf ˚ gq ´ pfn ˚ gnq}8 ď }f ´ fn}p }g}q ` }f}p }g ´ gn}q ÝÝÝÑ
nÑ8 0.

Thus pf ˚ gq is the uniform limit of a sequence of compactly supported functions. This
implies that it goes to 0 when x goes to infinity.

We can give a completely general result about the existence of convolution in Lebesgue
spaces.
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Proposition 1.10. Let p, q, r P r1, 8s such that

1
p

` 1
q

“ 1 ` 1
r

.

Let f P LppRdq and g P LqpRdq. Then pf ˚ gqpxq is well defined for almost every x P Rd,
pf ˚ gq belongs to LrpRdq and

}f ˚ g}r ď }f}p }g}q .

Proof. This result is a consequence of Proposition 1.7 if q “ 1 and r “ p (where p “ 1
and r “ q) and of Proposition 1.9 if r “ 8. Thus we can assume that r ă 8 and p, q P
s1, `8r. Notice that maxpp, qq ă r. As above, we identify f and g to representatives in
LppRdq and LqpRdq. The function p|f | ˚ |g|q is measurable from Rd to r0, `8s and for
x P Rd we can write

p|f | ˚ |g|qpxq “
ż

Rd

` |fpx ´ yq| p
r |gpyq| q

r
˘ |fpx ´ yq|1´ p

r |gpyq|1´ q
r dy.

By the generalized Hölder Inequality applied with exponents r, rp
r´p and rq

r´q we get

p|f |˚|g|qpxq ď
ˆż

Rd

|fpx ´ yq|p |gpyq|q dy

˙ 1
r

ˆż

Rd

|fpx ´ yq|p dy

˙ r´p
rp

ˆż

Rd

|gpyq|q dy

˙ r´q
rq

.

We get
|p|f | ˚ |g|qpxq|r ď }f}r´p

p }g}r´q
q

ż

Rd

|fpx ´ yq|p |gpyq|q dy.

Integrating with respect to x P Rd we obtain by the Fubini Theorem that

}|f | ˚ |g|}r
r ď }f}r´p

p }g}r´q
q

ż

Rd

ˆż

Rd

|fpx ´ yq|p |gpyq|q dy

˙
dx

ď }f}r´p
p }g}r´q

q

ż

Rd

|gpyq|q
ˆż

Rd

|fpx ´ yq|p dx

˙
dy

ď }f}r
p }g}r´q

q

ż

Rd

|gpyq|q dy

ď }f}r
p }g}r

q .

Hence |f | ˚ |g| P LrpRdq with }|f | ˚ |g|}r ď }f}p }g}q. We conclude as before.

1.1.3 Other convolutions
The aim of this chapter is to study convolution on Rd, but since it was discussed in the
introduction, we briefly mention the standard convolution products in other contexts.

Let u and v be two sequences in CZ. When it makes sense, we define the sequence
pu ˚ vq by

pu ˚ vqn “
ÿ

kPZ
un´kvk. (1.3)

We can also consider convolution on the space of 2π-periodic functions from R to C. If
f and g are two 2π-periodic functions we set

pf ˚ gqpxq “ 1
2π

ż π

´π
fpyqgpx ´ yq dy.

We cannot define this convolution on any measured space. We see here that we
need to have an additive group (to give sense to fpx ´ yq). Thus we cannot define a
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convolution on N or R`. However, we can extend by zeros a sequence indexed by N to
a sequence indexed by Z. Thus, if u and v are sequences in CN that we extend in Z
indexed sequences setting u´m “ v´m “ 0 for m P N, then (1.3) gives

pu ˚ vqn “
#

0 si n ă 0,řn
k“0 un´kvk if n ě 0.

We obtain again a sequence whose terms with negative indices vanish, and we can see
pu ˚ vq as a sequence indexed by N.

Likewise, if f and g are two functions on R`, we can extend them by 0 on R´ (we
still note f and g the extended functions), and the convolution of f and g is given by

pf ˚ gqpxq “
#

0 si x ă 0,şx
0 fpx ´ yqgpyq dy if x ě 0.

As for sequences, we can consider pf ˚ gq as a function on R`.

1.2 Regularization of functions
Since we introduced them, we have worked a lot with functions in Lebesgue spaces, and
these functions can be very singular. We have already seen that the set of compact
support continuous functions is dense in LppRdq for p P r1, `8r. The aim of this section
is to go further and to approximate integrable functions by smooth (and compactly
supported) functions.

1.2.1 Approximation to the identity
We have seen that convolution defines a product on L1pRdq. A natural question is wether
this product has an identity element 1, such that for any f P L1pRdq

1 ˚ f “ f ˚ 1 “ f.

A formal computation shows that the “Dirac function” (supported on t0u and of integral
1) could play this role, but we know that such a function cannot exist.

Notice that we could introduce the convolution of a function and a measure. When
it has a meaning, we could set for a function f and a measure µ

pµ ˚ fqpxq “ pf ˚ µqpxq “
ż

Rd

fpx ´ yq dµpyq.

With the Dirac measure, we would get pδ ˚ fqpxq “ fpxq. This will be done in the more
general cases of distributions.

For now, we only work with (equivalence classes of) functions. So there is no identity
element for the convolution, but we can consider arbitrarily close functions, in the sense
that their integral is equal to 1 and that most of their mass is close to 0. More precisely,
we introduce the following notion.

Definition 1.11. We call approximation to the identity a sequence pρnqnPN of measur-
able functions on Rd such that

(i) ρn has positive values 1 for any n P N,
1we could also consider approximation of the unit of variable signs, but we need to ensure that the

sequence pρnqnPN is bounded in L1. In practice, we use positive unit approximation.
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(ii)
ş
Rd ρn dλ “ 1 for any n P N,

(iii) for any ε ą 0 we have ż

|x|ěε
ρn dλ ÝÝÝÝÑ

nÑ`8 0.

We could consider approximations to the identity parametrized by a real number
instead of natural numbers.

In general we use the following result to build the sequences of approximation of the
unit.

Proposition 1.12. Let ρ : Rd Ñ R` be a measurable function such that
ş
Rd ρ dλ “ 1.

For n P N˚ et x P Rd we set
ρnpxq “ ndρpnxq.

Then the sequence pρnqnPN˚ is an approximation of the unit on Rd.

For example, we can consider the mollifiers defined by

ρpxq “ e´ |x|2
2

p2πq d
2

, (1.4)

or, on R,
ρpxq “ 1

πp1 ` x2q . (1.5)

The proof of Proposition 1.12 simply uses the affine change of variables y “ nx.

The aim of an approximation of the unit is to . . . approach the unit. In particular,
we expect that pρn ˚ fq is close to f for n large. We begin with the most convenient
case.

Proposition 1.13. Let pρnqnPN be an approximation to the unit. Let f be a bounded
and continuous function on Rd. Then f ˚ ρn converges uniformly to f as n goes to `8.

Proof. Since
ş
Rd ρn dλ “ 1 we have for all x P Rd

pf ˚ ρnqpxq ´ fpxq “
ż

Rd

pfpx ´ yq ´ fpxqq ρnpyq dy.

Let ε ą 0. There exists δ ą 0 such that for x, y P Rd with |x ´ y| ď δ we have
|fpxq ´ fpyq| ď ε

2 . Let M ą 0 be a bound for |f |. There exists N P N such that for all
n ě N we have ż

|y|ěη
ρnpyq dy ď ε

4M
.

Then for x P Rd and n ě N we have

|pf ˚ ρnqpxq ´ fpxq|
ď

ż

yPBpx,δq
|fpx ´ yq ´ fpxq| ρnpyq dy `

ż

yPRdzBpx,δq
|fpx ´ yq ´ fpxq| ρnpyq dy

ď ε

2

ż

yPBpx,δq
ρnpyq dy ` 2M

ż

yPRdzBpx,δq
ρnpyq dy

ď ε

2 ` ε

2 “ ε.

The result follows.
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Now we show that ρn ˚ f is close to f for any f P L1pRdq, and even for f P LppRdq
for p P r1, `8r. Taking for example ρn “ 2n1r´ 1

n
, 1

n

‰ for n P N˚ and f “ 1r´1,1s we see
that the following result cannot hold for p “ `8.

Proposition 1.14. Let pρnqnPN be an approximation of the unit. Let p P r1, `8r and
f P LppRdq. We have

}pf ˚ ρnq ´ f}p ÝÝÝÑ
nÑ8 0.

Proof. We identify f a representative in LppRdq. Let n P N˚. Since
ş
Rd ρn dλ “ 1 we

have for any x P Rd

pf ˚ ρnqpxq ´ fpxq “
ż

Rd

pfpx ´ yq ´ fpxqq ρnpyq dy

“
ż

Rd

pfpx ´ yq ´ fpxqq ρnpyq 1
p ρnpyq 1

q dy,

where q the conjugate exponent of p. By the Hölder Inequality we get

|pf ˚ ρnqpxq ´ fpxq|p ď
ˆż

Rd

|fpx ´ yq ´ fpxq|p ρnpyq dy

˙ ˆż

Rd

ρnpyq dy

˙ p
q

.

The last integral is equal to 1. Integrating with respect to x P Rd an using the Fubini-
Tonelli Theorem we get

}f ˚ ρn ´ f}p
p ď

ż

Rd

ˆż

Rd

|fpx ´ yq ´ fpxq|p dx

˙
ρnpyq dy ď

ż

Rd

}τyf ´ f}p
p ρnpyq dy.

Let ε ą 0. By continuity of the translation there exists η ą 0 such that for any y P Rd

with |y| ď η we have
}τyf ´ f}p

p ď ε

2 .

On the other hand there exists N P N such that for any n ě N we have

2p }f}p
p

ż

|y|ěη
ρnpyq dy ď ε

2 .

Then for n ě N we have

}f ˚ ρn ´ f}p
p ď

ż

|y|ďη
}τyf ´ f}p

p ρnpyq dy `
ż

|y|ěη
}τyf ´ f}p

p ρnpyq dy ď ε.

This proves that
}f ˚ ρn ´ f}p

p ÝÝÝÝÑ
nÑ`8 0.

At the beginning of the chapter, we observed that convolution has a regularizing
effect. So we can expect ρn ˚ f to be more regular than f . All the more so if ρn is
itself regular. Hence, Proposition 1.14 will allow us to approach Lp by a sequence of
regular functions. To do that, we will use a sequence of approximation of the unit made
of regular functions for example by building it from regular kernels (1.4) or (1.5). If we
want to approach f by regular functions that have compact support, we will need to use
compact support regularizing functions. This is not the case for (1.4) or (1.5).
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1.2.2 Localized and regular functions
Let Ω be an open set of Rd. We begin by giving basic properties of the space of smooth
and compactly supported functions on Ω. In particular, the fact that this set is not
reduced to the zero function.

Definition 1.15. We denote by C8
0 pΩq, C8

c pΩq or DpΩq the set of smooth and com-
pactly supported functions on Ω.

Before going any further, we check that C8
0 pRdq contains non trivial functions.

Proposition 1.16. The function f defined on Rd by

fpxq “
#

exp
´

´ 1
1´|x|2

¯
if |x| ă 1,

0 if |x| ě 1,

belongs in C8
0 pRdq. Its support is the closed ball Bp0, 1q.

Proof. ‚ The function f is positive on the unit ball Bp0, 1q and vanishes on RzBp0, 1q,
so its support is Bp0, 1q. Moreover, f is of class C8 on Bp0, 1q and RzBp0, 1q.
‚ For r ą 0 we set

gprq “
#

exp
´

´ 1
1´r

¯
if r ă 1,

0 if r ě 1.

g is of class C8 on s0, 1r. We can check by induction on n P N that there exists a
polynomial Pn P RrXs such that for any r Ps0, 1r we have

gpnqprq “ Pn

ˆ
1

1 ´ r

˙
exp

ˆ
´ 1

1 ´ r

˙
.

Let n P N. The function s ÞÑ Pnpsqe´s tends to 0 when s tends to `8, so

gpnqprq ÝÝÝÑ
rÑ1

0.

In particular, g is continuous at x “ 1. In addition, the derivatives of g vanish on
s1, `8r. By the theorem of C1 extension (based on the mean value theorem) we get by
induction that g is n times differentiable at x “ 1 with gpnqp1q “ 0. Finaly g is of class
C8 on s0, `8r.
‚ By composition of g with the smooth function x ÞÑ |x|2 “ x2

1 ` ¨ ¨ ¨ ` x2
d, we get that

f is of class C8 on Rdz t0u. Since it is also C8 on Bp0, 1q, it is of class C8 on Rd.

From this first non trivial example of C8
0 pRdq function, we can build “peak func-

tions”, that we will use as approximations of the unit.

Proposition 1.17. Let ε ą 0. There exists ρε P C8
0 pRd,R`q such that supppρεq Ă

Bp0, εq and
ż

Rd

ρε “ 1.

Proof. Let f be the function given by proposition 1.16. It is continuous and has compact
support thus it is integrable on Rd. Moreover, it is non-negative and non identically zero,
so its integral is positive. Thus for x P Rd we can set

ρpxq “ fpxqş
Rd fptq dt

.

This defines a smooth function ρ : Rd Ñ R` whose support is Bp0, 1q and whose integral
is equal to 1. We conclude by setting, for any x P R,

ρεpxq “ 1
εd

ρ
´x

ε

¯
.
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1.2.3 Regularization of functions
In this paragraph we prove that the convolution of a general function with a C8

0 pRdq
function is well defined and regular. We will then deduce that C8

0 pRdq is dense in LppRdq
for any p P r1, `8r.

We first recall some notation for derivatives in any dimension. For α “ pα1, . . . , αnq P
Nd we set

|α| “ α1 ` ¨ ¨ ¨ ` αd,

and then, for f P C8pRdq,

Bαf “ B|α|f
Bxα1

1 . . . Bxαd
d

“
ˆ B

Bx1

˙α1

¨ ¨ ¨
ˆ B

Bxd

˙αd

f.

Recall that by the Schwarz Theorem, the order of differentiation is not important.

Proposition 1.18. Let ρ P C8
0 pRdq. For f P L1

locpRdq we have pρ ˚ fq P C8pRdq and
for any α P Nd we have

Bα

Bxα
pρ ˚ fq “

ˆ Bαρ

Bxα

˙
˚ f. (1.6)

Proof. The convolution is well defined by Proposition 1.5. Let j P �1, d�. There exists
R ą 0 and M ą 0 such that for any x P Rd

|Bjρpxq| ď M1Bp0,Rqpxq.

Let r ą 0. For any y P Rd the map x ÞÑ ρpx ´ yqfpyq is of class C1 on Bp0, rq and
ˇ̌
ˇ̌ B
Bxj

`
ρpx ´ yqfpyq˘ˇ̌

ˇ̌ “
ˇ̌
ˇ̌ B
Bxj

ρpx ´ yq
ˇ̌
ˇ̌ |fpyq| ď M1Bp0,R`rqpyq |fpyq| .

By differentiation under the integral sign, the function pρ ˚ fq is differentiable with
respect to xj on Bp0, rq and its derivative is

B
Bxj

pρ ˚ fq “ pBjρq ˚ f.

Since this holds for any r ą 0, the proposition is proved for |α| “ 1. We conclude by
induction, replacing ρ by its successive derivatives.

Theorem 1.19. Let p P r1, `8r. Then C8
0 pRdq is dense in LppRdq.

Proof. Let f P LppRdq and ε ą 0. There exists R ą 0 such that g “ 1BpRqf satisfies
}f ´ g}p ď ε

2 . Let pρnqnPN be a sequence of approximation to the identity such that
ρn P C8

0 pRdq for all n P N. By Proposition 1.18, pρn ˚ gq is of class C8 for all n P N˚.
It also has compact support by Proposition 1.4. Finally, by Proposition 1.14, we have
}g ´ pg ˚ ρnq}p ď ε

2 for n large enough, so }f ´ pg ˚ ρnq}p ď ε.

Remark 1.20. Let p, q P r1, `8r. Let f P LppRdq X LqpRdq. Let ε ą 0. In the previous
proof we can chose R such that }f ´ g}p ď ε

2 and }f ´ g}q ď ε
2 . Since pg ˚ ρnq tends to

g in LppRdq and LqpRdq, there exists n P N such that }g ´ gn}p ď ε
2 and }g ´ gn}q ď ε

2 .
This proves that one can construct a sequence pfmqmPN of functions in C8

0 pRdq such
that fm tends to f both in LppRdq and in LqpRdq.
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Theorem 1.21. Let Ω be an open subset of Rd and p P r1, `8r. Then C8
0 pRdq is dense

in LppRdq.
Proof. ‚ Let f P LppΩq. Assume that there exists a compact K of Ω such that f “ 0
outside K. We extend f by 0 on Rd. This defines a function f̃ P LppRdq. There exists
δ ą 0 such that Bpx, 2δq Ă Ω for all x P K. Let ρ P C8

0 pRd,R`q be supported in Bp0, δq
and such that

ş
ρ dx “ 1. For n P N˚ and x P Rd we set ρnpxq “ n´dρpnxq. Then we set

f̃n “ f̃ ˚ ρn. Then we have
}f̃n ´ f̃}LppRdq ÝÝÝÑ

nÑ8 0.

Moreover, f̃n is compactly supported in Ω, so its restriction fn to Ω belongs to C8
0 pΩq

and satisfies
}fn ´ f}LppΩq ÝÝÝÑ

nÑ8 0.

This proves the result in this case.
‚ For m P N˚ we set

Km “
"

x P Ω | |x| ď n and Bpx,
1
m

q Ă Ω
*

.

Then Km is compact for all m P N˚ and

Ω “
ď

mPN˚
Km.

Let f P LppΩq and ε ą 0. By the dominated convergence theorem we have

}f ´ f1Kn}LppΩq ÝÝÝÑ
nÑ8 0,

so there exists n P N such that

}f ´ f1Kn}LppΩq ď ε

2 .

By the first step there exists g P C8
0 pΩq such that

}f1Kn ´ g}LppΩq ď ε

2 .

Then }f ´ g}LppΩq ď ε, and the conclusion follows.

Exercise 1. Let Ω be an open subset of Rd. For m P N˚ we set

Km “
"

x P Ω | |x| ď m and distpx,RdzΩq ě 1
m

*
.

Let f P L1pΩq and ε ą 0. The purpose of the exercise is to construct g P C8
0 pΩq such

that }f ´ g}L1pΩq ď ε.
1. We first consider a particular case. Assume that there exists a compact K Ă Ω such
that f “ 0 outside K. For x P Rd we set

f̃pxq “
#

fpxq if x P Ω,

0 otherwise.

Let ρ P C8
0 pRd,R`q supported in Bp0, 1q and such that

ş
Rd ρ dx “ 1. For n P N˚ and

x P Rd we set ρnpxq “ ndρpnxq.
a. Prove that

››pf̃ ˚ ρnq ´ f̃
››

L1pRdq Ñ 0 as n Ñ 8.
b. Prove that f̃ ˚ ρn is supported in Ω for n large enough.
c. Conclude in this case.

2. Prove the general case.
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1.2.4 Partitions of unity
We end this chapter with partitions of unity. The purpose is to be able to localize a
problem, considering a function f defined on an open set Ω as a sum of functions that
are localized on smaller and simpler open subsets. We could do it by multiplying f by
characteristic functions of a partition of Ω, but we often need to localize with regular
functions.

Proposition 1.22. Let K and O be compact and open subsets of Rd such that K Ă O.
Then there exists χ P C8

0 pRd, r0, 1sq such that χ “ 1 in a neighbourhood of K and χ “ 0
in a neighbourhood of RdzO.

Proof. There exists ε ą 0 such that for any x P K we have Bpx, 4εq Ă O. We consider
a peak function ρε as given by proposition 1.17 and we set

Kε “
ď

xPK

Bpx, 2εq,

so that K Ă K̊ε Ă Kε Ă O. It only remains to regularize the characteristic function of
Kε. For this we set, for x P R,

χpxq “
ż

R
1Kεpx ´ yqρεpyq dy.

We check that χ verifies the required properties.

Proposition 1.23. Let K be a compact set of Rd. Let n P N˚ and ω1, . . . , ωn be open
sets of Rd such that

K Ă
nď

j“1
ωj .

Then there exist functions χ1, . . . , χn P C8
0 pRd, r0, 1sq such that supppχjq Ă ωj for any

j P �1, N� and
řn

j“1 χj is equal to 1 on K.

Proof. ‚ Let x P K. There exists jpxq P �1, n� and rpxq ą 0 such that Bpx, rpxqq Ă
ωjpxq. The family of balls Bpx, rpxqq for x P K is an open cover of K, so there exist
k P N˚ and x1, . . . , xk P K such that

K Ă O “
kď

l“1
Bpxl, rpxlqq.

For j P �1, n� we set
Kj “

ď

1ďlďk
jpxlq“j

Bpxl, rpxlqq.

Then Kj is a compact included in ωj . In addition we have

K Ă
nď

j“1
Kj .

‚ We consider φ0 P C8pRd, r0, 1sq equal to 1 outside O and equal to 0 on K. For
instance, we can set φ0 “ 1 ´ χ, where χ P C8

0 pRd, r0, 1sq is given by Proposition
1.22. For j P �1, n� we also consider φj P C8

0 pRd, r0, 1sq such that φj “ 1 on Kj and
supppφjq Ă ωj . For any x P Rd we have

nÿ

i“0
φi ą 0.
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For j P �1, n� we set
χj “ φjřn

i“0 φi
.

The χj , 0 ď j ď n, are of class C8 and they take values in r0, 1s, their sum is 1
everywhere and χj has compact support for j ‰ 0. Moreover, since χ0 vanishes on K,
we have

řn
j“1 χj “ 1 on K.
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