Chapter 3

Second order elliptic equations

In this chapter we discuss on some open subset 2 of R? an equation of the form
Pu=f, (3.1)

where f is some given function, u is the unknown and P is a so-called elliptic operator.
The model of an elliptic operator is the Laplace operator P = —A (in this case (3.1) is
refered to as the Poisson equation, see Section 3.5 below). When Q # R¢, we will have
to add boundary conditions to the equation to get a well posed problem (see Section 3.3).

We will only consider second order equations. This means that P will be a partial
differential operator of second order:

P = —div A(z)V + B(z)V + ¢(z) Zaa]k 8k+2bk )0; + ¢(x),  (3.2)
j,k=1

where A = (a;x)1<jk<d: B = (br)1<k<a and c are bounded real-valued functions on 2.

We will always assume that A is symmetric:
Vi ke[l,d], ajr(z)=ag;(x). (3.3)
We will also assume that the operator P is elliptic.

Définition 3.1. We say that the differential operator P defined by (3.2) is (uniformly)
elliptic if there exists a > 0 such that for almost all z € Q and for all £ = (&y,...,&,;) € R?

we have
d

AL €= aju(@)& = ol (3.4)

J,k=1

This means that the real symmetric matrix A(x) is uniformly definite postive, with
smallest eigenvalue greater than or equal to a > 0.

All these assumptions are in particular satisfied for the Poisson equation (A(x) = Id,
B=0,c=0).

Since the equation (3.1) is linear and has real coefficients, it is enough to consider a
real valued source term f, and we look for a real valued solution w.
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3.1 Maximum Principle

In this paragraph we discuss the maximum principle. Let 2 be an open bounded subset
of R%. We recall that if u € C?*(Q) n C°(Q) satisfies Au = 0 on (2, then for z € Q and
r > 0 such that B(z,r) <  we have

1

u(z) = m S u(y) do(y).
To see this we compute
1 1
Ciw S u(y) do(y) = CZ"‘S(OJ)‘ s u(z + ry) do(y)
- |S((§,1) s oru(z + ry) do(y)
= S b, 00

=0

This proves in particular that u cannot reach a strict maximum at z, and that if u
atteins a maximum at = then u is constant on a neighborhood of z. On the other hand,
u is continuous on the compact sets €2 and on d€2, so it has a maximum. We get

max u(x) = max u(z).

And moreover, if €2 is connected and u reaches a maximum on 2, then u is constant on 2.

These facts are already known for holomorphic functions, which are particular cases
of harmonic functions (that is solutions in dimension 2 of Au = 0). It is already
known that the maximum principle has many important consequences in that case.
Our purpose in this section is to generalise these observations to more general settings.
In dimension 1 it is not difficult to see that if —u” < 0 on some interval [a,b], then
u(z) < max (u(a), u(b)), with equality if and only if u is constant on [a, b].

Theorem 3.2. Let Q be an open bounded subset of RY. Let P be defined by (3.2) with
c=0. Let ue C*(Q) n C°Q) be such that

Pu<0 onfd
(i) We have

max 1 = max u.

a oQ

(ii) If moreover §) is connected and w atteins its maximum at an interior point, then
u s constant.

The first statement is refered to as the weak maximum principle. The second state-
ment is the strong maximum principle.

The idea for the weak maximum principle is the following. Consider the particular
case —Au < 0 on Q. If u reaches a maximum at z € €, then in particular ¢7u(zy) <0
for all j € [1, d]], which gives a contradiction. In the first step we generalize this idea to
the general setting Pu < 0, and then we deduce the case Pu < 0.
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Proof of the weak maximum principle. « We first consider the case where Pu < 0 in
Q. For h € R4 {0} we denote by d7u(x) the second derivative of ¢ — u(z + th) at t = 0.
Assume by contradiction that there exists xg € Q such that u(zp) = maxu. Then we
have Vu(xg) = 0 and d2u(x) < 0 for any h € RY. Since A(xg) is symmetric and definite
positive, there exist an orthogonal matrix O and a diagonal matrix D = diag(Aq, ..., Ag)
with positive coefficients such that A(zg) = ODOT. For j € [1,d] we set é; = Oe;. This
defines a new basis of R%. Then we have

(Pu)(z0) = — div(A(zo) V) (z9) = — divODOTVu(z) Z X027 u(xo)

This gives a contradiction and proves the weak maximum principle when Pu < 0 on 2.
e Then we consider the general case Pu < 0. We can rewrite P as

Z aj, k(? Op + Z bkak, (35)

7,k=1

where for k € [1,d] we have set b, = by +Zj:1 dja;p. Fore > 0and x = (z1,...,24) € Q
we set
us(z) = u(x) + e

for some 3 > 0 to be fixed large enough. For = € €2 we have
Pu.(z) = Pu(x) + ee” (= B2aii(z) + Bbi(x)) < e’ (= B2a+ Bbi] L=(9))-
This is negative if 8 was chosen large enough. By the first case we have

Ve >0, maxu. = max u..
Q oQ

We conclude by taking the limit ¢ — 0.
e Now we turn to the proof of the strong maximum principle. Let

Fz{er : u(x)zmaxu}, w=O\F.
0

F' is closed in  and w is open. Assume by contradiction that F' # ¢ and F # Q.
We denote by @ the closure of w in €. Since 2 is connected, we can consider x; in
wn F # . Near z; we can find z. € w such that dist(z., F') < dist(z,, Q). Then we
set r = dist(x., F') and we consider xy € F such that |z — x.| = r. We have B(z.,r) c w
and, since xg € F', we have

Vu(zy) = 0.
For x € B(x., 1) we set
v(z) = e Bl _ g=hrt 5 0,
for some > 0 to be chosen large enough below. For x € B(z,.,r) we have with the

notation (3.5)
d

Po(z) = = . a;(2)d;000(x) + > bi(x)dpv ()

§k=1 k=1

d
= Pl (—4/32 D (@) (@) — wey) (g — wep) + 28 Z ajj(w) + 20 Z bi() (@ — xc:k))

G k=1 j=1

< e (—dap? |z — 2|’ + 28Tr(A) + 28]B] |2 — z.])
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If 3 is large enough then on C = B(z.,r)\B(z., %) we have
Pv <0.
There exists € > 0 such that for all z € S(xc, g) we have
u(zo) = u(x) + ev(x).

This also holds on S(z., r) where v vanishes. We set w(z) = u(x) 4+ ev(z) —u(zo). Then
w < 0 on dC and Pw < 0 on C. By the weak maximum principle, we have w < 0 on C,
and in particular Vw(zo) - (zg — x.) = 0. This gives

V(o) - (w0 — ) = —eVu(xo) - (w0 — x) = 2681 > 0,

This gives a contradiction with Vu(z) = 0, and proves that F' = f or F' = €. O

3.2 Variational method

In this section we discuss the variational method used to solve second order elliptic
equations. We illustrate the method on the simplest problem. We consider on R¢ the
equation

—Au+u=f (3.6)

Before trying to solve this problem, we have to be explicit about what will be called
a solution of (3.6). Since two derivatives of the unknown wu are involved, it is natural to
look for twice differentiable solutions.

Définition 3.3. Assume that f € C°(R?). Then a classical solution of (3.6) is a function
u € C%*(R?) such that (3.6) holds in the usual sense.

We will see that this is not necessarily the best point of view to discuss this problem.

3.2.1 The Lax-Milgram Theorem

We recall in this paragraph the Lax-Milgram Theorem, which will be our main tool for
the analysis of elliptic equations. We give different versions and different proofs.

Theorem 3.4 (Lax-Milgram’s Theorem). Let V be a real Hilbert space. Let a be a
bilinear form on V. We assume that

(i) a is continuous: there exists C > 0 such that, for all u,v eV,
|a(u, v)| < Cluly, vl
(i) a is coercive: there exists a > 0 such that, for allueV,
a(u,u) = aluls .

Then for any continuous linear form ¢ on V there exists a unique u € V such that
YoeV, alu,v)="L(v). (3.7)

Moreover

[ €]
< .
July < =2
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This result is just a generalization of the Riesz representation theorem. If we add the
assumption that the bilinear form a is symmetric, then it defines an inner product on
V), and the corresponding norm is equivalent to the original norm on V. In particular,
¢ is still continuous if V is endowed with this new Hilbert structure. Then the result
follows by the Riesz representation theorem.

In general, the bilinear form a is not symmetric, but we can still give a proof which
relies on the Riesz theorem.

Proof. ¢ Let u € V. The map v — a(u,v) is a continuous linear form on V, so by the
Riesz representation theorem there exists an element of )V, which we denote by Au, such
that

YveV, a(u,v) = (Au,v), .
This defines a map A : V — V. Similarly, there exists f € V such that ¢(v) = (f,v),, for
allveV, and ||f[,, = [¢],«- Then (3.7) holds if and only if Au = f.
e Let uj,us €V and A € R. For all v € V we have

(A(ur + Aug),v)y, = alur + Aug,v) = a(ur,v) + Aa(ug, v) = (Aug,v),, + A (Aug, v),,
= <AU1 + )\AUQ, U) .

This proves that A(u; + A\ug) = Auy + AAus, and hence that the map u — Auw is linear.
Moreover, for u € V we have

|Auly, = (Au, Au)y, = a(u, Au) < C |lul), |Auly, .

so |Aul,, < C|ull,,. This proves that the operator A is bounded on V.
e For u eV we have

o flul, < a(u,u) < (Au,u)y, < [ Aul, ful,,

SO
|Auly, = alul, - (3.8)

This proves in particular that A is injective. This also proves that the range of A is
closed. Indeed, assume that the sequence (v,),  in V is such that Av, goes to some
w eV as n goes to +00. Then for n,m € N we have

[0 = vnlly < a7 | Av, = Avy], 0.

n,m——+0oo

Since V is complete, the sequence (vy,)
w = Av € Ran(A).
Now let w € Ran(A)*. Then in particular we have

nen Das a limit v € V, and by continuity we have

0 = (Aw,w),, = a(w,w) = « ||w\|$,,

so w = 0. Since Ran(A) is closed, this implies that Ran(A) = V. Thus A is bijective, so
there exists a unique v € V such that Au = f.
e Finally (3.8) gives

[€lys = 1 £y = [Aully, = alul,,

and the proof is complete. O
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Corollary 3.5. We keep the notation of Theorem 3.4 and assume that a is symmetric.

ForueV we set
J(u) = “<“2’ ) _ o).

Then J atteins a unique minimum, obtained for the solution u of (3.7).

Proof. Let u be given by Theorem 3.4. For h € V\ {0} we have

a(h, h)
2

a(h, h)
2

J(u+h)=J(u)+a(u,h) —L(h)+ = J(u) + > J(u),

so J has a strict minimum at point u. [

Ezxercise 30. We use the notation of Theorem 3.4 and assume that a is symmetric.
The purpose of this exercice is to give a new proof of Theorem 3.4 in this case, based
on the analysis of the minima of the functional J defined in Corollary 3.5.

1. Prove that the function J is bounded from below.

2. Consider a minimizing sequence (u,), .y of J. Prove that

, Uy — Uy Uy — U
hmsupa( L m) <0,
n,m—-+0o0 2 2

and deduce that this sequence has a limit u in V.

3. Prove that J reaches a minimum at point u.

4. Prove that u solves the variational problem (3.7).

5. Prove that this minimum is strict, and hence unique.

Exercise 31. We keep the notation of Theorem 3.4, and assume that )V is separable.
We consider a sequence (V,,), . of finite dimensional subspaces of V such that V,, < V,,4
for all n € N and | J,, .y Vs is dense in V.

1. Prove that the problem (3.7) has at most one solution.

2. Prove that for all n € N there exists a unique u,, € V), such that

YoeV,, alup,v)="L(v).

3. Prove that the sequence (u,),.y has a weakly convergent subsequence in V. We
denote by u the corresponding weak limit.

4. Prove that u is a solution of (3.7).

5. Prove that for n € N and v € V,, we have

Ju = unly < —llu =l

6. Prove that u,, goes to u strongly in V.

In this chapter we will only consider problems on real Hilbert spaces. However, for
many applications we also work in complex Hilbert spaces. All the results are easily
adapted to this case, and in particular we have the following version of the Lax-Milgram
theorem
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Theorem 3.6 (Lax-Milgram’s Theorem on a complex Hilbert space). LetV be a complex
Hilbert space. Let a be a sesquilinear form on V (linear on the right and semi-linear on
the left). We assume that a is continuous and that Rea is coercive: there exists o > 0
such that for all u €V we have

2
Re (a(u,u)) = auls; .

Then for any continuous linear form ¢ onV there exists a unique u € V such that
YoeV, alu,v)="L(v).

Moreover

[ €]y
< .
Julyy < =

FExercise 32. Prove Theorem 3.6.

Exercise 33. We consider the setting of Theorem 3.6, but instead of the coercivity we
assume that there exist a > 0 and two bounded linear operators ®;, ®, on )V such that,
for every u eV,
2
|a(u, )| + |a(P1(u), u)| = auls,

and
2
|a(u, w)| + |a(u, Pa(u))| = a|uly, .

Show that the first conclusion of Theorem 3.6 hold with this weaker assumption.

3.2.2 Weak solutions on the Euclidean space

Our purpose in this paragraph is to apply the Lax-Milgram Theorem to (3.6). For this
we have to define a suitable notion of solution. The Lax-Milgram Theorem only applies
in Hilbert spaces, so with this method we cannot work in C%(€2). Moreover, we do not
want to restrict ourselves to the case f e CY(Q).

The Sobolev spaces have been designed to be suitable this kind of analysis. With
p = 2 they are Hilbert spaces, and the corresponding topologies take into account the
derivatives of a function. This suggests the following definition.

Définition 3.7. Let f € L?*(R). A strong solution of (3.6) is a function u € H?(R?)
such that (3.6) holds in the sense of distributions (this is then an equality in L*(R?)).

Thus we look for a function w such that
Vo e CP(RY), J u(—Ag +9) d:p:J fodx. (3.9)
Rd R¢

Then we try to apply the Lax-Milgram Theorem. We denote by a(u, ¢) and £(¢) the
left-hand side and right-hand side of (3.9), respectively. This defines a bilinear form a
and a linear form /.

We cannot apply Theorem 3.4 with the topology of L?(RY), since then a is not
continuous (there are too many derivatives in a), and we cannot work in H?(R%) since
in this case a is not coercive (there are now too many derivatives in the definition of the
norm || g gay)-

The solution is to chose the intermediate situation, which will “equalize” the number
of derivatives on u and ¢. To write (3.9) we have transfered the two derivatives on the
test function. A better choice is to transfer one derivative on the test function and to
keep one on u. This gives this new definition.
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Définition 3.8. Let f e L*(R?). We say that u € H'(R?Y) is a weak solution of (3.6) if
for all v € H*(R?Y) we have

VuVudr + f

R

uvdr = f fudz.
d Q

R4

With this notion of solution, it is now easy to see that by the Lax-Milgram theorem
applied with ¢ : v — (., fv the problem (3.6) is well-posed.

Proposition 3.9. For u,v e H'(R?) we set
a(u,v) = (Vu, V) 12gay + (U, 0) 12(ga) -
Let o € HY(R?)«. There exists a unique u € H*(R?) such that
Yve HY(RY), al(u,v) = o(v). (3.10)

Moreover we have

] g ey < 10 g ays -

Proof. Tt is clear that a is a continuous bilinear form on H'(R?). Moreover for u €
H'(R?) we have
2
a(u,w) = uly:,

so the coercivity is also clear in H!(R?). The conclusions follow from Theorem 3.4. [

3.2.3 Regularity of the weak solution

We have seen that the Lax-Milgram Theorem gives existence and uniqueness of a weak
solution with continuity of this solution with respect to f. However, this notion of weak
solution which was precisely designed to be adapted to the Lax-Milgram Theorem is not
so natural.

Moreover, in this particular case, on R? and with constant coefficients, it is not
difficult to prove with the Fourier transform that (3.6) has in fact a unique strong
solution. Our purpose here is to recover this fact without the Fourier transform. For
this we prove that the weak solution given by Proposition 3.9 belongs in fact to H?(R?)
and is in fact a strong solution. The interest of this new method is that it will apply in
situations where we can no longer use the Fourier transform. Since a strong solution is
necessarily a weak solution, we already have uniqueness of a strong solution.

Proposition 3.10. Let f € L*(RY) and let u € H'(RY) be the unique weak solution of
(3.6) given by Proposition 3.9. Then u e H*(RY), the equality (3.6) holds in L*(R?) and
there exists C' > 0 independant of f such that

HUHH2(Rd) <C Hf“L?(IRd) :

If moreover f € H*(RY) for some k € N then u € H*"*(RY) and there exists Cj, > 0
independant of f such that

HUHHk+2(Rd) <C HfHHk(Rd) :

In R? it is natural to prove Proposition 3.10 with the Fourier transform.
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Proof 1. Let ¢ € C*(R?). Since u € H'(R?) we can write

—f ulA¢dr = f Vu-Vodr = J (f —u)pdx.

Rd R Ré

This proves that in the sense of distributions we have —Awu = f —u. Then Au e L*(R?)
and we have —Au + u = f in L?*(R?). By Remark 2.28 we also have u € H?*(R?).

We prove by induction on k € N that if f € H*(RY) we have u € H**2(R%). We have
proved the case k = 0. Assume that the result is proved up to k& — 1 for some k € N* and
let f e H*(R?). Since f € H*"'(R?) we have u € H*(RY). Then Au = u— f € H*(R?).
We deduce that v e H¥*2(R%). Finally we have

o= A+ 1€ < 1 ey - O

We provide another proof based on the difference quotients. The interest is that we
will be able to apply the same strategy on the half-space in the next section.

)24
] g2 may < [[(1 +1¢%)

Proof 2. Let h € R4 {0}. By (3.10) applied with v = D_j,(Dpu) € HY(R?), (2.4), (2.5)
and Proposition 2.38 we have

2 2 2
| Drulgrigay = |V Dnu|r2may + [ Dnt|72ga)
= (Vu, Vo) 1o gay + (0, 0) 2Ry

<f> >L2 (R4)

< HfHLz(Rd) ”Dhu”Hl(Rd) ;

SO
| Dnll g1y < 1f |2 ey -

In particular, for all j € [[1,d] we have

||DhajuHL2(Rd) < ||fHL2(R)

By Proposition 2.12, this proves that d;u € H'(R?) with [05ul 1 gy < 11/ [l £2(ray for all
j € [1,d]. Therefore u e H*(R?) with |ull gzgay < C'|fl2(ray for some constant C' > 0
independant of f.

We prove the higher regularity result by induction on k£ € N. We have proved the
case k = 0, and we assume that the result is proved up to the case k — 1 for some
k € N*. Assume that f € H*(R%). By induction, since f € H*"}(R?), we already know
that u € H*1(R?). Let a € N? with || < k. Then 0°u € H'(R?) is the weak solution
of

—A(0%) + 0%u = 0°f.

For this we write for any ¢ € C(R%)

Voou - Vo dr + é‘“ugbdm—( Dl | Vu-Végds + (-1 | ugde

Rd Rd Rd

~(-0f! [ fenoda

= 0°f pdx.

Rd
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This proves that 0“u € H*(R?), and hence that v € H**2(R¢). Moreover
Hé’aUHHZ(Rd) S HaafHLQ(Rd) S Hf”Hk(Rd)'
Finally u € H**2(R%) and ]l grreay < I1F[ e ray- O

Notice that for this second proof we have also used the fact that the problem (3.6)
is posed on R?. In the following section we will see how this method is adapted for a
problem posed on an open subset Q # R%.

Ezercise 34. Let A > 0 and f € L?(RY). We consider on R? the equation
—Au+ du = f.

1. Prove that this problem has a unique weak solution u (in a suitable sense to be
defined).

2. Prove that this solution belongs to H*(R?) and give an estimate of |ul 2 g, with
respect to | | 2(gay and A > 0.

3. What happens if A <07

3.3 Boundary conditions

In the previous section, we have described the variational method for elliptic equations
with the example of a problem on R%. We will apply the same global strategy on a
general open subset © of R?, but some arguments have to be adapted. We first observe
that, in general, the solution of (3.6) or the variational version (3.10) is not unique.
This is easy to see in dimension 1. For instance, on £ =] —1, 1| any function of the form

u(z) = Ae” + Be™®

is in H?(2) and satisfies —u” + u = 0. Similarly, on the unbouded open set € =]0, +o0[,
the same applies to the functions of the form z — Be™".

One possibility to recover a well posed problem is to add boundary conditions. This
choice is physically relevent since what happens at the boundary can be controled or at
least measured. For instance, for f € L?(—1,1) the following problems on | — 1, 1| have

at most one solution v € H*([—1,1]):

—u" +u=f, —u" +u=f,
{u(—l) =u(l) =0, {U’(—l) — (1) = 0. (3.11)

Ezxercise 35. Give explicitely the solutions of the two problems (3.11).

We can write the corresponding problems in any dimension. If we add the condition
that the solution vanishes at the boundary, we obtain the so-called boundary value
problem with Dirichlet boundary condition:

{—Au +u=f onf, (3.12)

u =0, on 0f).
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Asin (3.11), we can for instance solve the problem with the additional condition that
the normal derivative of the solution vanishes at the boundary. This is the corresponding
Neumann boundary problem:

{—Au +u=f onf, (3.13)

dyu =0, on 0f2.

These are not the only possibilities, but we will focus on these two model cases in
this course.

Ezxercise 36. Solve the following problems:

{—u"—i—u:l, {—u”+u=1,
u(—=1) =0, /(1) =0, wW(=1) =0, u(1)=u(l).

If f is continuous on €2, then a classical solution of the Dirichlet problem (3.12) is
a function v € C%(Q) which satisfies (3.12) in the usual sense. We similarly define a
classical solution of the Neumann problem (3.13).

As in the previous section, we try to solve these two problems with the Lax-Milgram
Theorem. For this we need a suitable variational formulation (or, equivalently, a good
definition for a weak solution).

3.3.1 Dirichlet boundary conditions

We begin with the Dirichlet problem. To take into account the condition u = 0, it is
natural to try to work in H}(Q). If u € C*(2) n H?() is a classical solution of (3.12)
and v € H}(Q), we have by the Green Formula (Theorem 2.54)

J(—Au—i—u)vdxzf Vu~Vvdac+J uv dx.
Q Q Q

This suggests the following definition.
Définition 3.11. Let © be an open subset of R? and let f € L?(2). We say that
u e H}(Q) is a weak solution of (3.12) if
Vv e Hy(Q), f Vu~Vvdx+f uvdxzf fvdx. (3.14)
Q R Q

With this notion we can apply the Lax-Milgram theorem and (3.12) is well posed.

Proposition 3.12. Let Q be an open subset of R? and let f € L*(Q2). There exists a
unique solution u € Hj(Q) of (3.14). Moreover Il ) < 122

Proof. For u,v € H}(Q) we set
au,v) = (Vu, VU>L2(Q) + <u7U>L2(Q)> l(v) = <f7U>L2(Q)'

This defines a continuous bilinear form a and a continuous linear form ¢ on H}().
Moreover, for u € H}(Q2) we have

2 2 2
a(u, u) = |[Vul 120y + lulz2) = 500

so a is coercive. The conclusions follow from Theorem 3.4. O
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As in R?, we have worked with the H' regularity to be able to apply the Lax-Milgram
theorem, but we would like to have a solution at least in H?2.

Here we prove this result for Q = RZ. The case where the boundary of € is not flat
will be discussed with more generality in the following section.

The proof of the following regularity result is divided into two steps. We first check
that u belongs to H2.(R%) (interior regularity), and for this we localize the solution far
from the boundary and apply the result known on the Euclidean space. Then we look
at the regularity near the boundary. For this, we adapt the proof of Proposition 3.10
with difference quotients. We recall that for 0 # R¢, the fact that v and Au belong to
L*(Q) does not imply that u e H?().

Proposition 3.13. Let f € L?(R%) and let u € H}(RZ) be the weak solution of (3.12).
Then u € H*(RY), we have —Au + u = f almost everywhere and there exists C > 0
independant of f such that

lull g2@ay < C1f L2 -
Proof. By Proposition 3.12 we already know that u € Hg(R%) and with HUHHl(Ri) <

171 2cus

e Let w be an open bounded subset of R such that @ < RZ. Let x € C°(R%,[0,1])
be equal to 1 on a neighborhood of @. Then yu belongs to Hj(R%), it can be extended
by 0 to a function @ € H'(R?), and 7 is a weak solution on R¢ for the problem

—Au+a=xf—2Vx-Vu—uly, (3.15)

where the right-hand side has been extended by 0 on R?. Since the right-hand side
belongs to L*(R?) we obtain by Proposition 3.10 that @ belongs to H?(R?) and that the
equality (3.15) holds in L?(R?). This proves that u € H?(w) and —Au+u = f in L*(w).
Since this holds for any w, u belongs to H2_.(R%) and the equality —Au + u = f holds
in L .(R%). This implies

loc

~Au=f—ue L*(R%). (3.16)
o Let je[2,d] and ¢t # 0. By Proposition 2.38 we have

H‘DtejuHL2(Ri) < HVUHL%R‘i)'

As in the proof of Proposition 3.10, we apply (3.14) with v = D_;. (Dy,u) € Hj(R%)
and we similarly obtain
HDterHHl(Ri) < HfHLQ(R‘j_)'
In particular, for k € [1, d]] we have
HDtejakuHLQ(R‘j_) < HfHLQ(Ri)
so, by Proposition 2.12, 0;0,u € L? and
oyl s gug < 1 gocasy-

e It remains to consider the second derivative dfu. By (3.16) we have
d
Oty = —2 ju—f—ue L*(R%),
j=2

and hence v € H?(R?) with HU/HHQ(Ri) < C Hf”LQ(Ri) for some C' > 0 independant of
I3 0
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We finish this paragraph with the higher regularity result.

Proposition 3.14. Let k € N and f € H*(R%). Let u be the weak solution of (3.12).
Then ue H*2(R4),

Proof. We prove the result by induction on £ € N. The case k = 0 is Proposition 3.13.
We assume that for some k € N* the result is proved up to order k—1. Let f € H*(R%).
Since f € HF"'(R%) we already know by the inductive assumption that v e H*™(R%).
e Let a = (ay,...,ay) € N* such that |a| = k and a; = 0. Then 0*u € H}(R?) is
the weak solution of (3.12) with f replaced by 0“f € L?(Q2). By Proposition 3.13, this
proves that 0®u € H*(RZ). Thus, for any 8 = (fi,...,34) € N® with |8] < k + 2 and
B1 < 2 we have 0°u e L*(R?%).

e Now we prove by induction on m € [0, k + 2] that for 3 € N¢ with |3] < k + 2 and
81 < m we have d°u € L*(R%). We already have the cases m < 2. Assume that for
some m € [3, k + 2] we have prove this statement up to order m — 1 and consider 3 € N¢
with || < k+ 2 and 8, = m. Let B = (81 — 2, B, ..., B4). We have

~ i d
Pu = 0%(0%u) = —0° (f + Z 6j2u> e L*(R?).
j=2
The conclusion follows by (double) induction. O

3.3.2 Neumann boundary conditions

Now we turn to the Neumann problem (3.13). Contrary to the Dirichlet problem, we
cannot, encode the boundary condition d,u = 0 in the variational space V. The normal
derivative does not even have a sense in H*().

It turns out that the solution of (3.13) will be given by the variational problem posed
in the full space H'(Q), without any condition at the boundary.

This is not an obvious guess. But we have not used the boundary condition in the
proof of Proposition 3.12, so it is a natural to wonder what happens if we replace H}(Q)
by H'(€) in the results of the previous paragraph (notice that on R? we have H! = H,
so this distinction was irrelevant in that case).

Définition 3.15. Let Q be an open subset of R? and let f € L?(2). We say that
u e H'(Q) is a weak solution of (3.13) if

Vv e H' (), f Vu-Vvdx—i—f uv dx :J fvdx. (3.17)
Q Q Q

Exactly as for Proposition 3.12, we have the following well-posedness result in the
weak sense.

Proposition 3.16. Let Q be an open subset of R and let f € L?(2). There exists a
unique solution u € H*(Q) of (3.17). Moreover )l gy < 1l L2

Now we prove the regularity of this weak solution when 2 = RZ. Compared to the
Dirichlet case, the Neumann boundary condition is not explicit in the definition of the
weak solution and can only be stated once we have the H? regularity.

Proposition 3.17. Let f € L*(R%) and let u e H'(RZ) be the weak solution of (3.12).
Then ue H*(RY) and d,u =0 on JR?.
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Recall that by d,u = 0 we mean 7, (u) = 0 in L*(JR%), where v, : H*(R%) — L*(R%)
is the normal trace (introduced in Paragraph 2.6.2).

Proof. As in the proof of Proposition 3.13 we see that u € H*(R%) and, in L*(R%),
—Au+u=f.

By the Green formula (see Theorem 2.55), we have for all v e H'(R%)

vadx _ J(—Au + v dz

:JVU-Vvdx— 8yuvdx'+fuvdx

d
oRY

= va dx — o,uvdr’
R

This means that for all v e H'(R%) we have

J d,uvdr = 0.
R

Since the range of the trace operator vy is dense in L*(R%71), this proves that in L?*(R%"1)
we have
o,u = 0. O

3.3.3 Inhomogeneous boundary conditions

So far we have considered homogeneous Dirichlet boundary conditions (v = 0) or homo-
geneous Neumann boundary conditions (d,u = 0). Now we introduce a problem with
an inhomogeneous boundary condition. For simplicity we continue with the equation
—Au+u = f on the half-space R, and we only consider the case of a Dirichlet boundary
condition. Given g € L?(092) we consider the problem

{—Au+u =f onRZ, (3.18)

u=g, on JRZ.

The boundary condition makes sense as soon as u belongs to H'(RZ) and g €
L*(0R4). Tt means

Yo(u) = g.
We recall that the trace operator 7o : H'(R%) — L?*(0R%) is not surjective. And it

is clear that if ¢ is not in the range HY2(0R?), then the problem (3.18) cannot have a
solution.

Now we assume that g belongs to HY2(0R?) and we consider w € H!(R?) such that
Yo(w) = g. Then w is solution of (3.18) if and only if & = u — w is a solution of

{—Afm—&:f—I—Aw—w on R?, (3.19)

u=0, on JR%,

56 J. Royer - Université Toulouse 3



SECOND ORDER ELLIPTIC EQUATIONS

where Au is seen as an element in H'(R%)*. Thus the right-hand side f+ Aw —w is not
necessarily in L*(R%), but it is at least in H*(R%)*. Then the Lax-Milgram Theorem
gives a unique weak solution @ € H}(R%) of (3.19). Setting u = @ + w we have

~Au+u=feL*R%)

and

Y0 (u) = Y0(w) = g.
Remark 3.18. Notice that Au € L?(R%) but u is not necessarily in H*(RL) (if u €
H?*(R?) then g = vo(u) € H¥?(0R?), which is not necessarily the case).

FEzxercise 37. In this exercise we discuss the problem

{—Au—i—u:f, on Ri, (3.20)

dyu = g, on JRZ,

where f e L*(R%).

1. Discuss the problem when g € HY?(0R%).

2. Now we consider the case g € H~1/2(0R%).

a. Prove that there exists a unique v € H'(R%) such that

Yo e H'(RY), f Vu-Vuvdr + f wvdr = fvdz +(g,7%(V)) g-1/2(amd ) /2 (ome ) -
R4 R4 R4 A *
+ + +

b. Does Au belong to L*(R%) ? Does u belong to H*(R%) ? What can we say about
o,u ?

3.4 More general settings

In this section we discuss on a general bounded open subset €2 the general elliptic second
order equation (3.1), with the operator P introduced in (3.2). We assume that A is
symmetric and P is uniformly elliptic, see (3.3) and (3.4). We have to add boundary
conditions. Here, we only consider the case of the Dirichlet boundary condition:

{Pu —f, onQ, (3.21)

u =0, on 0f).

As above, we first solve a corresponding varitional problem and prove existence and
uniqueness of a weak solution in H} (). Then we will prove the regularity of this weak
solution to get a solution in H%(Q) n Hj(9).

3.4.1 Weak solution for a general second order elliptic equation

Following the previous cases, we define the notion of weak solution in H{ () by trans-
fering a derivative on the test function by a formal integration by parts.
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Définition 3.19. Let Q be an open subset of R? and let f € L?*(Q). We say that
u e H}(Q) is a weak solution of (3.21) if for all v € Hj(£2) we have

ap(u,v) = L fo, (3.22)

where we have set

aP(ua U) - <AVU, vu)LQ(Q) + <B - Vu, U>L2(Q) + <Cuv U)LQ(Q)

d d
= Z f a; Orud;v dr + ZJ brOru v dx —i—J cuv dzx.
Q k=1Y% R4

j,k)=1

(3.23)

As above, it is easy to check that a is a continuous bilinear form on H{ (£2). However,
it is not necessarily coercive. For instance, for P = —A on R¢ we have

a(w,u) = |Vl iz (3:24)
which is not coercive in H!(R?). But for any A > 0 the bilinear form defined by
on (o) = aut ) + A (3.25)

is coercive. In other words, we have a bilinear form which does not control the square
of the H' norm, but it controls at least the square of the norm of the gradient, so it is
enough to add a multiple of the square of the L? norm (which corresponds to adding to
the operator a multiple of the identity) to get coercivity. This is why we considered the
operator —A + Id instead of —A in the first example in Section 3.2.

The same applies in the more general setting of this section. The ellipticity assump-
tion (3.4) ensures that ap(u, u) controls at least HVuHQLQ(Rd), and hence it will be possible
to apply the Lax-Milgram Theorem to the equation Pu+~u = f for v > 0 large enough.

Lemma 3.20. Let ap be defined by (3.23), with A satisfying (3.3) and (3.4). Let
oo €]0,af. There exists vy € R such that for all u € H}(Q) we have

ap(u,u) = ag Hqui?(Q) — 7 HuHiQ(Q) -
Proof. Let u € Hy(2). By (3.4) we have
(AVUu, Vu) o) = @ ||VUHi2(Q) :
Let ¢ = a — ag > 0. We have

2 2
| B e lullz2(q)
4e ’

2
(B - Vu,u) 20y | < 1Bl o) [Vl 20 [l 120y < € IVul72q) +

so the conclusion follows with

IBlEr)
L S .

Thus, instead of (3.21), we consider for v > 7, the problem

(3.26)

Pu+~u=f in Q,
u=20 on 0f2.
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A weak solution of (3.26) is a function v € Hj(€) such that
Yoe Hy(Q), ap(u,v)+7 <u,v>2LQ(Q) = JQ fvdx. (3.27)
By Lemma 3.20, the left-hand side defines a coercive bilinear form, so by the Lax-

Milgram Theorem 3.4 we have the following result.

Proposition 3.21. Let ag €]0,a and let v9 € R be given by Lemma 3.20. Then for
v > 70 and f € L*(Q2) the problem (3.26) has a unique weak solution in H}(Q). Moreover
there ewists C, > 0 independant of f such that

HUHHl(Q) <G ”fHLZ(Q) : (3.28)

3.4.2 Regularity of a weak solution

Now we prove the regularity of a weak solution for the problem (3.21). Since we can
replace ¢ by ¢ + +, this also gives the regularity for a weak solution of (3.26).

Proposition 3.22. Let Q be a bounded open subset of R? of class C?. Let P be as
above with A € CY(Q) and b,c € L*(Q). There exists C > 0 such that if f € L*(Q) and
uwe HY(Q) is a weak solution of (3.21), then u e H?*(Q) and

||“||H2(Q) S C( Hf”L?(Q) + H“HHl(Q) )a (3.29)

and (3.21) holds in L*(Q). If moreover Q is of class C**2, A B,c € C*1(Q) and
fe H¥Q) for some k € N, then ue H*2(Q).

With little more effort, we can we fact replace [ul ;1) by |ull2(q) in the right-hand
side of (3.29). Prove it as an exercice. Notice that in the context of Proposition 3.21
we can apply (3.28) and have an estimate which depends on f only.

Proof. « We begin with the case Q = R? and assume that the derivatives of A are
bounded on R¢. For all v e H'(RY) we have

f AVU'VUZJ fo,
R Rd

f=f—-B Vu—cueL*RY.
There exists C; > 0 which only depends on B and ¢ such that

where we have set

r 2 2
112 ey < CrlF 22 ey + Iullan gay )

Let h € R4 {0}. As in the proof of Proposition 3.10 we apply (3.27) with v =
D_j,(Dpu) € HY(R?). For € > 0 we have

f AVu -V (D_y(Dyu)) d

_ J AV(Dyut) - V(Dyu) dar + f (DWA)Vu - V(Dyu) d
R4 Rd
| DR A7 0 2a
> 0 V(D) gy — & 17 (Dn) sy — e D a2
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and

|13 2 gy
4e

G

r 2 2 2 2
fode < e [v] 2 gay + < e |[V(Dnu) g2y + 7= (11 2@ey + [ullaga )-
Ra 45

With ¢ = % we obtain

a 1
5 | Da(Vu) |72 g0y < Co( [1f 1 72gay + [l gay ), Co = 5(01 + | Al o1 ay ) -

This proves that v € H?*(R?) and, for some C' > 0 which only depends on A, B and c,

HU||H2(Rd) < C( HfHL?(Q) + ||UHH1(Q) )

e The case Q = R? is proved similarly by taking h parallel to JR% as in the proof of
Proposition 3.13. This proves that for j € [2,d] and k € [1,d] we have d;0yu € L*(R?),
with H&j&kUHLQ(Ri) < Gyl Hf”L?(Ri) + ”“”Hl(Ri)) for some C}; > 0 independant of f
and u. Then we observe that the ellipticity (3.4) applied with £ = (1,0,...,0) shows
that a;1(x) = a > 0. Then

1
0fu = 7(61@17161@6 — (61a1,1)61u)

ai

1
SR Z 0;a;k0pu + B - Vu + cu — (01a11)01u | € L2(Ri),
Q11 1<j,k<d
(4,k)#(1,1)
with
|02) et < o (I aqgsy + lolinges )

for some C;; > 0 independant of f and u. The conclusion follows in this case.
e We consider the case where € is a bounded subset of R? of class C2. As is now
usual we will use a partition of unity and changes of variables as described in Paragraph
2.4.1. The regularity of a solution compactly supported in €2 is proved as in the proof
of Proposition 3.13. Now we consider an open subset & of R? such that 0Q N is a
graph of class C?, a diffeomorphism ® of class C? from U to an open subset W such
that (U N Q) = W nR%, and we assume that the solution u € Hj () is supported in
UnNQ. Weset U=>""and we denote by J® and J¥ the jacobian matrices of ® and
U, respectively. We also write |JU| for |det(J¥)].

Let @ = uoW e H(W nR%). Then we check that @ is a weak solution on W of the
equation

—div(AVa) + B -Va + ¢ = f,

where for 7 € W nR% and = = ¥(Z) we have set

A7) = |J0(F)] JO(2)Al2)J®(2)T,  B(F) = |JU(F)| B(2)J®(2)T, &&) = |JU(F)| c(z)

and f() = |JU(#)| f(x). For instance, for o € H{(W nR%) and v = © o ® we have by
the change of variables x = U(Z)

- JW (A@ V@) - Vi) di - - JW AHE) Va(¥(@) - To(w(@) [9(7)] da

= —J (A(x)Vu(z)) - Vo(z) dx.
UNQ
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The matrix A is symmetric, since A is. Now let £ € R%. For 7€ W N R? and 2 = ¥(7)
we have

(A@)8) - € = |JU(@)] (A(2)JD(2)T€) - (JO(2)T€) = a|JV ()| |J0(2)7¢]” = ale),
with inf |
Q= am > 0.

Thus, according to the case @ = RZ, we have @ € H*(W n R?%) with ”aHHQ(WmRi) <
(||fHL2 ward) T |8 i e ), for some constant C' > 0 independant of f or f. Going

back to 2, we deduce that u € H2(U nQ) with |u] m2@ine) < C(|flr2@ne) + |u|mwan)),
with C' > 0 independant of f.

Now we use the notation of Paragraph 2.4.1. For all j € [0, N] we have in the weak
sense

P(xu) = fj,

where, for some C; > 0,
1£ill L2y < Ci (1 f 2y + Nl oy )-

For j € [0, N] we apply the above results to x;u. Then we deduce that u = Zj.vzo(xju)
belongs to H%()), and

N

‘UHHQ ||XjuHH2(Q) S Z OJ( Hfj”m(g) + HXjuHHl(Q)))
g=0 j=0

=2

<O 1flr2) + Il g ).

This completes the proof. For the higher regularity, we check that under the stronger
assumptions of the proposition we have higher regularity for 4 and u at each step of the
proofs. We omit the details. n

Ezercise 38. Assume that A€ Wh*(Q), Be L*(Q) and c € L*(2). Prove that there
exist v > 0 and C' > 1 such that for all u e H*(Q) n H}(Q2) we have

c! lull g2 < [Pull 2y + 7 [ul 2@y < Clullggqy -

3.5 The Poisson equation on a bounded domain

After the analysis of a quite general second order elliptic equation, we go back to the
model case, namely the Poisson equation. We have already discussed in Exercise 34 and
in Paragraph 3.4.1 (see (3.24)) the fact that the equation —Au = f is not well posed on
R

Here we consider the same problem on a bounded open subset € of R%. Of course,
as above, we will have to add an additional condition to get a well posed problem (oth-
erwise, we see that if u is a solution, then u + f is also a solution for any constant /3).

We begin with the Poisson equation with Dirichlet boundary condition

{—Au = f, on{,

(3.30)
u =0, on 0f).
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The corresponding bilinear form is given by (3.24) as in RY. The important difference
is the Poincaré inequality, according to which the H! norm is controled by the norm of
the gradient on HJ () (see Theorem 2.57).

Proposition 3.23. Let Q be a bounded subset of R? and let f € L*(Q). There exists a
unique u € HY(Q) such that
Yo e H) (), J Vu-Vvdr = f fvdx.
Q Q
Proof. For u,v € H}(Q) we set

a(u,v) = J Vu - V.
Q

This defines a continuous bilinear form on Hj(f2). By the Poincaré Inequality, there
exists a > 0 such that for u e H} () we have

2 2
a(u,u) = [Vul|72q) = o |ulz g, -

This gives the coercivity of a and the conclusion follows from the Lax-Milgram Theorem.
O

Then, by Proposition 3.22, the weak solution of (3.30) given by Proposition 3.23
belongs to H%(Q) (and it is even in H**2(Q) if f € H*(Q) and Q is of class C**2 for
some k € N).

We continue with the same problem with Neumann boundary condition:

{—Au—f, on 9, (3.31)
dyu=0, on 0.

Compared to (3.13), we cannot give a analog of Proposition 3.23 with H}(Q2) replaced by
H'(Q). Tt is clear that the constant functions belong to H'(Q) and breaks the coercivity
of the bilinear form a on H'().

Thus, to recover some coercivity, we have to remove at least the constant functions
from H'(€2). The Poincaré-Wiertinger inequality tells us that this is in fact enough, see
Theorem 2.59.

Notice that if u € H?*(Q) solves (3.31), then by the Green formula (see Theorem

2.55)
L f=- L Au = 0. (3.32)

This gives a necessary condition for (3.31) to have a solution in H?(2). Thus it is
natural to introduce

EQ(Q):{feLQ(Q) : szo}.

Proposition 3.24. Let §) be a bounded, connected and open subset of R%. Let f € EQ(Q)
There exists a unique u € H*(Q) (see (2.26)) such that

Yo e HY(Q), J Vu-Vodr = f foda. (3.33)
Q Q
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For the proof we check that H'(Q) is a Hilbert space, and then we follow the proof
of Proposition 3.23, using Theorem 2.59 instead of Theorem 2.57.

Proposition 3.25. Let f € L*(Q) and let u be the weak solution of (3.31) given by
Proposition 3.24. Then in the sense of distributions we have —Au = f.

Proof. Let ¢ € C°(2). Then ¢ — ﬁ §, @ dy belongs to ﬁl(Q), SO we can write

fVu-qudx: r'VzL-V(qﬁ—l ¢dy) dx
Q

Ja 2] Jo

i 1
i 1
= [ ot (g [ 1) o

= | fody.
JO

[

This proves that —Awu = f in the sense of distributions. m

Ezxercise 39. Let Q be a bounded subset of R?. Show that there exists C' > 0 such
that for any u € HJ(Q2) with Au e L*(Q2) we have

[l g0y < ClAu 2 -

Exercise 40. Let Q be an open bounded subset of RY. We consider the Poisson
equation with inhomogeneous Neumann boundary condition. Given f € L?*(Q) and
g € HY2(08)) we consider the problem

—Au=f, on €,
o,u =g, on 0f.

1. Give a necessary condition on f and g analogous to (3.32) for this problem to have a
solution u € H%().

2. Give a variational formulation adapted to this problem. Prove existence and unique-
ness of a weak solution in a suitable space.

3. What can we say about the regularity of this solution ?

4. What happens if g is only in H~Y2(0Q) ?

3.6 Spectral properties of elliptic operators

3.6.1 The Fredholm alternative

Now we apply the abstract Fredholm theory to our second order elliptic equations. We
introduce the formal adjoint P* of the operator P defined (3.2). It is defined by

P*u = —div(AVu) — B- Vu + (c — div B)u.

In particular P* = P if B = 0 (this is not the case with complex coefficients). The
corresponding bilinear form is defined on H}(Q) by

apx(u,v) = ap(v,u),
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where ap is defined by (3.23). In particular, v € H}() is a weak solution for the
problem

Py = Q
{ u=0, on{} (3.34)

u =0, on 0f2.

if and only if ap(v,u) = 0 for all v € H}(Q). Moreover P* is elliptic with the same
coefficient @ > 0 as P (see (3.4)), and for ag €]0, o[ Lemma 3.20 gives the same v, as
for P.

Theorem 3.26. Let Q be a bounded open subset of R? and let P be defined by (3.2).

(i) The problem (3.21) has a unique weak solution for any f € L*(Q) if and only if 0
is the only weak solution for the homogeneous problem

Pu=0, onQ
{“ o (3.35)

u =0, on 0.

(ii) The problem (3.21) has a weak solution if and only if f is orthogonal in L*(2) to
the set N* of weak solutions of the problem (3.34). And in this case the set of weak
solutions of (3.21) is a subspace of H}(Q) of dimension dim(N*).

Proof. & Tt is clear that if (3.21) has a unique weak solution for any f € L*() then
in particular 0 is the unique weak solution for (3.35). Conversely, assume that 0 is the
unique weak solution for (3.35). By linearity, a weak solution of (3.21) is necessarily
unique. It remains to prove existence. Let f € L%().

Let 7o be given by Lemma 3.20 and let v > . For g € L?(Q) we denote by Rg the
unique weak solution u of the problem

Pu+~yu =g, on (),
u =0, on 0f).

By Proposition 3.21, this defines a continuous operator R : L*(Q) — H}(Q). Since
H3 () is compactly embedded in L?(Q) by Theorem 2.49, we can see R as a compact
operator on L?(12).

A function u € H}(Q) is a weak solution of (3.21) if and only if u = R(f + yu). If
we set K = R, this is equivalent to

(Id —K)u = Rf. (3.36)

If u € Ker(Id —K) then u € Hj(Q) and u is a weak solution of (3.35), so u = 0. This
proves that Id —K is injective. By Theorem A.8, it is also surjective so there exists a
solution u € L*(Q) of (3.36). Since u = Rf + Ku € H} (), it is a weak solution of
(3.21), which proves the first statement.

e We observe that the adjoint R* of R maps g € L?(f2) to the unique weak solution of

P*u+~yu =g, on ),
u =0, on 0f).

Therefore v is a weak solution of (3.34) if and only if

(Id —K*)v = 0.
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Then, by Theorem A.8 again,
N* = Ker(Id —K*) = Ran(Id —K)*.

Then the problem (3.21) has a weak solution if and only if Rf € (N*)*, that is if and
only if
Yve N*, (f,v)y = (f,K*v),, = (Kf,v)y, =7 (Rf,v), =0.

This gives the first part of the second statement. Finally, by Theorem A.8 we also have
dim(Ker(Id —K)) = dim(N*),
and the proof is complete. O]

Remark 3.27. The first statement of Theorem 3.26 is very important, and it does not
hold in general. For instance, given f € L*(R), then u is a weak solution of the Poisson
equation

if and only if u € H*(R) and, for almost all £ € R,

A

gha(g) = f(8)-

Then we see that u = 0 is the only solution when f = 0, but there is no solution for
instance if f = 1 on a neighborhood of 0.

Ezxercise 41. Let Q be a bounded open connected subset of R of class C?.
1. For f € L?(Q) we denote by R(f) € H'(Q) the unique weak solution u of the problem

—Au+u=f, on ()
dyu =0, on 0f).

Prove that this defines a compact operator R on L*((2).

2. Prove that R* = R.

3. Prove that Ker(Id —R) is the set (1) of constant functions on €.

4.Let f € L*(Q). Prove that (3.31) has a solution if and only if Rf € (1)*. Deduce that
(3.31) has a solution if and only if f itself is orthogonal to (1).

5.Let f € L*(Q) such that (3.31) has a solution ug € H'(Q). Prove that the set of
solution is given by ug + Ker(Id —R).

Compare all these results with the results of Section 3.5.

3.6.2 Spectrum of elliptic operators

Let © be an open bounded subset of RY. We consider a second order elliptic operator
P as defined by (3.2), with the symmetry and ellipticity assumptions (3.37) and (3.4).

So far we have mostly discussed the variational version of the problem (3.21), given
by the bilinear form (3.23) on Hj(£2). This means that P was seen as a function from
H}(Q) to its dual H (). However we have seen that a weak solution u € HJ ()
belongs in fact to H%(€2), and (3.21) holds in the strong sense.

Now let us see P directly as a linear map from H?(Q) n H}(Q) to L*(Q). This is
then an operator on L?*(€)) with domain D(P) = H%*(Q) n H}(9).
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Theorem 3.28. The spectrum of P consists of a discrete set of eigenvalues with finite
algebraic multiplicities.

Proof. Let ag €]0,af and let 7o be given by Lemma 3.20. Let v > 7o. For f € L*(Q)
the problem (3.26) has a unique weak solution u € H}(Q2). Moreover u € H?(2) and
there exists C' > 0 independant of f such that |[u[gzq) < C'[ f|2(q)- This proves that
P+~ :D(P) — L*) is bijective with bounded inverse. Thus —v € p(P). Moreover,
since the inclusion H?(Q2) < L?*(Q) is compact, the inverse (P + +)~! is compact. Then
we conclude with Theorem A.13. O

In particular we recover the first statement of Theorem 3.26. We know that the
sets of weak and strong solutions of (3.21) coincide. Then Theorem 3.28 says that P
is bijective with bounded inverse (for all f € L?*(2) the problem (3.21) has a unique
strong solution w and [[uf g2y < C'[[f]2(q) for some C' > 0) if and only if 0 is not an
eigenvalue of P (0 is the unique solution if f = 0).

Now we assume that B = 0. Then P is formally symmetric, in the sense that
P* =P, (3.37)

where P* is as in (2.18). In particular, in Lemma 3.20 we can take oy = « and 7y =
—infe.
Notice then that if u e H(Q2)\ {0} and A € R are such that

Yoe Hy(Q), alu,v) = \{u,v),
then we necessarily have A > —~,.

Theorem 3.29. Assume that the operator P is symmetric and let vy be as above.

(i) The spectrum of P consists of a sequence of eigenvalues greater than (—vy) and
going to +o0. The geometric and algebraic multiplicities of these eigenvalues co-
incide, and they are all finite.

(ii) There exists an orthonormal basis of L*()) which consists of eigenfunctions for
the operator P.

If we denote by (A,,)nen the non-decreasing sequence of eigenvalues repeated accord-
ing to multiplicities we have

Then there exists an orthonormal basis (¢, )nen+ such that for n € N* we have ¢, €
H?*(Q) n H} () and P, = \,¢,. Equivalently, ¢, € H() is the unique weak solution
for the problem

P n:)\n no 1 Qa
{90 pn A (3.38)

©n =0 on 0S2.
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Proof. We apply Theorem 3.28. We have already said that the eigenvalues are greater
than (—v). Let v > v,. By Theorem A.12, there exists an orthonormal basis (¢5,),,cy
of eigenfunctions for (P + ~)~!. The functions ¢, n € N, are also eigenfunctions for P.
Indeed, if (P +7)"Yp, = pnpn then p, >0, 1—yu, # 0 and Py, = (1 —yu,) 1 ton).
This implies that geometric and algebraic multiplicities of all the eigenvalues coincide.
Moreover these multiplicities are finite, so there is an infinite (countable) number of
eigenvalues. Since the spectrum is discrete and included in | — g, +o0[, the sequence of
eigenvalues goes to +o0. O

2021-2022 67



M2RI - Elliptic PDEs and FEvolution FEquations

68 J. Royer - Université Toulouse 3



