
Chapter 2

Sobolev spaces

2.1 Weak derivatives
In this first paragraph we introduce the notion of weak derivative. This generalizes
the notion of differentiability to a class of functions which are not differentiable in the
classical sense.

We will sometimes refer to distributions and the notion of derivatives in the sense of
distributions, which are assumed to be known. However, we will recall all the required
definitions and results to make this chapter self-contained.

2.1.1 In dimension one
We begin with the one dimensional case. Let I be an open and non-empty interval of
R. The key observation behind the definition of the weak derivative is the integration
by parts. For u P C1pIq and φ P C8

0 pIq we have
ż

I

u1φ dx “ ´
ż

I

uφ1 dx. (2.1)

The right-hand side makes sense even when u is not differentiable. This is how we define
the function u1 which appears in the left-hand side.

Définition 2.1. Let Ω be an open subset of R and u P L1
locpΩq. We say that v P L1

locpΩq
is a weak derivative of u if

@φ P C8
0 pΩq, ´

ż

Ω
uφ1 dx “

ż

Ω
vφ dx. (2.2)

Before going further, we observe that the weak derivative of a function in L1
locpIq is

necessarily unique. This is a consequence of the following classical result of integration.

Lemma 2.2. Let v P L1
locpIq be such that

@φ P C8
0 pIq,

ż

I

vφ “ 0.

Then v “ 0 almost everywhere on I.
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With this lemma we easily see that if v1 and v2 satisfy (2.2) then we have v1 “ v2
almost everywhere. Then if u P L1

locpIq has a weak derivative, it is unique. In this case
we denote this weak derivative by u1. This is natural since this new definition of the
derivative is an extension of the usual one. Indeed, if u is differentiable in the usual
sense on Ω, then u1 is a weak derivative of u on Ω. The proof of this remark is precisely
the integration by parts formula (2.1) on which the definition is based. More generally,
we can make the following observation.
Remark 2.3. Let Ω be an open subset of R and u P L1

locpΩq. Assume that u has a weak
derivative v P L1

locpΩq. Assume also that u is differentiable in the usual sense in an open
subset ω of Ω. Then v is equal to u1 almost everywhere in ω.

As a first non-trivial example, we begin with a function which is close to be differ-
entiable in the usual sense.

Example 2.4. We consider on R the map u : x ÞÑ |x|. It is differentiable in the usual
sense in R˚ but not in R. A weak derivative of u is given by the function

v : x ÞÑ
#

´1 if x ă 0,

1 if x ě 0.

In this example, the function u is differentiable everywhere except at 0. We note
that the value of v at 0 is not important since the definition only involves integrals.
However, this does not mean that a function which is differentiable everywhere except
at one point has a weak derivative.

Example 2.5. We consider on R the Heaviside function

H : x ÞÑ
#

1 if x ą 0,

0 if x ă 0,

Then u has no weak derivative on R. For the proof we consider v P L1
locpRq. Let

φ P C8
0 pR, r0, 1sq supported in s ´ 1, 1r and such that φp0q “ 1. For n P N˚ and x P R

we set φnpxq “ φpnxq. Then φn P C8
0 pRq for all n P N˚. On the one hand we have by

the Dominated Convergence Theorem
ˇ̌
ˇ̌
ż

R
vpxqφnpxq dx

ˇ̌
ˇ̌ ď

ż 1
n

x“´ 1
n

|vpxq| dx ÝÝÝÝÑ
nÑ`8 0.

And on the other hand

´
ż

R
Hpxqφ1

npxq dx “ ´
ż `8

0
φ1

npxq dx “ φnp0q “ 1.

Then v is not a weak derivative for H.

Remark 2.6. The Heaviside function has no weak derivative in R but it is diffentiable in
the usual sense, and hence in the weak sense, in R˚. Its strong (hence weak) derivative
in R˚ is just 0.

Exercise 1. For which values of α P R does the function uα : x ÞÑ |x|α have a derivative
in the usual sense in R ? a weak derivative ?
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Notice that the weak derivative is just the derivative in the sense of distributions.
A function u P L1

locpIq defines a distribution Tu on I. This distribution has a derivative
T 1

u P D1pIq. Saying that the derivative of u belongs to L1
locpIq means that T 1

u is the
distribution defined by a function in L1

locpIq. In other words, for some v P L1
locpIq we

have T 1
u “ Tv in D1pIq. The Heaviside function of Example 2.5 has a derivative in the

sense of distributions, given by the Dirac distribution δ, but this is not a distribution
associated to a function in L1

loc.
Since u always has a derivative u1 in the sense of distribution, instead of saying that

u has a derivative in L1
locpIq, we can simply say for short u1 P L1

locpIq.

Exercise 2. 1. Let u` P C1
0 pr0, `8rq. For x P R we set

u1pxq “
#

u`pxq if x ě 0,

0 if x ă 0,
u2pxq “

#
u`pxq if x ě 0,

u`p´xq if x ă 0,

and

u3pxq “
#

u`pxq if x ě 0,

´3u`p´xq ` 4u`p´x{2q if x ă 0.

Are u1, u2 and u3 differentiable ? Do they have a weak derivative in L1
locpRq ?

In the following proposition we generalize to this new setting the construction of a
primitive known for continuous functions.

Proposition 2.7. Let I be an open interval of R, w P L1
locpIq and x0 P I. Then the

map
u ÞÑ

ż x

x0

wpsq ds

is well defined on I, it is continuous, and w is a weak derivative of u.

Exercise 3. Prove Proposition 2.7.

Now we discuss the functions whose derivatives in the weak sense is zero.

Proposition 2.8. Let u P L1
locpIq be such that

@φ P C8
0 pIq,

ż

I

uφ1 dx “ 0.

There exists a constant α such that u “ α almost everywhere.

Proof. ‚ Let φ0 P C8
0 pIq be such that

ş
I

φ0 dx “ 1 and α “ ş
I

uφ0 dx. We prove that
for all φ P C8

0 pIq we have
ş

I
uφ “ α

ş
I

u almost everywhere.
‚ Let φ P C8

0 pIq and βφ “ ş
I

φ dx. For x P I we set

ψpxq “
ż x

infpIq

`
φpxq ´ βφφ0pxq˘

dx.

This defines a function ψ P C8
0 pIq such that ψ1 “ φ ´ βφφ0. Then, by assumption on u,

0 “
ż

I

uψ1 “
ż

I

uφ ´ αβφ “
ż

I

pu ´ αqφ dx.

The conclusion follows by Lemma 2.2.
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With Propositions 2.7 and 2.8 we see that if u P L1
locpIq has a weak derivative in

L1
locpIq then for x0 P I there exists α P R such that for almost all x P I we have

upxq “ α `
ż x

x0

u1pxq dx.

In particular, u is continuous (in the sense that it is equal almost everywhere to a con-
tinuous function). Since there is no continuous function equal almost everywhere to the
Heaviside function H, we recover the fact that H cannot have a weak derivative on any
interval which contains 0. We also observe that if u P L1pRq has a continuous weak
derivative, then it is of class C1 in I (it is equal almost everywhere to a function of class
C1).

Notice that Proposition 2.7 is specific to the dimension 1. In particular the fact
that a function which has a derivative in L1

loc is continuous will not be valid in higher
dimension (see Example 2.11 and Exercise 11).

Exercise 4. 1. Let α P R. What are the solutions in L1
locpRq of the equation u1`αu “ 0,

where the derivative is understood in the weak sense ?
2. Same question with the equation u1 ` αu “ f , where f P L1

locpRq.
We finish this paragraph by the definition of the successive derivatives for a function

in L1
locpIq.

Définition 2.9. Let u P L1
locpIq and k P N˚. We say that vk P L1

locpIq is a weak
derivative of order k of u if

@φ P C8
0 pIq, p´1qk

ż

I

uφpkq dx “
ż

I

vkφ dx.

In this case vk is unique and is denoted by upkq. This is equivalent to saying that the k-th
derivative of the distribution Tu is the distribution associated to a function in L1

locpIq,
which we denote by upkq.

Exercise 5. Let u P L1
locpRq. Prove that u has a weak derivative of order two if and

only if it has a weak derivative u1 and u1 has itself a weak derivative.

Exercise 6. Let k ě 2. Do the functions of Example 2.4 and Exercise 1 have k weak
derivatives on R ?

2.1.2 Weak derivatives in higher dimension
Let d P N˚ and let Ω be an open subset of Rd.

Définition 2.10. Let u P L1
locpΩq and j P Nd. We say that vd P L1

locpΩq is a weak
derivative of u with respect to xj if

@φ P C8
0 pΩq, ´

ż

Ω
uBxj

φ dx “
ż

Ω
vjφ dx.

In this case vj is unique and is denoted by Bxj
u.

We begin with the analog of Example 2.4 in higher dimension.
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Example 2.11. For x “ px1, . . . , xdq P Rd we set upxq “ |x| “ a
x2

1 ` ¨ ¨ ¨ ` x2
d. Then u

is of class C8 in Rdz t0u and for j P �1, d� and x P Rdz t0u we have

Bjupxq “ xj

|x| .

This defines a function in L1
locpRdq (considering that it takes any value at 0). Now let

φ P C8
0 pRdq and ε ą 0. By the Green formula we have

´
ż

RdzBpεq
|x| Bjφpxq dx “ ´

ż

|x|“ε

|x| φpxq νj dσpxq `
ż

RdzBpεq

xj

|x|φpxq dx,

where ν “ pν1, . . . , νdq is the exterior derivative to RdzBpεq. Taking the limit ε Ñ 0
gives

´
ż

Rd

|x| Bjφpxq dx “
ż

Rd

xj

|x|φpxq dx.

This proves that x ÞÑ xj

|x| is a weak derivative of u with respect to xj in Rd. Thus we can
write, in the weak sense,

∇upxq “ x

|x| .

Exercise 7. Let α P R and consider on Rdz t0u the function u : x ÞÑ |x|α.
1. Check that the grandient of u on Rdz t0u is x ÞÑ α |x|α´2 x.
2. Can u be extended to a function on Rd which has derivatives of order 1 in the usual
sense ?
3. Does u have weak derivatives of order 1 in L1

locpRdq ?

In applications we often deal with functions which are of classe C1 except at one
point, as in Exercise 7. The purpose of the following exercise is to give a general result
for this situation.

Exercise 8. Let d ě 2. Let u P C1pRdz t0uq such that ∇u (well defined on Rdz t0u) is
in L1

locpRdq.
1. a. Prove that for ω P Sp1q and r Ps0, 1s we have

|uprωq| ď |upωq| `
ż 1

r

|∇upsωq| ds.

b. Deduce that
ż

Sprq
|upωq| dσrpωq ď rd´1

ż

Sp1q
|upωq| dσpωq `

ż

Bp1qzBprq

rd´1

|x|d´1 |∇upxq| dx.

2. Prove that u P L1
locpRdq.

3. Prove that for φ P C8
0 pRdq we have

´
ż

Rd

u∇φ dx “
ż

Rd

φ∇u dx.

We recall that the classical notion of differentiability is defined by looking at the
limit at each point of the difference quotient. The following result gives a link between

2021-2022 5



M2RI - Elliptic PDEs and Evolution Equations

this point of view and the weak derivative.

Let h P Rdz t0u and let Ω be an open subset of Rd invariant by translation by h. For
u P L2pΩq and we define the diffence quotient Dhu P L2pΩq by

Dhupxq “ upx ` hq ´ upxq
|h| . (2.3)

Notice that for u, v P L2pΩq we have
ż

Rd

pDhuqv dx “
ż

Rd

upD´hvq dx. (2.4)

Moreover, Dh commutes with derivatives: if Bju P L2pΩq then

BjDhu “ DhBju P L2pΩq. (2.5)

Proposition 2.12. Let j P �1, d� and assume that Ω is invariant by translation by tej

for all t P R, where ej is the j-th vector of the canonical basis. Assume that there exists
C ą 0 such that for all t P Rz t0u we have

››Dtej
u

››
L2pΩq ď C.

Then Bju P L2pΩq and
}Bju}L2pΩq ď C.

Proof. Let φ P C8
0 pRdq. By the dominated convergence theorem we have

ˇ̌
ˇ´ �u, Bjφ�L2pRdq

ˇ̌
ˇ “

ˇ̌
ˇ lim
tÑ0`

�
u, Dtej

φ
�

L2pRdq

ˇ̌
ˇ “

ˇ̌
ˇ lim
tÑ0`

�
D´tej

u, φ
�

L2pRdq

ˇ̌
ˇ ď C }φ}L2pRdq .

By the Riesz Theorem there exists vj P L2pRdq such that }vj}L2pΩq ď C and

@φ P C8
0 pRdq, ´ �u, Bjφ�L2pRdq “ �vj, φ�L2pRdq .

This proves that Bju “ v.

Remark 2.13. Proposition 2.12 holds L2pΩq replaced by LppΩq for any p Ps1, `8r.
We recall the usual notation for partial derivatives in dimension d ě 2. For α “

pα1, . . . , αdq P Nd we set |α| “ α1 ` ¨ ¨ ¨ ` αd.

Bα “ Bα1
x1 . . . Bαd

xd

Définition 2.14. Let u P L1
locpΩq and α P Nd. We say that vα P L1

locpΩq is a derivative
of order α of u if

@φ P Ω, p´1q|α|
ż

Ω
uBαφ dx “

ż

Ω
vαφ dx.

In this case vα is unique and is denoted by Bαu.

Exercise 9. In dimension d ě 2, compute all the second derivatives in the weak sense
for the function x ÞÑ |x| in Rd.
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2.2 Sobolev spaces
2.2.1 Definition and examples
Let d ě 1 and let Ω be an open subset of Rd.

Définition 2.15. For p P r1, `8s and k P N we set

W k,ppΩq “ �
u P LppΩq : Bαu P LppΩq for all α P Nd with |α| ď k

(
,

where Bαu is the derivative of u in the sense of distributions. In other words, a function
u P LppΩq belongs to W k,ppΩq if it has a weak derivative Bαu in LppΩq for all α P Nd

with |α| ď k.We also set HkpΩq “ W k,2pΩq.
Remark 2.16. By the Riesz Theorem and by density of C8

0 pΩq in L2pΩq, a function
u P L1

locpΩq belongs to HkpΩq is and only if for all α P Nd with |α| ď k there exists
Cα ą 0 such that

@φ P C8
0 pΩq,

ˇ̌
ˇ̌
ż

Ω
uBαφ dx

ˇ̌
ˇ̌ ď Cα }φ}L2pΩq .

Example 2.17. Let p P r1, `8s. The map u : x ÞÑ |x| is not in W 1,ppRq, (since it is
not in LppRq), but it is in W 1,ppIq for any bounded open interval I of R. It is not in
W k,ppIq for k ě 2 if I contains 0, since u has no second derivative in the weak sense in
a neighborhood of 0.

Example 2.18. We consider on s0, 1r the function u : x ÞÑ x´ 1
4 . Then u belongs

to L2ps0, 1rq but its derivative u1 : x ÞÑ ´1
4x´ 5

4 is not in L2ps0, 1rq, so u is not in
H1ps0, 1rq. We similarly consider u : x ÞÑ x´ 1

4 on s1, `8r. Then u1 P L2ps1, `8rq but
u R L2ps1, `8rq, so u R H1ps1, `8rq. On the other hand, the function u ÞÑ x

3
4 belongs

to H1ps0, 1rq and x ÞÑ x´ 3
4 belongs to H1ps1, `8rq.

Exercise 10. Let p P r1, `8s and α P R. Does the function x ÞÑ xα belongs to
W 1,pps0, 1rq ? W 1,pps1, `8rq ? W 1,pps0, `8rq ?

Example 2.19. Let p P r1, `8r and β ą 0. For x P Bp1qz t0u we set upxq “ |x|´β.
Then u P LppBp1qq if and only if βp ă d. On the other hand u is of class C1 on
Bp1qz t0u and ∇upxq “ ´β |x|´β´2 x for all x P Bp1qz t0u. Thus ∇u P LppBp1qq if and
only if pβ ` 1qp ă d. This proves (see Exercises 7 and 8) that u P W 1,ppBp1qq if and
only if pβ ` 1qp ă d.

Exercise 11. Let p P r1, `8s.
1. Does the map x ÞÑ lnp|lnp|x|q|q belong to W 1,ppBp1qq ?
2. Let α ą 0. Does x ÞÑ |ln |x||α belong to W 1,ppBp1qq ?

In the following proposition we give some basic properties for the set W k,ppΩq. We
define C8

0 pΩq as the restrictions to Ω of functions in C8
0 pRdq.

Proposition 2.20. Let p P r1, `8s, k P N˚ and α “ pα1, . . . , αdq P Nd with |α| ď k.
Let u P W k,ppΩq.

(i) We have Bαu P W k´|α|,ppΩq and for β P Nd with |β| ď k ´ |α| we have BβpBαuq “
Bα`βu.
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(ii) Let ω be an open subset of Ω. Then the restriction u|ω of u on ω belongs to W k,ppωq
and Bαpuωq “ pBαuq|ω.

(iii) Let χ P C8
0 pΩq. Then χu P W k,ppΩq and

Bαpχuq “
ÿ

βďα

ˆ
α
β

˙
BβχBα´βu,

where we have set ˆ
α
β

˙
“ α!

β!pα ´ βq! , α! “ α1! . . . αd!.

Exercise 12. Prove Proposition 2.20.
Exercise 13. Let p P r1, `8s and u P W 1,ppRdq. Let ρ P C8

0 pRdq. We recall that
pρ ˚ uq P C8pRdq. Prove that for j P �1, d� we have

Bjpρ ˚ uq “ ρ ˚ pBjuq.
Deduce that pρ ˚ uq P W 1,ppRdq.
Définition 2.21. Let Ω be an open subset of Rd and let u P L1

locpΩq. Let p P r1, `8s and
k P N. We say that u belongs to W k,p

loc pΩq if for any χ P C8
0 pΩq we have χu P W k,ppΩq.

Example 2.22. The function x ÞÑ |x| belongs to W 1,p
loc pRq for any p P r1, `8s (see

Example 2.17).

2.2.2 Norms on the Sobolev spaces
Let Ω be an open subset of Rd. Let p P r1, `8s and k P N. For u P W k,ppΩq we set

}u}W k,ppΩq “
˜ ÿ

|α|ďk

}Bαu}p
LppΩq

¸ 1
p

. (2.6)

This defines a norm on W k,ppΩq. We could also consider the quantity
ÿ

|α|ďk

}Bαu}LppΩq , (2.7)

which defines an equivalent norm on W k,ppΩq.
On HkpΩq we define an inner product by setting, for u, v P HkpΩq,

�u, v�HkpΩq “
ÿ

|α|ďk

�Bαu, Bαv�L2pΩq . (2.8)

The corresponding norm is exactly (2.6) with p “ 2.
Remark 2.23. With the notation of Proposition 2.20, we observe that

}Bαu}W k´|α|,ppΩq ď }u}W k,ppΩq ,

for ω Ă Ω we have
}u}W k,ppωq ď }u}W k,ppΩq ,

and for χ P C8
0 pΩq there exists Cχ ą 0 independant of u such that

}χu}W k,ppΩq ď Cχ }u}W k,ppΩq .
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Theorem 2.24. Let k P N and p P r1, `8s. The Sobolev space W k,ppΩq, endowed with
the norm (2.7) or (2.6), is a Banach space. In particular, HkpΩq with the inner product
(2.8) is a Hilbert space.

Proof. Let punqnPN be a Cauchy sequence in W k,ppΩq. The sequences pBαunqnPN for
|α| ď k are Cauchy sequences in LppΩq. Since LppΩq is complete by the Riesz-Fisher
theorem, there exist vα P LppΩq for |α| ď k such that Bαun goes to vα. For |α| ď k and
φ P C8

0 pΩq we have

p´1q|α|
ż

Ω
v0 Bαφ dx “ p´1q|α| lim

nÑ`8

ż

Ω
un Bαφ dx “ lim

nÑ`8

ż

Ω
Bαun φ dx “

ż

Ω
vα φ dx.

This proves that in the sense of distributions we have Bαv0 “ vα P LppΩq. Then v0 P
W k,ppΩq and

}un ´ v0}p
W k,ppΩq “

ÿ

|α|ďk

}Bαun ´ vα}2
LppΩq ÝÝÝÝÑ

nÑ`8 0.

Thus the sequence punqnPN has a limit in W k,ppΩq. This proves that W k,ppΩq is complete.

The proofs of the following two results are omitted (see [Brézis]).

Theorem 2.25. Let Ω be an open subset of Rd, p P r1, `8s and k P N.

(i) W k,ppΩq is reflexive if and only if p Ps1, `8r.
(ii) W k,ppΩq is separable if and only if p P r1, `8r.

Proof. We recall that LppΩq is reflexive if and only if p Ps1, 8r (see Section 4.3 in [Brézis])
and separable if and only if p P r1, `8r. In particular, W k,ppΩq cannot be separable if
p “ 8.

The map

Φ :
"

W k,ppΩq Ñ ś
|α|ďk LppΩq

u ÞÑ pBαuq|α|ďk

is an isometry from W k,ppΩq to a closed subspace of
ś

|α|ďk LppΩq. If p Ps1, `8r thenś
|α|ďk LppΩq is reflexive and so is W k,ppΩq (see Proposition 3.20 in [Brézis]). Similarly,

if p P r1, `8r then
ś

|α|ďk LppΩq is separable and so is W k,ppΩq (see Proposition 3.25 in
[Brézis]).

2.2.3 Characterisation via the Fourier transform
When Ω “ Rd and p “ 2 we can use the Fourier transform to give a simple characteri-
sation of HkpRdq. Notice that in Definition 2.15 we can see the derivatives of u in the
sense of tempered distributions. This means that we can replace C8

0 pRdq by SpRdq in
Definition 2.10.

Proposition 2.26. Let α P Nd and u P L2pRdq. Then Bαu P L2pΩq if and only if the
map ξ ÞÑ piξqαûpξq belongs to L2pRdq (and, in this case, it is the Fourier transform of
Bαu). Then, for k P N, u P HkpRdq if and only if

ż

Rd

`
1 ` |ξ|2 ˘k|ûpξq|2 dξ ă `8. (2.9)
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Proof. Let u P L2pRdq. For φ P SpRdq we have
ż

Rd

piyqαûφ dy “
ż

Rd

u {piyqαφ dy “ p´1q|α|
ż

Rd

uBαφ̂ dy. (2.10)

Assume that Bαu P L2pRdq. Then (2.10) gives
ż

Rd

piyqαûφ dy “
ż

Rd

Bαuφ̂ dy “
ż

Rd

yBαuφ dy,

so the map y ÞÑ piyqαûpyq belongs to L2pRdq, and it is the Fourier transform of Bαu.
Conversely, assume that y ÞÑ piyqαûpyq belongs to L2pRdq. By (2.10) applied with φ̌

we have ˇ̌
ˇ̌
ż

Rd

uBαφ dy

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż

Rd

yαûφ̌ dy

ˇ̌
ˇ̌ ď }yαû}L2pRdq

p2πq d
2

}φ}L2pRdq ,

so Bαu P L2pRdq.
Proposition 2.27. Let k P N. The map

pu, vq ÞÑ
ˆż

Rd

`
1 ` |ξ|2 ˘k

ûpξqv̂pξq dξ

˙ 1
2

defines a scalar product on HspRdq, and the corresponding norm is equivalent to (2.6)
with p “ 2.

Remark 2.28. If u P L2pRdq is such that Δu belongs to L2pRdq, then u belongs to H2pRdq.
This remark does not hold on a general domain (see Remark 3.18 below). However, on a
general Ω we can at least say that if u P H1pΩq is such that Δu P L2pΩq then u P H2

locpΩq
(for any χ P C8

0 pΩq we extend χu by 0 on Rd, since χu P L2pRdq and Δpχuq P L2pRdq
we have χu P H2pRdq.

2.3 Approximation by smooth functions
In this section we start proving some properties of the Sobolev spaces. The first impor-
tant property is the density of smooth and compactly supported functions. This will
then to extend many properties known for regular functions to functions with only weak
derivatives.

Here we mainly discuss the density in the Euclidean space. The density of smooth
functions in the general case will be discussed in the following section.

2.3.1 In the Euclidean space
We know that for p P r1, `8r the set C8

0 pΩq of smooth and compactly supported
functions on the open set Ω is dense in LppΩq. In this paragraph we will see in what
sense we can similarly approach functions in W k,ppΩq by smooth functions.

More precisely, we prove the density of smooth functions in the Sobolev spaces when
Ω “ Rd. This will not be the case in general domains. Since the closure of C8

0 pΩq in
W k,ppΩq will play an important role in applications, we introduce the following notation.
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Définition 2.29. For k P N and p P r1, `8r we denote by W k,p
0 pΩq the closure of C8

0 pΩq
in W k,ppΩq. We also set Hk

0 pΩq “ W 1,2
0 pΩq.

Exercise 14. For x Ps ´ 1, 1r we set upxq “ 1. Prove that for p P r1, `8s there is no
sequence punqnPN in C8

0 ps ´ 1, 1rq which goes to u in W 1,pps ´ 1, 1rq.
As in LppRdq, the proofs will rely on regularization by convolution with a sequence

of mollifiers. Let ρ P C8
0 pRd, r0, 1sq be supported in Bp0, 1q and such that

ş
Rd ρ dx “ 1.

For n P N˚ and x P Rd we set ρnpxq “ ndρpnxq.
Lemma 2.30. Let Ω be an open subset of Rd. Let n P N˚ and let ω be an open subset of
Ω such that B

`
x, 1

n

˘ Ă Ω for all x P ω. Let ρn P C8
0 pRdq be as above and let u P W k,ppΩq.

Then ρn ˚ u P C8pRdq X W k,ppωq and for |α| ď k we have in the weak sense on ω

Bαpρn ˚ uq “ ρn ˚ pBαuq.

Notice that the lemma applies in particular with ω “ Ω “ Rd.

Proof. We prove the case k “ 1, and the general case follows by induction. Let j P �1, d�
and φ P C8

0 pωq. We have

´
ż

ω

pρn ˚ uqpxqBjφpxq dx “ ´
ż

Bp0, 1
n

q
ρnpyq

ż

ω

upx ´ yqBjφpxq dx dy.

For y P B
`
0, 1

n

˘
the map x ÞÑ upx ´ yq belongs to W 1,ppωq, so

´
ż

ω

pρn ˚ uqpxqBjφpxq dx “
ż

Bp0, 1
n

q
ρnpyq

ż

ω

Bjupx ´ yqφpxq dx dy “
ż

ω

pρn ˚ Bjuqpxqφpxq dx.

The conclusion follows.

For the following two proofs we also consider χ P C8
0 pRdq supported in the ball

Bp0, 2q and equal to 1 on Bp0, 1q. Then for m P N˚ and x P Rd we set χmpxq “ χp x
m

q.
Theorem 2.31. Let p P r1, `8r. Then C8

0 pRdq is dense in W k,ppRdq. In other words,
we have W k,p

0 pRdq “ W k,ppRdq.
Proof. Let u P W k,ppRdq and ε ą 0. Let α P Nd with |α| ď k. By Proposition 2.20 we
have χmu P W k,ppRdq for all m P N˚ and

}Bαpχmuq ´ Bαu}LppRdq ď
ÿ

0ďβďα

ˆ
α
β

˙ ››Bα´βpχm ´ 1qBβu
››

LppRdq .

By the dominated convergence theorem we have for β ď α

››Bα´βpχm ´ 1qBβu
››p

LppRdq ď ››Bα´βpχm ´ 1q››
L8pRdq

ż

|x|ěm

ˇ̌Bβupxqˇ̌p
dx ÝÝÝÝÑ

mÑ`8 0,

so there exists m P N˚ such that

}u ´ χmu}W k,ppRdq ď ε

2 .
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We set v “ χmu, and for n P N˚ we set vn “ ρn ˚ v. Then vn P C8
0 pRdq and for all

α P Nd with |α| ď k we have by Lemma 2.30

}Bαvn ´ Bαv}LppRdq “ }ρn ˚ pBαvq ´ Bαv}LppRdq ÝÝÝÝÑ
nÑ`8 0.

Then, if for n P N˚ large enough we set uε “ vn we have uε P C8
0 pRdq and

}uε ´ v}W k,ppRdq ď ε

2 ,

so finally
}uε ´ u}W k,ppRdq ď ε.

Remark 2.32. For any ε ą 0 the function uε constructed in the previous proof is such
that }uε}L8pRdq ď }u}L8pRdq.

2.3.2 A result in general domains
The conclusion of Theorem 2.31 does not hold in a general domain Ω. In other words,
W k,p

0 pΩq ‰ W k,ppΩq in general (see Exercise 14 and Proposition 2.53 below). However we
have the following weaker result of approximation by regular functions on any compact
subset of Ω. For a result of approximation on the whole domain Ω we refer to Theorem
2.39 below.

Theorem 2.33. Let p P r1, `8r and k P N. Let Ω be an open subset of Rd. Let
u P W k,ppΩq. There exists a sequence punqnPN in C8

0 pRdq such that un|Ω goes to u in
LppΩq and for any open bounded subset ω such that ω Ă Ω we have

››un|ω ´ u|ω
››

W k,ppωq ÝÝÝÝÑ
nÑ`8 0.

Proof. For x P Rd we set

vpxq “
#

upxq if x P Ω,

0 if x P RdzΩ.

Then we set vn “ ρn ˚ v P C8pRdq and un “ χnvn. We have

}un ´ u}LppΩq ď }un ´ v}LppRdq ď }χnpρn ˚ vq ´ χnv}LppΩq ` }χnv ´ v}LppΩq ÝÝÝÝÑ
nÑ`8 0.

Let N P N be so large that B
`
x, 1

N

˘ Ă Ω and χN “ 1 on B
`
x, 1

N
q for all x P ω. Then

for n ě N and |α| ď k we have by Lemma 2.30

}Bαpun ´ uq}Lppωq “ }Bαpvn ´ vq}Lppωq “ }ρn ˚ pBαvq ´ Bαv}Lppωq ÝÝÝÝÑ
nÑ`8 0.

This proves that χvn goes to u in W k,ppωq.

2.3.3 Examples of properties proved by density
It is not always convenient to prove results about differentiation in the weak sense, and
most of the properties of Sobolev spaces are proved by density. We first prove the result
for regular functions (smooth, or of class Ck for a property in W k,p), and then the
general case is deduced by density.
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Here we give some examples of results which are already known for regular functions
and which can be extended in the suitable Sobolev spaces by density.

We begin with the integration by parts formula.

Proposition 2.34 (Green Formula without boundary term). Let Ω be an open subset
of Rd and u, v P H1

0 pΩq. For j P �1, d� we have
ż

Ω
pBjuqv dx “ ´

ż

Ω
upBjvq dx.

Proof. Let punqnPN and pvnqnPN be sequences in C8
0 pΩq which go to u and v in H1pΩq.

The Green formula for smooth and compactly supported functions gives, for all n P N,
ż

Ω
pBjunqvn dx “ ´

ż

Ω
unpBjvnq dx.

Taking the limit n Ñ `8 gives the result.

We continue with the product of differentiable functions. If u and v are continuously
differentiable, then so is the product uv. The same result holds for weak derivatives.
Notice that in this result and the following we do not take functions in W 1,p

0 pΩq. The
approximation by regular functions is given by Theorem 2.33.

Proposition 2.35 (Differentiation of a product). Let Ω be an open subset of Rd. Let
p P r1, `8s and u, v P W 1,ppΩq X L8pΩq. Then uv P W 1,ppΩq and, for j P �1, d�,

Bjpuvq “ pBjuqv ` upBjvq. (2.11)

Proof. Assume that p ă `8. Let punqnPN be a sequence in C8
0 pRdq as given by Theorem

2.33. After extraction of a subsequence if necessary, we can assume that unpxq tends
to upxq for almost all x P Rd. By Remark 2.32, we can also assume that }un}L8pRdq ď
}u}L8pRdq for all n P N. By Proposition 2.20, we have unv P W 1,ppΩq for all n P N and,
for j P �1, d� and φ P C8

0 pΩq,

´
ż

Ω
unvBjφ dx “ ´

ż

Ω
vBjpunφq dx `

ż

Ω
vφBjun dx “

ż

Ω

`pBjunqv ` unpBjvq˘
φ dx.

The limit n Ñ `8 yields (2.11). In particular Bjpuvq P LppΩq, and the proof is complete
if p ă `8.

Now assume that p “ `8. Then uv and pBjuqv ` upBjvq are in L8pΩq. Let φ P
C8

0 pΩq. Let χ P C8
0 pRdq be equal to 1 on a neighborhood of supppφq. Then χu and χv

are in W 1,ppΩq for any p P r1, `8r so

´
ż

Ω
uvBjφ dx “ ´

ż

Ω
χu χvBjφ dx

“
ż

Ω

`Bjpχuq χv ` χu Bjpχvq˘
φ dx

“
ż

Ω

`pBjuqv ` upBjvq˘
φ dx.

This proves (2.11) and concludes the proof.
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Then we discuss the chain rule, which will be important in particular for changes of
variables.

Proposition 2.36 (Chain rule). Let Ω1 and Ω2 be two open subsets in Rd, and let
Φ “ pΦ1, . . . , Φdq : Ω1 Ñ Ω2 be a diffeomorphism of class C1. We assume that JacpΦq
and JacpΦ´1q are bounded on Ω1 and Ω2, respectively. Let p P r1, `8s. Then for
u P W 1,ppΩ2q we have u ˝ Φ P W 1,ppΩ1q and for j P �1, d�,

Bjpu ˝ Φq “
dÿ

k“1

`pBkuq ˝ Φ
˘BjΦk. (2.12)

In particular there exists CΦ ą 0 such that

}u ˝ Φ}W 1,ppΩ2q ď CΦ }u}W 1,ppΩ1q .

Proof. Assume that p ă `8. With the change of variables y “ Φpxq we first observe
that

}u ˝ Φ}p
LppΩ1q “

ż

Ω1

|upΦpxqq|p dx “
ż

Ω2

|upyq|p ˇ̌
JΦ´1pyqˇ̌

dy ď ››JΦ´1››
L8pΩ2q }u}p

LppΩ2q ,

so u ˝ Φ P LppΩ2q. Similarly Bku ˝ Φ P LppΩ1q for all k P �1, d�. Since BjΦk is bounded,
this proves that the right-hand side of (2.12) belongs to LppΩ1q.

Let punqnPN be a sequence in C8
0 pRdq which goes to u in the sense of Theorem 2.33.

Let ψ P C8
0 pΩ1q, K1 “ supppψq and K2 “ ΦpK1q. Then K2 is a compact of Ω2. For

n P N and ψ P C8
0 pRdq we have

´
ż

Ω1

pun ˝ ΦqBjψ dx “
dÿ

k“1

ż

Ω1

pBkun ˝ ΦqBjΦk ψ dx. (2.13)

As above we have

}un ˝ Φ ´ u ˝ Φ}p
LppK1q ď ››JΦ´1››

L8pΩ2q }un ´ u}p
LppK2q ÝÝÝÑ

nÑ8 0.

Similarly, for j, k P �1, d�,

}pBjun ˝ ΦqBkΦj ´ pBju ˝ ΦqBkΦj}LppK1q
ď }BkΦj}L8pK1q }pBjun ˝ Φq ´ pBju ˝ Φq}LppK1q ÝÝÝÝÑ

nÑ`8 0.

We take the limit n Ñ `8 in (2.13) and conclude when p ă `8. The case p “ `8
follows as in the proof of Proposition 2.35.

We know that if u P C1pRdq has a bounded differential then it is Lipschitz continuous
with a Lipschitz constant given by the L8 norm of the differential. In the following
exercise we consider the case of W 1,8 fonctions.

Proposition 2.37. Let Ω be an open and convex subset of Rd. Let u P W 1,8pΩq. Then
u is equal almost everywhere to a }∇u}L8pRdq-Lipschitz (and in particular continuous)
function.
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Exercise 15. Let K be a compact and convex subset of Ω. Let ρ P C8
0 pRd,R`q such

that
ş
Rd ρ dx “ 1. For ε ą 0 and x P Rd we set ρεpxq “ ρpx{εq.

1. Prove that for ε ą 0 small enough the convolution uε “ ρε ˚ u is well defined on K.
2. Prove that there exists a sequence pεnqnPN going to 0 such that un “ uεn goes to upxq
as n goes to `8 for almost all x P K.
3. Prove that for all n P N we have }∇un}L8pRdq ď }∇u}L8pRdq.
4. Prove that for almost all x, y P K we have |upxq ´ upyq| ď }∇u}L8pRdq |x ´ y|.
5. Prove Proposition 2.37.

We finish this paragraph with a converse of Proposition 2.12 about the differential
quotient defined by (2.3).

Proposition 2.38. For u P H1pRdq and h P Rdz t0u we have

}Dhu}L2pRdq ď }∇u}L2pRdq .

Exercise 16. Prove Proposition 2.38.

Exercise 17. In this exercise we prove that for u P H1pRdq (real valued) we have |u| P
H1pRdq, ∇u “ 0 almost everywhere on u´1pt0uq and ∇ |u| “ signpuq∇u on u´1pRdz t0uq.
1. Let G : R Ñ R be of class C1, globally Lipschitz and such that Gp0q “ 0.

a. Show that G1 is bounded on R.
b. Prove that G ˝ u P H1pRdq with ∇pG ˝ uq “ pG1 ˝ uq∇u.

2. For t P R we set

H´ptq “
#

1 if x ą 0,

0 if x ď 0,
and H`ptq “

#
1 if x ě 0,

0 if x ă 0.

For n P N˚ we set

Hnptq “

$
’&
’%

1 if t ě 1
n
,

nt if 0 ď t ď 1
n
,

0 if t ď 0.

Then we set Vnptq “ şt

´8 Hnpsq ds.
a. Prove that pVn ˝ uq P H1pRdq with ∇pVn ˝ uq “ pHn ˝ uq∇u.
b. For t P R we set

gptq “
#

t if t ą 0,

0 if t ă 0.

Prove that pg ˝ uq P H1pRdq with ∇pg ˝ uq “ pH´ ˝ uq∇u.
c. Prove that ∇pg ˝ uq “ pH` ˝ uq∇u.
d. Deduce that ∇u “ 0 almost everywhere on u´1pt0uq.

3. Conclude.

2.4 Sobolev spaces on domains with boundary
In the previous section we have given some properties of the Sobolev spaces on Rd, or
local properties in general domains. In this section we look more carefully at the be-
havior of functions in Sobolev spaces at the boundary of the domain.
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The model case will be the half space

Rd
` “ �

x “ px1, . . . , xdq P Rd : x1 ą 0
(

.

This is the simplest case because the boundary BRd` “ t0u ˆ Rd´1 is flat. Then, if the
open subset Ω of Rd is sufficiently regular, the boundary BΩ can be locally straightened
out and, with a partition of unity and a change of variables for each part, the problem
on Ω is reduced to a problem far from the boundary (where we can apply the results on
Rd) and a finite number of problems on Rd`.

It is the purpose of this section to make these ideas clearer and to deduce some
results for the Sobolev spaces on bounded subsets.

2.4.1 Regular domains
Let k P N˚ Y t8u. We recall that an open subset Ω of Rd is said to be of class Ck if for
any w P BΩ there exist an orthonormal basis β “ pβ1, . . . , βdq of Rd, an open subset O
of Rd´1, a, b P R with a ă b and an application ϕ : O Ñsa, br of class Ck such that U
defined by

U “
#

dÿ

j“1
xjβj, px2, . . . , xdq P O, x1 Psa, br

+

is a neighborhood of w in Rd and

Ω X U “
#

dÿ

j“1
xjβj, x1 “ px2, . . . , xdq P O, x1 P ‰

ϕpx1q, b
“
+

.

In particular, in U the boundary BΩ is the graph of ϕ in the basis β. We can always
construct the basis β with the vectors of the canonical basis pe1, . . . , edq, possibly in a
different order. For x1 “ px2, . . . , xdq P O we set

ϕ̃px1q “ ϕpx1qβ1 `
dÿ

j“2
xjβj.

Then BΩ X U is also the image of O by ϕ̃.
Given w P BΩ X V and x1 “ px2, . . . , xdq P O such that w “ φ̃px1q, the outward

normal derivative to Ω at point w is defined by

νpwq “ ´β1 ` řd
j“2 Bjϕpx1qβjb

1 ` |∇ϕpx1q|2
. (2.14)

The is the only vector such that νpwqKTwpBΩq, |νpwq| “ 1 and, for some t0 ą 0,

w ` tνpwq
#

P Ω, @t Ps ´ t0, 0r,
R Ω, @t P r0, t0r.

We define on BΩ the topology and the corresponding Borel σ-algebra inherited from
the usual structure on Rd. We define the Lebesgue measure of a Borel set B P BΩ X U
as follows:

σpBq “
ż

O
1Bpϕ̃pxqq

b
1 ` |∇ϕpx1q|2 dx1.
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Thus, if f is an integrable function on BΩ X U we have
ż

BΩXU
f dσ “

ż

O
fpϕ̃pxqq

b
1 ` |∇ϕpx1q|2 dx1.

Then we can define Lebesgue spaces on BΩ as on any measure space.

For x “ řd
j“1 xjβj P U we set

Φpxq “ `
x1 ´ ϕpx2, . . . , xdq˘

e1 `
dÿ

j“2
xjej.

Then Φ is of classe Ck and it is injective. So it defines a bijection on its image denoted
by W . Then W is open in Rd and the inverse Φ´1 of Φ is of class Ck on W (Φ defines
a diffeomorphism of class Ck from U to W). Moreover we have

ΦpU X Ωq “ W X Rd
`.

Notice also that for x1 P O we have Φpϕ̃px1qq “ p0, x1q, and then Wj X BRd` “ t0u ˆ O.
The interest of this change of variables is to transform a function supported in ΩXU

to a function on Rd`, where the properties of Sobolev spaces are easier.
Notice that if Ω is bounded then its boundary BΩ is compact. This is not necessary

but it will simplify the discussion (an unbounded open subset can also have a compact
boundary, but we will not consider this situation here).

Now let Ω be a bounded open subset of Rd of class Ck for some k ě 1. There exist
N P N˚, open subsets U1, . . . , UN , W1, . . . , WN of Rd and diffeomorphisms Φj : Uj Ñ Wj

of class Ck such that BΩ Ă ŤN
j“1 Uj and for all j P �1, N� we have ΦjpΩXUjq “ Rd` XWj.

If we set Ω “ U0 then
ŤN

j“0 Uj is an open cover of Ω. We consider a corresponding
partition of unity pχjq0ďjďN (χj P C8

0 pRd, r0, 1sq is supported in Uj for all j P �0, N�
and

řN
j“0 χj “ 1 on Ω).

For u P W 1,ppΩq we set uj “ χju for all j P �0, N�. Then u “ řN
j“0 uj, uj P W 1,ppΩq

for all j P �0, N�, u0 is supported in a compact subset of Ω, and uj is supported in a
compact subset of Ω X Uj for all j P �1, N�. In particular, the extension of u0 by 0 on
Rd is in W 1,ppRdq, and puj ˝ Φ´1q belongs to W 1,ppRd` X Wjq (and can be extended by
0 to a function in W 1,ppRd`q) for all j P �1, N�.

We will use this setting to prove results for Sobolev spaces on Ω.

2.4.2 Approximation by smooth functions (continued)
We recall that given an open subset Ω of Rd, we denote by C8

0 pΩq the set of restrictions
to Ω of functions in C8

0 pRdq.
Theorem 2.39. Let p P r1, `8r and k P N. Let Ω be equal to Rd` or be a bounded open
subset of Rd. Let u P W k,ppRd`q. There exists a sequence punqnPN of functions in C8

0 pΩq
such that

}un ´ u}W k,ppΩq ÝÝÝÝÑ
nÑ`8 0.
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Proof. We prove the case Ω bounded. The case Ω “ Rd` is more direct and is left as
an exercice. Let w P BΩ. We use the notation of Paragraph 2.4.1. Let u P W 1,ppΩq be
supported in Ω X U . We denote by ũ the extension of u by 0 on Rd. For τ ą 0 we set

Uτ “
#

dÿ

j“1
xjβj, px2, . . . , xdq P O, x1 Psa, b ´ τ r

+
.

There exists τ0 ą 0 such that supppuq Ă Uτ0 . For τ Ps0, τ0s and x P Uτ we set

uτ pxq “ upx ` τβ1q.
We extend uτ by 0 on UzUτ . The restriction of uτ to U X Ω is in W k,ppU X Ωq and the
derivatives of uτ up to order k are the translations of the corresponding derivatives of
u. More precisely, for |α| ď k we denote by vα the extension of Bαu by 0 outside Ω X U .
Then Bαuτ coincides with vα

τ on Ω X U . Then by continuity in LppRdq of the translation
we have

}uτ ´ u}p
W k,ppUXΩq “

ÿ

|α|ďk

}Bαuτ ´ Bαu}p
LppUXΩq ď

ÿ

|α|ďk

}vα
τ ´ vα}p

LppRdq ÝÝÑ
τÑ0

0.

Now let τ Ps0, τ0s be fixed. There exists η0 ą 0 if we set

V “
ď

xPsupppuτ qXΩ
Bpx, η0q,

then for all y P V we have y ` τβ1 P U X Ω. Let ρ P C8
0 pRd, r0, 1sq be supported in

Bp0, 1q and such that
ş
Rd ρ “ 1. For η Ps0, η0s and x P Rd we set ρηpxq “ η´dρpx{ηq.

For η Ps0, η0s we set uη
τ “ ρη ˚ uτ . Its restriction to U X Ω belongs to C8

0 pΩq. Since
uτ P W k,ppVq we can prove as in the proof of Theorem 2.31 that

}uη
τ ´ uτ }W k,ppUXΩq ÝÝÑ

ηÑ0
0.

It remains to chose τ ą 0 small enough and then η ą 0 small enough to conclude.

Exercise 18. Let u P H1pRd`q. Prove that for j P �2, d� and t ‰ 0 we have
››Dtej

u
››

L2 ď }∇u}L2pΩq .

2.4.3 Extension
We continue with a result of extension. In order to deduce results in W 1,ppΩq from results
on W 1,ppRdq it is natural to extend functions in W 1,ppΩq to functions in W 1,ppRdq (notice
that in the proof of Theorem 2.33 we were able to prove results on W k,ppωq for ω ĂĂ Ω
precisely because we had a function with a nice behavior on a bigger domain).

It is clear, at least in dimension 1, than extending functions by 0 outside Ω does
not always give a function in W 1,ppRdq. However, we have seen in Exercise 2 that in
dimension 1 we can indeed extend a function in H1pR˚̀ q to a function in H1pRq. We
generalize this observation to the case of a function in W 1,ppRd`q and then, by the argu-
ment described above, to the case of a function in W 1,ppΩq for a regular bounded open
subset Ω.
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Proposition 2.40. Let p P r1, `8s. For u P LppRd`q and x “ px1, . . . , xdq “ px1, x1q P
Rd we set

pPuqpxq “
#

upx1, x1q if x1 ą 0,

up´x1, x1q if x1 ă 0.

Then Pu P LppRdq and }Pu}LppRdq “ 2
1
p }u}LppRd`q. For u P W 1,ppRd`q we have Pu P

W 1,ppRdq with

B1pPuq “ P̃ pB1uq and BjpPuq “ P pBjuq, 2 ď j ď d,

where

pP̃ vqpxq “
#

vpx1, x1q if x1 ą 0,

´vp´x1, x1q if x1 ă 0.

In particular, P defines a continuous extension from W 1,ppRd`q to W 1,ppRdq.
Proof. ‚ We set Rd´ “ RdzRd`. It is easy to see that }Pu|Rd´}p

LppRd´q “ }u}p

LppRd`q if p ă
`8, so Pu P LppRdq with }Pu}p

LppRdq “ 2 }u}p

LppRd`q. If p “ `8 we have }Pu}L8pRdq “
}u}L8pRd`q.
‚ For x “ px1, . . . , xdq P Rd we set σpxq “ p´x1, x2, . . . , xdq. Let j P �2, d�. Let
φ P C8

0 pRdq. If φ is supported in Rd` we have

´
ż

Rd

Pu Bjφ dx “ ´
ż

Rd`
u Bjφ dx “

ż

Rd`
Bju φ dx “

ż

Rd

P pBjuq φ dx.

If φ is supported in Rd´ then, similarly,

´
ż

Rd

Pu Bjφ dx “ ´
ż

Rd´
pu ˝ σq Bjφ dx “ ´

ż

Rd`
u pBjφ ˝ σq dx

“ ´
ż

Rd`
u Bjpφ ˝ σq dx “

ż

Rd`
Bju pφ ˝ σq dx “

ż

Rd´
ppBju ˝ σqφ dx

“
ż

Rd

P pBjuq φ dx.

We consider the general case. Let χ P C8
0 pR, r0, 1sq be even, equal to 1 on [-1,1] and

supported in ]-2,2[. For n P N and x P Rd we set χnpxq “ χpnx1q. Since p1 ´ χnqφ is
supported outside BRd` we have

´
ż

Rd

Pup1 ´ χnqBjφ dx “ ´
ż

Rd

PuBj

`p1 ´ χnqφ˘
dx “

ż

Rd`
P pBjuqp1 ´ χnqφ dx.

By the dominated convergence theorem this yields

´
ż

Rd

Pu Bjφ dx “
ż

Rd

P pBjuqφ dx.

This proves that in the weak sense we have BjpPuq “ P pBjuq. In particular BjpPuq P
LppRdq with }BjpPuq}LppRdq “ 2

1
p }Bju}LppRd`q.
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‚ We proceed similarly for the first partial derivative. We observe that for φ P C8
0 pRdq

we now have B1pφ ˝ σq “ ´pB1φq ˝ σ, so if φ is supported outside BRd` we now have

´
ż

Rd

Pu B1φ dx “
ż

Rd

P̃ pB1uqφ dx.

On the other hand p1 ´ χnq does not commute with the partial derivative B1. But the
additional term is estimated as follows. Let R ą 0 be such that φ is supported in
R ˆ Bd´1p0, Rq (Bd´1p0, Rq is the ball of radius R in Rd´1). Since χ is even we have
ˇ̌
ˇ̌
ż

Rd

Pu B1χn φ dx

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ

ż

Rd`
u B1χn pφ ´ φ ˝ σq dx

ˇ̌
ˇ̌
ˇ

ď n }χ1}8

ż 2
n

x1“0

ż

x1PBd´1p0,Rq
|upx1, x1q| |φpx1, x1q ´ φp´x1, x1q| dx1 dx1

ď 4 }χ1}8 }B1φ}8

ż 2
n

x1“0

ż

x1PBd´1p0,Rq
|upx1, x1q| dx1 dx1

ÝÝÝÝÑ
nÑ`8 0.

The conclusion follows as above.

Theorem 2.41. Let Ω be an open bounded subset of class C1 in Rd. Let p P r1, `8s.
Let O be an open subset of Rd such that Ω Ă O. Then there exists a bounded linear
operator P : W 1,ppΩq Ñ W 1,ppRdq (which is also bounded for the norm of LppΩq) such
that Pu is supported in O and pPuq|Ω “ u for all u P W 1,ppΩq.
Proof. Let u P W 1,ppΩq. We use the notation introduced in Paragraph 2.4.1. Without
loss of generality we can assume that Uj Ă O and Wj is symmetric with respect to BRd`
for all j P �1, N� (for instance Wj is a ball centered on BRd`). We denote by v0 the
extension of u0 by 0 on Rd. We have }v0}W 1,ppRdq “ }u0}W 1,ppΩq. Let j P �1, N�. We
denote by ṽj the extension of uj ˝ Φ´1

j on Wj given by Proposition 2.40. It is supported
in a compact subset of Wj, and ṽj ˝ Φj is compactly supported in Uj. Then we denote
by vj the extension by 0 of ṽj ˝ Φj on Rd. By Propositions 2.36 and 2.40 and Remark
2.23 there exist constants CΦ, CΦ´1 , CP , Cχj

ą 0 independant of u such that

}vj}W 1,ppRdq “ }ṽj ˝ Φj}W 1,ppUjq ď CΦ }ṽj}W 1,ppWjq ď CP CΦ
››uj ˝ Φ´1››

W 1,ppWjXRd`q
ď CP CΦCΦ´1 }uj}W 1,ppUjXΩq ď CP CΦCΦ´1Cχj

}u}W 1,ppΩq .

Finally we set Pu “ řN
j“0 vj, and Pu P W 1,ppRdq satisfies all the required properties.

Exercise 19. Use Theorems 2.31 and 2.41 to give a new proof of Theorem 2.39.

2.5 Sobolev Embeddings
In this section we prove some inclusions between Sobolev spaces. The inclusions between
Lebesgue spaces are already known. In particular we know that LppRdq is never included
in LqpRdq if p ‰ q. The purpose here is to prove that if we add information about the
derivatives then we get better results. In particular we will prove (continuous) inclusions
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of the form W 1,ppΩq Ă LqpΩq for suitable pairs pp, qq or of the form W k,ppΩq Ă Cn. In
this case, this means that we can recover regularity in the usual sense from existence of
weak derivatives.

As for Lebesgue spaces, we will get stronger results on a bounded domain Ω. In this
case we will prove compact inclusions. For instance, H1pΩq is compactly embedded in
L2pΩq. This means that if a sequence of functions in H1pΩq is bounded, then it has
a convergent subsequence for the L2pΩq norm. This result will be of great importance
for the analysis of PDEs. We will already use this fact in the following section (see the
proof of Theorem 2.57).

2.5.1 Some basic results
We begin with a result in dimension 1. We have already said in Proposition 2.7 that
the primitive of a function in LppIq is continuous. We can deduce that a function in
W 1,ppIq is continuous. We can actually say slightly more.

Proposition 2.42. Let I be an interval of R. Let p P r1, `8s and u P W 1,ppIq. Then
u is equal almost everywhere to a function ũ on I such that, for x, y P I,

ũpyq ´ ũpxq “
ż y

x

u1psq ds.

In particular ũ is continuous. If p ą 1 then ũ is even p´1
p

-Hölder continuous on I (when
p “ `8 this means that ũ is Lipschitz continuous). Moreover, if I is not bounded and
if p Ps1, `8r then ũ goes to 0 at infinity. Finally, for any p P r1, `8s, ũ is bounded and
hence u P L8pIq.
Proof. We fix x0 P I. For x P I we set

vpxq “
ż x

x0

u1psq ds.

This makes sense since u1 P LppIq Ă L1
locpIq. Then, by Proposition 2.7, v is continuous

and its derivative in the sense of distributions is u1. By Proposition 2.8, there exists a
constant α such that u ´ v “ α almost everywhere. We set ũ “ v ` α.

For x, y P I we have

ũpyq ´ ũpxq “ vpyq ´ vpxq “
ż y

x

u1psq ds.

If p “ 1 then for some x0 P I we have |ũpyq| ď |ũpx0q| ` }u1}L1pIq.
If p “ `8 then |ũpyq ´ ũpxq| ď |y ´ x| }u1}L8pIq, so ũ is }u1}L8pIq-Lipschitz continu-

ous. If p Ps1, `8r, we have by the Hölder inequality

|ũpyq ´ ũpxq| ď
ˇ̌
ˇ̌
ż y

x

|u1psq| ds

ˇ̌
ˇ̌ ď |y ´ x| p´1

p

ˆż

I

|u1psq|p ds

˙ 1
p

.

This proves that ũ is p´1
p

-Hölder continuous, and in particular uniformly continuous.
All the statements of the proposition follow.
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Corollary 2.43. Let I be an interval of R, p P r1, `8s and k P N˚. Let u P W k,ppIq.
Then u P Ck´1pIq.

This proves that if we have enough weak regularity, then we can recover some weak
regularity. This kind of results will actually depend on the dimension. It is not true in
dimension d ě 2 that a function in W 1,ppΩq is continuous. For instance, if 1 ď p ă d then
for α P ‰´ d

p
`1, 0r the function x ÞÑ |x|α belongs to W 1,ppBp0, 1qq but not to L8pBp0, 1qq.

In any dimension we have the following result on Rd, based on the Fourier point of
view (see Section 2.2.3).

Proposition 2.44. Let k ą d
2 and u P HkpRdq. Then u is continous and goes to 0 at

infinity (in the sense that u has a representative which satisfies these properties). In
particular it is bounded. More generaly, if k ą n ` d

2 for some n P N then u is of class
Cn.

Proof. By the Cauchy-Schwarz inequality we have
ż

Rd

|ûpξq| dξ ď
ˆż

Rd

`
1 ` |ξ|2 ˘´k

dξ

˙ 1
2 ´`

1 ` |ξ|2 ˘k |ûpξq|2 dξ
¯ 1

2 ă `8,

so û P L1pRdq. By inverse Fourier transfor, this implies that u is continuous and goes to
0 at infinity. If k ą n ` d

2 then for all α P Nd with |α| ď n we have Bαu P Hk´npRdq, so
Bαu is a continuous function. This implies that u is of class Cn.

2.5.2 Morrey’s inequality
We have seen int the previous paragraph that from weak regularity we can recover dif-
ferentiability in the usual sense. But Proposition 2.42 only holds in dimension 1 and
Proposition 2.44 is only valid in Rd and for p “ 2. In this paragraph we prove a more
general result.

We recall that for n P N and θ Ps0, 1s we denote by Cn,θpΩq the space of functions
of class Cn with bounded derivatives and such that the n-th derivatives are Hölder
continuous with exponent θ on Ω. It is endowed with the norm defined by

}u}Cn,θpΩq “
ÿ

|α|ďn

}Bαu}L8pΩq `
ÿ

|α|“n

sup
x‰yPΩ

|Bαupxq ´ Bαupyq|
|x ´ y|θ .

Theorem 2.45 (Morrey’s inequality). Let p Psd, `8s. Modulo the choice of a contin-
uous representative we have

W 1,ppRdq Ă C0,1´ d
p pRdq

with continuous injection. More precisely, there exists C ą 0 such that, for u P W 1,ppRdq,
}u}L8pRdq ď C }u}W 1,ppRdq ,

and for almost all x1, x2 P Rd,

|upx1q ´ upx2q| ď C |x1 ´ x2|1´ d
p }∇u}LppRdq .
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In dimension 1, we have used the fundamental theorem of calculus to compare upxq
to upx0q for some fixed x0. It gave a one-dimensional integral which was controled by the
norm of u1. In higher dimension we can still write the fundamental theorem of calculus
for regular functions but the corresponding one-dimensional integral is not controled by
the d-dimensional integral which defines the norm of ∇u. The trick in the following
proof is to compare upxq to the mean value of u on an open subset of Rd. This will give
a d-dimensional integral controled as stated in the theorem.

Proof. ‚ The case p “ `8 follows from Proposition 2.37. We consider the case p P
sd, `8r.
‚ We consider u P C8

0 pRdq. The general case will follow by density. Let x P Rd and
let O be an open subset of Rd. We set

δpx, Oq “ sup
yPO

|y ´ x| .

For y P O and h “ ph1, . . . , hdq “ y ´ x we have

|upyq ´ upxq| ď
ż 1

0

ˇ̌
ˇ̌ d

dt
upx ` thq

ˇ̌
ˇ̌ dt

ď
ż 1

0

dÿ

j“1
|hj| |Bjupx ` thq| dt

ď δpx, Oq
dÿ

j“1

ż 1

0
|Bjupx ` thq| dt.

For t Ps0, 1s we set
tpO ´ xq “ ttpy ´ xq, y P Ou .

If we set
uO “ 1

|O|
ż

O
upyq dy,

then we have

|upxq ´ uO| ď 1
|O|

ż

yPO
|upxq ´ upyq| dy

ď δpx, Oq
|O|

ż

hPpO´xq

ż 1

0

dÿ

j“1
|Bjupx ` thq| dt dh

ď δpx, Oq
|O|

ż 1

0

1
td

dÿ

j“1

ż

ηPtpO´xq
|Bjupx ` ηq| dη dt.

By the Hölder inequality we have for t P r0, 1s
dÿ

j“1

ż

tpO´xq
|Bjupx ` ηq| dη ď

dÿ

j“1

ˆż

tpO´xq
|Bjupx1 ` ηq|p dη

˙ 1
p

|tpO ´ xq| p´1
p

ď t
dpp´1q

p |O| p´1
p }∇u}LppRdq ,

so

|upxq ´ uO| ď δpx, Oq |O|´ 1
p }∇u}LppRdq

ż 1

0
t´ d

p dt “ δpx, Oq |O|´ 1
p }∇u}LppRdq

1 ´ d
p

. (2.15)
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‚ Now let x1, x2 P Rd and let O be the open ball with diameter rx1, x2s. We have
δpx1, Oq “ δpx2, Oq “ |x1 ´ x2| and |O| “ cd

2d |x1 ´ x2|d where cd is the size of the unit
ball in Rd. Thus

|upx1q ´ upx2q| ď |upx1q ´ uO| ` |upx2q ´ uO| ď 21` d
p c

´ 1
p

d

1 ´ d
p

|x1 ´ x2|1´ d
p }∇u}LppRdq .

This gives the second statement. Now for x P Rd we apply (2.15) with O “ Bpx, 1q, the
ball of center x and radius 1. The Hölder inequality gives

|uO| ď c
´ 1

p

d }u}LppRdq ,

so

|upxq| ď c
´ 1

p

d

˜
}u}LppRdq ` 1

1 ´ d
p

}∇u}LppRdq

¸
.

This completes the proof.

Exercise 20. Find u P W 1,dpRdq such that u R L8pRdq.

2.5.3 Gagliardo-Nirenberg Inequality
In this paragraph we consider the case p ď d. This is particularly interesting for the
common case p “ 2. We have seen that in this case a function in W 1,ppRdq is not neces-
sarily continuous or bounded. The purpose of the next result is to show that a function
in W 1,ppRdq is now in LqpRdq for some suitable exponent q. This kind of results is also
of crucial importance in applications.

Assume that there exists q P r1, `8r and C ą 0 such that

@v P C8
0 pRdq, }v}LqpRdq ď C }∇v}LppRdq . (2.16)

Let u P C8
0 pRdqz t0u. For λ ą 0 and x P Rd we set uλpxq “ upλxq. Then for all λ ą 0

we have

λ´ d
q }u}LqpRdq “ }uλ}LqpRdq ď C }∇uλ}LppRdq “ Cλ1´ d

p }∇u}LppRdq .

Letting λ go to 0 or to `8 we see that we necessarily have

´d

q
“ 1 ´ d

p
. (2.17)

In the following theorem we prove that if (2.17) holds then we indeed have (2.16). For
p P r1, dr we define p˚ P r1, `8r by

p˚ “ pd

d ´ p
,

1
p˚ “ 1

p
´ 1

d
. (2.18)

Notice that we have p˚ ą p and p˚ Ñ `8 if p Ñ d.

Theorem 2.46 (Gagliardo-Nirenberg-Sobolev inequality). Let p P r1, dr and let p˚ be
defined by (2.18). There exists C ą 0 such that for all u P C1

0 pRdq we have

}u}Lp˚ pRdq ď C }∇u}LppRdq .
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Proof. ‚ Let u P C1
0 pRdq. For x “ px1, . . . , xdq P Rd and j P �1, d� we have

|upxq| “
ˇ̌
ˇ̌
ż xj

´8
Bjupx1, . . . , xj´1, t, xj`1, . . . , xdq dt

ˇ̌
ˇ̌ ď vjpx̃jqd´1

where x̃j “ px1, . . . , xj´1, xj`1, . . . , xdq and

vjpx̃jq “
ˆż

R
|∇upx1, . . . , xj´1, t, xj`1, . . . , xdq| dt

˙ 1
d´1

.

This gives

|upxq| d
d´1 ď

dź

j“1
vjpx̃jq.

Now we prove by induction on d ě 2 that if we set

v : x P Rd ÞÑ
dź

j“1
vjpx̃jq,

then we have

}v}L1pRdq ď
dź

j“1
}ṽj}Ld´1pRd´1q . (2.19)

The case d “ 2 is easy. Assume that (2.19) is true up to the dimension d ´ 1 for some
d ě 3. We fix x1 P R and see v as a function of x1 “ px2, . . . , xdq. By the Hölder
inequality we have

ż

Rd´1
vpx1, x1q dx1 ď }ṽ1}Ld´1pRd´1q

˜ż

Rd´1

dź

j“2
ṽjpx1, x̃1

jq d´1
d´2 dx2 . . . dxd

¸ d´2
d´1

,

where for j P �2, d� we have set x̃1
j “ px2, . . . , xj´1, xj`1, . . . , xdq. The induction assump-

tion gives
ż

Rd´1

dź

j“2
ṽjpx1, x̃1

jq d´1
d´2 dx1 ď

dź

j“2

ˆż

Rd´2
ṽjpx1, x̃1

jqd´1 dx̃1
j

˙ 1
d´2

and hence
ż

Rd´1
vpx1, x1q dx1 ď }ṽ1}Ld´1pRd´1q

dź

j“2

ˆż

Rd´2
ṽjpx1, x̃1

jqd´1 dx̃1
j

˙ 1
d´1

.

After integration over x1 P R we get, by the Hölder inequality,
ż

Rd

vpxq dx ď }ṽ1}Ld´1pRd´1q
dź

j“2

ˆż

Rd´1
ṽjpx̃jqd´1 dx̃j

˙ 1
d´1

.

This is (2.19). We deduce
ż

Rd

|upxq| d
d´1 dx ď

ˆż

Rd

|∇upxq| dx

˙ d
d´1

,
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which gives the result for u P C1
0 pRdq when p “ 1.

‚ Let γ ą 1. The case p “ 1 applied to |u|γ´1 u (still in C1
0 pRdq, with gradient

γ |u|γ´1 ∇u) gives
ˆż

Rd

|u| γd
d´1

˙ d´1
d

ď γ

ż

Rd

|u|γ´1 |∇u| dx ď γ

ˆż

Rd

|u| pγ´1qd
d´1 dx

˙ p´1
p

ˆż

Rd

|∇u|p dx

˙ 1
p

.

(2.20)
If we choose

γ “ ppd ´ 1q
d ´ p

ą 1

we have
γd

d ´ 1 “ pγ ´ 1qp
p ´ 1 “ dp

d ´ p
“ p˚,

and the conclusion follows for u P C1
0 pRdq. The general case u P W 1,ppRdq follows by

density.

In Theorem 2.46 we have only used the fact that ∇u P LppRdq. If u is also in LppRdq
we have better conclusions. We know that LppRdq XLp˚pRdq Ă LqpRdq (with continuous
inclusion) for any q P rp, p˚s. This is the first statement of the following theorem. The
second statement is about the limit case p “ d. Notice that Theorem 2.46 does not
hold with p “ d and p˚ “ `8 (see Exercise 20), but for u P W 1,dpRdq we have a result
similar to the case p ă d.

Theorem 2.47. (i) Let p P r1, dr. Then for all q P rp, p˚s we have W 1,ppRdq Ă LqpRdq
with continuous injection.

(ii) For all q P rd, `8r we have W 1,dpRdq Ă LqpRdq with continuous injection.

Proof. We prove the second statement. We prove by induction on γ ě d ´ 1 that for
q P “

d, γd
d´1

‰
there exists Cq ą 0 such that, for all u P C1

c pRdq,
}u}LqpRdq ď Cq }u}W 1,dpRdq . (2.21)

The result will follow by density. (2.21) is clear when γ “ d ´ 1. We assume that it is
proved up to γ ´ 1 for some γ ě d. Let u P C1

c pRdq. We use estimate (2.20) from the
previous proof with p “ d. With the induction assumption this gives

}u}γ

L
γd

d´1 pRdq
ď γ }u}γ´1

L
pγ´1qd

d´1 pRdq
}∇u}LdpRdq ď γCγ´1

pγ´1qd
d´1

}u}γ
W 1,dpRdq .

This gives (2.21) for q “ γd
d´1 . The case q P “

d, γd
d´1

‰
follows since u belongs to LdpRdq.

Theorems 2.45 and 2.46 only concern functions with one derivative in LppRdq. It-
erating these results we see that we get better results if we have more derivatives in
LppRdq.

For m P N such that mp ă d we define pm̊ by

1
pm̊

“ 1
p

´ m

d
, p˚

m “ pd

d ´ mp
.

Corollary 2.48. Let k P N˚ and p P r1, `8s.
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(i) Assume that kp ă d. Then for q P rp, pk̊s we have W k,ppRdq Ă LqpRdq with
continuous injection.

(ii) Assume that kp “ d. Then for all q P rp, `8r we have W k,ppRdq Ă LqpRdq with
continuous injection.

(iii) Assume that kp ą d. Then for all q P rp, `8s we have W k,ppRdq Ă LqpRdq with
continuous injection. Moreover, modulo the choice of a continuous representative
we have W k,ppRdq Ă Cn,θpRdq with continuous injection, where n P N and θ Ps0, 1r
are such that n ` θ ď k ´ d{p.

Exercise 21. Prove Corollary 2.48.

2.5.4 Sobolev embeddings on a bounded domain
So far we have only proved results about W 1,ppRdq. Our purpose in this paragraph is
to prove analogous results for Sobolev spaces on a bounded open subset Ω. For this, we
will use the extension operator of Theorem 2.41 to deduce inequalities on Ω from their
analogs on Rd.

However, as said in introduction, we will get better results on Ω. For instance
we recall that LppΩq Ă LqpΩq if p ą q. This will automatically improve the result
of Theorem 2.46 (in particular the discussion before Theorem 2.46 is not valid on a
bounded domain).

Another very important difference between the case of Rd and the case of a bounded
domain is that some inclusions will be not only continuous but also compact.

The results of Theorem 2.47 and 2.45 are extended to bounded domains as follows.

Theorem 2.49. Let Ω be a bounded open subset of class C1 in Rd. Let p P r1, `8s.
Then we have the following compact inclusions.

(i) If p ă d then for all q P r1, p˚r we have W 1,ppΩq ĂĂ LqpΩq.
(ii) For all q P rd, `8r we have W 1,dpΩq ĂĂ LqpΩq.
(iii) If p ą d then we have W 1,ppΩq ĂĂ C0pΩq.
In particular we always have W 1,ppΩq ĂĂ LppΩq.
Proof of Theorem 2.49. ‚ We begin with the last case. By the extension Theorem
2.41, we can see functions in W 1,ppΩq as functions in W 1,ppRdq supported in some fixed
compact of Rd. If p ă `8, the conclusion follows from the Morrey inequality (Theorem
2.45) and the Ascoli-Arzelá Theorem A.3. Since W 1,`8pΩq is continuously embedded in
W 1,ppΩq for any p Psd, `8r, it is also compactly embedded in C0pΩq.
‚ Assume that (i) is proved and let q P rd, `8r. Then there exists p P r1, dr such that
q ă p˚. Then we have

W 1,dpΩq Ă W 1,ppΩq ĂĂ LqpΩq,
where the first inclusion is continuous (since Ω is bounded) and the second is compact
by (i). Thus it only remains to prove (i).
‚ Let q P r1, p˚r. We consider a sequence punqnPN bounded in W 1,ppΩq. As above, we
identify this sequence with a sequence (still denoted by punqnPN) bounded in W 1,ppRdq
such that the functions un are supported in the same bounded open subset U . Let
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ρ P C8
0 pRd,R`q be supported in the unit ball and such that

ş
Rd ρ “ 1. For ε ą 0 and

x P Rd we set ρε “ 1
εd ρ

`
x
ε

˘
, and then uε

n “ ρε ˚ un P C8pRdq. Let ε ą 0. For n P N and
x P Rd we have

|uε
npxq| ď }ρε}L8pRdq }un}L1pUq

and
|∇uε

npxq| ď }∇ρε}L8pRdq }un}L1pUq ,

so the sequence puε
nqnPN is bounded in C0pRdq and uniformly equicontinuous. Moreover

the functions uε
n are supported in a common bounded set V of Rd, so by the Ascoli-

Arzelá Theorem A.3 there exists a subsequence puε
nk

qkPN which converges uniformly in
V and hence in U . This gives

lim sup
j,kÑ`8

›››uε
nj

´ uε
nk

›››
LqpUq

“ 0.

‚ We already know that uε
n goes to un as ε Ñ 0 in LqpUq for all n P N. We prove that

this convergence is uniform with respect to n. Let v P C1
0 pRdq be supported in U . For

ε ą 0 we set vε “ ρε ˚ v. Then for x P Rd we have

vεpxq ´ vpxq “
ż

Bp0,1q
ρpyq`

vpx ´ εyq ´ vpxq˘
dy “ ´ε

ż

Bp0,1q
ρpyq

ż 1

0
∇vpx ´ εtyq ¨ y dt dy,

and hence

}vε ´ v}L1pUq “
ż

U
|vεpxq ´ vpxq| dx ď ε

ż

Bp0,1q
ρpyq

ż 1

0

ż

U
|∇vpx ´ εtyq| dx dt dy

ď ε }∇v}L1pUq .

(2.22)

By density, the same estimate holds for any v P W 1,ppRdq supported in U (note that if
vm P C1pRdq goes to v in W 1,ppRdq then ρε ˚ vn goes to ρε ˚ v in L1pRdq). Let θ Ps0, 1r
be such that

1
q

“ θ ` 1 ´ θ

p˚ .

By (2.22) applied with v “ un and the Gagliardo-Nirenberg inquality (Theorem 2.46
there exists C ą 0 independant on u, n or ε such that

}uε
n ´ un}LqpUq ď }uε

n ´ un}θ
L1pUq }uε

n ´ un}1´θ
Lp˚ pRdq ď Cεθ }∇un}LppUq .

This proves that uε
n goes to un in LqpUq as ε Ñ 0 uniformly with respect to n P N. Then

for any η ą 0 we get
lim sup
j,kÑ`8

››unj
´ unk

››
LqpUq ď η.

Using a standard diagonal argument, we obtain a subsequence which goes to 0 in LqpUq
and hence in LqpΩq.

Exercise 22. Let p P r1, dr. Prove that we have the continuous inclusion W 1,ppBp0, 1qq Ă
Lp˚pBp0, 1qq, but that this inclusion is not compact.
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2.6 Traces
We recall that functions in the Sobolev spaces are not really functions, but equiva-
lence classes of functions pairwise almost everywhere equal. In particular, for u in some
Sobolev space W k,ppΩq, it does not make sense to consider the value of u at some point
x0 P Ω.

We have seen in Proposition 2.42 that, in dimension 1, an element u of W 1,ppIq has
a continuous reprentative ũ. It is reasonnable to consider ũpx0q as the value of u at
x0. Indeed, if ṽ is another representative of u then ṽpx0q can be far from ũpx0q, but for
almost all x P I “close to x0” then ṽpxq is equal to ũpxq and hence “close to ũpx0q”.

However, this possible definition only works in dimension 1, since in higher dimen-
sion an element of W 1,ppΩq does not necessarily have a continuous representative.

In applications, it is not crucial to give the value of a function at a point, but we
are interested in what happens at the boundary of the domain. This will be important
for instance for integration by parts (Green formula in higher dimension), where the
value of the function at the boundary appears. For regular domains, the boundary is a
submanifold of dimension pd ´ 1q. This is still of dimension 0 for the Lebesgue measure
on Ω, but if d ě 2 this is in some sense “bigger” than a point.

Our purpose in this section is the following. Given a regular open subset Ω of Rd

and u P W 1,ppΩq, we want to give a natural sense to the restriction of u on the boundary
BΩ, in such a way that if u belongs to C0pΩq then the new definition coincides with the
usual one.

2.6.1 Trace
As explained in the previous section, we begin our analysis with the model case Ω “ Rd`
and then, using a partition of unity and changes of variables, we will give a more general
result.

Proposition 2.50. Let p P r1, `8r. There exists C ą 0 such that for u P C8
0 pRd`q we

have
}up0, ¨q}p

LppRd´1q ď C }u}p

W 1,ppRd`q .

For the proof we only have to integrate over Rd´1 the one-dimensional case which is
very close to Proposition 2.42:

Proof. For x1 P Rd´1 we have

|up0, x1q|p ď p

ż `8

0
|Bx1ups, x1q| |ups, x1q|p´1

ds

so, by the Hölder and Young inequalities,

|up0, x1q|p ď p

ˆż `8

0
|Bx1ups, x1q|p ds

˙ 1
p

ˆż `8

0
|ups, x1q|p ds

˙ p´1
p

ď
ż `8

0
|Bx1ups, x1q|p ds ` pp ´ 1q

ż `8

0
|ups, x1q|p ds.
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After integration over x1 P R we get

}up0, ¨q}p
LppRd´1q ď pp ´ 1q }u}p

LppRd`q ` }Bx1u}p
LppRdq ,

and the conclusion follows.

Theorem 2.51. Let Ω be an open subset of Rd of class C1. Let p P r1, `8r. There is
a unique bounded linear operator

γ0 : W 1,ppΩq Ñ LppBΩq

such that
@u P W 1,ppΩq X C0pΩq, γ0puq “ u|BΩ.

Proof. Let u P C8
0 pΩq. We use the notation of Paragraph 2.4.1. Let j P �1, N�. We

have
ż

BΩXUj

|u|p dσ “
ż

Oj

|upϕ̃px1qq|p
b

1 ` |∇ϕpx1q|2 dx1

ď Cϕ

ż

Oj

|upϕ̃px1qq|p dx1 “ Cϕ

ż

BRd`

ˇ̌pu ˝ Φ´1qˇ̌p
dx1,

where Cϕ “ supx1PO

b
1 ` |∇ϕpx1q|2 and pu ˝ Φ´1q has been extended by 0 on Rd`. By

Propositions 2.50 and 2.36 there exists Cj ą 0 independant of u such that
ż

BΩXUj

|u|p dσ ď CϕC
››u ˝ Φ´1››p

WjXRd`
ď Cj }uj}p

W 1,ppΩq .

Then,
››u|BΩ

››
LppΩq ď

Nÿ

j“1

›››uj |BΩ

›››
LppΩq

ď
Nÿ

j“1
Cj }uj}W 1,ppΩq .

Finally, there exists C ą 0 such that for all u P C8
0 pΩq we have

››u|BΩ
››

LppBΩq ď C }u}W 1,ppΩq .

Since C8
0 pΩq is dense in W 1,ppΩq, the map u P C8

0 pΩq ÞÑ u|BΩ P LppBΩq extends to a
unique continuous map on W 1,ppΩq. Moreover, if u P W 1,ppΩqXC0pΩq then the sequence
punqnPN given by the proof of Theorem 2.39 goes uniformly to u and hence the restriction
of un goes to the restriction of u uniformly on BΩ, and hence in LppBΩq.
Exercise 23. Show that there is no continuous linear map γ : L2pR˚̀ q Ñ R such that
γpuq “ up0q for all u P C0pr0, `8rq X L2pR˚̀ q.

The following notation is motivated by Theorem 2.64 below:

Définition 2.52. When p “ 2 we denote by H1{2pBΩq the range of γ0 : H1pΩq Ñ L2pΩq.
We do not discuss the properties of H1{2pBΩq here. However we will use in the

following chapter that even if γ0 is not surjective, H1{2pBΩq is dense in L2pBΩq.
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Proposition 2.53. Let Ω be an open subset of Rd of class C1. Let p P r1, `8r and
u P W 1,ppΩq. Then we have

γ0puq “ 0 ðñ u P W 1,p
0 pΩq.

Proof. ‚ Assume that u P W 1,p
0 pRdq. Then there is a sequence punqnPN in C8

0 pΩq going
to u in W 1,ppΩq. Since γ0punq “ 0 for all n P N and γ0 is continuous, we have γ0puq “ 0.
‚ For the converse, we consider the case Ω “ Rd` and u supported in a bounded domain.
Then, with a partition of unity and changes of variables as above, we get the general
case. So let u P W 1,ppRd`q such that γ0puq “ 0. Let punqnPN be a sequence in C8

0 pRd`q
which goes to u in W 1,ppRd`q (see Theorem 2.39). Let n P N and x1 ą 0. For x1 P Rd´1

we have by the Hölder inequality

|unpx1, x1q|p ď
ˆ

|unp0, x1q| `
ż x1

0
|∇unps, x1q| ds

˙p

ď 2p´1 |unp0, x1q|p ` 2p´1
ˆż x1

0
|∇unps, x1q| ds

˙p

ď 2p´1 |unp0, x1q|p ` 2p´1xp´1
1

ż x1

0
|∇unps, x1q|p ds,

so for ε ą 0
ż ε

0

ż

Rd´1
|unpx1, x1q|p dx1 dx1 ď 2p´1ε }γ0punq}p

LppRd`q ` 2p´1εp

ż

Rd´1

ż ε

0
|∇unps, x1q|p ds dx1.

Taking the limit n Ñ 0 yields, by continuity of the trace,

}u}p
Lpps0,εrˆRd´1q ď 2p´1εp }∇u}p

Lpps0,εrˆRd´1q . (2.23)

Let χ P C8pR`, r0, 1sq, equal to 1 on r0, 1s and equal to 0 on r2, `8r. Then for n P N˚

and x “ px1, . . . , xdq P Rd` we set χnpxq “ χpnx1q. For n P N˚ we set un “ p1 ´ χnqu, so
that un P C8

0 pRd`q. By the dominated convergence theorem, we have

}un ´ u}LppRd`q “ }χnu}LppRd`q ÝÝÝÝÑ
nÑ`8 0.

For n P N˚ we have
∇pun ´ uq “ p1 ´ χnq∇u ´ uB1χn.

The first term goes to 0 in LppRd`q. For the second term we use (2.23) to write

}uB1χn}p
Lp “ np

ż 2
n

x1“ 1
n

|χ1pnx1q|p
ż

x1PRp´1
|upx1, x1q|p dx1 dx1

ď 22p´1 }χ1}8 }∇u}p

Lpps0, 2
n

rˆRd´1q
ÝÝÝÝÑ
nÑ`8 0.

This proves that
}un ´ u}W 1,ppRd`q ÝÝÝÝÑ

nÑ`8 0,

and hence u P W 1,p
0 pRd`q.
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Exercise 24. Find an open domain Ω and u P W 1,8pΩq such that u|BΩ “ 0 but u is
not in the closure of C8

0 pΩq in W 1,`8pΩq.
Exercise 25. 1. Let u P H1

0 pR2`q. For px1, x2q P R2 we set

ũpx1, x2q “
#

upx1, x2q if x1 ą 0,

0 if x1 ď 0.

Prove that ũ P H1pR2q and give an expression for the derivatives of ũ. In particular,
what can we say about }ũ}H1pR2q ?
2. Let Ω be an open subset of R2. Let u P H1

0 pΩq. Prove that the extension of u by 0
on Rd belongs to H1pR2q.

2.6.2 Normal derivative
Let Ω be a bounded open subset of class C1 in Rd. For the rest of this section we only
consider the case p “ 2.

Let u P H2pΩq. For j P �1, d� the derivative Bju belongs to H1pΩq and hence has a
trace on BΩ. Then we set

γ1puq “ Bνu “
dÿ

j“1
γ0pBjuqνj P L2pBΩq,

where ν “ pν1, . . . , νdq is the outward normal derivative (see (2.14)). Notice that if u
belongs to C1pΩq then on BΩ we have

Bνu “ ∇u ¨ ν.

This defines a continuous function γ1 from H2pΩq to L2pΩq. We can prove (see Theorem
2.64 below for the case Ω “ Rd`) that

�Bνu, u P H2pΩq( “ H1{2pΩq.

2.6.3 Green Formula
As said above, one of the motivations for the definition of the traces is the generalization
of the Green Formula to functions which are not regular in the usual sense. The fol-
lowing results are deduced from the regular analogs by density of regular functions and
continuity of the traces. For u P W 1,1pΩq we can write

ş
BΩ u dσ instead of

ş
BΩ γ0puq dσ

and
ş

BΩ Bνu v dσ instead of
ş

BΩ γ1puqγ0pvq dσ.

Theorem 2.54. Let u, v P H1pΩq. Then for j P �1, d� we have
ż

Ω
u Bjv dx “

ż

BΩ
uv dσ ´

ż

Ω
Bju v dx

Theorem 2.55. Let u P H2pΩq and v P H1pΩq. Then we have

´
ż

Ω
Δu v dx “ ´

ż

BΩ
Bνu v dσ `

ż

Ω
∇u ¨ ∇v dx.
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2.7 Poincaré Inequality
In Theorem 2.46 we have given an estimate with the norm }∇u}LppRdq and not the full
norm }u}W 1,ppRdq. In application, and in particular for the analysis of second order PDEs,
we will often be in the situation where we only control the norm of the gradient of the
function and not the function itself.

It turns out that in some particular situations, the norm of the function is in fact
controled by the norm of the gradient:

}u}LppΩq ď C }∇u}LppΩq . (2.24)

In this case, }∇u}LppΩq defines a norm on W 1,ppΩq, equivalent to }u}W 1,ppΩq. An inequal-
ity like (2.24) is called a Poincaré inequality. This is the subject of this paragraph.

Before giving precise statements, we notice that a Poincaré inquality cannot hold in
a space which contains constant functions. In an unbounded domain, troubles can come
from slowly varying functions. For instance on R we consider for n P N˚ the function
un defined by

unpxq “
#

1 ´ |x|
n

if |x| ď n,

0 if |x| ą n.

Then we have }u}2
L2pRq “ 2n

3 and }u1}2
L2pRq “ 2

n
. A Poincaré inequality cannot hold in

H1pRq.

In fact, we have discussed all the problems to prove a Poincaré inequality. Roughly
speaking, on a bounded domain, and if we remove constant functions, a Poincaré in-
quality holds. The first way to remove constant functions is to consider only functions
vanishing at the boundary.

We first recall that the property that only constant functions (up to equality almost
everywhere) have a zero gradient also holds in higher dimension.
Proposition 2.56. Let Ω be an open connected subset of Rd. Let u P L1

locpΩq be such
that ∇u “ 0 (in the sense of distributions). Then there exists a constant α such that
u “ α almost everywhere.
Proof. We proceed by induction on the dimension. The case d “ 1 is already known.
We assume that d ě 2 and that the result is known up to the dimension d ´ 1.

It is enough to consider the case Ω “ śd
j“1saj, bjr. Let χ P C8

0 psa1, b1rq be such thatşb1
a1

χpx1q dx1 “ 1. For x1 P Ω1 “ śd
j“2saj, bjr we set

vpx1q “
ż b1

a1

upx1, x1qχpx1q dx1.

This defines a function v P L1
locpΩ1q. For ψ P C8

0 pΩ1q and j P �2, d� we have

´
ż

Ω1
vpx1qBjψpx1q dx1 “ ´

ż

Ω
upx1, x1qχpx1qBjψpx1q dx1 dx1

“ ´
ż

Ω
upx1, x1qBj

`
χpx1qψpx1q˘

dx1 dx1

“ 0.
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This proves that, in the sense of distributions, we have ∇v “ 0 on Ω1 By the induction
assumption there exists α such that v “ α almost everywhere on Ω1.

Now let φ P C8
0 pΩq. For x “ px1, x1q P Ω we set

φ̃px1q “
ż b1

a1

φpx1, x1q dx1

and
ζpxq “

ż x1

a1

`
φpt, x1q ´ χptqφ̃px1q˘

dt.

Then ζ P C8
0 pΩq and φ “ Bx1ζ ` χ b φ̃, so

ż

Ω
uφ dx “

ż b1

a1

ż

Ω1
upx1, x1qχpx1qφ̃px1q dx1 dx1 “

ż

Ω1
vφ̃ dx1 “ α

ż

Ω1
φ̃ dx1 “ α

ż

Ω
φ dx.

This proves that u “ α almost everywhere on Ω.

Now we can prove the Poincaré inequality.

Theorem 2.57. Let Ω be an open bounded subset of Rd. Let p P r1, `8r. Then there
exists C ą 0 such that

@u P W 1,p
0 pΩq, }u}LppΩq ď C }∇u}LppΩq .

Proof. Assume by contradiction that the statement is not true. Then for all n P N there
exists un P W 1,p

0 pΩq such that

}un}LppΩq ą n }∇un}LppΩq .

Since this inequality can be divided by }un}LppΩq (which cannot be 0), we can assume
without loss of generality that }un}LppΩq “ 1 for all n P N. Then

}∇un}LppΩq ÝÝÝÝÑ
nÑ`8 0, (2.25)

and the sequence punqnPN is bounded in W 1,ppΩq. Since W 1,ppΩq is compactly embedded
in LppΩq (see Theorem 2.49), there exists an increasing sequence pnkqkPN P NN and
v P LppΩq such that

}unk
´ v}LppΩq ÝÝÝÝÑ

kÑ`8 0.

With (2.25), this implies that the sequence punk
qkPN is a Cauchy sequence in W 1,ppΩq.

Since W 1,ppΩq is complete (see Theorem 2.24), the sequence punk
qkPN has a limit in

W 1,ppΩq. This limit is necessarily v. In particular v belongs to W 1,ppΩq, and by (2.25)
we have ∇v “ 0. By Proposition 2.56, v is constant on each connected component of Ω.
Since unk

belongs to W 1,p
0 pΩq for all k P N, we also have v P W 1,p

0 pΩq, so v “ 0, which
gives a contradiction with the fact that }unk

}L2pΩq “ 1 for all k P N.

Notice that the proof of Theorem 2.57 does not give any clue about the constant C of
the inequality. We now give a similar result, with a more constructive proof. Moreover
the open set Ω is only required to be bounded in one direction. This means that Ω is
included in a strip of the form

Ω Ă �
x P Rd, x ¨ e Psa, br( ,

for some e P Rd, |e| “ 1 and a, b P R.
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Theorem 2.58 (Poincaré inequality). Let Ω be an open subset of Rd, bounded in one
direction. Let p P r1, `8r. Then there exists CΩ ą 0 such that, for all u P W 1,p

0 pΩq,

}u}LppΩq ď CΩ }∇u}LppΩq .

For instance, we can take CΩ “ pb ´ aqp (this is not optimal).

Proof. ‚ It is enough to prove the estimate for u P C8
0 pΩq. Then the result will follow

by density of C8
0 pΩq in W 1,p

0 pΩq. We can extend u by 0, this gives a function in C8
0 pRdq

supported in Ω. The case p “ `8 follows from the Mean Value Inequality, so we assume
that
‚ We first consider the one-dimensional case. Then there exists a, b P R such that
Ω Ăsa, br. For all x Psa, br we have by the Hölder Inequality

|upxq| ď
ż b

a

|u1psq| ds ď }u1}Lppa,bq pb ´ aq p´1
p .

Then
}u}p

Lp ď pb ´ aq }u1}p
Lp pb ´ aqp´1 “ }u1}p

Lp pb ´ aqp

so the result follows in this case.
‚ Now we consider the general case. Let pf1, . . . , fdq be an orthonormal basis of Rd

such that
supppuq Ă �

y1f1 ` y1f 1 : y1 Psa, br, y1 P Rd´1(
,

for some a, b P R, where for y1 “ py2, . . . , ydq P Rd´1 we have set y1f 1 “ řd
j“2 yjfj. By a

change of variables and using the one-dimensional case we can write
ż

Ω
|upxq|p dx “

ż

y1PRd´1

ż b

y1“a

|upy1f1 ` y1f 1q|p dy1 dy1

ď pb ´ aqp

ż

y1PRd´1

ż b

y1“a

ˇ̌
ˇ̌ B
By1

upy1f1 ` y1f 1q
ˇ̌
ˇ̌
p

dy1 dy1

ď pb ´ aqp

ż

y1PRd´1

ż b

y1“a

|∇upy1f1 ` y1f 1q|p dy1 dy1

ď pb ´ aqp

ż

Ω
|∇upxq|p dx.

The conclusion follows.

It can be important in application to have an explicit constant for the Poincaré
inequality. Computing the optimal constant for particular sets Ω requires more work,
and we do not discuss this issue here, but we already have an upper bound.

After Theorem 2.58, the interest of the proof given for Theorem 2.57 is not clear.
For the proof of Theorem 2.58 we have really used the fact that the function u vanishes
at the boundary. While for the proof of Theorem 2.57 we have in fact only used the
property that the only constant function is 0. The interest of the proof of Theorem 2.57
is that it can be used in any such situation. For instance, we give the following version
of the Poincaré inequality.
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For a bounded open subset Ω we define

ĂW 1,ppΩq “
"

u P W 1,ppΩq :
ż

Ω
u dx “ 0

*
. (2.26)

Notice that if Ω is connected then the only function u P ĂW 1,ppΩq such that ∇u “ 0 is
u “ 0.

Theorem 2.59 (Poincaré-Wirtinger inequality). Let Ω be an open, connected and bounded
subset of Rd. Let p P r1, `8s Then there exists C ą 0 such that, for all u P ĂW 1,ppΩq,

@u P ĂW 1,ppΩq, }u}LppΩq ď C }∇u}LppΩq .

Exercise 26. Let Ω be an open, bounded and connected subset of Rd. Let p P r1, `8s.
1. Prove Theorem 2.59.
2. For u P W 1,ppΩq we set

N puq “ }∇u}LppΩq `
ˇ̌
ˇ̌
ż

Ω
u dx

ˇ̌
ˇ̌ .

Prove that N is a norm on W 1,ppΩq, equivalent to the usual one.

2.8 Appendices
2.8.1 Sobolev spaces of fractional order
The space W k,ppΩq is the set of functions in LppΩq whose derivatives of order up to k are
in LppΩq. Then, all along this chapter, k was a non-negative integer. When Ω “ Rd and
p “ 2 we gave another definition of Sobolev spaces (see Proposition 2.26). We observe
that in (2.9) the parameter k has no reason to be an integer. Via the Fourier transform,
we can then define Sobolev spaces for any real parameter k. In some sense, the space
H1{2pRdq can be seen as the space of L2 functions such that “half a derivative” is in L2.
These spaces turn out to be useful. For instance, we have briefly said that H1{2pBΩq
is the set of traces of functions in H1pΩq. When Ω “ Rd`, a proof is given below (see
Proposition 2.50)

Définition 2.60. Let s P R. For u P S 1pRdq such that û P L1
locpRdq we set

}u}HspRdq “
ˆż

Rd

`
1 ` |ξ|2 ˘s|ûpξq|2 dξ

˙ 1
2

, (2.27)

and we denote by HspRdq the set of tempered distribution u such that û P L1
locpRdq and

}u}HspRdq ă `8.

Notice that when s P N this definition of HspRdq coincides with the usual one.

Proposition 2.61. Let s P R.

(i) HspRdq is a Hilbert space.
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(ii) If for u P H´spRdq and v P HspRdq we set

Φupvq “
ż

Rd

ûpξqv̂pξq dξ,

then Φu is a continuous linear form on HspRdq and the map u ÞÑ Φv is a semilinear
isometry from H´spRdq to HspRdq1.

Proof. ‚ For u, v P HspRdq we set

�u, v�HspRdq “
ż

Rd

�ξ�2s ûpξqv̂pξq dξ.

This is well defined and this gives an inner product on HspRdq. Moreover the corre-
sponding norm is (2.27). Let punqnPN be a Cauchy sequence in HspRdq. Then �¨�s ûn is
a Cauchy sequence in L2pRdq and has a limit v P L2pRdq. We denote by u the inverse
Fourier transform of �¨�´s v. Then u P HspRdq and

}un ´ u}HspRdq “ }�¨�s ûn ´ v}L2pRdq ÝÝÝÝÑ
nÑ`8 0.

This proves that HspRdq is complete.
‚ For u P H´spRdq and v P HspRdq we have

Φupvq “
ż

Rd

�ξ�´s ûpξq �ξ�s v̂pξq dξ.

This proves that Φupvq is well defined and, by the Cauchy-Schwarz Inequality,

|Φupvq| ď }u}H´spRdq }v}HspRdq .

Since Φu is linear, it is a continuous linear form on HspRdq with

}Φu}HspRdq1 ď }u}H´spRdq .

Choosing v “ F´1 �¨�´2s Fu we get Φupvq “ }u}H´spRdq }v}HspRdq, so

}Φu}HspRdq1 “ }u}H´spRdq .

Now let Φ P HspRdq1. Then the map w ÞÑ ΦpF´1 �ξ�´s wq is a continuous linear form
on L2pRdq. By the Riesz Theorem, there exists ũ P L2pRdq such that

@w P L2pRdq, Φ
`
F´1 �ξ�´s w

˘ “ �ũ, w�L2pRdq .

Then for v P HspRdq we apply this equality with w “ �ξ�s Fv to get

Φpvq “ �ũ, �ξ�s Fv�L2pRdq “ Φupvq,

where we have set u “ F´1 �¨�s ũ P H´spRdq. This proves that the map u P H´spRdq ÞÑ
Φu P HspRdq1 is surjective. The proof is complete.
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Exercise 27. Let s Ps0, 1r.
1. Let z P Rd. Give an expression of

ż

yPRd

|upy ` zq ´ upyq|2 dy

in terms of û.
2. Prove that there exists C ą 0 such that for all u P SpRdq we have

ż

yPRd

ż

xPRd

|upxq ´ upyq|2
|x ´ y|d`2s dx dy “ C

ż

ξPRd

|ξ|2s |ûpξq|2 dξ.

3. Deduce that the quantity

˜
}u}2

L2pRdq `
ż

yPRd

ż

xPRd

|upxq ´ upyq|2
|x ´ y|d`2s dx dy

¸ 1
2

defines a norm on HspRdq, equivalent to the usual one. The interest of this expression
is that it no longer use the Fourier transform an can be used to define H spΩq on more
genral domains Ω.

2.8.2 Green formula for less regular functions
In this additional paragraph we continue the discussion about traces and the Green for-
mula. In particular we define, via the Green Formula, a normal derivative for functions
which are not in H2pΩq.

We have denoted by H1{2pΩq Ă L2pΩq the range of the trace γ0 defined on H1pΩq.
This is a vector space, which can be endowed with the following norm.

}g}H1{2pBΩq “ inf
wPH1

γ0pwq“g

}w}H1pΩq .

We notice that H1
g pΩq “ tw P H1pΩq : γ0pwq “ gu is a nonempty (by definition of

H1{2pBΩq) and closed (since γ0 is continuous) affine subspace (since γ0 is linear) of
the Hilbert space H1pΩq, so by the Hilbert projection theorem there exists a unique
Rpgq P H1

g pΩq such that
}g}H1{2pBΩq “ }Rpgq}H1pΩq .

Moreover Rpgq is the only solution in H1
g pΩq of

@v P H1
0 pΩq, �Rpgq, v�H1pΩq “ 0.

From this we can deduce that the application which maps g P H1{2pΩq to Rpgq P H1pΩq
is linear, and then that H1{2pBΩq is a Banach space:

Proposition 2.62. H1{2pBΩq is a Banach space.
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Proof. Let pgnqnPN be a Cauchy sequence in H1{2pΩq. Then pRpgnqqnPN is a Cauchy
sequence in H1pΩq. Since H1pΩq is complete, Rpgnq tends to some w in H1pΩq. We set
g “ γ0pwq P H1{2pBΩq. Then we have

}gn ´ g}H1{2pBΩq “ }Rpg ´ gnq}H1pΩq “ }Rpgq ´ Rpgnq}H1pΩq ÝÝÝÝÑ
nÑ`8 0.

This proves that the sequence pgnqnPN has a limit in H1{2pBΩq, and hence that H1{2pBΩq
is complete.

We denote by H´1{2pBΩq the dual of H1{2pBΩq.

Proposition 2.63. Let u P H1pΩq such that Δu P L2pΩq. Then the map

g P H1{2pΩq ÞÑ
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx, (2.28)

where vg P H1pΩq satisfies γ0pvgq “ g is well defined (the definition does not depend on
the choice of vg) and defines a continuous linear map on H1{2pBΩq which we denote by
Bνu.

We recall that in a general domain Ω the assumptions that u P H1pΩq and Δu P
L2pΩq do not imply that u P H2pΩq.

Proof. We first observe that if v1 and v2 in H1pΩq are such that γ0pw1q “ γ0pv2q “ g
then v1 ´ v2 belongs to H1

0 pΩq, so there exists a sequence pφnqnPN in C8
0 pΩq which goes

to v1 ´ v2 in H1pΩq. For all n P N we have
ż

Ω

`
Δu φn ` ∇u ¨ ∇φn

˘
dx “ �Δu, φn�D1pΩq,DpΩq ` �∇u, ∇φn�D1pΩq,DpΩq “ 0,

so, taking the limit n Ñ `8,
ż

Ω

`
Δu v1 ` ∇u ¨ ∇v1

˘
dx “

ż

Ω

`
Δu v2 ` ∇u ¨ ∇v2

˘
dx.

This proves that the definition in (2.28) does not depend on the choice of vg, and the
map Bνu is well-defined on H1{2pBΩq.

For g P H1{2pBΩq we have
ˇ̌
ˇ̌
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx

ˇ̌
ˇ̌ ď

´
}Δu}L2pΩq ` }∇u}L2pΩq

¯
}vg}H1pΩq ,

and hence
ˇ̌
ˇ̌
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx

ˇ̌
ˇ̌ ď

´
}Δu}L2pΩq ` }∇u}L2pΩq

¯
}g}H1{2pBΩq .

This proves that the map Bνu is continuous on H1{2pBΩq. Since it is also linear, this
defines an element of H´1{2pBΩq.
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By definition, we have the following Green formula for u, v P H1pΩq such that Δu P
L2:

´
ż

Ω
Δu v dx “ ´ �Bνu, v�H´1{2pBΩq,H1{2pBΩq `

ż

Ω
∇u ¨ ∇v. (2.29)

We finish this section about traces by giving a general result on Ω “ Rd` by means
of the Fourier transform. This will in particular ensure that the two definitions of H1{2

on Rd´1 » BRd` are equivalent, and that the trace on H1pΩq and the normal trace on
H2pΩq have the same range.

Theorem 2.64. Let k P N and s ą k ` 1
2 . Then the map

"
SpRdq Ñ SpRd´1q

u ÞÑ Bk
1up0, ¨q

has a unique continuous extansion γk : HspRdq Ñ Hs´k´ 1
2 pRd´1q. Moreover, γk is

surjective and there exists a continuous linear map Rk : Hs´k´ 1
2 pRd´1q Ñ HspRdq such

that
γk ˝ Rk “ Id

Hs´k´ 1
2 pRd´1q .

Proof. ‚ We first observe that for m P N, η ą 0 and σ ą m`1
2 we have, with the change

of variable t “ ?
ηθ

ż

R
tm

`
η ` t2˘´σ

dt “ η
m`1

2 ´σCm,σ, where Cm,σ “
ż

R
θmp1 ` θ2q´σ dθ. (2.30)

‚ Let φ P SpRdq. For x1 P Rd´1 we have by the inversion formula

Bk
1φp0, x1q “ 1

p2πqd

ż

Rd´1
eix1¨ξ1

ˆż

R
piξ1qkφ̂pξ1, ξ1q dξ1

˙
dξ1,

so the Fourier transform (in Rd´1) of Bk
1φp0, ¨q is given by

g : ξ1 ÞÑ 1
2π

ż

R
piξ1qkφ̂pξ1, ξ1q dξ1. (2.31)

By the Cauchy-Schwarz inequality and (2.30) applied with η “ 1 ` |ξ1|2 we have, for all
ξ1 P Rd´1,

4π2 |gpξ1q|2 ď
ˆż

|φ̂pξ1, ξ1q|2`
1 ` ξ2

1 ` |ξ1|2˘s
dξ1

˙ ˆż

R
ξ2k

1
`
1 ` ξ2

1 ` |ξ1|2˘´s
dξ1

˙

ď C2k,s

`
1 ` |ξ1|2˘´ps´k´ 1

2 q
ż

|φ̂pξ1, ξ1q|2`
1 ` ξ2

1 ` |ξ1|2˘s
dξ1.

Multiplying by
`
1 ` |ξ1|2˘s´k´ 1

2 and integrating over ξ 1 P Rd´1 gives

››pBk
1φqp0, ¨q››2

Hs´k´ 1
2 pRd´1q ď C2k,s

4π2 }φ}2
HspRdq .

This proves the first statement of the theorem.
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‚ Now we prove that γk is surjective with a continuous right inverse. We begin with
v P SpRd´1q. Let g P SpRd´1q be the Fourier transform of v on Rd´1. The expression
(2.31) suggests to find f such that

gpξ1q “ 1
2π

ż

R
piξ1qkfpξ1, ξ1q dξ1. (2.32)

Let N ą 1
2
`
s ´ k ´ 1

2
˘
. For ξ “ pξ1, ξ1q P Rd we set

fpξq “ 2π

Ck,N` 1
2

p´iqk
`
1 ` |ξ1|2˘N

`
1 ` |ξ|2 ˘N` k

2 ` 1
2

gpξ1q.

In particular, for all ξ1 P Rd´1 the map ξ1 ÞÑ p´iξ1qkfpξ1, ξ1q is integrable on R and
(2.32) holds by (2.30). Moreover, by (2.30) again we have

ż

Rd

p1 ` |ξ|2qs |fpξq|2 dξ

“ 4π2

C2
k,N` 1

2

ż

Rd´1
p1 ` |ξ1|2q2N |gpξ1q|2

ˆż

R
p1 ` |ξ|2q´p2N`k`1´sq dξ1

˙
dξ

“ 4π2C0,2N`k`1´s

C2
k,N` 1

2

ż

Rd´1
p1 ` |ξ1|2qs´k´ 1

2 |gpξ1q|2 dξ1

Then if we denote by u the inverse Fourier transform of f we obtain that u P H spRdq
and

}u}2
HspRdq ď 4π2C0,2N`k`1´s

C2
k,N` 1

2

}v}2
Hs´k´ 1

2 pRd´1q . (2.33)

Moreover (2.32) ensures that γkpuq “ v. Thus we have defined a map Rk : SpRd´1q Ñ
HspRdq such that γk ˝ Rk “ Id. By (2.33), Rk extends to a continuous map from
Hs´k´ 1

2 pRd´1q to HspRdq, and the proof is complete.

2.8.3 The dual of H1
0 pΩq

Définition 2.65. We denote by H´1pΩq the dual space of H1
0 pΩq.

We recall that the dual space of H1
0 pΩq is the set of continuous linear forms on H1

0 pΩq.
It is endowed with the norm defined by

}ϕ}H´1pΩq “ sup
uPH1

0 pΩqzt0u
|ϕpuq|

}u}H1
0 pΩq

.

We usually write �ϕ, u� (or �ϕ, u�H´1pΩq,H1
0 pΩq) instead of ϕpuq. Notice that if H1pΩq ‰

H1
0 pΩq then H´1pΩq is not the dual space of H1pΩq.

We recall that by the Riesz Theorem, we can identify a Hilbert space with its dual.
However, in this kind of context we usually already identify L2pΩq with its dual. With
this identification we have

H1
0 pΩq Ă L2pΩq Ă H´1pΩq,
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with continuous injections. The first inclusion is clear by definition of the Sovolev space
H1

0 pΩq. Now a function u P L2pΩq is identified with the continuous linear form on L2pΩq
defined by

v ÞÑ �u, v�L2pΩq . (2.34)

By restriction, this also defines a continuous linear form on H1
0 pΩq. In this sense, we can

say that u belongs to H´1pΩq. However, all the elements of H´1pΩq cannot be identified
with a function in L2pΩq. For instance, on R, the Dirac distribution

δ : v ÞÑ vp0q (2.35)

defines a continuous linear for on H1pRq “ H1
0 pRq, and it is not of the form (2.34)

(notice that this example is specific to the dimension 1, a Dirac distribution is not in
H´1pΩq in dimension d ě 2, however with the trace Theorem we can generalize this
example in higher dimension, see Exercise 28).

Let f P L2pΩq and F P L2pΩ,Rdq. Then ϕ “ f ´ div F , where the derivatives are
understood in the sense of distributions, also defines a continuous linear form on H1

0 pΩq
(which is not necessarily in L2pΩq). For v P H1

0 pΩq it is given by

ϕpvq “ �f, v� `
dÿ

j“1
�Fj, Bju� .

In particular we have

}ϕ}H´1pΩq ď }f}L2pΩq `
dÿ

j“1
}Fj}L2pΩq . (2.36)

In fact, using the Riesz Theorem in H1
0 pΩq we see that any ϕ P H´1pΩq can be written

in this form with u P H1
0 pΩq and F “ ∇u. Moreover, in this case we have an equality

in (2.36). See Theorem 5.9.1 in [Evans] (see Exercise 29 for the particular case of the
Dirac distribution (2.35)).

Exercise 28. Let f P L2pRq. Prove that the map

v P C8
0 pR2q ÞÑ

ż

R
fpxqvpx, 0q dx

extends to a continuous linear form on H1pR2q.
Exercise 29. Find u P H1pRq such that

@v P H1pRq, vp0q “
ż

R
uv `

ż

R
u1v1.
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