
Chapter 3

Second order elliptic equations

In this chapter we discuss on some open subset Ω of Rd an equation of the form

Pu “ f, (3.1)

where f is some given function, u is the unknown and P is a so-called elliptic operator.
The model of an elliptic operator is the Laplace operator P “ ´Δ (in this case (3.1) is
refered to as the Poisson equation, see Section 3.5 below). When Ω ‰ Rd, we will have
to add boundary conditions to the equation to get a well posed problem (see Section 3.3).

We will only consider second order equations. This means that P will be a partial
differential operator of second order:

P “ ´ div Apxq∇ ` Bpxq∇ ` cpxq “ ´
dÿ

j,k“1
Bjaj,kpxqBk `

dÿ

k“1
bkpxqBj ` cpxq, (3.2)

where A “ paj,kq1ďj,kďd, B “ pbkq1ďkďd and c are bounded real-valued functions on Ω.

We will always assume that A is symmetric:

@j, k P �1, d�, aj,kpxq “ ak,jpxq. (3.3)

We will also assume that the operator P is elliptic.

Définition 3.1. We say that the differential operator P defined by (3.2) is (uniformly)
elliptic if there exists α ą 0 such that for almost all x P Ω and for all ξ “ pξ1, . . . , ξdq P Rd

we have

Aξ ¨ ξ “
dÿ

j,k“1
aj,kpxqξjξk ě α |ξ|2 . (3.4)

This means that the real symmetric matrix Apxq is uniformly definite postive, with
smallest eigenvalue greater than or equal to α ą 0.

All these assumptions are in particular satisfied for the Poisson equation (Apxq “ Id,
B “ 0, c “ 0).

Since the equation (3.1) is linear and has real coefficients, it is enough to consider a
real valued source term f , and we look for a real valued solution u.
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3.1 Maximum Principle
In this paragraph we discuss the maximum principle. Let Ω be an open bounded subset
of Rd. We recall that if u P C2pΩq X C0pΩq satisfies Δu “ 0 on Ω, then for x P Ω and
r ą 0 such that Bpx, rq Ă Ω we have

upxq “ 1
|Spx, rq|

ż

Spx,rq
upyq dσpyq.

To see this we compute
d

dr

1
|Spx, rq|

ż

Spx,rq
upyq dσpyq “ d

dr

1
|Sp0, 1q|

ż

Sp0,1q
upx ` ryq dσpyq

“ 1
|Sp0, 1q|

ż

Sp0,1q
Brupx ` ryq dσpyq

“ 1
|Spx, rq|

ż

BBpx,rq
Bνupyq dσpyq

“ 0

This proves in particular that u cannot reach a strict maximum at x, and that if u
atteins a maximum at x then u is constant on a neighborhood of x. On the other hand,
u is continuous on the compact sets Ω and on BΩ, so it has a maximum. We get

max
xPΩ

upxq “ max
xPBΩ

upxq.

And moreover, if Ω is connected and u reaches a maximum on Ω, then u is constant on Ω.

These facts are already known for holomorphic functions, which are particular cases
of harmonic functions (that is solutions in dimension 2 of Δu “ 0). It is already
known that the maximum principle has many important consequences in that case.
Our purpose in this section is to generalise these observations to more general settings.
In dimension 1 it is not difficult to see that if ´u2 ď 0 on some interval ra, bs, then
upxq ď max

`
upaq, upbq˘

, with equality if and only if u is constant on ra, bs.
Theorem 3.2. Let Ω be an open bounded subset of Rd. Let P be defined by (3.2) with
c “ 0. Let u P C2pΩq X C0pΩq be such that

Pu ď 0 on Ω.

(i) We have
max

Ω
u “ maxBΩ

u.

(ii) If moreover Ω is connected and u atteins its maximum at an interior point, then
u is constant.

The first statement is refered to as the weak maximum principle. The second state-
ment is the strong maximum principle.

The idea for the weak maximum principle is the following. Consider the particular
case ´Δu ă 0 on Ω. If u reaches a maximum at x0 P Ω, then in particular B2

j upx0q ď 0
for all j P �1, d�, which gives a contradiction. In the first step we generalize this idea to
the general setting Pu ă 0, and then we deduce the case Pu ď 0.
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Proof of the weak maximum principle. ‚ We first consider the case where Pu ă 0 in
Ω. For h P Rdz t0u we denote by B2

hupxq the second derivative of t ÞÑ upx ` thq at t “ 0.
Assume by contradiction that there exists x0 P Ω such that upx0q “ max u. Then we
have ∇upx0q “ 0 and B2

hupx0q ď 0 for any h P Rd. Since Apx0q is symmetric and definite
positive, there exist an orthogonal matrix O and a diagonal matrix D “ diagpλ1, . . . , λdq
with positive coefficients such that Apx0q “ ODOT. For j P �1, d� we set ẽj “ Oej. This
defines a new basis of Rd. Then we have

pPuqpx0q “ ´ divpApx0q∇uqpx0q “ ´ div ODOT∇upx0q “ ´
dÿ

�“1
λjB2

ẽ�
upx0q ě 0.

This gives a contradiction and proves the weak maximum principle when Pu ă 0 on Ω.
‚ Then we consider the general case Pu ď 0. We can rewrite P as

P “ ´
dÿ

j,k“1
aj,kBjBk `

dÿ

k“1
b̃kBk, (3.5)

where for k P �1, d� we have set b̃k “ bk ` řd
j“1 Bjaj,k. For ε ą 0 and x “ px1, . . . , xdq P Ω

we set
uεpxq “ upxq ` εeβx1 ,

for some β ą 0 to be fixed large enough. For x P Ω we have

Puεpxq “ Pupxq ` εeβx1
` ´ β2a11pxq ` βb̃1pxq˘ ď εeβx1

` ´ β2α ` β}b̃1}L8pΩq
˘
.

This is negative if β was chosen large enough. By the first case we have

@ε ą 0, max
Ω

uε “ maxBΩ
uε.

We conclude by taking the limit ε Ñ 0.
‚ Now we turn to the proof of the strong maximum principle. Let

F “
"

x P Ω : upxq “ max
Ω

u

*
, ω “ ΩzF.

F is closed in Ω and ω is open. Assume by contradiction that F ‰ H and F ‰ Ω.
We denote by ω the closure of ω in Ω. Since Ω is connected, we can consider x1 in
ω X F ‰ H. Near x1 we can find xc P ω such that distpxc, F q ă distpxc, BΩq. Then we
set r “ distpxc, F q and we consider x0 P F such that |x0 ´ xc| “ r. We have Bpxc, rq Ă ω
and, since x0 P F , we have

∇upx0q “ 0.

For x P Bpxc, rq we set

vpxq “ e´β|x´xc|2 ´ e´βr2 ě 0,

for some β ą 0 to be chosen large enough below. For x P Bpxc, rq we have with the
notation (3.5)

Pvpxq “ ´
dÿ

j,k“1
aj,kpxqBjBkvpxq `

dÿ

k“1
b̃kpxqBkvpxq

“ e´β|x|2
˜

´4β2
dÿ

j,k“1
aj,kpxqpxj ´ xc,jqpxk ´ xc,kq ` 2β

dÿ

j“1
aj,jpxq ` 2β

dÿ

k“1
b̃kpxqpxk ´ xc,kq

¸

ď e´β|x|2 `´4αβ2 |x ´ xc|2 ` 2βTrpAq ` 2β}b̃}8 |x ´ xc|
˘

.
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If β is large enough then on C “ Bpxc, rqzB
`
xc,

r
2
˘

we have

Pv ď 0.

There exists ε ą 0 such that for all x P S
`
xc,

r
2
˘

we have

upx0q ě upxq ` εvpxq.
This also holds on Spxc, rq where v vanishes. We set wpxq “ upxq ` εvpxq ´ upx0q. Then
w ď 0 on BC and Pw ď 0 on C. By the weak maximum principle, we have w ď 0 on C,
and in particular ∇wpx0q ¨ px0 ´ xcq ě 0. This gives

∇upx0q ¨ px0 ´ xcq ě ´ε∇vpx0q ¨ px0 ´ xcq “ 2εβr2e´βr2 ą 0.

This gives a contradiction with ∇upx0q “ 0, and proves that F “ H or F “ Ω.

3.2 Variational method
In this section we discuss the variational method used to solve second order elliptic
equations. We illustrate the method on the simplest problem. We consider on Rd the
equation

´Δu ` u “ f. (3.6)
Before trying to solve this problem, we have to be explicit about what will be called

a solution of (3.6). Since two derivatives of the unknown u are involved, it is natural to
look for twice differentiable solutions.

Définition 3.3. Assume that f P C0pRdq. Then a classical solution of (3.6) is a function
u P C2pRdq such that (3.6) holds in the usual sense.

We will see that this is not necessarily the best point of view to discuss this problem.

3.2.1 The Lax-Milgram Theorem
We recall in this paragraph the Lax-Milgram Theorem, which will be our main tool for
the analysis of elliptic equations. We give different versions and different proofs.

Theorem 3.4 (Lax-Milgram’s Theorem). Let V be a real Hilbert space. Let a be a
bilinear form on V. We assume that

(i) a is continuous: there exists C ą 0 such that, for all u, v P V,

|apu, vq| ď C }u}V }v}V ,

(ii) a is coercive: there exists α ą 0 such that, for all u P V,

apu, uq ě α }u}2
V .

Then for any continuous linear form � on V there exists a unique u P V such that

@v P V , apu, vq “ �pvq. (3.7)

Moreover
}u}V ď }�}V˚

α
.
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This result is just a generalization of the Riesz representation theorem. If we add the
assumption that the bilinear form a is symmetric, then it defines an inner product on
V , and the corresponding norm is equivalent to the original norm on V . In particular,
� is still continuous if V is endowed with this new Hilbert structure. Then the result
follows by the Riesz representation theorem.

In general, the bilinear form a is not symmetric, but we can still give a proof which
relies on the Riesz theorem.

Proof. ‚ Let u P V . The map v ÞÑ apu, vq is a continuous linear form on V , so by the
Riesz representation theorem there exists an element of V , which we denote by Au, such
that

@v P V , apu, vq “ �Au, v�V .

This defines a map A : V Ñ V . Similarly, there exists f P V such that �pvq “ �f, v�V for
all v P V , and }f}H “ }�}V˚ . Then (3.7) holds if and only if Au “ f .
‚ Let u1, u2 P V and λ P R. For all v P V we have

�Apu1 ` λu2q, v�V “ apu1 ` λu2, vq “ apu1, vq ` λapu2, vq “ �Au1, v�V ` λ �Au2, v�V
“ �Au1 ` λAu2, v� .

This proves that Apu1 ` λu2q “ Au1 ` λAu2, and hence that the map u ÞÑ Au is linear.
Moreover, for u P V we have

}Au}2
V “ �Au, Au�V “ apu, Auq ď C }u}V }Au}V ,

so }Au}V ď C }u}V . This proves that the operator A is bounded on V .
‚ For u P V we have

α }u}2
V ď apu, uq ď �Au, u�V ď }Au}V }u}V ,

so
}Au}V ě α }u}V . (3.8)

This proves in particular that A is injective. This also proves that the range of A is
closed. Indeed, assume that the sequence pvnqnPN in V is such that Avn goes to some
w P V as n goes to `8. Then for n, m P N we have

}vn ´ vm}V ď α´1 }Avn ´ Avm}V ÝÝÝÝÝÝÑ
n,mÑ`8 0.

Since V is complete, the sequence pvnqnPN has a limit v P V , and by continuity we have
w “ Av P RanpAq.

Now let w P RanpAqK. Then in particular we have

0 “ �Aw, w�V “ apw, wq ě α }w}2
V ,

so w “ 0. Since RanpAq is closed, this implies that RanpAq “ V . Thus A is bijective, so
there exists a unique u P V such that Au “ f .
‚ Finally (3.8) gives

}�}V˚ “ }f}V “ }Au}V ě α }u}V ,

and the proof is complete.
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Corollary 3.5. We keep the notation of Theorem 3.4 and assume that a is symmetric.
For u P V we set

Jpuq “ apu, uq
2 ´ �puq.

Then J atteins a unique minimum, obtained for the solution u of (3.7).

Proof. Let u be given by Theorem 3.4. For h P Vz t0u we have

Jpu ` hq “ Jpuq ` apu, hq ´ �phq ` aph, hq
2 “ Jpuq ` aph, hq

2 ą Jpuq,

so J has a strict minimum at point u.

Exercise 30. We use the notation of Theorem 3.4 and assume that a is symmetric.
The purpose of this exercice is to give a new proof of Theorem 3.4 in this case, based
on the analysis of the minima of the functional J defined in Corollary 3.5.
1. Prove that the function J is bounded from below.
2. Consider a minimizing sequence punqnPN of J . Prove that

lim sup
n,mÑ`8

a
´un ´ um

2 ,
un ´ um

2

¯
ď 0,

and deduce that this sequence has a limit u in V .
3. Prove that J reaches a minimum at point u.
4. Prove that u solves the variational problem (3.7).
5. Prove that this minimum is strict, and hence unique.

Exercise 31. We keep the notation of Theorem 3.4, and assume that V is separable.
We consider a sequence pVnqnPN of finite dimensional subspaces of V such that Vn Ă Vn`1
for all n P N and

Ť
nPN Vn is dense in V .

1. Prove that the problem (3.7) has at most one solution.
2. Prove that for all n P N there exists a unique un P Vn such that

@v P Vn, apun, vq “ �pvq.

3. Prove that the sequence punqnPN has a weakly convergent subsequence in V . We
denote by u the corresponding weak limit.
4. Prove that u is a solution of (3.7).
5. Prove that for n P N and v P Vn we have

}u ´ un}V ď C

α
}u ´ v}V .

6. Prove that un goes to u strongly in V .

In this chapter we will only consider problems on real Hilbert spaces. However, for
many applications we also work in complex Hilbert spaces. All the results are easily
adapted to this case, and in particular we have the following version of the Lax-Milgram
theorem
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Theorem 3.6 (Lax-Milgram’s Theorem on a complex Hilbert space). Let V be a complex
Hilbert space. Let a be a sesquilinear form on V (linear on the right and semi-linear on
the left). We assume that a is continuous and that Re a is coercive: there exists α ą 0
such that for all u P V we have

Re
`
apu, uq˘ ě α }u}2

V .

Then for any continuous linear form � on V there exists a unique u P V such that

@v P V , apu, vq “ �pvq.
Moreover

}u}V ď }�}V˚

α
.

Exercise 32. Prove Theorem 3.6.
Exercise 33. We consider the setting of Theorem 3.6, but instead of the coercivity we
assume that there exist α ą 0 and two bounded linear operators Φ1, Φ2 on V such that,
for every u P V ,

|apu, uq| ` |apΦ1puq, uq| ě α }u}2
V

and
|apu, uq| ` |apu, Φ2puqq| ě α }u}2

V .

Show that the first conclusion of Theorem 3.6 hold with this weaker assumption.

3.2.2 Weak solutions on the Euclidean space
Our purpose in this paragraph is to apply the Lax-Milgram Theorem to (3.6). For this
we have to define a suitable notion of solution. The Lax-Milgram Theorem only applies
in Hilbert spaces, so with this method we cannot work in C2pΩq. Moreover, we do not
want to restrict ourselves to the case f P C0pΩq.

The Sobolev spaces have been designed to be suitable this kind of analysis. With
p “ 2 they are Hilbert spaces, and the corresponding topologies take into account the
derivatives of a function. This suggests the following definition.
Définition 3.7. Let f P L2pRq. A strong solution of (3.6) is a function u P H2pRdq
such that (3.6) holds in the sense of distributions (this is then an equality in L2pRdq).

Thus we look for a function u such that

@φ P C8
0 pRdq,

ż

Rd

u
` ´ Δφ ` φ

˘
dx “

ż

Rd

fφ dx. (3.9)

Then we try to apply the Lax-Milgram Theorem. We denote by apu, φq and �pφq the
left-hand side and right-hand side of (3.9), respectively. This defines a bilinear form a
and a linear form �.

We cannot apply Theorem 3.4 with the topology of L2pRdq, since then a is not
continuous (there are too many derivatives in a), and we cannot work in H2pRdq since
in this case a is not coercive (there are now too many derivatives in the definition of the
norm }¨}H2pRdq).

The solution is to chose the intermediate situation, which will “equalize” the number
of derivatives on u and φ. To write (3.9) we have transfered the two derivatives on the
test function. A better choice is to transfer one derivative on the test function and to
keep one on u. This gives this new definition.
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Définition 3.8. Let f P L2pRdq. We say that u P H1pRdq is a weak solution of (3.6) if
for all v P H1pRdq we have

ż

Rd

∇u∇v dx `
ż

Rd

uv dx “
ż

Ω
fv dx.

With this notion of solution, it is now easy to see that by the Lax-Milgram theorem
applied with ϕ : v ÞÑ ş

Rd fv the problem (3.6) is well-posed.

Proposition 3.9. For u, v P H1pRdq we set

apu, vq “ �∇u, ∇v�L2pRdq ` �u, v�L2pRdq .

Let ϕ P H1pRdq˚. There exists a unique u P H1pRdq such that

@v P H1pRdq, apu, vq “ ϕpvq. (3.10)

Moreover we have
}u}H1pRdq ď }ϕ}H1pRdq˚ .

Proof. It is clear that a is a continuous bilinear form on H1pRdq. Moreover for u P
H1pRdq we have

apu, uq “ }u}2
H1 ,

so the coercivity is also clear in H1pRdq. The conclusions follow from Theorem 3.4.

3.2.3 Regularity of the weak solution
We have seen that the Lax-Milgram Theorem gives existence and uniqueness of a weak
solution with continuity of this solution with respect to f . However, this notion of weak
solution which was precisely designed to be adapted to the Lax-Milgram Theorem is not
so natural.

Moreover, in this particular case, on Rd and with constant coefficients, it is not
difficult to prove with the Fourier transform that (3.6) has in fact a unique strong
solution. Our purpose here is to recover this fact without the Fourier transform. For
this we prove that the weak solution given by Proposition 3.9 belongs in fact to H2pRdq
and is in fact a strong solution. The interest of this new method is that it will apply in
situations where we can no longer use the Fourier transform. Since a strong solution is
necessarily a weak solution, we already have uniqueness of a strong solution.

Proposition 3.10. Let f P L2pRdq and let u P H1pRdq be the unique weak solution of
(3.6) given by Proposition 3.9. Then u P H2pRdq, the equality (3.6) holds in L2pRdq and
there exists C ą 0 independant of f such that

}u}H2pRdq ď C }f}L2pRdq .

If moreover f P HkpRdq for some k P N then u P Hk`2pRdq and there exists Ck ą 0
independant of f such that

}u}Hk`2pRdq ď C }f}HkpRdq .

In Rd it is natural to prove Proposition 3.10 with the Fourier transform.
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Proof 1. Let φ P C8
0 pRdq. Since u P H1pRdq we can write

´
ż

Rd

uΔφ dx “
ż

Rd

∇u ¨ ∇φ dx “
ż

Rd

pf ´ uqφ dx.

This proves that in the sense of distributions we have ´Δu “ f ´ u. Then Δu P L2pRdq
and we have ´Δu ` u “ f in L2pRdq. By Remark 2.28 we also have u P H2pRdq.

We prove by induction on k P N that if f P HkpRdq we have u P Hk`2pRdq. We have
proved the case k “ 0. Assume that the result is proved up to k ´1 for some k P N˚ and
let f P HkpRdq. Since f P Hk´1pRdq we have u P Hk`1pRdq. Then Δu “ u´f P HkpRdq.
We deduce that u P Hk`2pRdq. Finally we have

}u}Hk`2pRdq À ››p1 ` |ξ|2q k`2
2 û

››
L2 “ ››p1 ` |ξ|2q k

2 f̂
››

L2 À }f}HkpRdq .

We provide another proof based on the difference quotients. The interest is that we
will be able to apply the same strategy on the half-space in the next section.

Proof 2. Let h P Rdz t0u. By (3.10) applied with v “ D´hpDhuq P H1pRdq, (2.4), (2.5)
and Proposition 2.38 we have

}Dhu}2
H1pRdq “ }∇Dhu}2

L2pRdq ` }Dhu}2
L2pRdq

“ �∇u, ∇v�L2pRdq ` �u, v�L2pRdq
“ �f, v�L2pRdq
ď }f}L2pRdq }Dhu}H1pRdq ,

so
}Dhu}H1pRdq ď }f}L2pRdq .

In particular, for all j P �1, d� we have

}DhBju}L2pRdq ď }f}L2pRq .

By Proposition 2.12, this proves that Bju P H1pRdq with }Bju}H1pRdq ď }f}L2pRdq for all
j P �1, d�. Therefore u P H2pRdq with }u}H2pRdq ď C }f}L2pRdq for some constant C ą 0
independant of f .

We prove the higher regularity result by induction on k P N. We have proved the
case k “ 0, and we assume that the result is proved up to the case k ´ 1 for some
k P N˚. Assume that f P HkpRdq. By induction, since f P Hk´1pRdq, we already know
that u P Hk`1pRdq. Let α P Nd with |α| ď k. Then Bαu P H1pRdq is the weak solution
of

´ΔpBαuq ` Bαu “ Bαf.

For this we write for any φ P C8
0 pRdq

ż

Rd

∇Bαu ¨ ∇φ dx `
ż

Rd

Bαu φ dx “ p´1q|α|
ż

Rd

∇u ¨ ∇Bαφ dx ` p´1q|α|
ż

Rd

Bαu φ dx

“ p´1q|α|
ż

Rd

fBαφ dx

“
ż

Rd

Bαf φ dx.
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This proves that Bαu P H2pRdq, and hence that u P Hk`2pRdq. Moreover

}Bαu}H2pRdq À }Bαf}L2pRdq À }f}HkpRdq .

Finally u P Hk`2pRdq and }u}Hk`2pRdq À }f}HkpRdq.

Notice that for this second proof we have also used the fact that the problem (3.6)
is posed on Rd. In the following section we will see how this method is adapted for a
problem posed on an open subset Ω ‰ Rd.

Exercise 34. Let λ ą 0 and f P L2pRdq. We consider on Rd the equation

´Δu ` λu “ f.

1. Prove that this problem has a unique weak solution u (in a suitable sense to be
defined).
2. Prove that this solution belongs to H2pRdq and give an estimate of }u}H2pRdq with
respect to }f}L2pRdq and λ ą 0.
3. What happens if λ ď 0 ?

3.3 Boundary conditions
In the previous section, we have described the variational method for elliptic equations
with the example of a problem on Rd. We will apply the same global strategy on a
general open subset Ω of Rd, but some arguments have to be adapted. We first observe
that, in general, the solution of (3.6) or the variational version (3.10) is not unique.
This is easy to see in dimension 1. For instance, on Ω “s´1, 1r any function of the form

upxq “ Aex ` Be´x

is in H2pΩq and satisfies ´u2 ` u “ 0. Similarly, on the unbouded open set Ω “s0, `8r,
the same applies to the functions of the form x ÞÑ Be´x.

One possibility to recover a well posed problem is to add boundary conditions. This
choice is physically relevent since what happens at the boundary can be controled or at
least measured. For instance, for f P L2p´1, 1q the following problems on s ´ 1, 1r have
at most one solution u P H2pr´1, 1sq:

#
´u2 ` u “ f,

up´1q “ up1q “ 0,

#
´u2 ` u “ f,

u1p´1q “ u1p1q “ 0.
(3.11)

Exercise 35. Give explicitely the solutions of the two problems (3.11).

We can write the corresponding problems in any dimension. If we add the condition
that the solution vanishes at the boundary, we obtain the so-called boundary value
problem with Dirichlet boundary condition:

#
´Δu ` u “ f on Ω,

u “ 0, on BΩ.
(3.12)
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As in (3.11), we can for instance solve the problem with the additional condition that
the normal derivative of the solution vanishes at the boundary. This is the corresponding
Neumann boundary problem:

#
´Δu ` u “ f on Ω,

Bνu “ 0, on BΩ.
(3.13)

These are not the only possibilities, but we will focus on these two model cases in
this course.
Exercise 36. Solve the following problems:

#
´u2 ` u “ 1,

up´1q “ 0, u1p1q “ 0,

#
´u2 ` u “ 1,

u1p´1q “ 0, u1p1q “ up1q.
If f is continuous on Ω, then a classical solution of the Dirichlet problem (3.12) is

a function u P C2pΩq which satisfies (3.12) in the usual sense. We similarly define a
classical solution of the Neumann problem (3.13).

As in the previous section, we try to solve these two problems with the Lax-Milgram
Theorem. For this we need a suitable variational formulation (or, equivalently, a good
definition for a weak solution).

3.3.1 Dirichlet boundary conditions
We begin with the Dirichlet problem. To take into account the condition u “ 0, it is
natural to try to work in H1

0 pΩq. If u P C2pΩq X H2pΩq is a classical solution of (3.12)
and v P H1

0 pΩq, we have by the Green Formula (Theorem 2.54)
ż

Ω
p´Δu ` uqv dx “

ż

Ω
∇u ¨ ∇v dx `

ż

Ω
uv dx.

This suggests the following definition.
Définition 3.11. Let Ω be an open subset of Rd and let f P L2pΩq. We say that
u P H1

0 pΩq is a weak solution of (3.12) if

@v P H1
0 pΩq,

ż

Ω
∇u ¨ ∇v dx `

ż

Rd

uv dx “
ż

Ω
fv dx. (3.14)

With this notion we can apply the Lax-Milgram theorem and (3.12) is well posed.
Proposition 3.12. Let Ω be an open subset of Rd and let f P L2pΩq. There exists a
unique solution u P H1

0 pΩq of (3.14). Moreover }u}H1pΩq ď }f}L2pΩq.

Proof. For u, v P H1
0 pΩq we set

apu, vq “ �∇u, ∇v�L2pΩq ` �u, v�L2pΩq , �pvq “ �f, v�L2pΩq .

This defines a continuous bilinear form a and a continuous linear form � on H1
0 pΩq.

Moreover, for u P H1
0 pΩq we have

apu, uq “ }∇u}2
L2pΩq ` }u}2

L2pΩq “ }u}2
H0

1 pΩq ,

so a is coercive. The conclusions follow from Theorem 3.4.
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As in Rd, we have worked with the H1 regularity to be able to apply the Lax-Milgram
theorem, but we would like to have a solution at least in H2.

Here we prove this result for Ω “ Rd`. The case where the boundary of Ω is not flat
will be discussed with more generality in the following section.

The proof of the following regularity result is divided into two steps. We first check
that u belongs to H2

locpRd`q (interior regularity), and for this we localize the solution far
from the boundary and apply the result known on the Euclidean space. Then we look
at the regularity near the boundary. For this, we adapt the proof of Proposition 3.10
with difference quotients. We recall that for Ω ‰ Rd, the fact that u and Δu belong to
L2pΩq does not imply that u P H2pΩq.
Proposition 3.13. Let f P L2pRd`q and let u P H1

0 pRd`q be the weak solution of (3.12).
Then u P H2pRd`q, we have ´Δu ` u “ f almost everywhere and there exists C ą 0
independant of f such that

}u}H2pRd`q ď C }f}L2pΩq .

Proof. By Proposition 3.12 we already know that u P H1
0 pRd`q and with }u}H1pRd`q ď

}f}L2pRd`q.
‚ Let ω be an open bounded subset of Rd` such that ω Ă Rd`. Let χ P C8

0 pRd`, r0, 1sq
be equal to 1 on a neighborhood of ω. Then χu belongs to H1

0 pRd`q, it can be extended
by 0 to a function ũ P H1pRdq, and ũ is a weak solution on Rd for the problem

´Δũ ` ũ “ χf ´ 2∇χ ¨ ∇u ´ uΔχ, (3.15)

where the right-hand side has been extended by 0 on Rd. Since the right-hand side
belongs to L2pRdq we obtain by Proposition 3.10 that ũ belongs to H2pRdq and that the
equality (3.15) holds in L2pRdq. This proves that u P H2pωq and ´Δu ` u “ f in L2pωq.
Since this holds for any ω, u belongs to H2

locpRd`q and the equality ´Δu ` u “ f holds
in L2

locpRd`q. This implies
´Δu “ f ´ u P L2pRd

`q. (3.16)
‚ Let j P �2, d� and t ‰ 0. By Proposition 2.38 we have

››Dtej
u

››
L2pRd`q ď }∇u}L2pRd`q .

As in the proof of Proposition 3.10, we apply (3.14) with v “ D´tej
pDtej

uq P H1
0 pRd`q

and we similarly obtain ››Dtej
u

››
H1pRd`q ď }f}L2pRd`q .

In particular, for k P �1, d� we have
››Dtej

Bku
››

L2pRd`q ď }f}L2pRd`q

so, by Proposition 2.12, BjBku P L2 and

}BjBku}L2pRd`q ď }f}L2pRd`q .

‚ It remains to consider the second derivative B2
1u. By (3.16) we have

B2
1u “ ´

dÿ

j“2
B2

j u ´ f ´ u P L2pRd
`q,

and hence u P H2pRd`q with }u}H2pRd`q ď C }f}L2pRd`q for some C ą 0 independant of
f .

54 J. Royer - Université Toulouse 3



Second order elliptic equations

We finish this paragraph with the higher regularity result.

Proposition 3.14. Let k P N and f P HkpRd`q. Let u be the weak solution of (3.12).
Then u P Hk`2pRd`q.
Proof. We prove the result by induction on k P N. The case k “ 0 is Proposition 3.13.
We assume that for some k P N˚ the result is proved up to order k ´ 1. Let f P HkpRd`q.
Since f P Hk´1pRd`q we already know by the inductive assumption that u P Hk`1pRd`q.
‚ Let α “ pα1, . . . , αdq P N˚ such that |α| “ k and α1 “ 0. Then Bαu P H1

0 pRd`q is
the weak solution of (3.12) with f replaced by Bαf P L2pΩq. By Proposition 3.13, this
proves that Bαu P H2pRd`q. Thus, for any β “ pβ1, . . . , βdq P Nd with |β| ď k ` 2 and
β1 ď 2 we have Bβu P L2pRd`q.
‚ Now we prove by induction on m P �0, k ` 2� that for β P Nd with |β| ď k ` 2 and
β1 ď m we have Bβu P L2pRd`q. We already have the cases m ď 2. Assume that for
some m P �3, k ` 2� we have prove this statement up to order m ´ 1 and consider β P Nd

with |β| ď k ` 2 and β1 “ m. Let β̃ “ pβ1 ´ 2, β2, . . . , βdq. We have

Bβu “ Bβ̃pB2
1uq “ ´Bβ̃

˜
f `

dÿ

j“2
B2

j u

¸
P L2pRd

`q.

The conclusion follows by (double) induction.

3.3.2 Neumann boundary conditions
Now we turn to the Neumann problem (3.13). Contrary to the Dirichlet problem, we
cannot encode the boundary condition Bνu “ 0 in the variational space V . The normal
derivative does not even have a sense in H1pΩq.

It turns out that the solution of (3.13) will be given by the variational problem posed
in the full space H1pΩq, without any condition at the boundary.

This is not an obvious guess. But we have not used the boundary condition in the
proof of Proposition 3.12, so it is a natural to wonder what happens if we replace H1

0 pΩq
by H1pΩq in the results of the previous paragraph (notice that on Rd we have H1 “ H1

0 ,
so this distinction was irrelevant in that case).

Définition 3.15. Let Ω be an open subset of Rd and let f P L2pΩq. We say that
u P H1pΩq is a weak solution of (3.13) if

@v P H1pΩq,
ż

Ω
∇u ¨ ∇v dx `

ż

Ω
uv dx “

ż

Ω
fv dx. (3.17)

Exactly as for Proposition 3.12, we have the following well-posedness result in the
weak sense.

Proposition 3.16. Let Ω be an open subset of Rd and let f P L2pΩq. There exists a
unique solution u P H1pΩq of (3.17). Moreover }u}H1pΩq ď }f}L2pΩq.

Now we prove the regularity of this weak solution when Ω “ Rd`. Compared to the
Dirichlet case, the Neumann boundary condition is not explicit in the definition of the
weak solution and can only be stated once we have the H2 regularity.

Proposition 3.17. Let f P L2pRd`q and let u P H1pRd`q be the weak solution of (3.12).
Then u P H2pRd`q and Bνu “ 0 on BRd`.
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Recall that by Bνu “ 0 we mean γ1puq “ 0 in L2pBRd`q, where γ1 : H2pRd`q Ñ L2pRd`q
is the normal trace (introduced in Paragraph 2.6.2).

Proof. As in the proof of Proposition 3.13 we see that u P H2pRd`q and, in L2pRd`q,
´Δu ` u “ f.

By the Green formula (see Theorem 2.55), we have for all v P H1pRd`q
ż

fv dx “
ż

p´Δu ` uqv dx

“
ż

∇u ¨ ∇v dx ´
ż

BRd`
Bνu v dx1 `

ż
uv dx

“
ż

fv dx ´
ż

BRd`
Bνu v dx1.

This means that for all v P H1pRd`q we have
ż

BRd`
Bνu v dx1 “ 0.

Since the range of the trace operator γ0 is dense in L2pRd´1q, this proves that in L2pRd´1q
we have

Bνu “ 0.

3.3.3 Inhomogeneous boundary conditions
So far we have considered homogeneous Dirichlet boundary conditions (u “ 0) or homo-
geneous Neumann boundary conditions (Bνu “ 0). Now we introduce a problem with
an inhomogeneous boundary condition. For simplicity we continue with the equation
´Δu`u “ f on the half-space Rd`, and we only consider the case of a Dirichlet boundary
condition. Given g P L2pBΩq we consider the problem

#
´Δu ` u “ f on Rd`,

u “ g, on BRd`.
(3.18)

The boundary condition makes sense as soon as u belongs to H1pRd`q and g P
L2pBRd`q. It means

γ0puq “ g.

We recall that the trace operator γ0 : H1pRd`q Ñ L2pBRd`q is not surjective. And it
is clear that if g is not in the range H1{2pBRd`q, then the problem (3.18) cannot have a
solution.

Now we assume that g belongs to H1{2pBRd`q and we consider w P H1pRd`q such that
γ0pwq “ g. Then u is solution of (3.18) if and only if ũ “ u ´ w is a solution of

#
´Δũ ` ũ “ f ` Δw ´ w on Rd`,

u “ 0, on BRd`,
(3.19)
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where Δu is seen as an element in H1pRd`q˚. Thus the right-hand side f `Δw ´w is not
necessarily in L2pRd`q, but it is at least in H1pRd`q˚. Then the Lax-Milgram Theorem
gives a unique weak solution ũ P H1

0 pRd`q of (3.19). Setting u “ ũ ` w we have

´Δu ` u “ f P L2pRd
`q

and
γ0puq “ γ0pwq “ g.

Remark 3.18. Notice that Δu P L2pRd`q but u is not necessarily in H2pRd`q (if u P
H2pRd`q then g “ γ0puq P H3{2pBRd`q, which is not necessarily the case).

Exercise 37. In this exercise we discuss the problem
#

´Δu ` u “ f, on Rd`,

Bνu “ g, on BRd`,
(3.20)

where f P L2pRd`q.
1. Discuss the problem when g P H1{2pBRd`q.
2. Now we consider the case g P H´1{2pBRd`q.

a. Prove that there exists a unique u P H1pRd`q such that

@v P H1pRd
`q,

ż

Rd`
∇u ¨ ∇v dx `

ż

Rd`
uv dx “

ż

Rd`
fv dx ` �g, γ0pvq�H´1{2pBRd`q,H1{2pBRd`q .

b. Does Δu belong to L2pRd`q ? Does u belong to H2pRd`q ? What can we say about
Bνu ?

3.4 More general settings
In this section we discuss on a general bounded open subset Ω the general elliptic second
order equation (3.1), with the operator P introduced in (3.2). We assume that A is
symmetric and P is uniformly elliptic, see (3.3) and (3.4). We have to add boundary
conditions. Here, we only consider the case of the Dirichlet boundary condition:

#
Pu “ f, on Ω,

u “ 0, on BΩ.
(3.21)

As above, we first solve a corresponding varitional problem and prove existence and
uniqueness of a weak solution in H1

0 pΩq. Then we will prove the regularity of this weak
solution to get a solution in H2pΩq X H1

0 pΩq.

3.4.1 Weak solution for a general second order elliptic equation
Following the previous cases, we define the notion of weak solution in H1

0 pΩq by trans-
fering a derivative on the test function by a formal integration by parts.
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Définition 3.19. Let Ω be an open subset of Rd and let f P L2pΩq. We say that
u P H1

0 pΩq is a weak solution of (3.21) if for all v P H1
0 pΩq we have

aP pu, vq “
ż

Ω
fv, (3.22)

where we have set

aP pu, vq “ �A∇u, ∇u�L2pΩq ` �B ¨ ∇u, v�L2pΩq ` �cu, v�L2pΩq

“
dÿ

j,k“1

ż

Ω
aj,kBkuBjv dx `

dÿ

k“1

ż

Ω
bkBku v dx `

ż

Rd

cuv dx.
(3.23)

As above, it is easy to check that a is a continuous bilinear form on H1
0 pΩq. However,

it is not necessarily coercive. For instance, for P “ ´Δ on Rd we have

apu, uq “ }∇u}2
L2pRdq , (3.24)

which is not coercive in H1pRdq. But for any λ ą 0 the bilinear form defined by

aλpu, uq “ apu, uq ` λ }u}L2pRdq (3.25)

is coercive. In other words, we have a bilinear form which does not control the square
of the H1 norm, but it controls at least the square of the norm of the gradient, so it is
enough to add a multiple of the square of the L2 norm (which corresponds to adding to
the operator a multiple of the identity) to get coercivity. This is why we considered the
operator ´Δ ` Id instead of ´Δ in the first example in Section 3.2.

The same applies in the more general setting of this section. The ellipticity assump-
tion (3.4) ensures that aP pu, uq controls at least }∇u}2

L2pRdq, and hence it will be possible
to apply the Lax-Milgram Theorem to the equation Pu`γu “ f for γ ě 0 large enough.

Lemma 3.20. Let aP be defined by (3.23), with A satisfying (3.3) and (3.4). Let
α0 Ps0, αr. There exists γ0 P R such that for all u P H1

0 pΩq we have

aP pu, uq ě α0 }∇u}2
L2pΩq ´ γ0 }u}2

L2pΩq .

Proof. Let u P H1
0 pΩq. By (3.4) we have

�A∇u, ∇u�L2pΩq ě α }∇u}2
L2pΩq .

Let ε “ α ´ α0 ą 0. We have
ˇ̌
ˇ�B ¨ ∇u, u�L2pΩq

ˇ̌
ˇ ď }B}L8pΩq }∇u}L2pΩq }u}L2pΩq ď ε }∇u}2

L2pΩq ` }B}2
L8pΩq }u}2

L2pΩq
4ε

,

so the conclusion follows with

γ0 “ }B}2
L8pΩq
4ε

´ inf
xPΩ

cpxq.

Thus, instead of (3.21), we consider for γ ą γ0 the problem
#

Pu ` γu “ f in Ω,

u “ 0 on BΩ.
(3.26)
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A weak solution of (3.26) is a function u P H1
0 pΩq such that

@v P H1
0 pΩq, aP pu, vq ` γ �u, v�2

L2pΩq “
ż

Ω
fv dx. (3.27)

By Lemma 3.20, the left-hand side defines a coercive bilinear form, so by the Lax-
Milgram Theorem 3.4 we have the following result.

Proposition 3.21. Let α0 Ps0, αr and let γ0 P R be given by Lemma 3.20. Then for
γ ą γ0 and f P L2pΩq the problem (3.26) has a unique weak solution in H1

0 pΩq. Moreover
there exists Cγ ą 0 independant of f such that

}u}H1pΩq ď Cγ }f}L2pΩq . (3.28)

3.4.2 Regularity of a weak solution
Now we prove the regularity of a weak solution for the problem (3.21). Since we can
replace c by c ` γ, this also gives the regularity for a weak solution of (3.26).

Proposition 3.22. Let Ω be a bounded open subset of Rd of class C2. Let P be as
above with A P C1pΩq and b, c P L8pΩq. There exists C ą 0 such that if f P L2pΩq and
u P H1

0 pΩq is a weak solution of (3.21), then u P H2pΩq and

}u}H2pΩq ď C
` }f}L2pΩq ` }u}H1pΩq

˘
, (3.29)

and (3.21) holds in L2pΩq. If moreover Ω is of class Ck`2, A, B, c P Ck`1pΩq and
f P HkpΩq for some k P N, then u P Hk`2pΩq.

With little more effort, we can we fact replace }u}H1pΩq by }u}L2pΩq in the right-hand
side of (3.29). Prove it as an exercice. Notice that in the context of Proposition 3.21
we can apply (3.28) and have an estimate which depends on f only.

Proof. ‚ We begin with the case Ω “ Rd and assume that the derivatives of A are
bounded on Rd. For all v P H1pRdq we have

ż

Rd

A∇u ¨ ∇v “
ż

Rd

f̃v,

where we have set
f̃ “ f ´ B ¨ ∇u ´ cu P L2pRdq.

There exists C1 ą 0 which only depends on B and c such that

}f̃}2
L2pRdq ď C1

` }f}2
L2pRdq ` }u}2

H1pRdq
˘
.

Let h P Rdz t0u. As in the proof of Proposition 3.10 we apply (3.27) with v “
D´hpDhuq P H1pRdq. For ε ą 0 we have

ż

Rd

A∇u ¨ ∇
`
D´hpDhuq˘

dx

“
ż

Rd

A∇pDhuq ¨ ∇pDhuq dx `
ż

Rd

pDhAq∇u ¨ ∇pDhuq dx

ě α }∇pDhuq}2
L2pRdq ´ ε }∇pDhuq}2

L2pRdq ´ }DhA}2
L8pRdq

4ε
}u}2

H1pRdq
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and
ż

Rd

f̃v dx ď ε }v}2
L2pRdq ` }f̃}2

L2pRdq
4ε

ď ε }∇pDhuq}2
L2pRdq ` C1

4ε

` }f}2
L2pRdq ` }u}2

H1pRdq
˘
.

With ε “ α
4 we obtain

α

2 }Dhp∇uq}2
L2pRdq ď C2

` }f}2
L2pRdq ` }u}2

H1pRdq
˘
, C2 “ 1

α

`
C1 ` }A}C1pRdq

˘
.

This proves that u P H2pRdq and, for some C ą 0 which only depends on A, B and c,

}u}H2pRdq ď C
` }f}L2pΩq ` }u}H1pΩq

˘
.

‚ The case Ω “ Rd` is proved similarly by taking h parallel to BRd` as in the proof of
Proposition 3.13. This proves that for j P �2, d� and k P �1, d� we have BjBku P L2pRd`q,
with }BjBku}L2pRd`q ď Cj,k

` }f}L2pRd`q ` }u}H1pRd`q
˘

for some Cj,k ą 0 independant of f

and u. Then we observe that the ellipticity (3.4) applied with ξ “ p1, 0, . . . , 0q shows
that a1,1pxq ě α ą 0. Then

B2
1u “ 1

a1,1

`B1a1,1B1u ´ pB1a1,1qB1u
˘

“ 1
a1,1

¨
˚̊
˝´f ´

ÿ

1ďj,kďd
pj,kq‰p1,1q

Bjaj,kBku ` B ¨ ∇u ` cu ´ pB1a1,1qB1u

˛
‹‹‚P L2pRd

`q,

with ››B2
1u

››
L2pRd`q ď C1,1

´
}f}L2pRd`q ` }u}H1pRd`q

¯
,

for some C1,1 ą 0 independant of f and u. The conclusion follows in this case.
‚ We consider the case where Ω is a bounded subset of Rd of class C2. As is now
usual we will use a partition of unity and changes of variables as described in Paragraph
2.4.1. The regularity of a solution compactly supported in Ω is proved as in the proof
of Proposition 3.13. Now we consider an open subset U of Rd such that BΩ X U is a
graph of class C2, a diffeomorphism Φ of class C2 from U to an open subset W such
that ΦpU X Ωq “ W X Rd`, and we assume that the solution u P H1

0 pΩq is supported in
U X Ω. We set Ψ “ Φ´1 and we denote by JΦ and JΨ the jacobian matrices of Φ and
Ψ, respectively. We also write |JΨ| for |detpJΨq|.

Let ũ “ u ˝ Ψ P H1
0 pW X Rd`q. Then we check that ũ is a weak solution on W of the

equation
´ divpÃ∇ũq ` B̃ ¨ ∇ũ ` c̃ũ “ f̃ ,

where for x̃ P W X Rd` and x “ Ψpx̃q we have set

Ãpx̃q “ |JΨpx̃q| JΦpxqApxqJΦpxqT, B̃px̃q “ |JΨpx̃q| BpxqJΦpxqT, c̃px̃q “ |JΨpx̃q| cpxq
and f̃px̃q “ |JΨpx̃q| fpxq. For instance, for ṽ P H1

0 pW X Rd`q and v “ ṽ ˝ Φ we have by
the change of variables x “ Ψpx̃q

´
ż

WXRd`
pÃpx̃q∇ũpx̃qq ¨ ∇ṽpx̃q dx̃ “ ´

ż

WXRd`
pApΨpx̃qq∇upΨpx̃qqq ¨ ∇vpΨpx̃qq |JΨpx̃q| dx̃

“ ´
ż

UXΩ
pApxq∇upxqq ¨ ∇vpxq dx.
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The matrix Ã is symmetric, since A is. Now let ξ P Rd. For x̃ P W X Rd` and x “ Ψpx̃q
we have

pÃpx̃qξq ¨ ξ “ |JΨpx̃q| `
ApxqJΦpxqTξ

˘ ¨ `
JΦpxqTξ

˘ ě α |JΨpx̃q| ˇ̌
JΦpxqTξ

ˇ̌2 ě α̃ |ξ|2 ,

with
α̃ “ α

inf |JΨ|
sup }JΨ} ą 0.

Thus, according to the case Ω “ Rd`, we have ũ P H2pW X Rd`q with }ũ}H2pWXRd`q ď
C̃

`}f̃}L2pWXRd`q ` }ũ}H1pWXRd`q
˘
, for some constant C ą 0 independant of f or f̃ . Going

back to Ω, we deduce that u P H2pU XΩq with }u}H2pUXΩq ď C
`}f}L2pUXΩq `}u}H1pUXΩq

˘
,

with C ą 0 independant of f .
Now we use the notation of Paragraph 2.4.1. For all j P �0, N� we have in the weak

sense
P pχjuq “ fj,

where, for some Cj ą 0,

}fj}L2pΩq ď Cj

` }f}L2pΩq ` }u}H1pΩq
˘
.

For j P �0, N� we apply the above results to χju. Then we deduce that u “ řN
j“0pχjuq

belongs to H2pΩq, and

}u}H2pΩq ď
Nÿ

j“0
}χju}H2pΩq ď

Nÿ

j“0
C̃j

` }fj}L2pΩq ` }χju}H1pΩqq
˘

ď C
` }f}L2pΩq ` }u}H1pΩq

˘
.

This completes the proof. For the higher regularity, we check that under the stronger
assumptions of the proposition we have higher regularity for ũ and u at each step of the
proofs. We omit the details.

Exercise 38. Assume that A P W 1,8pΩq, B P L8pΩq and c P L8pΩq. Prove that there
exist γ ě 0 and C ě 1 such that for all u P H2pΩq X H1

0 pΩq we have

C´1 }u}H2pΩq ď }Pu}L2pΩq ` γ }u}L2pΩq ď C }u}H2pΩq .

3.5 The Poisson equation on a bounded domain
After the analysis of a quite general second order elliptic equation, we go back to the
model case, namely the Poisson equation. We have already discussed in Exercise 34 and
in Paragraph 3.4.1 (see (3.24)) the fact that the equation ´Δu “ f is not well posed on
Rd.

Here we consider the same problem on a bounded open subset Ω of Rd. Of course,
as above, we will have to add an additional condition to get a well posed problem (oth-
erwise, we see that if u is a solution, then u ` β is also a solution for any constant β).

We begin with the Poisson equation with Dirichlet boundary condition
#

´Δu “ f, on Ω,

u “ 0, on BΩ.
(3.30)
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The corresponding bilinear form is given by (3.24) as in Rd. The important difference
is the Poincaré inequality, according to which the H1 norm is controled by the norm of
the gradient on H1

0 pΩq (see Theorem 2.57).

Proposition 3.23. Let Ω be a bounded subset of Rd and let f P L2pΩq. There exists a
unique u P H1

0 pΩq such that

@v P H1
0 pΩq,

ż

Ω
∇u ¨ ∇v dx “

ż

Ω
fv dx.

Proof. For u, v P H1
0 pΩq we set

apu, vq “
ż

Ω
∇u ¨ ∇v.

This defines a continuous bilinear form on H1
0 pΩq. By the Poincaré Inequality, there

exists α ą 0 such that for u P H1
0 pΩq we have

apu, uq “ }∇u}2
L2pΩq ě α }u}2

H1pΩq .

This gives the coercivity of a and the conclusion follows from the Lax-Milgram Theorem.

Then, by Proposition 3.22, the weak solution of (3.30) given by Proposition 3.23
belongs to H2pΩq (and it is even in Hk`2pΩq if f P HkpΩq and Ω is of class Ck`2 for
some k P N).

We continue with the same problem with Neumann boundary condition:
#

´Δu “ f, on Ω,

Bνu “ 0, on BΩ.
(3.31)

Compared to (3.13), we cannot give a analog of Proposition 3.23 with H1
0 pΩq replaced by

H1pΩq. It is clear that the constant functions belong to H1pΩq and breaks the coercivity
of the bilinear form a on H1pΩq.

Thus, to recover some coercivity, we have to remove at least the constant functions
from H1pΩq. The Poincaré-Wiertinger inequality tells us that this is in fact enough, see
Theorem 2.59.

Notice that if u P H2pΩq solves (3.31), then by the Green formula (see Theorem
2.55) ż

Ω
f “ ´

ż

Ω
Δu “ 0. (3.32)

This gives a necessary condition for (3.31) to have a solution in H2pΩq. Thus it is
natural to introduce

L̃2pΩq “
"

f P L2pΩq :
ż

Ω
f “ 0

*
.

Proposition 3.24. Let Ω be a bounded, connected and open subset of Rd. Let f P L̃2pΩq.
There exists a unique u P H̃1pΩq (see (2.26)) such that

@v P H̃1pΩq,
ż

Ω
∇u ¨ ∇v dx “

ż

Ω
fv dx. (3.33)
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For the proof we check that H̃1pΩq is a Hilbert space, and then we follow the proof
of Proposition 3.23, using Theorem 2.59 instead of Theorem 2.57.

Proposition 3.25. Let f P L̃2pΩq and let u be the weak solution of (3.31) given by
Proposition 3.24. Then in the sense of distributions we have ´Δu “ f .

Proof. Let φ P C8
0 pΩq. Then φ ´ 1

|Ω|
ş

Ω φ dy belongs to rH1pΩq, so we can write
ż

Ω
∇u ¨ ∇φ dx “

ż

Ω
∇u ¨ ∇

ˆ
φ ´ 1

|Ω|
ż

Ω
φ dy

˙
dx

“
ż

Ω
f

ˆ
φ ´ 1

|Ω|
ż

Ω
φ dy

˙
dx

“
ż

Ω
fφ dy ´

ż

Ω

ˆ
1

|Ω|
ż

Ω
fpxq dx

˙
φ dy

“
ż

Ω
fφ dy.

This proves that ´Δu “ f in the sense of distributions.

Exercise 39. Let Ω be a bounded subset of Rd. Show that there exists C ą 0 such
that for any u P H1

0 pΩq with Δu P L2pΩq we have

}u}H1pΩq ď C }Δu}L2pΩq .

Exercise 40. Let Ω be an open bounded subset of Rd. We consider the Poisson
equation with inhomogeneous Neumann boundary condition. Given f P L2pΩq and
g P H1{2pBΩq we consider the problem

#
´Δu “ f, on Ω,

Bνu “ g, on BΩ.

1. Give a necessary condition on f and g analogous to (3.32) for this problem to have a
solution u P H2pΩq.
2. Give a variational formulation adapted to this problem. Prove existence and unique-
ness of a weak solution in a suitable space.
3. What can we say about the regularity of this solution ?
4. What happens if g is only in H´1{2pBΩq ?

3.6 Spectral properties of elliptic operators
3.6.1 The Fredholm alternative
Now we apply the abstract Fredholm theory to our second order elliptic equations. We
introduce the formal adjoint P ˚ of the operator P defined (3.2). It is defined by

P ˚u “ ´ divpA∇uq ´ B ¨ ∇u ` `
c ´ div B

˘
u.

In particular P ˚ “ P if B “ 0 (this is not the case with complex coefficients). The
corresponding bilinear form is defined on H1

0 pΩq by

aP ˚pu, vq “ aP pv, uq,
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where aP is defined by (3.23). In particular, u P H1
0 pΩq is a weak solution for the

problem #
P ˚u “ 0, on Ω,

u “ 0, on BΩ.
(3.34)

if and only if aP pv, uq “ 0 for all v P H1
0 pΩq. Moreover P ˚ is elliptic with the same

coefficient α ą 0 as P (see (3.4)), and for α0 Ps0, αr Lemma 3.20 gives the same γ0 as
for P .

Theorem 3.26. Let Ω be a bounded open subset of Rd and let P be defined by (3.2).

(i) The problem (3.21) has a unique weak solution for any f P L2pΩq if and only if 0
is the only weak solution for the homogeneous problem

#
Pu “ 0, on Ω,

u “ 0, on BΩ.
(3.35)

(ii) The problem (3.21) has a weak solution if and only if f is orthogonal in L2pΩq to
the set N˚ of weak solutions of the problem (3.34). And in this case the set of weak
solutions of (3.21) is a subspace of H1

0 pΩq of dimension dimpN˚q.
Proof. ‚ It is clear that if (3.21) has a unique weak solution for any f P L2pΩq then
in particular 0 is the unique weak solution for (3.35). Conversely, assume that 0 is the
unique weak solution for (3.35). By linearity, a weak solution of (3.21) is necessarily
unique. It remains to prove existence. Let f P L2pΩq.

Let γ0 be given by Lemma 3.20 and let γ ą γ0. For g P L2pΩq we denote by Rg the
unique weak solution u of the problem

#
Pu ` γu “ g, on Ω,

u “ 0, on BΩ.

By Proposition 3.21, this defines a continuous operator R : L2pΩq Ñ H1
0 pΩq. Since

H1
0 pΩq is compactly embedded in L2pΩq by Theorem 2.49, we can see R as a compact

operator on L2pΩq.
A function u P H1

0 pΩq is a weak solution of (3.21) if and only if u “ Rpf ` γuq. If
we set K “ γR, this is equivalent to

pId ´Kqu “ Rf. (3.36)

If u P KerpId ´Kq then u P H1
0 pΩq and u is a weak solution of (3.35), so u “ 0. This

proves that Id ´K is injective. By Theorem A.8, it is also surjective so there exists a
solution u P L2pΩq of (3.36). Since u “ Rf ` Ku P H1

0 pΩq, it is a weak solution of
(3.21), which proves the first statement.
‚ We observe that the adjoint R˚ of R maps g P L2pΩq to the unique weak solution of

#
P ˚u ` γu “ g, on Ω,

u “ 0, on BΩ.

Therefore v is a weak solution of (3.34) if and only if

pId ´K˚qv “ 0.
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Then, by Theorem A.8 again,

N˚ “ KerpId ´K˚q “ RanpId ´KqK.

Then the problem (3.21) has a weak solution if and only if Rf P pN ˚qK, that is if and
only if

@v P N˚, �f, v�H “ �f, K˚v�H “ �Kf, v�H “ γ �Rf, v�H “ 0.

This gives the first part of the second statement. Finally, by Theorem A.8 we also have

dimpKerpId ´Kqq “ dimpN˚q,
and the proof is complete.

Remark 3.27. The first statement of Theorem 3.26 is very important, and it does not
hold in general. For instance, given f P L2pRq, then u is a weak solution of the Poisson
equation

´u2 “ f

if and only if u P H2pRq and, for almost all ξ P R,

ξ2ûpξq “ f̂pξq.
Then we see that u “ 0 is the only solution when f “ 0, but there is no solution for
instance if f̂ “ 1 on a neighborhood of 0.

Exercise 41. Let Ω be a bounded open connected subset of Rd of class C1.
1. For f P L2pΩq we denote by Rpfq P H1pΩq the unique weak solution u of the problem

#
´Δu ` u “ f, on Ω,

Bνu “ 0, on BΩ.

Prove that this defines a compact operator R on L2pΩq.
2. Prove that R˚ “ R.
3. Prove that KerpId ´Rq is the set �1� of constant functions on Ω.
4. Let f P L2pΩq. Prove that (3.31) has a solution if and only if Rf P �1�K. Deduce that
(3.31) has a solution if and only if f itself is orthogonal to �1�.
5. Let f P L2pΩq such that (3.31) has a solution u0 P H1pΩq. Prove that the set of
solution is given by u0 ` KerpId ´Rq.
Compare all these results with the results of Section 3.5.

3.6.2 Spectrum of elliptic operators
Let Ω be an open bounded subset of Rd. We consider a second order elliptic operator
P as defined by (3.2), with the symmetry and ellipticity assumptions (3.37) and (3.4).

So far we have mostly discussed the variational version of the problem (3.21), given
by the bilinear form (3.23) on H1

0 pΩq. This means that P was seen as a function from
H1

0 pΩq to its dual H´1pΩq. However we have seen that a weak solution u P H1
0 pΩq

belongs in fact to H2pΩq, and (3.21) holds in the strong sense.
Now let us see P directly as a linear map from H2pΩq X H1

0 pΩq to L2pΩq. This is
then an operator on L2pΩq with domain DpP q “ H2pΩq X H1

0 pΩq.
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Theorem 3.28. The spectrum of P consists of a discrete set of eigenvalues with finite
algebraic multiplicities.

Proof. Let α0 Ps0, αr and let γ0 be given by Lemma 3.20. Let γ ą γ0. For f P L2pΩq
the problem (3.26) has a unique weak solution u P H1

0 pΩq. Moreover u P H2pΩq and
there exists C ą 0 independant of f such that }u}H2pΩq ď C }f}L2pΩq. This proves that
P ` γ : DpP q Ñ L2pΩq is bijective with bounded inverse. Thus ´γ P ρpP q. Moreover,
since the inclusion H2pΩq Ă L2pΩq is compact, the inverse pP ` γq´1 is compact. Then
we conclude with Theorem A.13.

In particular we recover the first statement of Theorem 3.26. We know that the
sets of weak and strong solutions of (3.21) coincide. Then Theorem 3.28 says that P
is bijective with bounded inverse (for all f P L2pΩq the problem (3.21) has a unique
strong solution u and }u}H2pΩq ď C }f}L2pΩq for some C ą 0) if and only if 0 is not an
eigenvalue of P (0 is the unique solution if f “ 0).

Now we assume that B “ 0. Then P is formally symmetric, in the sense that

P ˚ “ P, (3.37)

where P ˚ is as in (2.18). In particular, in Lemma 3.20 we can take α0 “ α and γ0 “
´ inf c.

Notice then that if u P H1
0 pΩqz t0u and λ P R are such that

@v P H1
0 pΩq, apu, vq “ λ �u, v� ,

then we necessarily have λ ą ´γ0.

Theorem 3.29. Assume that the operator P is symmetric and let γ0 be as above.

(i) The spectrum of P consists of a sequence of eigenvalues greater than p´γ0q and
going to `8. The geometric and algebraic multiplicities of these eigenvalues co-
incide, and they are all finite.

(ii) There exists an orthonormal basis of L2pΩq which consists of eigenfunctions for
the operator P .

If we denote by pλnqnPN the non-decreasing sequence of eigenvalues repeated accord-
ing to multiplicities we have

´γ0 ă λ1 ď λ2 ď . . . ď λn ÝÝÝÝÑ
nÑ`8 `8.

Then there exists an orthonormal basis pϕnqnPN˚ such that for n P N˚ we have ϕn P
H2pΩq XH1

0 pΩq and Pϕn “ λnϕn. Equivalently, ϕn P H1
0 pΩq is the unique weak solution

for the problem #
Pϕn “ λnϕn in Ω,

ϕn “ 0 on BΩ.
(3.38)
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Proof. We apply Theorem 3.28. We have already said that the eigenvalues are greater
than p´γ0q. Let γ ą γ0. By Theorem A.12, there exists an orthonormal basis pϕnqnPN
of eigenfunctions for pP ` γq´1. The functions ϕn, n P N, are also eigenfunctions for P .
Indeed, if pP `γq´1ϕn “ µnϕn then µn ą 0, 1´γµn ‰ 0 and Pϕn “ p1´γµnq´1µ´1

n ϕn).
This implies that geometric and algebraic multiplicities of all the eigenvalues coincide.
Moreover these multiplicities are finite, so there is an infinite (countable) number of
eigenvalues. Since the spectrum is discrete and included in s ´ γ0, `8r, the sequence of
eigenvalues goes to `8.
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