Chapter 2

Sobolev spaces

2.1 Weak derivatives

In this first paragraph we introduce the notion of weak derivative. This generalizes
the notion of differentiability to a class of functions which are not differentiable in the
classical sense.

We will sometimes refer to distributions and the notion of derivatives in the sense of
distributions, which are assumed to be known. However, we will recall all the required
definitions and results to make this chapter self-contained.

2.1.1 In dimension one

We begin with the one dimensional case. Let I be an open and non-empty interval of
R. The key observation behind the definition of the weak derivative is the integration
by parts. For u e C*(I) and ¢ € C$°(I) we have

f wodr = — f ud' du. (2.1)
I I
The right-hand side makes sense even when u is not differentiable. This is how we define

the function v’ which appears in the left-hand side.

Définition 2.1. Let Q be an open subset of R and u € L. .(Q). We say that v € L. (Q)
is a weak derivative of w if

Voe Cr(Q), — L ud dr = L vo du. (2.2)

Before going further, we observe that the weak derivative of a function in L{ (1) is
necessarily unique. This is a consequence of the following classical result of integration.

Lemma 2.2. Let v e L _(I) be such that

loc

Yo e CP(I), ngb:O.

Then v = 0 almost everywhere on I.
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With this lemma we easily see that if v; and vy satisfy (2.2) then we have v; = vy
almost everywhere. Then if u € L _(I) has a weak derivative, it is unique. In this case
we denote this weak derivative by «/. This is natural since this new definition of the
derivative is an extension of the usual one. Indeed, if u is differentiable in the usual
sense on €2, then u’ is a weak derivative of u on €. The proof of this remark is precisely
the integration by parts formula (2.1) on which the definition is based. More generally,
we can make the following observation.

Remark 2.3. Let Q be an open subset of R and u € L (). Assume that u has a weak
derivative v € L{ .(Q). Assume also that u is differentiable in the usual sense in an open
subset w of ). Then v is equal to u’ almost everywhere in w.

As a first non-trivial example, we begin with a function which is close to be differ-
entiable in the usual sense.

Example 2.4. We consider on R the map u : x — |z|. It is differentiable in the usual
sense in R* but not in R. A weak derivative of u is given by the function

-1 ifz <0,
VT
1 if v = 0.

In this example, the function u is differentiable everywhere except at 0. We note
that the value of v at 0 is not important since the definition only involves integrals.
However, this does not mean that a function which is differentiable everywhere except
at one point has a weak derivative.

Example 2.5. We consider on R the Heaviside function

[ 1 ifx >0,
0 ifz<O,

Then u has no weak derivative on R. For the proof we consider v € Li.(R). Let
¢ € CP(R,[0,1]) supported in | — 1,1 and such that ¢p(0) = 1. For n € N* and x € R
we set ¢n(z) = ¢(nx). Then ¢, € C(R) for all n € N*. On the one hand we have by

the Dominated Convergence Theorem

Lv(w)¢n(x) dx

1
< fn lv(x)] de —— 0.
And on the other hand

_ fR H(2),(x) do - — foo 6, () dz = $(0) = 1.

0

Then v is not a weak derivative for H.

Remark 2.6. The Heaviside function has no weak derivative in R but it is diffentiable in
the usual sense, and hence in the weak sense, in R*. Its strong (hence weak) derivative
in R* is just 0.

Ezercise 1. For which values of « € R does the function u, : @ — |z|* have a derivative
in the usual sense in R 7 a weak derivative ?
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Notice that the weak derivative is just the derivative in the sense of distributions.
A function u € L{. (I) defines a distribution T, on I. This distribution has a derivative
T! € D'(I). Saying that the derivative of u belongs to L] _(I) means that T/ is the

distribution defined by a function in L{ (I). In other words, for some v € L (I) we

have T = T, in D'(I). The Heaviside function of Example 2.5 has a derivative in the
sense of distributions, given by the Dirac distribution ¢, but this is not a distribution
associated to a function in Li .

Since u always has a derivative ' in the sense of distribution, instead of saying that

u has a derivative in L{ (I), we can simply say for short v’ € L] _(I).

Ezercise 2. 1.Let u, € C}([0, +o0[). For x € R we set
uy(z) if x>0, Uy (x ifx >0,
Ul(l’) _ +( ) ‘ UQ(QE) _ +( ) ‘
0 if x <0, uy(—z) ifz <0,

and

(2) = uy () if © >0,
= —3uy(—z) +duy(—2/2) if x <0.

Are uy, up and ug differentiable ? Do they have a weak derivative in L{ (R) ?

In the following proposition we generalize to this new setting the construction of a
primitive known for continuous functions.

Proposition 2.7. Let I be an open interval of R, w € Li (I) and xo € I. Then the
map

u J w(s) ds
zo
is well defined on I, it is continuous, and w is a weak derivative of u.
Ezxercise 3. Prove Proposition 2.7.

Now we discuss the functions whose derivatives in the weak sense is zero.

Proposition 2.8. Let uwe L (I) be such that

Vo e CP(I), Lugb'dm = 0.

There exists a constant a such that u = a almost everywhere.

Proof. e Let ¢g € C(I) be such that {, ¢odz = 1 and o = §, ugydx. We prove that
for all ¢ € C°(I) we have §, u¢ = a §, u almost everywhere.
o Let g CP(I) and B4 = §, ¢ dx. For x € I we set

V@) = [ (60~ futnla) d

nf(I)

This defines a function ¢ € C§°(I) such that ¢/ = ¢ — By¢po. Then, by assumption on w,

o= [t = [uo- o= [(u- o

The conclusion follows by Lemma 2.2. O]
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With Propositions 2.7 and 2.8 we see that if u € L] _(I) has a weak derivative in
Li..(I) then for zy € I there exists o € R such that for almost all z € I we have

T

u(zr) = o+ J u'(x) d.
xo
In particular, u is continuous (in the sense that it is equal almost everywhere to a con-
tinuous function). Since there is no continuous function equal almost everywhere to the
Heaviside function H, we recover the fact that H cannot have a weak derivative on any
interval which contains 0. We also observe that if u € L'(R) has a continuous weak
derivative, then it is of class C' in I (it is equal almost everywhere to a function of class

o).

Notice that Proposition 2.7 is specific to the dimension 1. In particular the fact
that a function which has a derivative in L . is continuous will not be valid in higher
dimension (see Example 2.11 and Exercise 11).

Ezercise 4. 1.Let o € R. What are the solutions in Li. .(R) of the equation v'+au = 0,
where the derivative is understood in the weak sense ?
2. Same question with the equation v’ + au = f, where f € LL (R).

loc
We finish this paragraph by the definition of the successive derivatives for a function

in L _(I).

loc

Définition 2.9. Let u € LL (I) and k € N*. We say that v, € LL_(I) is a weak
derivative of order k of w if

Vpe C(I), (—1)F J up™ dx = f VR da.
I I

In this case vy, is unique and is denoted by u*). This is equivalent to saying that the k-th
derivative of the distribution T, is the distribution associated to a function in L{ (I),
which we denote by u(®.

Ezercise 5. Let u € L} (R). Prove that u has a weak derivative of order two if and

only if it has a weak derivative v’ and u' has itself a weak derivative.

Exercise 6. Let k > 2. Do the functions of Example 2.4 and Exercise 1 have k weak
derivatives on R ?

2.1.2 Weak derivatives in higher dimension

Let d € N* and let Q be an open subset of R%.

Définition 2.10. Let u € Ll _(Q) and j € N We say that vy € LL_(Q) is a weak
derivative of u with respect to x; if

Voe C (), — fQ U0y, ¢ dx = JQ vjpdx.

In this case v; is unique and is denoted by 0, u.

We begin with the analog of Example 2.4 in higher dimension.
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Example 2.11. For z = (z1,...,74) € R? we set u(z) = |z| = A/2? + -+ + 2% Thenu
is of class C* in R\ {0} and fm"] € [1,d] and x € Rd\ {0} we have

This defines a function in Li (R?) (considering that it takes any value at 0). Now let
¢ € CP(RY) and € > 0. By the Green formula we have

€T

_ JRCI\B(S) 2| 0;p(x) dv = — J|J:|=e 2| p(x) vj do(x) + fRd\B(g) m¢(x) dr,

where v = (v1,...,14) is the exterior derivative to RN\B(g). Taking the limit & — 0

o - [ ety = | o) ds

This proves that x — % is a weak derivative of u with respect to x; in RY. Thus we can
write, in the weak sense,

Ezercise 7. Let a € R and consider on R%\ {0} the function u : x — ||

1. Check that the grandient of v on RN {0} is = — o |2|* >z

2. Can u be extended to a function on R? which has derivatives of order 1 in the usual
sense 7

3. Does u have weak derivatives of order 1 in LllOC

(R7) ?

In applications we often deal with functions which are of classe C!' except at one
point, as in Exercise 7. The purpose of the following exercise is to give a general result
for this situation.

Ezercise 8. Let d > 2. Let u e C(R% {0}) such that Vu (well defined on R%\ {0}) is
in LL (R%).

loc

1. a. Prove that for w € S(1) and r €]0, 1] we have
1
lu(rw)| < |u(w)] +J (Vu(sw)| ds.

b. Deduce that

le

L(T) lu(w)| don(w) < - L(l) lu(w)| do(w) + Lm\s L V()| de

2. Prove that u € L _(RY).
3. Prove that for ¢ € C°(R?) we have

—J uVodr = oVudz.
R4 R4

We recall that the classical notion of differentiability is defined by looking at the
limit at each point of the difference quotient. The following result gives a link between
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this point of view and the weak derivative.

Let h € RN {0} and let © be an open subset of R? invariant by translation by h. For
u e L2(Q2) and we define the diffence quotient Dyu € L?(Q) by

u(x + h) — u(z)

Dyu(zx) = 7 (2.3)
Notice that for u,v € L?(2) we have
J (Dpu)vde = J u(D_pv) dx. (2.4)
Rd Rd
Moreover, D), commutes with derivatives: if d;u € L*(Q) then
0jDpu = Dydju € L*(9). (2.5)

Proposition 2.12. Let j € [1,d] and assume that Q is invariant by translation by te;
for allt € R, where e; is the j-th vector of the canonical basis. Assume that there exists

C' > 0 such that for all t € R\ {0} we have
HDtejuHm(Q) <C.

Then 0ju € L*(2) and
[05ull 2y < C-

Proof. Let ¢ € CP(R?). By the dominated convergence theorem we have

- <u7 aj¢>L2(Rd)

lim <the].u, ¢>>

t—0t

< Ol Lo (ray -

- ‘tli% <u, Dre, ¢>

L2(R9) L2(R4)

By the Riesz Theorem there exists v; € L*(R?) such that ||v;] 120 S C and

V(b € 080<Rd)7 - <u7 aj¢>L2(Rd) = <Uj7 ¢>L2(Rd) :
This proves that d;u = v. O

Remark 2.13. Proposition 2.12 holds L?*(2) replaced by LP(2) for any p €]1, +o0|.
We recall the usual notation for partial derivatives in dimension d > 2. For a =
(a1,...,aq) € Ndwe set |a| = o + -+ + ag.

o (65} 6%}
0% = o .. 00

Définition 2.14. Let u e Ll

L (Q) and o € N%. We say that v, € L]
of order « of u if

1.(9) is a derivative

Vo e Q, (—1)a|f ud®¢ dr = f Vo dex.
Q )
In this case v, is unique and is denoted by 0“u.

Exercise 9. In dimension d > 2, compute all the second derivatives in the weak sense
for the function z — |z| in R%.

6 J. Royer - Université Toulouse 3



SOBOLEV SPACES

2.2 Sobolev spaces

2.2.1 Definition and examples

Let d > 1 and let  be an open subset of R¢.
Définition 2.15. For p € [1,+o0] and k € N we set
WHhP(Q) = {ue LP(Q) : 0w e LP(Q) for all a € N? with |a| < k},

where 0“u is the derivative of u in the sense of distributions. In other words, a function
u € LP(Q2) belongs to W*P(Q) if it has a weak derivative 0%u in LP(Q) for all o € N4
with |a] < k.We also set H*(Q) = WH2(Q).

Remark 2.16. By the Riesz Theorem and by density of C{°(Q) in L?(2), a function
u € Lt (Q) belongs to H*(Q2) is and only if for all o € N with |a| < k there exists

C\, > 0 such that
f uo*¢ dr
Q

Example 2.17. Let p € [1,4+®]. The map u : x — |z| is not in W'P(R), (since it is
not in LP(R)), but it is in WYP(I) for any bounded open interval I of R. It is not in
WHP(I) for k =2 if I contains 0, since u has no second derivative in the weak sense in
a neighborhood of 0.

Vo e C (), < Co @l 120y -

Example 2.18. We consider on ]0,1[ the function u : x — x~1. Then u belongs
to L*(10,1]) but its derivative w' : x — —ia=% is not in L*(]0,1[), so u is not in
H(10,1]). We similarly consider u : x — x71 on |1, +o0[. Then u' € L2(]1, +oo[) but
u¢ L2(]1, +0]), so u ¢ H'(]1,+0|). On the other hand, the function u — x1 belongs

to H'(]0,1[) and z — x~1 belongs to H'(]1, +c0]).

Ezxercise 10. Let p € [1,40] and o € R. Does the function x — x® belongs to
WEP(]0,1[) 2 WHP(]1, +oo) 7 WHP(J0, +o0]) ?

Example 2.19. Let p € [1,+oo[ and 8 > 0. For z € B(1)\{0} we set u(z) = |z|”.
Then v € LP(B(1)) if and only if Bp < d. On the other hand u is of class C' on
B\ {0} and Vu(z) = =8 |z| "2z for all z € B(1)\ {0}. Thus Vu € LP(B(1)) if and
only if (8 + 1)p < d. This proves (see Ezercises 7 and 8) that w € W'P(B(1)) if and
only if (B + 1)p < d.

Ezxercise 11. Let p e [1, +x0].
1. Does the map x — In(|In(|z|)|) belong to W'*(B(1)) ?
2. Let @ > 0. Does x — |In |z||* belong to W'P(B(1)) ?

In the following proposition we give some basic properties for the set WkP(Q). We
define Ci°(9) as the restrictions to Q of functions in C{°(R?).

Proposition 2.20. Let p € [1,+x], k € N* and o = (ay,...,0q) € N? with |a] < k.
Let u e WHP(Q).

(i) We have 0°u € W*=12l2(Q) and for f € N® with |5| < k — |a| we have 0%(0%u) =
0*+hu.
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(ii) Letw be an open subset of Q. Then the restriction uy, of u on w belongs to W*P(w)
and 0*(uy,) = (0%w))q,.

(iii) Let x € CP(Q). Then xu e W*P(Q) and
0%(xu) = Z (g) P 0 Pu,
f<a

where we have set

o o!
(5) ~ Blla—B) al =aql. .. agl.

FEzxercise 12. Prove Proposition 2.20.
Ezercise 13. Let p € [1,+x] and u € W'P(RY). Let p € CP(R?). We recall that
(p*u) e C*(RY). Prove that for j € [1,d] we have
0j(p=u) = p = (dju).
Deduce that (p = u) € WHP(R?).

Définition 2.21. Let 2 be an open subset of R? and let u € L .(Q). Let p € [1, +o0] and
k e N. We say that u belongs to W/?(Q) if for any y € CX(Q) we have yu € WH?(Q).

Example 2.22. The function = — |z| belongs to W,-P(R) for any p € [1,+0] (see
Example 2.17).

2.2.2 Norms on the Sobolev spaces

Let © be an open subset of R%. Let p € [1,+o0] and k € N. For u e W*P(Q) we set

1
HUHWM(Q) = <Z H(?o‘uip(m> : (2.6)

la|<k

This defines a norm on W#P?(Q). We could also consider the quantity

2 el (2.7)

la|<k

which defines an equivalent norm on W*?((Q).
On H*(Q) we define an inner product by setting, for u,v € H*(Q),

(u, 0) gy = Z (0%u, 0"0) 2 - (2.8)
la|<k

The corresponding norm is exactly (2.6) with p = 2.
Remark 2.23. With the notation of Proposition 2.20, we observe that

10Ul r-tatny < [ullproqy -
for w = Q we have
ullyyrny < lullwrsg -

and for x € C°(Q) there exists C), > 0 independant of u such that

Ixullynr@) < Cx i -
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Theorem 2.24. Let k € N and p € [1,+]. The Sobolev space W*P(Q), endowed with
the norm (2.7) or (2.6), is a Banach space. In particular, H*(Q) with the inner product
(2.8) is a Hilbert space.

Proof. Let (uy),.y be a Cauchy sequence in W*?(Q2). The sequences (0“uy)nen for
la| < k are Cauchy sequences in LP(2). Since LP(2) is complete by the Riesz-Fisher
theorem, there exist v, € LP(Q2) for |a| < k such that 0“u,, goes to v,. For |a|] < k and
¢ € CP(Q2) we have

(-1)'&] v ¢dr = (—1)° lim | w,0%¢dr = lim | 0w, ¢dw :J Vo ¢ dz.
Q

n—+00 Q n—+00 Q Q

This proves that in the sense of distributions we have 0®vy = v, € LP(2). Then vy €
WHkP(Q) and
o 2
Jun — UOH?W@(Q) = ||Z [0%un — UaHLp(Q) ot 0.
al<k

Thus the sequence (u,,), . has a limit in W*?(Q). This proves that W*?(Q) is complete.
[

The proofs of the following two results are omitted (see [Brézis]).
Theorem 2.25. Let Q be an open subset of R, p e [1,+] and k € N.
(i) WkP(Q) is reflexive if and only if p €1, +ool.
(ii) WkP(Q) is separable if and only if p € 1, +0].

Proof. We recall that LP(Q) is reflexive if and only if p €]1, o[ (see Section 4.3 in [Brézis])
and separable if and only if p € [1, +oo[. In particular, W*?(Q) cannot be separable if
p = 0.
The map
o - { Wk,p(ﬂ) - H|a\§k LP(Q)

Uu —> (6au)‘a|gk

is an isometry from W#P) to a closed subspace of [Ljoj<r LP(2). If p €]1, +00[ then
[ [jj<r LP(€2) is reflexive and so is WHP(Q) (see Proposition 3.20 in [Brézis|). Similarly,
if p e [1, +oof then [ ], o, LP(€2) is separable and so is WP (Q) (see Proposition 3.25 in
[Brézis)).

[

2.2.3 Characterisation via the Fourier transform

When © = R? and p = 2 we can use the Fourier transform to give a simple characteri-
sation of H*(R?). Notice that in Definition 2.15 we can see the derivatives of u in the
sense of tempered distributions. This means that we can replace C°(R?) by S(R?) in
Definition 2.10.

Proposition 2.26. Let a € N and u € L*(RY). Then 0%u € L*(Q)) if and only if the
map & — (i€)*a(€) belongs to L*(RY) (and, in this case, it is the Fourier transform of
0%u). Then, for k € N, ue H*(R?) if and only if

fRd (14 6 a(e)? de < +oo. (2.9)
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Proof. Let u e L*(R%). For ¢ € S(R?) we have

fRd(z‘ymwy = J u(ig)opdy = (~1) JW e d dy. (2.10)

R4

Assume that 0%u e L2(RY). Then (2.10) gives
| rasdy= | uddy~ | Fuody
Rd R Rd

so the map y — (iy)*i(y) belongs to L2(R%), and it is the Fourier transform of 0%u.
Conversely, assume that y — (i) (y) belongs to L?(R?). By (2.10) applied with ¢
ly“al 1> ge)

we have
ud*p dy| =
fRd ? y‘ (27r)g

so 0%u € L2(RY). O

dg) ’

defines a scalar product on H*(R?), and the corresponding norm is equivalent to (2.6)
with p = 2.

191l 22 gay »

J yo‘ﬁqvﬁ dy‘ <
R4

Proposition 2.27. Let k € N. The map

oy ([0 ) e

Remark 2.28. If u € L*(R?) is such that Au belongs to L?(RY), then u belongs to H?(R?).
This remark does not hold on a general domain (see Remark 3.18 below). However, on a
general ) we can at least say that if u € H'(Q) is such that Au € L?(Q2) then u € HZ ()
(for any y € CP(Q) we extend xu by 0 on R?, since yu € L*(R%) and A(yu) € L*(R?)
we have yu € H2(RY).

2.3 Approximation by smooth functions

In this section we start proving some properties of the Sobolev spaces. The first impor-
tant property is the density of smooth and compactly supported functions. This will
then to extend many properties known for regular functions to functions with only weak
derivatives.

Here we mainly discuss the density in the Euclidean space. The density of smooth
functions in the general case will be discussed in the following section.

2.3.1 In the Euclidean space

We know that for p € [1,+o0[ the set C°(£2) of smooth and compactly supported
functions on the open set 2 is dense in LP(Q2). In this paragraph we will see in what
sense we can similarly approach functions in W#*?(Q2) by smooth functions.

More precisely, we prove the density of smooth functions in the Sobolev spaces when
Q) = R% This will not be the case in general domains. Since the closure of Ci°(€2) in
W*P(Q) will play an important role in applications, we introduce the following notation.
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Définition 2.29. For k € N and p € [1, +o0[ we denote by W4 () the closure of C2(Q)
in W*P(Q). We also set HE(Q) = W,2(Q).

Exercise 14. For x €] — 1,1] we set u(x) = 1. Prove that for p € [1, + 0] there is no
sequence (uy,), . in CF(] — 1,1[) which goes to u in Wh?(] — 1,1]).

As in LP(R%), the proofs will rely on regularization by convolution with a sequence
of mollifiers. Let p € C°(R%,[0,1]) be supported in B(0,1) and such that {,, pdz = 1.
For n € N* and z € R? we set p,(z) = n?p(nz).

Lemma 2.30. Let Q be an open subset of RY. Let n € N* and let w be an open subset of
Q such that B(z,~) < Q for allz € w. Let p, € CF(R?) be as above and let u € WHP(Q).
Then p, *ue C*(RY) n WHFP(w) and for |a| < k we have in the weak sense on w

0%(pn = 1) = pp = (™).
Notice that the lemma applies in particular with w = Q = R%.

Proof. We prove the case k = 1, and the general case follows by induction. Let j € [1,d]
and ¢ € C°(w). We have

- L<p” s u)(7)0;p(x) dx = _J

B(07

puly) f u( — y)2;6(x) dr dy.
) w

3=

For y € B(0, ) the map = — u(z — y) belongs to WP (w), so
- L(pn xu)(x)0;0(x) dr = JB(O,}L) Pn(y) L diu(r —y)o(x) de dy = L(pn * 0ju)(v)p(x) de.

The conclusion follows. O

For the following two proofs we also consider y € CF(R?) supported in the ball
B(0,2) and equal to 1 on B(0,1). Then for m € N* and x € R? we set x,n(z) = x(£).

Theorem 2.31. Let p € [1,+o0[. Then C(R?) is dense in WHP(RY). In other words,
we have WP (RY) = Whp(R%).

Proof. Let u € W*P(RY) and € > 0. Let o € N? with |a| < k. By Proposition 2.20 we
have x,,u € W*P(R?) for all m € N* and

a a @Y | ~a—
7 en0) =2l < 33 (5)17 7 = 10l

By the dominated convergence theorem we have for § < «

A |

PPu(z)|” de — 0,
z|=m

m—+00
so there exists m € N* such that

DO ™

lu = Xmulyrp ey <
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We set v = xpu, and for n € N* we set v, = p, *v. Then v, € CF(RY) and for all
a € N? with |a| < k we have by Lemma 2.30

[0%0n = 0%V o ey = lon = (0°0) = 0%V py ey ——> 0.

Then, if for n € N* large enough we set u. = v,, we have u, € Cgo(Rd) and
€
[ue — UHWkﬁp(Rd) < bR

so finally
e — UHWk,p(Rd) SE. [

Remark 2.32. For any ¢ > 0 the function u. constructed in the previous proof is such
that ue | o gay < ] oo (ga)-

2.3.2 A result in general domains

The conclusion of Theorem 2.31 does not hold in a general domain €2. In other words,
WP (Q) # WEP(Q) in general (see Exercise 14 and Proposition 2.53 below). However we
have the following weaker result of approximation by regular functions on any compact
subset of €. For a result of approximation on the whole domain 2 we refer to Theorem
2.39 below.

Theorem 2.33. Let p € [1,+x and k € N. Let Q be an open subset of RY. Let
u e WHP(Q). There exists a sequence (uy),oy in CF(R?) such that u,q goes to u in
LP(Q) and for any open bounded subset w such that @ < Q we have

Jtnis = o ny 2 O

Proof. For x € R? we set

v(x) =

u(z) ifxzeq
0 if z € RH\Q.

Then we set v, = p, *v € C°(RY) and u, = x,v,. We have

[un — UHLP(Q) < |lun — UHLP(Rd) < [xn(pn = v) — XHUHLP(Q) + [[xnv — UHLP(Q) P 0.

Let N € N be so large that B(a;, %) c Qand yy =1on B(x, %) for all z € w. Then
for n > N and |a| < k we have by Lemma 2.30

[0%(un = W)l Loy = 10%(0n = V) 1oy = llon = (%) = 0%0]| 1oy 7= 0

This proves that yv, goes to u in W*?(w). [

2.3.3 Examples of properties proved by density

It is not always convenient to prove results about differentiation in the weak sense, and
most of the properties of Sobolev spaces are proved by density. We first prove the result
for regular functions (smooth, or of class C* for a property in W*?), and then the
general case is deduced by density.

12 J. Royer - Université Toulouse 3
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Here we give some examples of results which are already known for regular functions
and which can be extended in the suitable Sobolev spaces by density.

We begin with the integration by parts formula.

Proposition 2.34 (Green Formula without boundary term). Let 2 be an open subset
of RY and u,v € HY(Q). For j e [1,d] we have

L(é‘ju)v dr = — L u(0;v) dx.

Proof. Let (uy), oy and (v,), oy be sequences in C§°(2) which go to u and v in H'(Q).
The Green formula for smooth and compactly supported functions gives, for all n € N,

J (Ojup ) vy dx = —J U (0jv,,) dx.
Q Q

Taking the limit n — 400 gives the result. O]

We continue with the product of differentiable functions. If v and v are continuously
differentiable, then so is the product uv. The same result holds for weak derivatives.
Notice that in this result and the following we do not take functions in W,”(Q). The
approximation by regular functions is given by Theorem 2.33.

Proposition 2.35 (Differentiation of a product). Let 2 be an open subset of R%. Let
pe[l,+o] and u,v e WH(Q) n L®(2). Then uv € WHP(Q) and, for j € [1,d],

0;(uv) = (Gju)v + u(d;v). (2.11)

Proof. Assume that p < +00. Let (u,), .y be a sequence in Ci°(R?) as given by Theorem
2.33. After extraction of a subsequence if necessary, we can assume that u,(z) tends
to u(z) for almost all x € R%. By Remark 2.32, we can also assume that |u, | LoD S
|ull L gay for all n € N. By Proposition 2.20, we have u,v € W'(Q) for all n € N and,
for j € [1,d] and ¢ € C°(£2),

vpojuy, dx = f ((O5un)v + un(0;v)) ¢ da.

Q

- L V0 de = — L v0j(un@) dx + J

Q

The limit n — +o0 yields (2.11). In particular 0;(uv) € LP(£2), and the proof is complete
if p < 4o0.

Now assume that p = +00. Then wv and (d;u)v + u(d;v) are in L*(€2). Let ¢ €
Ce(Q). Let x € CF(R?) be equal to 1 on a neighborhood of supp(¢). Then yu and yv
are in WHP(Q) for any p € [1, +o0[ so

— JQ wojpdr = — JQ Xu xv0;¢ dx
_ f (05 00u) yv + xu &5 (xv)) G de
_ J ((2;u)v + u(d0)) 6 da.
Q

This proves (2.11) and concludes the proof. ]
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Then we discuss the chain rule, which will be important in particular for changes of
variables.

Proposition 2.36 (Chain rule). Let Q; and s be two open subsets in R, and let
O = (Dy,...,P,) : QO — Qo be a diffeomorphism of class C*. We assume that Jac(®)
and Jac(®~1) are bounded on Qy and S, respectively. Let p € [1,+mw]. Then for
u e WHP(Qy) we have v o ® € WHP(Qy) and for j € [1,d],

j(uo®) = > ((hu) o ®)0;Py. (2.12)

In particular there exists Co > 0 such that
luo (I)HWLP(QQ) < Co HUHWLP(Ql) :

Proof. Assume that p < +o0. With the change of variables y = ®(z) we first observe
that

o B0y = | (@@ dz = | ()l |77 0] dy < 1707 g e

so uo ® e LP(Q)y). Similarly dyuo ® € LP(2y) for all k € [1,d]. Since 0;®;, is bounded,
this proves that the right-hand side of (2.12) belongs to LP(£2).

Let (u,), .y be a sequence in C§°(RY) which goes to u in the sense of Theorem 2.33.
Let ¥ € CP (), Ky = supp(¢)) and Ky = ®(K;). Then K, is a compact of Q. For
n € N and ¢ € CF(R?Y) we have

—J( o ®) ]wd:v—ZJ (Oxtn, © )0; Oy ¥ da. (2.13)

As above we have

[tn 0 ® —uo @, (K1) HJ(I)*

— 0.

1
HLOC(QQ) Hun - uHiT’(Kz) n—00

Similarly, for j, k € [1,d],

|(Gjun © @)0P; — (Oju o ®)0kP;| 1o (s
< N0k ®; oo gy [(Oun © @) = (Gju o @)

HLP(Kl) n——400 O
We take the limit n — +o0 in (2.13) and conclude when p < 400. The case p = +®
follows as in the proof of Proposition 2.35. m

We know that if u € C*(R?) has a bounded differential then it is Lipschitz continuous
with a Lipschitz constant given by the L™ norm of the differential. In the following
exercise we consider the case of W™ fonctions.

Proposition 2.37. Let Q be an open and convex subset of RY. Let ue WH*(Q). Then
u is equal almost everywhere to a [Vul . ga-Lipschitz (and in particular continuous)
function.
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Ezercise 15. Let K be a compact and convex subset of 2. Let p € C(R% R, ) such
that (. pdz = 1. For e > 0 and z € R? we set p.(z) = p(z/e).

1. Prove that for € > 0 small enough the convolution u. = p. * u is well defined on K.
2. Prove that there exists a sequence (g,,),,. going to 0 such that w, = u., goes to u(x)
as n goes to +oo for almost all z € K.

3. Prove that for all n € N we have [V pegay < [Vl o ay-

4. Prove that for almost all z,y € K we have [u(z) — u(y)| < |Vul| jo ey [z — y]-

5. Prove Proposition 2.37.

We finish this paragraph with a converse of Proposition 2.12 about the differential
quotient defined by (2.3).

Proposition 2.38. For u e HY(R?) and h € R?\ {0} we have
||Dhu||L2(Rd) < ||VUHL2(R‘1) :
FEzxercise 16. Prove Proposition 2.38.

Ezercise 17. In this exercise we prove that for u e H*(R?) (real valued) we have |u| €
HY(RY), Vu = 0 almost everywhere on 1 ({0}) and V |u| = sign(u)Vu on w1 (R {0}).
1.Let G : R — R be of class C, globally Lipschitz and such that G(0) = 0.

a. Show that G’ is bounded on R.

b. Prove that G ou e H*(RY) with V(G ou) = (G’ o u)Vu.
2.For t € R we set

1 ifz>0 1 ife>0
H_(t) = ’ d H.(t) = ’
®) {o o<, 4 ) {o if 2 < 0.

1 ift> 2
Hy(t)=<nt ifO<t<?i
0 ift<0

Then we set V,,(t) = {*_ H,(s)ds.
a. Prove that (V,, ou) € HY(R?) with V(V, ou) = (H, o u)Vu.

b. For t € R we set
(1) t ift>0,
TW=00 it <o

Prove that (gou) e HY(RY) with V(gou) = (H_ ou)Vu.
c. Prove that V(gou) = (H; ou)Vu.
d. Deduce that Vu = 0 almost everywhere on v~ *({0}).
3. Conclude.

2.4 Sobolev spaces on domains with boundary

In the previous section we have given some properties of the Sobolev spaces on R, or
local properties in general domains. In this section we look more carefully at the be-
havior of functions in Sobolev spaces at the boundary of the domain.
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The model case will be the half space
Ri = {ajz (z1,...,2q) eRY : 24 >O}.

This is the simplest case because the boundary dRY = {0} x R?"! is flat. Then, if the
open subset Q of R? is sufficiently regular, the boundary 02 can be locally straightened
out and, with a partition of unity and a change of variables for each part, the problem
on {2 is reduced to a problem far from the boundary (where we can apply the results on
R?) and a finite number of problems on RZ.

It is the purpose of this section to make these ideas clearer and to deduce some
results for the Sobolev spaces on bounded subsets.

2.4.1 Regular domains

Let k € N* U {o0}. We recall that an open subset Q of R? is said to be of class C* if for
any w € 0 there exist an orthonormal basis 3 = (31,..., 3q4) of R an open subset O
of R“"! a,b e R with a < b and an application ¢ : O —]a, b[ of class C* such that U
defined by

d
U= {Z Clijﬁj, (LCQ, . ,CIZd) € O, €1 E]CL, b[}
j=1

is a neighborhood of w in R? and

d
QnlU = {Z z;f,x = (T2,...,xq4) € O, 27 € ]g@(m'),b[} .
=1

In particular, in ¢ the boundary 0 is the graph of ¢ in the basis . We can always
construct the basis 5 with the vectors of the canonical basis (eq, ..., eg), possibly in a
different order. For 2’ = (,...,24) € O we set

d
p(z') = p(a)B1 + ) x;8;.
j=2

Then 02 " U is also the image of O by ¢. )
Given w € 0Q nV and 2’ = (z9,...,24) € O such that w = ¢(z’), the outward
normal derivative to € at point w is defined by

_ B+ N, 0B
L+ |Vep(a)[?

(2.14)

v(w)

The is the only vector such that v(w) LT, (09), |[v(w)| = 1 and, for some ¢y > 0,

€, Vte]—ty,0l,

w tr(w) {¢ Q, Vielo,t.

We define on 0f) the topology and the corresponding Borel o-algebra inherited from
the usual structure on R%. We define the Lebesgue measure of a Borel set B € 0Q n U
as follows:

o(B) = LnB@@c)) 1+ [Vopl(a!)|? de.
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Thus, if f is an integrable function on d€2 N U we have

Lﬂmu fdo = fo f((ﬁ@))\/md:v'.

Then we can define Lebesgue spaces on 0f2 as on any measure space.

For x = ijl x;B; € U we set

d
®(z) = (21 — @22, ..., 24))e1 + Z zje;.
j=2

Then @ is of classe C* and it is injective. So it defines a bijection on its image denoted
by W. Then W is open in R¢ and the inverse ®~! of ® is of class C* on W (® defines
a diffeomorphism of class C* from U to W). Moreover we have

PUNQ) =WnRL

Notice also that for 2/ € O we have ®(@(z')) = (0,2'), and then W; n dR% = {0} x O.
The interest of this change of variables is to transform a function supported in 2 U
to a function on R%, where the properties of Sobolev spaces are easier.
Notice that if 2 is bounded then its boundary 02 is compact. This is not necessary
but it will simplify the discussion (an unbounded open subset can also have a compact
boundary, but we will not consider this situation here).

Now let 2 be a bounded open subset of R? of class C* for some k > 1. There exist
N € N*, open subsets Uy, . ..,Un, Wi, ..., Wy of R? and diffeomorphisms ®; : U; — W;
of class C* such that 0Q U;V:IUJ- and for all j € [1, N] we have ®,;(QnlU;) = R: A W;.

If we set (2 = Uy then Uj’V:o U; is an open cover of 2. We consider a corresponding
partition of unity (x;)o<j<n (x; € CF(RY,[0,1]) is supported in U; for all j € [0, N]
and Z;‘V:o x; =1 on Q).

For u € W'P(Q) we set u; = y;u for all j € [0, N]. Then u = Z;V:() u;, uj € WhHP(Q)
for all j € [0, N], uo is supported in a compact subset of 2, and w; is supported in a
compact subset of Q N U; for all j € [1, N]. In particular, the extension of uy by 0 on
R? is in WHP(R?), and (u; o ®~1) belongs to W(R% n W);) (and can be extended by
0 to a function in W'P(R%)) for all j € [1, N].

We will use this setting to prove results for Sobolev spaces on (2.

2.4.2 Approximation by smooth functions (continued)

We recall that given an open subset 2 of R, we denote by C5°(Q) the set of restrictions
to Q of functions in C(RY).

Theorem 2.39. Let p € [1, 40| and k € N. Let Q be equal to R% or be a bounded open

subset of RY. Let u e WFP(RL). There exists a sequence (uy,), . of functions in C§°(S2)
such that

neN

— 0.

lun — U”ka(sz) ot
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Proof. We prove the case Q bounded. The case 2 = R% is more direct and is left as
an exercice. Let w € 0f2. We use the notation of Paragraph 2.4.1. Let u € WhP(Q) be
supported in Q nU. We denote by @ the extension of w by 0 on R?. For 7 > 0 we set

d
U. = {ijﬁja(x%“wxd) € Oal‘l E]a,b—T[} :
=1

There exists 7o > 0 such that supp(u) < U,,. For 7 €]0, 70] and x € U, we set

UT(I’> = U(J] + 7—61)’

We extend u, by 0 on U\U,. The restriction of u, to U N Q is in W*P(U ~ Q) and the
derivatives of u, up to order k are the translations of the corresponding derivatives of
u. More precisely, for |a| < k we denote by v* the extension of 0“u by 0 outside Q N U.
Then 0“u, coincides with v® on Q nU. Then by continuity in LP(R?) of the translation
we have

e = wlfnningy = 2 10%ur = ulpgingy < D5 108 =0 pgay 757 0.
|| <k ol <k

Now let 7 €]0, 7] be fixed. There exists 1y > 0 if we set

V= U B(ZL’,’I’}()),

zesupp(ur )N

then for all y € V we have y + 76 € U n Q. Let p € CL(RY [0, 1]) be supported in
B(0,1) and such that §,.p = 1. For n €]0,70] and z € R we set p,(z) = n~%p(x/n).
For n €]0,m0] we set u? = p, = u,. Its restriction to U N Q belongs to C¢°(2). Since
u, € WEP(V) we can prove as in the proof of Theorem 2.31 that

|l = ur e ©n®) 750 0.

It remains to chose 7 > 0 small enough and then 7 > 0 small enough to conclude. [

Ezercise 18. Let ue H'(RZ). Prove that for j € [2,d] and ¢t # 0 we have

HDtejuHLz < Hvu||L2(Q) .

2.4.3 Extension

We continue with a result of extension. In order to deduce results in W?(Q) from results
on W1P(R?) it is natural to extend functions in W?(Q) to functions in W?(R9) (notice
that in the proof of Theorem 2.33 we were able to prove results on W*?(w) for w cc Q
precisely because we had a function with a nice behavior on a bigger domain).

It is clear, at least in dimension 1, than extending functions by 0 outside 2 does
not always give a function in W1P(R?). However, we have seen in Exercise 2 that in
dimension 1 we can indeed extend a function in H*(R*) to a function in H*(R). We
generalize this observation to the case of a function in W'?(R%) and then, by the argu-
ment described above, to the case of a function in W1?(Q) for a regular bounded open
subset (2.
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Proposition 2.40. Let p € [1,+w]. For ue LP(RY) and x = (x1,...,2q4) = (z1,7') €
R? we set
u(zy,x’)  if 11 >0,

(Pu)(x) = {

u(—zy,2") if xp <O0.

Then Pu € LP(R?) and | Pull o (ray = 2% HUHLP(M)' For w € WH(R%) we have Pu €
WP (RY) with

01(Pu) = P(yu) and 0;(Pu) = P(dju), 2<j<d,

where

- ~Jv(z, ) if x1 > 0,
(Po)(e) = {—U(—xl,x’) if x1 < 0.

In particular, P defines a continuous extension from W'P(R%) to WhP(R?),

Proof. « We set RY = RAR?. It is easy to sce that |Pujga [Zo@ay = lulps RY) if p <
+00, so Pu e LP(R?) with ||Pul}, (Rd) = 2 HuHLP Re) . If p = +0 we have HPUHLw (Rd) =

il gu
e Forz = (21,...,24) € R we set o(x) = (—1,29,...,24). Let j € [2,d]. Let
¢ € C(RY). If ¢ is supported in RZ we have

—J Pud;pdr = —f udjpdr = J ojupdr = J P(0;u) pdx.
R R% R%

R4

If ¢ is supported in RZ then, similarly,

—Ld Pud;¢dr = —JRd (woo)dipdr = —f u(0jpo0)dr

RS
| udooyde= [ dutoeadn= [ (@ueaisds
Re R4 R4
=f P(0;u) ¢ du.
Rd
We consider the general case. Let x € C°(R,[0,1]) be even, equal to 1 on [-1,1] and

supported in ]-2,2[. For n € N and x € R? we set x,(z) = x(nz1). Since (1 — x,)¢ is
supported outside JR? we have

- fRd Pu(l —x,)0;¢dx = — J;gd Pud;((1 = xn)9) dz = J P(0ju)(1 = xn)¢ da.

2
By the dominated convergence theorem this yields
—J Pud;pdx = J P(0;u)pdx.
R4 R4

This proves that in the weak sense we have 0;(Pu) = P(d;u). In particular 0;(Pu) €
LP(R) with |05 (P sy = 25 1050 1a

2021-2022 19



M2RI - Elliptic PDEs and FEvolution FEquations

e We proceed similarly for the first partial derivative. We observe that for ¢ € C$°(R?)
we now have d;(¢ o) = —(01¢) o 7, so if ¢ is supported outside JR? we now have

—f Pu&lqbdxzf P(dyu)¢ d.
R4 Rd

On the other hand (1 — x,,) does not commute with the partial derivative ¢;. But the
additional term is estimated as follows. Let R > 0 be such that ¢ is supported in
R x By_1(0,R) (By4_1(0, R) is the ball of radius R in R¢"!). Since y is even we have

f Puoyx, ¢dx
Rd

f U0 Xn (¢ — @o0)dr
2

2
<nlyl, j f (s, )| |9en, o) — d(—ay, )| da day
x1=0 {E'EBdfl(O,R)

2
<4|xl, 128, j f (e, )| de iy
21=0 J2’eBy_1(0,R)

— 0.
n—-+o0

The conclusion follows as above. O

Theorem 2.41. Let Q) be an open bounded subset of class C in R, Let p € [1, +0].
Let O be an open subset of R% such that Q < O. Then there exists a bounded linear
operator P : WHP(Q) — WLP(RY) (which is also bounded for the norm of LP(2)) such
that Pu is supported in O and (Pu)jq = u for all ue W'P(Q).

Proof. Let u e WH?(Q2). We use the notation introduced in Paragraph 2.4.1. Without
loss of generality we can assume that &; = O and W, is symmetric with respect to R
for all j € [1, N] (for instance W; is a ball centered on dR?%). We denote by v, the
extension of ug by 0 on R%. We have lvollwro@ay = luolyrn@)- Let j € [1,N]. We
denote by 7; the extension of u; o <I>j_1 on W; given by Proposition 2.40. It is supported
in a compact subset of W;, and 9, o ®; is compactly supported in ¢;. Then we denote
by v; the extension by 0 of 7; o ®; on R?. By Propositions 2.36 and 2.40 and Remark
2.23 there exist constants Cg, Cy-1,Cp, Cy; > 0 independant of u such that

ijle,p(Rd) = Hﬁj © cI)J'HW“’(MJ-) < Co HﬁjHWI«p(Wj) < CpCo Hu] © (I)iluwl,p(wiji)
< CpCaCamr gy nn) < CrCeCamiCy, [ullyrn) -
Finally we set Pu = Zj’v:o v;, and Pu € W'P(R?) satisfies all the required properties. [J

Ezercise 19. Use Theorems 2.31 and 2.41 to give a new proof of Theorem 2.39.

2.5 Sobolev Embeddings

In this section we prove some inclusions between Sobolev spaces. The inclusions between
Lebesgue spaces are already known. In particular we know that LP(R?) is never included
in L4(RY) if p # q. The purpose here is to prove that if we add information about the
derivatives then we get better results. In particular we will prove (continuous) inclusions
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of the form WP(Q) = L4(Q) for suitable pairs (p,q) or of the form W*?(Q) = C™. In
this case, this means that we can recover regularity in the usual sense from existence of
weak derivatives.

As for Lebesgue spaces, we will get stronger results on a bounded domain €2. In this
case we will prove compact inclusions. For instance, H'(Q2) is compactly embedded in
L*(Q)). This means that if a sequence of functions in H*() is bounded, then it has
a convergent subsequence for the L*(2) norm. This result will be of great importance
for the analysis of PDEs. We will already use this fact in the following section (see the
proof of Theorem 2.57).

2.5.1 Some basic results

We begin with a result in dimension 1. We have already said in Proposition 2.7 that
the primitive of a function in LP(I) is continuous. We can deduce that a function in
W1P(I) is continuous. We can actually say slightly more.

Proposition 2.42. Let I be an interval of R. Let p € [1,+o0] and ue WYP(I). Then
u 1s equal almost everywhere to a function @ on I such that, for x,y eI,

p: -Hélder continuous on I (when

In particular @ is continuous. If p > 1 then 4 is even
p = 400 this means that 4 is Lipschitz continuous). Moreover, if I is not bounded and
if p €]1, +oo[ then u goes to 0 at infinity. Finally, for any p € [1, 4], @ is bounded and
hence uw e L*(I).

Proof. We fix xg € I. For x € I we set

This makes sense since v’ € LP(I) < L{ (I). Then, by Proposition 2.7, v is continuous
and its derivative in the sense of distributions is «’. By Proposition 2.8, there exists a
constant o such that u — v = « almost everywhere. We set u = v + a.

For x,y € I we have

aly) — alz) = v(y) — v(z) = f W/ (s) ds.

If p = 1 then for some zy € I we have |i(y)| < [@(zo)| + || 11y
If p = 400 then |a(y) — @(z)| < |y — [ [u| (), s0 @ is ||| ;o0 (p)-Lipschitz continu-
ous. If p €]1, +0o[, we have by the Holder inequality

[ as) <y =al ([ weor ds);.

This proves that @ is p;I—Hélder continuous, and in particular uniformly continuous.
All the statements of the proposition follow. O

a(y) —a(z)] <
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Corollary 2.43. Let I be an interval of R, p € [1,+o0| and k € N*. Let u € WhP(I).
Then u e C*1(I).

This proves that if we have enough weak regularity, then we can recover some weak
regularity. This kind of results will actually depend on the dimension. It is not true in
dimension d > 2 that a function in W1?(Q) is continuous. For instance, if 1 < p < d then
for o € ]—%4—1, 0[ the function z — |z|* belongs to W'?(B(0, 1)) but not to L*(B(0, 1)).

In any dimension we have the following result on R¢, based on the Fourier point of
view (see Section 2.2.3).

Proposition 2.44. Let k > ¢ and u € H*(R?). Then u is continous and goes to 0 at
infinity (in the sense that u has a representative which satisfies these properties). In

particular it is bounded. More generaly, if k > n + g for some n € N then u s of class

cn.

Proof. By the Cauchy-Schwarz inequality we have

J ey ac < UR (1) df)é ((1+16P) la)? ) <+,

so @ € L*(RY). By inverse Fourier transfor, this implies that u is continuous and goes to
0 at infinity. If & > n + ¢ then for all a € Nd with |a| < n we have 0%u € H*"(R?), s
0%u is a continuous functlon This implies that u is of class C". D

2.5.2 Morrey’s inequality

We have seen int the previous paragraph that from weak regularity we can recover dif-
ferentiability in the usual sense. But Proposition 2.42 only holds in dimension 1 and
Proposition 2.44 is only valid in R? and for p = 2. In this paragraph we prove a more
general result.

We recall that for n € N and 6 €]0, 1] we denote by C™?(Q) the space of functions
of class C"™ with bounded derivatives and such that the n-th derivatives are Holder
continuous with exponent 6 on (). It is endowed with the norm defined by

[ulleno) Z [0%ul ooy + Z sup |0 )_" (y)!

x;éyeﬂ — y|

laf<n laf=n

Theorem 2.45 (Morrey’s inequality). Let p €|d, +o]. Modulo the choice of a contin-
uous representative we have

Wl,p(Rd) - Co,l—g<Rd)
with continuous injection. More precisely, there exists C > 0 such that, foru e WHP(RY),
[ull oo ey < C o pmay »
and for almost all 1,z € R,

_d
[u(@1) = w(@2)] < Clar = @ 77 [V ey -
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In dimension 1, we have used the fundamental theorem of calculus to compare u(z)
to u(xg) for some fixed xy. It gave a one-dimensional integral which was controled by the
norm of «’. In higher dimension we can still write the fundamental theorem of calculus
for regular functions but the corresponding one-dimensional integral is not controled by
the d-dimensional integral which defines the norm of Vu. The trick in the following
proof is to compare u(z) to the mean value of u on an open subset of R?. This will give
a d-dimensional integral controled as stated in the theorem.

Proof. e The case p = 4+ follows from Proposition 2.37. We consider the case p €
|d, +ol.

e We consider u € C°(R?). The general case will follow by density. Let z € R? and
let O be an open subset of R?. We set

d(z,0) =suply — z|.
yeO
For y e O and h = (hy,...,hy) =y — = we have

) — ule)] < | i

f th ojule + th)] dt

§(x, O)ZL |0,u(z + th)| dt.

d
—u(z + th)‘ dt

For t €]0, 1] we set
tO—2z)={tly—=2z),ye O}.

)d
Uo = |O| f Y,

If we set

then we have

1
u(r) —uol < 5 | lule) — u(y)] dy
| ’ yeO
xoj JZ|&ux+th)|dtdh
he(O—x)
<5(a:,(9) 1

~

|0;u(x +n)| dndt.
o] Jo ;Leth) ’

By the Holder inequality we have for ¢ € [0, 1]

Zﬁorlauiwnldn zd](f é’u:x1~|—17)\pd77> (O — 2)|"F

<t

SO

i(z,0)|O] ¥ ||VUHLp RY)
14

1
u(z) — uol| < 8(x, 0) |0+ vu||Lp(Rd)f = (2.15)
0
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e Now let 21,790 € R? and let O be the open ball with diameter [xq,z5]. We have
§(x1,0) = d(x2,0) = |21 — 22| and |O| = F |21 — 15|" where ¢ is the size of the unit
ball in R%. Thus

21+%C;% 1—d
u(@1) = u(z2)| < [u(z1) = uol + u(z2) — ol < I _d 71— 22| 7 [V o gay -
p

This gives the second statement. Now for # € R? we apply (2.15) with O = B(xz,1), the
ball of center z and radius 1. The Holder inequality gives

1
luol < ¢ " [ul Lo(gay »
S0

_1 1
u(z)] < cq” (!um(Rd) t 1 a !VU\med)) :

p
This completes the proof. n

Ezercise 20. Find u € WH4(R?) such that u ¢ L®(R?).

2.5.3 Gagliardo-Nirenberg Inequality

In this paragraph we consider the case p < d. This is particularly interesting for the
common case p = 2. We have seen that in this case a function in W?(R?) is not neces-
sarily continuous or bounded. The purpose of the next result is to show that a function
in W1P(R?) is now in L4(R?) for some suitable exponent . This kind of results is also
of crucial importance in applications.

Assume that there exists g € [1, +o0[ and C' > 0 such that
o e O (RY), HUHLq(Rd) <C HVUHLP(Rd) - (2.16)

Let u € CP(RY)\ {0}. For A > 0 and x € R? we set uy(z) = u(Az). Then for all A > 0
we have

_d _d
A0 ul oy = luallagey < VUl Logay = CA 77 [Vt ey -

Letting A go to 0 or to 400 we see that we necessarily have

Ay (2.17)
q p
In the following theorem we prove that if (2.17) holds then we indeed have (2.16). For
p € [1,d[ we define p* € [1, +o0[ by

d 1 1 1
pe L (2.18)

“d-p pr p d
Notice that we have p* > p and p* — +o0 if p — d.

*

p

Theorem 2.46 (Gagliardo-Nirenberg-Sobolev inequality). Let p € [1,d[ and let p* be
defined by (2.18). There exists C > 0 such that for all u € C(R?) we have

[l Lo (gay < C VUl Lo gay -
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Proof. o Let ue C}(RY). For x = (z1,...,74) € R? and j € [1,d] we have

lu(z)| = vy ()"

Zj
J aju(l’l,...,ijl,t,l'j+1,...,l’d)dt <
—o0

where i'j = (.1’1,. ey i1, Tj1y - - ,iL‘d) and

1
1
v (Z;) = (JR|Vu(;E1,...,xj_l,t,mj+1,...,a:d)| dt) .

This gives

—

Jj=

Now we prove by induction on d > 2 that if we set

d
v:reR?— ij(ij),
j=1
then we have .
HUHLl(Rd H |U]HLd 1(Rd—1) * (2.19)
j=1

The case d = 2 is easy. Assume that (2.19) is true up to the dimension d — 1 for some
d > 3. We fix z; € R and see v as a function of 2’ = (z9,...,24). By the Holder
inequality we have

-2
d d—1
/ / ~ d—1
v(@y,2') do’ < 01 paor ga-y) H (21, )2 dwy . . . dxg ;
Rd-1
where for j € [2,d] we have set & = (29,..., 21,711, .,24). The induction assump-
tion gives
1
s A=’ < PR
1_[1)j(x1,xj)df2 dx' < 1_[ (1, 25)" d)
Ri-1 5 j=2 \JRI2
and hence

d =
J v(w1, ") dr’ < ||01]| pa-1 ga-1y H (J (@, )" di';) :
Rd—1 Rd—2

=2

After integration over z; € R we get, by the Holder inequality,

1

| vy vlanRM)HGW d)

This is (2.19). We deduce
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which gives the result for u € C}(RY) when p = 1.
e Let v > 1. The case p = 1 applied to |u|""u (still in C}(RY), with gradient
v |u]" " Vu) gives

d—1 p—1 1
a\ T ) 5 »
(J |u|ddl> < VJ‘ " V| de <~ (J |u]<d =t dm) (J |Vul? dx) .
R4 R4 Rd R (2.20)
If we choose g1
N pld-1)
d—p

we have

v (y=Up _ dp _

d—1 p—1 d—p

and the conclusion follows for u € C3(R?). The general case u € W1P(R?) follows by
density. O]

In Theorem 2.46 we have only used the fact that Vu € LP(R?). If u is also in LP(R?)
we have better conclusions. We know that L?(R?) n LP* (R%) ¢ LI(R?) (with continuous
inclusion) for any ¢ € [p, p*]. This is the first statement of the following theorem. The
second statement is about the limit case p = d. Notice that Theorem 2.46 does not
hold with p = d and p* = +o0 (see Exercise 20), but for u € WH4(R%) we have a result
similar to the case p < d.

Theorem 2.47. (i) Letp e [1,d[. Then for all q € [p,p*] we have W'P(R?) = LI(R?)
with continuous injection.

(ii) For all q € [d, +oo[ we have WH(R?) < LI(RY) with continuous injection.

Proof We prove the second statement. We prove by induction on v > d — 1 that for

e [d, %] there exists C; > 0 such that, for all u e C}(R9),

[l oggay < Co ltlragga) - (2.21)

The result will follow by density. (2.21) is clear when v = d — 1. We assume that it is
proved up to v — 1 for some v > d. Let u € C}(R?). We use estimate (2.20) from the
previous proof with p = d. With the induction assumption this gives

ol g I e 1V ey < 9O [

This gives (2.21) for ¢ = 4. The case g € [d, %] follows since u belongs to L4(R?). [

Theorems 2.45 and 2.46 only concern functions with one derivative in LP(R?). Tt-
erating these results we see that we get better results if we have more derivatives in
LP(RY).

For m e N such that mp < d we define p}, by

Pho P
Corollary 2.48. Let k € N* and p € [1, +o0].
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(i) Assume that kp < d. Then for q € [p,pi] we have WEP(RY) < LI(RY) with
continuous injection.

(i) Assume that kp = d. Then for all q € [p, +o[ we have W*P(R?) = LI(RY) with
continuous injection.

(iii) Assume that kp > d. Then for all q € [p,+] we have WHP(RY) = LY(R?) with
continuous injection. Moreover, modulo the choice of a continuous representative
we have WFP(R?) = C™9(R?) with continuous injection, where n € N and 6 €]0,1[
are such that n +60 < k —d/p.

Ezxercise 21. Prove Corollary 2.48.

2.5.4 Sobolev embeddings on a bounded domain

So far we have only proved results about W1P(R%). Our purpose in this paragraph is
to prove analogous results for Sobolev spaces on a bounded open subset ). For this, we
will use the extension operator of Theorem 2.41 to deduce inequalities on 2 from their
analogs on R

However, as said in introduction, we will get better results on €). For instance
we recall that LP(Q) < L9(Q) if p > ¢. This will automatically improve the result
of Theorem 2.46 (in particular the discussion before Theorem 2.46 is not valid on a
bounded domain).

Another very important difference between the case of R? and the case of a bounded
domain is that some inclusions will be not only continuous but also compact.

The results of Theorem 2.47 and 2.45 are extended to bounded domains as follows.

Theorem 2.49. Let Q be a bounded open subset of class C' in R, Let p € [1,+0].
Then we have the following compact inclusions.

(i) If p < d then for all q € [1, p*[ we have WP(Q) cc LI(Q).
(ii) For all q € [d, +oo[ we have WH4(Q) cc= L(Q).

(iii) If p > d then we have W'P(Q) cc C%(Q).

In particular we always have WhP(Q) cc LP(Q).

Proof of Theorem 2.49. ¢ We begin with the last case. By the extension Theorem
2.41, we can see functions in W?(Q) as functions in W?(R%) supported in some fixed
compact of RY. If p < 400, the conclusion follows from the Morrey inequality (Theorem
2.45) and the Ascoli-Arzeld Theorem A.3. Since W+ (Q) is continuously embedded in
Whr(Q) for any p €]d, +oof, it is also compactly embedded in C°(Q).

e Assume that (i) is proved and let ¢ € [d, +oo[. Then there exists p € [1,d[ such that
q < p*. Then we have

Wh(Q) c W(Q) cc LY(Q),

where the first inclusion is continuous (since € is bounded) and the second is compact
by (i). Thus it only remains to prove (i).

e Let g €[1,p*[. We consider a sequence (u,), _y bounded in W'?(Q). As above, we
identify this sequence with a sequence (still denoted by (u,), ) bounded in Wh*(R?)
such that the functions u, are supported in the same bounded open subset U. Let
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p € CF(R%,R,) be supported in the unit ball and such that {,,p = 1. For ¢ > 0 and
z € R we set p. = 4p(%), and then ug, = p. * u, € C*(R?). Let € > 0. For n € N and
r € R? we have

[z (2)] < el oo may ln 21 e
(R) )
and
Vg, (2)] < [Vl oo ray [l pa ey
(R9) )
so the sequence (uS)en is bounded in C°(RY) and uniformly equicontinuous. Moreover
the functions uf, are supported in a common bounded set V of R¢, so by the Ascoli-

Arzeld Theorem A.3 there exists a subsequence (uj, )reny Which converges uniformly in
VY and hence in Y. This gives

€
Nk

Lau)

lim sup

U, —u
J,k—+00 ’

e  We already know that ug, goes to u, as ¢ — 0 in LY(U) for all n € N. We prove that
this convergence is uniform with respect to n. Let v € C}(R?) be supported in U. For
e > 0 we set v. = p. *v. Then for x € R? we have

ve(z) — v(z) = fB(ODp@)(v(x—sy)—v(x)) dy = —¢ f ) f Vo(e — cty) -y di dy,

B( k)

and hence

1
o = vl = | fouo) vl do <= [ o) [ | V(o cty)] dededy
u B( 0 Ju

< e[Vl -

(2.22)

071)

By density, the same estimate holds for any v € WP(R?) supported in U (note that if
U € C1(RY) goes to v in WLP(R?) then p. * v, goes to p. = v in L'(R?)). Let 6 €]0,1[
be such that

1 1-6

—=0+—":

q p
By (2.22) applied with v = u,, and the Gagliardo-Nirenberg inquality (Theorem 2.46
there exists C' > 0 independant on u, n or £ such that

0 1-0
Juz — unHLq(u) < uy, — un”Ll(u) [T ®RY) S Ce’ HVUnHLp(u) .

This proves that uZ goes to u, in LY(U) as € — 0 uniformly with respect to n € N. Then
for any n > 0 we get

ljlgisfog Huna - unkHLq(u) S -

Using a standard diagonal argument, we obtain a subsequence which goes to 0 in L?(UA)
and hence in L7((2). O

Ezercise 22. Let p € [1,d[. Prove that we have the continuous inclusion W'?(B(0,1)) <
LP*(B(0,1)), but that this inclusion is not compact.
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2.6 Traces

We recall that functions in the Sobolev spaces are not really functions, but equiva-
lence classes of functions pairwise almost everywhere equal. In particular, for u in some
Sobolev space W*P(Q), it does not make sense to consider the value of u at some point
Tg € Q.

We have seen in Proposition 2.42 that, in dimension 1, an element u of W'P(I) has
a continuous reprentative @. It is reasonnable to consider @(xg) as the value of u at
xo. Indeed, if ¥ is another representative of u then o(xy) can be far from @(z), but for
almost all x € T “close to xy” then 0(x) is equal to @(x) and hence “close to @(zg)”.

However, this possible definition only works in dimension 1, since in higher dimen-
sion an element of W1?(Q) does not necessarily have a continuous representative.

In applications, it is not crucial to give the value of a function at a point, but we
are interested in what happens at the boundary of the domain. This will be important
for instance for integration by parts (Green formula in higher dimension), where the
value of the function at the boundary appears. For regular domains, the boundary is a
submanifold of dimension (d — 1). This is still of dimension 0 for the Lebesgue measure
on 2, but if d > 2 this is in some sense “bigger” than a point.

Our purpose in this section is the following. Given a regular open subset  of R?
and u € W'P(€2), we want to give a natural sense to the restriction of u on the boundary
09, in such a way that if u belongs to C%(€Q) then the new definition coincides with the
usual one.

2.6.1 Trace

As explained in the previous section, we begin our analysis with the model case 2 = R
and then, using a partition of unity and changes of variables, we will give a more general
result.

Proposition 2.50. Let p € [1,+w[. There exists C > 0 such that for u e CP(RL) we
have

”U( )HLP Rd— 1 C Hunlp Rd .

For the proof we only have to integrate over R%~! the one-dimensional case which is
very close to Proposition 2.42:

Proof. For 2’ € R%! we have

+0o0
(0, )" < p f 0 yuls, )| Juls, )P~ ds
0

so, by the Holder and Young inequalities,

+o0 5 /(o -
lu(0, ") [P <p<f |0, u(s, ") ds) (f lu(s,z")|" ds)
0 0

+00

+0
<f (s, )P ds + (p— 1) f (s, )P ds.

0 0
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After integration over 2’ € R we get
[0, )p a1y < (0 = 1) [l ey + [0l @ay »

and the conclusion follows. O]

Theorem 2.51. Let Q) be an open subset of R? of class Ct. Let p € [1,+[. There is
a unique bounded linear operator

o WP(Q) — LP(69)

such that
Yue WH(Q) n C*(Q), 7olu) =u

oN-

Proof. Let u € CF()). We use the notation of Paragraph 2.4.1. Let j € [1, N]. We
have

| do = | el /14 Vel o
2AU; 0,
<C| )P ' =, [ JwoaP ar

0, oR4

where C, = sup,co4/1+ |Ve(2)* and (uo @) has been extended by 0 on R%. By
Propositions 2.50 and 2.36 there exists C); > 0 independant of u such that

f ulf do < CpC |uo @~
0QnU;

Then,

N N
|u|aQHLP Z Ui o0 1o(9) < ;Cj HujHWLp(Q)

Finally, there exists C' > 0 such that for all u € C°(Q) we have

HUWQHLP(aQ) < Clulwrsg) -

Since Cif(Q2) is dense in W'?(Q), the map u € CFP(Q) — wjpn € LP(0) extends to a
unique continuous map on W1?(Q). Moreover, if u € WP(Q) nC°(Q) then the sequence
(Un),on given by the proof of Theorem 2.39 goes uniformly to v and hence the restriction
of u,, goes to the restriction of u uniformly on 052, and hence in L”(0%2). O

Ezercise 23. Show that there is no continuous linear map v : L?(R*) — R such that
v(u) = u(0) for all u e C°([0, +o0[) N L*(R%).

The following notation is motivated by Theorem 2.64 below:
Définition 2.52. When p = 2 we denote by H'/?(0Q) the range of 7o : H'(Q) — L*(Q).

We do not discuss the properties of HY2(0Q) here. However we will use in the
following chapter that even if 7, is not surjective, HY2(052) is dense in L?(092).
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Proposition 2.53. Let Q be an open subset of R of class C'. Let p € [1,+o[ and
we WP(Q). Then we have

Y(u) =0 << ueW()l’p(Q).

Proof. e Assume that u € Wy "(R?). Then there is a sequence (u,,), . in C(Q) going
to u in W1P(Q). Since vo(u,) = 0 for all n € N and 7, is continuous, we have yo(u) = 0.
e For the converse, we consider the case €2 = Ri and v supported in a bounded domain.
Then, with a partition of unity and changes of variables as above, we get the general
case. So let u € WHP(R?) such that vo(u) = 0. Let (u,),_y be a sequence in Cg°(R%)
which goes to u in W'?(R%) (see Theorem 2.39). Let n € N and z; > 0. For 2’ € R%!
we have by the Holder inequality

p

|, (21, 2")]" < (]un(O,w’)\ +J (Vu, (s, 2')| ds)
0
1 p
< 277 u, (0, 27) [P + 2P (f 'V, (s, z')| ds)
0
< 2071 u, (0, 2) P + 2p1x’1’1f (Vu, (s, 2")|" ds,
0
so for e > 0

154 €
f f (21, 2")|P da’ doxy < 2P e ||70(un)H}£p(Rd) +2p_1€pf f \Vu, (s, ") dsdz’.
0 JRd-1 *

Rd—1 Jo

Taking the limit n — 0 yields, by continuity of the trace,
HuHip(]o,g[defl) < 2?7leP HVUHLP( 0,e[xRd-1) - (2.23)

Let x € C*(R4,[0,1]), equal to 1 on [0, 1] and equal to 0 on [2, +c[. Then for n € N*
and © = (z1,...,24) € RL we set x,(z) = x(nz1). For n € N* we set u,, = (1 — x»)u, so
that u, € C(RL). By the dominated convergence theorem, we have

it =l gty = It oty ——> 0.

For n € N* we have
V(u, —u) = (1 = xn)Vu — udixn-

The first term goes to 0 in LP(R%). For the second term we use (2.23) to write

evalty = [* W) [ e do'dry

1= r’eRr—1

:b—‘

< 2P W L 9l g0 2 e

— 0.

n—+0o0

This proves that

—>0

Jun — u”wl,p(Rd) ot

and hence u € Wy (R%). O
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Ezercise 24. Find an open domain Q and u € WH*(Q) such that uaq = 0 but u is
not in the closure of C{°(Q) in WHT°(Q).

Ezercise 25. 1.Let ue Hj(R%). For (x1,22) € R? we set

_ u(ry, xa) if x1 >0,
Wz =1, it 2y <0
1 x V.

Prove that @ € H'(R?) and give an expression for the derivatives of @. In particular,
what can we say about ||@| g g2y 7

2. Let 2 be an open subset of R?. Let u € H}(Q2). Prove that the extension of u by 0
on R? belongs to H*(IR?).

2.6.2 Normal derivative

Let © be a bounded open subset of class C! in R%. For the rest of this section we only
consider the case p = 2.

Let u € H*(Q). For j € [1,d] the derivative d;u belongs to H'(£2) and hence has a
trace on 0f). Then we set

d
"(u) = dyu = Z Y0(05u)vy € L*(0),
j=1

where v = (vq,...,14) is the outward normal derivative (see (2.14)). Notice that if u

belongs to C'(Q) then on 0 we have
o,u=Vu-v.

This defines a continuous function v; from H?(Q2) to L*(2). We can prove (see Theorem
2.64 below for the case Q = R?) that

{ou,ue H*(Q)} = HY2(Q).

2.6.3 Green Formula

As said above, one of the motivations for the definition of the traces is the generalization
of the Green Formula to functions which are not regular in the usual sense. The fol-
lowing results are deduced from the regular analogs by density of regular functions and
continuity of the traces. For u € W"'(Q) we can write {,, udo instead of ., yo(u) do
and ., d,uv do instead of §,, 1 (u)yo(v) do.

Theorem 2.54. Let u,v € H'(Q). Then for j € [1,d] we have
J udjvdr = J uvda—J Jjuvdx
Q o0 Q
Theorem 2.55. Let u € H*(Q) and ve H(Q). Then we have

—JAuvdxz— ﬁyuvda—i—JVU'Vvdx.
Q o0 Q
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2.7 Poincaré Inequality

In Theorem 2.46 we have given an estimate with the norm |[Vu( ;,ga) and not the full
norm Hu||W1,p(Rd). In application, and in particular for the analysis of second order PDEs,
we will often be in the situation where we only control the norm of the gradient of the
function and not the function itself.

It turns out that in some particular situations, the norm of the function is in fact
controled by the norm of the gradient:

”U’”LP(Q) <C HVUHLP(Q) : (2.24)

In this case, | Vul,q) defines a norm on WhP(Q), equivalent to ] y10(q- An inequal-
ity like (2.24) is called a Poincaré inequality. This is the subject of this paragraph.

Before giving precise statements, we notice that a Poincaré inquality cannot hold in
a space which contains constant functions. In an unbounded domain, troubles can come
from slowly varying functions. For instance on R we consider for n € N* the function

u, defined by
11— if 2] <
iy = {18 <n
0 if |z| > n.

Then we have HuHiQ(R) = 2% and |u’/ HEQ(R) = 2. A Poincaré inequality cannot hold in

H'(R). ’

In fact, we have discussed all the problems to prove a Poincaré inequality. Roughly
speaking, on a bounded domain, and if we remove constant functions, a Poincaré in-
quality holds. The first way to remove constant functions is to consider only functions
vanishing at the boundary.

We first recall that the property that only constant functions (up to equality almost
everywhere) have a zero gradient also holds in higher dimension.

Proposition 2.56. Let Q) be an open connected subset of RY. Let u € Li () be such
that Vu = 0 (in the sense of distributions). Then there exists a constant o such that
u = « almost everywhere.

Proof. We proceed by induction on the dimension. The case d = 1 is already known.
We assume that d > 2 and that the result is known up to the dimension d — 1.
It is enough to consider the case {2 = H?Zl]aj, b;[. Let x € Ci°(Jay, bi]) be such that

Ssi X(SL‘l) dry = 1. For 2’ € () = Hj:ﬂaj, bj[ we set

o(a') = f " a2 (1) di,

al

This defines a function v € L} (). For ¢ € C°() and j € [2,d] we have

loc

— f / v(2)0(x) da’ = — JQ u(zy, 2" )x(21)0;¢(x") day da’

=— L u(zr, 2)0; (x(21)1(2")) da da’
=0.
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This proves that, in the sense of distributions, we have Vv = 0 on €’ By the induction

assumption there exists v such that v = a almost everywhere on 2.
Now let ¢ € C°(Q2). For x = (x1,2") € Q2 we set

b1

o(a') = | (a1, 2") day

ayl
and

(o) = [ (@(t.2) — x(O3) dr

ai

Then ¢ € CP(Q) and ¢ = 0,,¢ + X ® ¢, 50

L u¢ dr = Lilf/u(ml,x’)x(xl)é(x’) da' day = J/vqux’ — Q/&dx’ = aL¢dw.

This proves that u = a almost everywhere on ). O]
Now we can prove the Poincaré inequality.

Theorem 2.57. Let Q be an open bounded subset of RY. Let p € [1,+o0[. Then there
exists C' > 0 such that

Vu e W()LP(Q)’ ”u”LP(Q) <C HVUHLP(Q) :

Proof. Assume by contradiction that the statement is not true. Then for all n € N there
exists u, € Wy (Q) such that

lunll oy > 1 [ Vtn ooy -

Since this inequality can be divided by [un| ;) (which cannot be 0), we can assume
without loss of generality that |un||;,q) =1 for all n € N. Then

HVU’TLHLP(Q) o 0, (2.25)
and the sequence (u,), . is bounded in W?(2). Since W'?(Q) is compactly embedded
in LP(Q2) (see Theorem 2.49), there exists an increasing sequence (ng),.y € NV and
v e LP(Q) such that

— 0.
k—+00

Hunk - UHLP(Q)
With (2.25), this implies that the sequence (uy, )ren is a Cauchy sequence in W1P(Q).
Since W'P(Q) is complete (see Theorem 2.24), the sequence (uy,, )reny has a limit in
W1P(Q). This limit is necessarily v. In particular v belongs to W'?(Q), and by (2.25)
we have Vv = 0. By Proposition 2.56, v is constant on each connected component of €.
Since u,, belongs to Wy (Q) for all k € N, we also have v € W, ?(2), so v = 0, which

gives a contradiction with the fact that w2 = 1 for all k€ N. O

Notice that the proof of Theorem 2.57 does not give any clue about the constant C' of
the inequality. We now give a similar result, with a more constructive proof. Moreover
the open set €) is only required to be bounded in one direction. This means that € is
included in a strip of the form

O c {xeRd,x‘eE]a,b[%

for some e € RY, |e| = 1 and a,b € R.
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Theorem 2.58 (Poincaré inequality). Let Q be an open subset of R, bounded in one
direction. Let p € [1,+o[. Then there exists Cq > 0 such that, for all u e Wy (Q),

”u”LP(Q) < Cq HVUHLP(Q) :
For instance, we can take Cq = (b — a)p (this is not optimal).

Proof. e It is enough to prove the estimate for u € C°(€2). Then the result will follow
by density of C2(Q) in W, ?(Q). We can extend u by 0, this gives a function in Cg°(R?)
supported in 2. The case p = 40 follows from the Mean Value Inequality, so we assume
that

e We first consider the one-dimensional case. Then there exists a,b € R such that
Q cla,b[. For all x €]a,b[ we have by the Holder Inequality

p—1

b
juz)] < J W' (s)| ds < '] pqp) (b —a) 7.

Then
lulf, < (b—a) |}, (b—a)~t = ||}, (b—a)”

so the result follows in this case.
e Now we consider the general case. Let (fi,..., fs) be an orthonormal basis of R?
such that

supp(u) < {yi fi + ¥ f ¢ y1 €)a, b,y e R},

for some a,b € R, where for ¢/ = (ya,...,yq) € R4 we have set v/ f' = 2?22 y;fj- By a
change of variables and using the one-dimensional case we can write

b
| w@r = [ sy P iy
Q y'eRI=1 Jy;=a
r b p
< (b—a)? J d

(pfr+y'f)] dydy
y'eRI~1 Jy;=a

—u
oy

(-

- b
<(b-a) J IVu(y fi +y' ) dys dy’

Jy'eRI—1 Jy;=a

< (b—a) J; |Vu(z)|P de.

The conclusion follows. O]

It can be important in application to have an explicit constant for the Poincaré
inequality. Computing the optimal constant for particular sets ) requires more work,
and we do not discuss this issue here, but we already have an upper bound.

After Theorem 2.58, the interest of the proof given for Theorem 2.57 is not clear.
For the proof of Theorem 2.58 we have really used the fact that the function u vanishes
at the boundary. While for the proof of Theorem 2.57 we have in fact only used the
property that the only constant function is 0. The interest of the proof of Theorem 2.57
is that it can be used in any such situation. For instance, we give the following version
of the Poincaré inequality.
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For a bounded open subset (2 we define
Whr(Q) = {u e WHP(Q) : J wdr = 0} . (2.26)
Q

Notice that if 2 is connected then the only function u € T/IN/LP(Q) such that Vu = 0 is
u=0.

Theorem 2.59 (Poincaré-Wirtinger inequality). Let € be an open, connected and bounded
subset of R%. Let p € [1,+0o0]| Then there exists C > 0 such that, for all ue WHP(Q),

Yu e WHP(Q), 1l o) < ClIVU| 1oq) -
Ezercise 26. Let Q be an open, bounded and connected subset of RY. Let p € [1, +0].

1. Prove Theorem 2.59.
2. For ue WhP(Q) we set

N(w) = [Vl gy + ‘ Ludx

Prove that N is a norm on W1P(Q), equivalent to the usual one.

2.8 Appendices

2.8.1 Sobolev spaces of fractional order

The space WHP(Q) is the set of functions in LP(Q2) whose derivatives of order up to k are
in LP(€2). Then, all along this chapter, k was a non-negative integer. When Q = R¢ and
p = 2 we gave another definition of Sobolev spaces (see Proposition 2.26). We observe
that in (2.9) the parameter k£ has no reason to be an integer. Via the Fourier transform,
we can then define Sobolev spaces for any real parameter k. In some sense, the space
H'2(R?) can be seen as the space of L? functions such that “half a derivative” is in L2.
These spaces turn out to be useful. For instance, we have briefly said that HY/2(0Q)
is the set of traces of functions in H*(2). When = R%, a proof is given below (see
Proposition 2.50)

Définition 2.60. Let s € R. For u € §'(R?) such that @ € L]

loc

(RY) we set

1
2

He(RY) = URd (1+ |€2)5|@(€)I2d§) : (2.27)

|l

and we denote by H*(R?) the set of tempered distribution u such that @ € LL (R?) and

Notice that when s € N this definition of H*(R?) coincides with the usual one.
Proposition 2.61. Let s € R.

(i) H*(R?) is a Hilbert space.
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(ii) If for ue H*(RY) and v e H*(R?) we set

B(0) = | @0,

then @, is a continuous linear form on H*(RY) and the map u — ®, is a semilinear
isometry from H~*(R?) to H*(RY).

Proof. ¢ For u,v e H*(R?) we set

(1) oty = f (&) G(E)0(¢) de.

Rd

This is well defined and this gives an inner product on H*(R¢). Moreover the corre-
sponding norm is (2.27). Let (u,)neny be a Cauchy sequence in H*(R?). Then (-)*,, is
a Cauchy sequence in L?*(R?) and has a limit v € L?(R%). We denote by u the inverse
Fourier transform of (-)°v. Then u € H*(R%) and

=l roqay = 1) in = 0] 2ty —> 0.

This proves that H*(R?) is complete.
e Forue H*(R?) and v e H*(R?Y) we have

O IRGREGIGROLS
This proves that ®,(v) is well defined and, by the Cauchy-Schwarz Inequality,
|[Pu (V)] < el sy 0] s (gay -
Since ®, is linear, it is a continuous linear form on H*(RY) with

[l

<l

HS(Rd)’
Choosing v = F 1 (-)7>° Fu we get ®,(v) = |l gr=s gy 0] s may» S0

[

Hs(Rd) = Hu”H*S(Rd)‘

Now let ® € H*(R?)’. Then the map w — ®(F~!(£)"°w) is a continuous linear form
on L?(RY). By the Riesz Theorem, there exists @ € L*(R?) such that

vwe L*(RY), ®(F () w) = (@, w) 1ga)
Then for v € H*(R%) we apply this equality with w = (£)* Fv to get
(I)(U) = <ﬂ, <§>S.FU>L2(RUZ) = (I)U(U),

where we have set u = F ! (:)* % € H~*(R%). This proves that the map u € H~*(R%)
®, € H*(RY) is surjective. The proof is complete. O
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Exercise 27. Let s €]0, 1].
1.Let z € R% Give an expression of

| et 2) =t ay

in terms of 4.
2. Prove that there exists C' > 0 such that for all u € S(R?) we have

o 2
[ ] =gy = [ e de
yeRd JzeRd x_y‘

| geRd

3. Deduce that the quantity

1
2 2
2 |u(z) — u(y)|
”uHL2(Rd) + J J Trs —drdy
yeRe JzeRd ‘ZL’ - y‘

defines a norm on H*(R?), equivalent to the usual one. The interest of this expression
is that it no longer use the Fourier transform an can be used to define H*({2) on more
genral domains §2.

2.8.2 Green formula for less regular functions

In this additional paragraph we continue the discussion about traces and the Green for-
mula. In particular we define, via the Green Formula, a normal derivative for functions
which are not in H?(Q).

We have denoted by H'Y2(Q2) < L?(f2) the range of the trace 7, defined on H*(Q).
This is a vector space, which can be endowed with the following norm.

H9||H1/2(aﬂ) = nggl HwHHl(Q)‘
Yo(w)=g

We notice that Hj(Q) = {we H'(Q) : y(w) = g} is a nonempty (by definition of
H'Y2(0Q)) and closed (since 7, is continuous) affine subspace (since 7, is linear) of

the Hilbert space H'(f2), so by the Hilbert projection theorem there exists a unique
R(g) € H,(Q) such that

H9HH1/2(aQ) = HR(g)”Hl(Q)‘
Moreover R(g) is the only solution in H,(€) of

e HYQ), (R(9),0) 410 = 0.

From this we can deduce that the application which maps g € H'2(Q2) to R(g) € H'(Q)
is linear, and then that H'/2(0Q)) is a Banach space:

Proposition 2.62. H'/2(0Q) is a Banach space.
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Proof. Let (gn),.y be a Cauchy sequence in HY2(2). Then (R(gn))nen is a Cauchy
sequence in H'(Q2). Since H'(f2) is complete, R(g,) tends to some w in H'(2). We set
g =(w) e H/2(09). Then we have

lgn — QHHW(aQ) = |R(g — gn)HHl(Q) = |R(g) — R(gn)HHl(Q) —0.

n—+0o0

This proves that the sequence (g,), .y has a limit in H'/2(0€2), and hence that H'/?(09)
is complete. O]

We denote by H~/2(0Q) the dual of H'/2(092).

Proposition 2.63. Let ue H'(Q) such that Au e L*(Q). Then the map
ge H2(Q) — f (Auvy + Vu - V) da, (2.28)
0

where v, € H'(Q) satisfies vo(vy) = g is well defined (the definition does not depend on
the choice of v,) and defines a continuous linear map on HY?(0) which we denote by
o, u.

We recall that in a general domain ) the assumptions that v € H'(Q) and Au €
L*(Q2) do not imply that u e H?().

Proof. We first observe that if v; and vy in H'(Q) are such that vo(w;) = vo(v2) = g
then v; — v, belongs to Hj(2), so there exists a sequence (¢y,), oy in C§°(€2) which goes
to vy — vy in HY(Q). For all n € N we have

L (Audp + Vu- Vo) de = (Au, dn) oy pay + (Vs Vo) pa) pey = 05

so, taking the limit n — +o0,

J (Au v1 + Vu - Vvl) dr = J (Au v9 + Vu - va) dx.
Q Q

This proves that the definition in (2.28) does not depend on the choice of vy, and the
map 0,u is well-defined on H/2(09).
For g € HY?(092) we have

‘L (Au vy + Vu - va) dx

< (I1aul 2@y + 1Vl 2g) ol

and hence

< (180l gy + IVl 2@y ) 19200 -

J (Auvy + Vu - Vu,) de
Q

This proves that the map d,u is continuous on HY2(9Q). Since it is also linear, this
defines an element of H~2(02). O
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By definition, we have the following Green formula for u,v € H'(2) such that Au €
L*:

— J A'LL'U dx = — <(3,,u, U)H_I/Q(aﬂ),Hlp((?Q) -+ f V'LL . V'U. (229)
Q Q

We finish this section about traces by giving a general result on Q = R? by means
of the Fourier transform. This will in particular ensure that the two definitions of H'/?
on R ~ dR? are equivalent, and that the trace on H'(f2) and the normal trace on
H?(Q) have the same range.

Theorem 2.64. Let ke N and s > k + % Then the map

{S(Rd) — S(R4Y)
u = u(0,-)

has a unique continuous extansion v, : H*(R?) — H**=2(R¥1).  Moreover, v, is
surjective and there exists a continuous linear map Ry, : H*F=2(R¥1) — H*(R%) such
that

IYIC o Rk = Ist_k_%(Rdfl) .
Proof. e We first observe that forme N, n > 0 and 0 > m?“ we have, with the change
of variable t = /n0¢

f " (n+1%) " dt = 0% 7Chp,  where Cpy = f 0™ (1+6%)7do.  (2.30)
R R

o Let ¢ € S(RY). For ' € R we have by the inversion formula

26(0,2) = (Qi)d f e e <fR<i£1>’“¢3<fl, ¢) d&) ',

so the Fourier transform (in R?~1) of 0F¢(0, -) is given by

g:€ 1f (i6)*d(61, €' de. (2.31)

By the Cauchy-Schwarz inequality and (2.30) applied with n = 1 + |¢/|* we have, for all
f/ c Rd_l,

ix?g(¢ (Jml, 214+ + [¢P) d&) (ff 1+€?+\€’|2)5d€1)
< Cara(L+ €)1l )P (1+ € + 1€ des

Y
Multiplying by (1 + |¢'[*)° "3 and integrating over ¢’ € R?! gives

Cka
HS™ k——(Rd 1) ~x 4

[(@%e)(0,)];

Elf

Hs(Rd) -

This proves the first statement of the theorem.
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e Now we prove that 7 is surjective with a continuous right inverse. We begin with
ve S(RTY). Let g € S(R¥1) be the Fourier transform of v on R, The expression
(2.31) suggests to find f such that

o) = 57 | i€ F6.€) des (2.32)

Let N > %(s—k—%). For £ = (&,¢) € RY we set

£(€) = 2r (=) (1+1¢) 4(&).

k1
Coves (14g)?)V*2"2

In particular, for all ¢ € Rt the map & — (—i&)*f(£1,¢') is integrable on R and
(2.32) holds by (2.30). Moreover, by (2.30) again we have

| avteprisor ae

47T2 / / — —S8
= f (L+ [ la(€F (f (14 [¢[*) =@ >d51) 3
k,N+1 JR R
2
- Gty [ (1 gty () ag
Ck,NJr% Rd-1

Then if we denote by u the inverse Fourier transform of f we obtain that u € H*(R?)

and )

2 47°CoaN +k+1-5

Hs(Rd) 2
(= Ck,N+%

Moreover (2.32) ensures that 7 (u) = v. Thus we have defined a map Ry : S(R*"!) —

H*(R?) such that v, o Ry = Id. By (2.33), Ry extends to a continuous map from

Hsfkf%(Rd—l) to H*(R%), and the proof is complete. .

|l

[l

(2.33)

2
Hs—k—% (Rd-1) "

2.8.3 The dual of H}()
Définition 2.65. We denote by H () the dual space of Hj ().

We recall that the dual space of Hy (£2) is the set of continuous linear forms on H}(€2).
It is endowed with the norm defined by

p(u)
lelg-1q) = sup oLl
ue H} (2)\{0} HM\H&(Q)

We usually write (¢, u) (or <907u>H—1(Q),H5(Q)) instead of (u). Notice that if H'(Q) #
Hj(Q2) then H~1(Q) is not the dual space of H'().

We recall that by the Riesz Theorem, we can identify a Hilbert space with its dual.
However, in this kind of context we usually already identify L?(2) with its dual. With
this identification we have

Hy(Q) = L*(Q) = H(9),
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with continuous injections. The first inclusion is clear by definition of the Sovolev space
H(2). Now a function u € L*(Q) is identified with the continuous linear form on L?((2)
defined by

v = (U, 0) 2 - (2.34)

By restriction, this also defines a continuous linear form on Hy (£2). In this sense, we can
say that u belongs to H~1(Q). However, all the elements of H () cannot be identified
with a function in L*(Q). For instance, on R, the Dirac distribution

d:v—v(0) (2.35)

defines a continuous linear for on H*(R) = Hj(R), and it is not of the form (2.34)
(notice that this example is specific to the dimension 1, a Dirac distribution is not in
H='(Q) in dimension d > 2, however with the trace Theorem we can generalize this
example in higher dimension, see Exercise 28).

Let f € L*(Q) and F € L*(Q,RY). Then ¢ = f — div F, where the derivatives are
understood in the sense of distributions, also defines a continuous linear form on H} ()
(which is not necessarily in L?(2)). For v e H}(Q) it is given by

p(v) = (f,v) + Z (Fy, Ou) .

J

In particular we have

d
loll 1) < 1fll 220 + Z 15 2 - (2.36)
j=1

In fact, using the Riesz Theorem in Hj () we see that any p € H~1(2) can be written
in this form with u € HJ(Q2) and F = Vu. Moreover, in this case we have an equality
in (2.36). See Theorem 5.9.1 in [Evans] (see Exercise 29 for the particular case of the
Dirac distribution (2.35)).

Ezxercise 28. Let f € L*(R). Prove that the map
ve CP(R?) — J f(z)v(z,0)dx
R

extends to a continuous linear form on H!(R?).

Ezercise 29. Find u € H'(R) such that

Yve H'(R), v(0) = f uv +J u'v'.
R R
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