Appendix A

Compact Operators

In this appendix we give some general properties about compact operators. We first
recall the Ascoli-Arzela Theorem.

Theorem A.1 (Ascoli-Arzela Theorem). Let K be a compact metric space and let F
be a bounded subset of C(K,R). We assume that F is equicontinuous:

Ve >0,30 >0,Vfe FVz,ye K, d(z,y) < = |f(z)— f(y)| <e.

Then the closure F of F in C(K) is compact.

A.1 Compact operators

A.1.1 Definition and first properties

Définition A.2. Let X and Y be Banach spaces. A bounded linear operator T': X — Y
is said to be compact if for any bounded sequence (u,)neny € XV, the sequence (T, )nen
has a convergent subsequence in Y. Equivalently, T" is compact if T'(By) is compact in
Y, where By is the unit ball in X.

Given two Banach spaces X,Y we denote by K(X,Y) the set of compact operators
from X to Y. We also write (X)) = (X, X).

Example A.3. Finite rank operators are compact.

Example A.4. We denote by (e,)nen+ the canonical basis of (2(N*). We consider on
(*(N*) the linear map A such that Ae, = e for all n € N*. Then A is compact on
2(N¥).

Proposition A.5. Let X and Y be two Banach spaces.

(i) Let K € K(X,Y) and let (z,,),.y be a sequence in X which converges weakly to
some x € X (i.e. for any ¢ € X* we have p(x,) — p(x)). Then K(x,) converges
(in norm) to K(x).

(i) K(X,Y) is a closed subspace of L(X,Y).

(iii) For K € K(X,Y), By € B(X1,X) and By € B(Y,Ys) we have K o By € K(X1,Y)
and By o K € K(X,Y5).
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(iv) For K € K(X,Y) we have K* € K(Y™*, X*).

Proof. We prove the first and last statements.

o The sequence (z,),y is weakly convergent, so it is bounded in X (see Proposition
3.5.(iii) in [Brézis]). By continuity, a convergent subsequence of (K (x,,))nen necessarily
goes to K (z). This implies that K (x,) goes strongly to K(z).

o Let (¢,),y be a bounded sequence in Y*. We denote by By the unit ball in X.
Since K is compact, K(By) is a compact metric space, and the functions ¢,, n €
N, are equicontinuous thereon. Then, by the Ascoli-Arzela Theorem, there exists a
subsequence (¢, )ren convergent in C°(K(By)). We denote by ¢ € C°(K(Bx)) the
limit. In particular we have

sup |, (K(2)) = o(K(2))| —— 0.

] 5 <1 k—+o0

We deduce that (¢,, o K) is a Cauchy sequence in X*. Since X* is a Banach space, it
has a limit in X*. This proves that K* € (Y™, X*). O

We finish this paragraph with more examples of compact operators.

Let © be an open subset of R%. For k € N we denote by C¥(€) the set of functions u
of class C* on Q such that 0®u is bounded on € for all |a| < k. Then CF(Q) is endowed
by the norm defines by

gy = O 167l ogey -

lo| <k

Proposition A.6. Let Q) be an open bounded and subset of R® and k € N. Then Cy ()
is compactly embedded in CF(Q).

Proof. Let (uy), . be a bounded sequence in C**1(Q). Let M be such that [uncrer <

M. Let o € N? with || < k and j € [1,d]. Let x € Q and r > 0 such that B(z,r) <

2. Since [VO“up| e < M, the sequence (uy,) is uniformly Lipschitz in B(z,r). In

particular, the sequence (0“u,,) is uniformly equicontinuous on 2. By the Ascoli-Arzela

Theorem, it has a subsequence which converges to some v, in C°(2). Then there exists

an increasing sequence (ny) such that 0*u,, goes to v, when n — +o for all |a| < k.
Let o € N? with |a| < k. Let € Q. For ¢ € R small enough we have

Vo + tej) — va(x) = kl_lgloo 0%Unp,, (x + te;) — 0%up, ()
t

_ i a+-e; .
= kl—lgloo 0"y, (x4 se;) ds.
0

Since the map s +— 0" u,, (z + se;) converges uniformly to s = Va, (7 + se;) on [0, ]
we get
t

Ua($ + tej) - Ua(l’) = J Vate; (:L’ + Sej) ds.
0

This proves that djvq = Vare,. Finally for all |a| < k we have 0°v = v, and we have

— 0. O

tny, = UHC{;(Q) PR
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Ezercise 42. Let Q be a bounded subset of R%. Let k € N and 0 €]0,1[. We recall
that C*? is the set of functions of class C* whose derivatives are bounded and moreover
the derivatives of ordre k£ are Holder-continuous of exponent 6. It is endowed with the
norm defined by

o 0“ul(x) — 0%u Y
”uHck,G(Q) = Z |0 uHLw(Q) + Z sup | (z) ( )’

7
a<k o=k SYES |z =yl

Prove that C*?(Q) is compactly embedded in CF(S2).

Example A.7. Let K € C°([0,1]%). For ue C°([0,1]) and x € [0, 1] we set

(Tu)(z) = f K (&, y)u(u) dy.

Let M > 0 and let (uy,),y be a sequence in C°([0,1]) such that |u,|, < M for all
n € N. Let x € [0,1] and ¢ > 0. Since K is uniformly continuous there exists § > 0
such that for all (z1,y1), (z2,y2) € [0, 1]* we have

3

1 — o + |y — el <0 = |K(21,51) — K(22,10)] < a

Then for n € N and x’ € [0, 1] such that |x — 2’| < 0 we have

(T (@) = Tnla)| < [ 1K (o) = Ko/ ()] dy < =

This proves that the family (Tuy, )nen @s equicontinuous. By the Ascoli-Arzela Theorem it
has a convergent subsequence in C°([0, 1]), which proves that T is compact on C°([0,1]).

A.2 Fredholm Alternative

We consider a Hilbert space H.

Theorem A.8. Let K € K(H). Then (Id —K) is injective if and only if it is surjective,
and in this case its inverse defines a bounded operator on H. In any case we have

dim(Ker(Id —K)) = dim(Ker(Id —K™)) < +o0.
Moreover Ran(Id —K) is always closed, and in particular
Ran(Id —K) = Ker(Id —K*)*.
Remark A.9. We recall that for any A € L(H) we have
Ran(A4) — Ker(A*)".

Proof. e« Assume by contradiction that dim(Ker(Id —K)) = 4+00. Then we can find a
sequence (up),oy in H such that (u,,w,) = 6,m and Ku, = u, for all n,m € N. This
is in particular a bounded sequence but, for n # m,

HKun - KumHiL = Hun - um”g-[ =2,
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so the sequence (Kuy,),eny cannot have a convergent subsequence. This gives a contra-
diction and prove that dim(Ker(Id —K)) < +o0.
e Then we prove that there exists v > 0 such that

Vue Ker(Id—K)*,  |lu— Kul,, = v ||ul, - (A.1)

If this is not the case, we can find a sequence (u,,), .y in Ker(Id —K)* such that |u,|,, =
1 and |Ju, — Kuyl, < 27" for all n € N. Since (uy),y is bounded, there exists a
subsequence (uy, )reny and w € H such that u,, goes weakly to u as k — +o . By
Proposition A.5, Ku,, goes to Ku as k — +00. Then

Up,, = Ky, + (un, — Kuy,) PR Ku.
This implies that v = Ku, so u € Ker(Id —K). In particular, for all n € N we have
(U, Un, ), = 0 so, taking the limit, |u],, = 0. This gives a contradiction and proves
(A.1).
o We deduce from (A.1) that Ran(Id —K) is closed in H. Indeed, let (v,),.y be a
sequence in Ran(Id —K') which goes to some v in H. Then for all n € N there exists
u,, € Ker(Id —K)* such that v, = (Id =K )u,,. By (A.1), (uy), . is a Cauchy sequence in
H, and hence it has a limit u € H, By continuity, we have v = (Id —K)u € Ran(Id —K),
which proves that Ran(Id — K) is closed.
e Now assume that (Id —K) is injective, and assume by contradiction that H; =
(Id —K)(H) is not equal to H. Since H, is closed, it is a Hilbert space with the structure
inherited from H, and by restriction, K defines a compact operator on H;. We set Hy =
(Id —=K')(#H1). Then Hs is closed, and since (Id —K) is injective, we have Hy & H; (take
u € H\H1, then (Id — K)u belongs to H1\Hz). By induction we set Hy, = (Id —K)(Hy—_1)
for all £ > 2. Then Hj is closed and Hy1 & Hy for all k£ € N*. In particular, for all
k € N* we can find uj, € Hy such that |ug|, = 1 and w;, € Hje,,. Then for k € N* and
j > k we have

Kuj — Kup, = —(u; — Kuj) + (ug — Kuyg) + uj — uy.
Since —(u; — Ku;) + (up — Kuy) + u;j € Hiqq this yields
|Ku; — Kug| > 1.

This gives a contradiction since K is compact. Thus, if (Id —K) is injective, then it is
also surjective.

e Conversely, assume that Ran(Id —K) = H. Then Ker(Id —K*) = {0}. Since K* is
also compact, we deduce that (Id —K*) is surjective, and finally

Ker(Id —K) = Ker(Id — K**) = Ran(Id —K*)* = {0} .

This proves that (Id —K) is injective if and only if it is surjective. Moreover, in
this case, (A.1) proves that the inverse (Id —K)~! defines a bounded operator with
[Ad —K) " gy <77

e It remains to prove that Ker(Id —K) and Ker(Id —K*) have the same dimension.
Assume by contradiction that dim(Ker(Id —K)) < dim(Ran(Id —K)*). There exists a
bounded operator A : Ker(Id —K) — Ran(Id —K)* injective but not surjective. We
extend A by 0 on Ker(Id —K)*. This defines an operator A on H which has a finite
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dimensional range included in Ran(Id —K)‘. In particular it is compact, and so is
K = K + A. Let u € Ker(Id —K). We have u — Ku = Au. Since u — Ku € Ran(Id —K)
and Au € Ran(Id —K)*, we have u — Ku = 0. Therefore u = 0 since A is injective
on Ker(Id—K). Then (Id —K) is injective, and hence surjective. However for v €
Ran(Id —K)*\Ran(A) the equation

u— (Ku+ Au) =v
cannot have a solution. This gives a contradiction and proves that
dim(Ker(Id —K)) = dim(Ran(Id —K)*) = dim(Ker(Id —K*)).

We get the opposite inequality by interchanging the roles of K and K*, and the proof
is complete. O

Ezxercise 43. Let K € L(H). Prove that

dim (U Ker((Id —K)’“)) < +o0.

keN

A.3 Spectral properties

In this section we discuss the spectral properties of a compact operator. We first recall
the definition of the spectrum of a general operator.

Let H be a real (or complex) Hilbert. An operator A on H is a linear map from a
dense subset D of H to H. We say that D is the domain of A.

Let Ae R (or A € C). We say that A is in the resolvent set p(A) of A if the operator
(A—XId) : D — H is bijective and if its inverse (A — AId)~! defines a bounded operator
on ‘H. We usually write (A — \) instead of (A — AId). The spectrum o(A) of A is the
complement of p(A) in R (or C).

We recall that if H is of finite dimension, a linear map is bijective if and only if it
is injective, and in this case the inverse is always continuous, so the spectrum of A is
exactly the set of eigenvalues. This is not the case in general.

If X\ is an eigenvalue of A, then its geometric multiplicity is
dim(Ker(A — \)),

and its algebraic multiplicity is

—+0

dim (U Ker ((A — A)’“)) = lim_dim(Ker(4—\)").

In particular, the geometric multiplicity is smaller than or equal to the algebraic multi-
plicity.
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A.3.1 Spectrum of compact operators

For compact operators, we have the following result.
Theorem A.10. Let K € K(H).
(i) Ifdim(H) = +0oo then 0 belongs to the spectrum of K.

(ii) A # 0 belongs to the spectrum of K if and only if it is an eigenvalue of K. In this
case it is an eigenvalue of finite geometric (and algebraic) multiplicity.

(iii) o(K)\{0} s finite or is given by a sequence of eigenvalues tending to 0.

Proof. e Assume that 0 belongs to the resolvent set of K. Then Id is the composition
of the compact operator K with the bounded operator K !, so Id is a compact operator.
This implies that dim(H) < +oc0.

e Let A € R* (or C*). Then we have K — A = A\(A"!K — Id). Since A™'K is compact,
Theorem A.8 shows that (K — ) is bijective (with bounded inverse) if and only if it is
injective, so A is in the resolvent set of K if and only if it is not an eigenvalue. Moreover,
if A is an eigenvalue of K we have dim(Ker(K — \)) = dim(Ker(A™'K — Id)) < +oo.
More generally, Exercise 43 shows that 1 is an eigenvalue of finite algebraic multiplicity
for \71K.

e Since K is a bounded operator, the set of eigenvalues of K is bounded in R (C).
Assume that (\,),,. is a sequence of distinct non-zero eigenvalues of K tending to some
A. We prove that A = 0. For n € N we consider w,, € H\ {0} such that Kw, = A\,w,.
Then for n € N we set H,, = span(wo, ..., w,_1) and we consider u, € H, such that
|tn] =1 and u, € H: , if n > 1. Then for j € N and k > j we have

>1
H

+Uk—'LL]'

Y

Ku,  Ku;
Ak Aj

Kup — M, Kuj — A\ju;
Ak Aj

H ‘
since Kuy, — A\gug, Kuj — ANjuj,u; € Hip—1. If A # 0 we obtain a contradiction with the

compactness of K. O]

A.3.2 The case of symmetric operators

Let A be a bounded operator on ‘H. We assume that A is symmetric:

Vo, 0 e H, (Ap, )y = (w0, A)y, .

In particular, even if H is a complex Hilbert space, we have (Au,u) € R for all u € H. In
particular, the eigenvalues of A are real. Moreover, two eigenspaces of A corresponding
to two distinct eigenvalues are orthogonal.

Lemma A.11. Let A be a bounded symmetric operator on ‘H. Let

m = inf (Au,u),, and M = sup (Au,u),, .

ueH ueH
fluf=1 Ju]=1

Then o(A) < [m, M] and m, M € o(A).
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Proof. We consider the case where H is a real Hilbert space. We prove that |M, +oo[c
p(A) and that M € o(A). Let A > M. For u € H we have

(= Au,uhy, = (A= M) Jul?,

By the Lax-Milgram Theorem, the operator A — A is bijective with bounded inverse on
H, so A€ p(A).

Now let (un),oy be a sequence in H such that |uy,|,, =1 for all n € N and

neN

The quadratic form u — ((M — A)u,u) is non-negative, so by the Cauchy-Schwarz
inequality we have for all u,v € H

(M = A)u, v}y, < (M = A)u,u)yy (M~ AJv, )y,
Applied with v = u,, and v = (M — A)u, this gives

(M = AYuwnll3 < (M = At tn) gy (M = APt (M = At ), —— 0.

H n—+o0
This proves that M € o(A). O

Theorem A.12. Let H be a separable Hilbert space and let K be a compact and sym-
metric operator on H. Then there exists an orthonormal basis (ey),.y consisting of
eigenvectors of K.

Proof. Let (A\,)1<n<n for N € NuU{+0o0} be the sequence of distinct non-zero eigenvalues
of K. For n € 1, N] we set H,, = Ker(K — \,). Then we have dim(#,) € N*. We also
set Ho = Ker(K).

We set H = span( U, H,). We have K(H) < H and hence K(H*) = H'. Assume
by contradiction that HL {0}. The restriction of K to Ht is compact and symmetric,
and it has no eigenvalue, so its spectrum is included in {0}. By Lemma A.11, we have
(Ku,u) = 0 for all u e H*. We deduce that K = 0 on H*, and hence H* < Ker(K)
#. This gives a contradiction and proves that H* = {0}, so H is dense.

It only remains to choose an orthonormal basis of each H, for n € [1, N], and a
countable orthonormal basis of H, (it exists since H is separable). ]

A.3.3 Operators with compact resolvent

We finish we operators which are not compact but have a compact resolvent.

Theorem A.13. Let A be an operator on H with domain D. Assume that there exists zg
such that (A — zy) is bijective and (A — z)~' : H — D < H defines a compact operator
on H. Then the spectrum of A consists of a discrete set of eigenvalues with finite
(geometric and algebraic) multiplicities (in particular the spectrum of A is countable
without accumulation points).

Proof. Let B=A—2y: D — H. We have 0 € p(B) and B~! defines a compact operator
on H. Let A € C*. Assume that A\ € p(B). We have

Bl -\X1'=-XYB-)\NB,
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so B~' — X7 . H — H is invertible, with bounded inverse (B~!' — A\™!)"! = —B(B —
AN = =X = X\3(B — \)"!. Similarly, on D we have

B—-X=-XB'-\YHB. (A.2)

If X' € p(B7!) then B—\: D — H is invertible and its inverse (B—\)"! = —B~!(B~1—
A~H7IX"1 defines a bounded operator on H. Thus A € p(B). This proves that the map
A — A1 is a bijection between the spectrum of B and the non-zero spectrum of B~!.
In particular, the spectrum of B is discrete. Moreover, if A € o(B) then (B~! — A1) is
not injective. By (A.2), X is an eigenvalue of B, with finite geometric multiplicity. More
precisely, since B and B~! commute, we see that for k € N* we have

Ker ((B—M\)") =Ker (B™' =A%),

so the eigenvalues of B have finite algebraic multiplicities. After translation, the operator
A shares the same properties and the proof is complete. O]
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